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Flux-induced vortex in mesoscopic superconducting loops
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We predict the existence of a quantum vortex for an unusual situation. We study the order parameter in
doubly connected superconducting samples embedded in a uniform magnetic field. For samples with perfect
cylindrical symmetry, the order parameter has been known for a long time and no vortices are present in the
linear regime. However, if the sample is not symmetric, there exist ranges of the field for which the order
parameter vanishes along a line, parallel to the field. In many respects, the behavior of this line is qualitatively
different from that of the vortices encountered in type-Il superconductivity. For samples with mirror symmetry,
this flux-induced vortex appears at the thin side for small fluxes and at the opposite side for large fluxes. We
propose direct and indirect experimental methods which could test our predi¢®&®i63-18209)01813-5

The question of where and under what conditions an invariation. In the first method the zeroth-order configuration is
dividual vortex appeargor disappealsis still an active a cylindrical shell of superconducting material, with inner
subjectt=® Here we consider an unusual setup: that of theradiusR, outer radiusR’ =R+w and heighth, whereR, w,
Little-Parks experimerftj9 i.e., a superconducting loop andh are constants. In early experimehitsvas much larger
which encloses a magnetic flux. thanR andw, whereas recent experimehianeet the oppo-

We find that, for a narrow range of enclosed fluxes in thesite situation. We consider a uniform magnetic field parallel
vicinity of a half-integer number of quanta, a vortex is t0 the axis of the shell and study the onset of superconduc-
present in the loop. This vortex is completely different in tivity. In this regime the magnetic field is still unaffected by
nature from the traditional vortices known from type-Il su- the supercurrents and the Ginzburg-Landau equation is lin-
perconductivity. In the traditional case, a minimum local €arized to the eigenvalue problem
magnetic field is required for the formation of a vortex; here, . ) 2
its formation is governed by the enclosed flux. As the mag- Hotho=(iV = 2mAI o) ho= tho/ €= Eotbo- @

netic field is increased, instead of having more and MOre, s the order parameteA is the magnetic potentialb is
vortices coming in, the present vortex disappdarsd a new _the quantum of fluxoid ®,>0), and &, is the coherence
vortex appears only after an additional quantum of flux iSjgngth at the onset of superconductivity. The notations for
enclosed by the logp Whereas traditional vortices cannot the function i, the operatoH,, and the eigenvalu&,

exist along films which are thinnerzthan the coherence 1ength e been introduced to remind the reader of the eigenfunc-

(they “need room for their cores’ the present vortex ex-  ion the Hamiltonian, and the energy in a perturbation prob-
ists for arbitrarily thin shells. Another atypical feature of the lem. Equation (1) is subject to the condition thatiV

present vortex Is its high anisotropy, which depe_nds on the—27rA/<I>0)z/; has no normal component at the boundaries.

thickness of the sheII_. Moreover, there are cases in which th or the momenty= i) For a cylindrical shell and cylin-

order pa_lramet(_ar vanishes a surfacerather than a line. drical coordinatesr(,6,z), Eq. (1) is separable and has been
Additional differences arise from the assumption that thesolved in Ref. 10. Writingj,=R(r)®(6) 2(z), one easily

total magnetic field remains _equal to the applied f'eld:obtainsZ(z)=cos(<wz/h) and©(9)=e ™, with k and m
whereas traditional vortices exist for type-Il superconduct-

ors, for which the Ginzburg-Landau parametelis larger mtzgt(;rs. Slm,:-:EEO ?l\évaf mgreasets witk”, we pickk=0
than 22 the present vortex is insensitive to the Londonan e solution of Eq1) reduces to
penetration depth and bears no connection withwhereas - —mio

= : . e : ho=TRm(r)e " v
traditional vortices cannot stay in equilibrium if the distance
to the boundary is too shotthe equilibrium position of the The winding numbem is chosen so that the lowest value of
present vortex is a continuous function of the flux and doe€, is obtained. For a thin shell it is the closest integer to the
reach the boundaries. This assumption is justified when eirumber of flux quanta enclosed by the sh@ll,, was ob-
ther the thickness or the width of the loop is small comparedained in Ref. 10; it depends on the magnetic field and in-
to the magnetic penetration depth. The case in which th&olves a combination of Kummer functions, adjusted to meet
induced field is not negligible will be considered elsewherethe boundary conditions.

We shall consider two complementary geometries: A salient feature of the solutiof2) is that there exist
samples which almost have axial symmetry, which will bemagnetic fields for which Eq1) is degenerate. In the limit
analyzed using perturbation, and samples with eccentric cyef a thin shell this occurs when the enclosed fthixequals
lindrical boundaries, which will be studied by means of (m+3)®,: for this flux, the eigenvalueg, obtained form
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and form+1 are the same and the lowest possible. If the =R (r)exp(—mif) — YRy 1(r)exp —[m+1]i6),
shell is not thin, we can still defind as the magnetic flux (6)

enclosed. by .the “reprefentative circler=R= RJlrw/Z. with the normalizatiorR,(R) =R, 1(R) =1 andy a coef-
Trkl]ere sr'?ll ex||st flu>ées;bm [usuall;; ;'056( to 'Q;+ E)dq)fo] ficient which still has to be determined. WritingmR2A
where the values oE, for yo=Rp(rjexp(-mif) and for —_q rp o 5105 with Rb,=d*/d,, and substitutin
Yo=Rin1(r)exp(—[m+1]i6) cqalesce*. As the magnetic intoO[Eqn.q 5 ]¢1 ’by Yo andmd>2 B‘y 7%;“(r)exp(—mi0) org
field is swept accross thg 5|tuat|dn:fb ! the ordgr param-, R+ 1(r)exp(=[m+1]i6), leads to a system of equations for
eter ¢y changes discontinuously. With it, there is a jump in andE. -

measurable quantities such as the current around the shell” e

We perturb now the problem and consider a sample which A6+BE;=C.B17, (7)

is not a perfect cylindrical shell. To fix ideas, we still keep
andR constant, but take a nonuniform width AL, 5+Bmi1E1=CrB1lY, @)

€ . where
D(6)=w 1+§Z /3je1'9), (3)
j#0 R
Am=2J (mr—b,r)R2dr, (9)
R

wherew is the average widthe<1 and 8_;=p;. Other
deviations from the perfect cylindrical problem lead to simi-
lar behavior. ' fR' 3y 2
. AL=2 mr—b,,_¢r°)Rdr, 10
The “Hamiltonian” is still Hy, but the eigenvalue and m R ( m-1r) R (10
the eigenfunction are perturbed by the change in the bound-

ary geometry. We writeyy= yyg+ €, + €24, + - - - and E R,

=Eqy+ €E,+ €’E,+ - - -, wherey is the order parameter and Bm= fR FRydr, 11)

E~%2is the coherence length. The eigenvalue in our problem

is related to the temperatuiieby Co=2WR' R (R Ry 1(R')
R2E=(T,—T)/(T.—Tr), 4 X[Eg— (bR —(m+1)/R")(b,R'—m/R")],

whereT, is the critical temperature in the absence of mag- (12
netic field andTg is the temperature at which the coherenceandR has been taken as the unit of length. This system has
length equals the internal radils The only reason for the two solutions and we choose the one with lovigr. Note
requirement of a “mesoscopic” sample is to decredse that this timeE,#0. After obtainingy, andE,, ¢, andE,
and thus widen the temperature scle- Tg; our formalism  were also evaluated, but the details will be reported else-
is valid for arbitrary positiveR, w, andh, and may cover the where.
entire range from a very thin ring to an almost full disk. I The value ofE provides the temperature at which the shell
order to decreas€g we also require clean materidissually  becomes superconducting. We have calculated it for a
type I), which have a large coherence length at zero temperasample with a reasonable experimental shdpgd) =0.2R
ture. —0.01R cos(f). The results are shown in Fig. 1. A customary
To proceed, we define a metric by integrating in e approximation(e.g., Ref. 8 for results in a thick shell is
perturbedregion: (¢, $,)=/2"d 0f§’rdr$1¢2. It follows  Obtained by averaging the one-dimensional result for ideally
that thin shells. This procedure givesE,=[(7Br/®,
—m/r)?dr/w, whereB is the magnetic fieldn is the integer
o ﬁZ oy th:at minimizes this expression,_ anq thg integr.al is filano .
(¢1,H0¢2)—(H0¢1,¢2)=R’f (¢2(9_r1_¢17)d6' R’. A somewhat better approximation is obtained by taking
Rm constant(e.g., Ref. 9. This givesE &= J(7Br/®
(5 —m/r)?rdr/frdr. Egynelis also shown in Fig. 1 for com-
parison. We see th#i,,iS quite a good approximation, but
Far from®},, we obtain the sequence of equatiomy( it exhibits cusps when the value of changes, whereas for
—Ep)¥1=E1¢g, (Ho—Ep) ¥yo=E 41 +Esiyy, etc. The dif- our treatment is smooth. This qualitative difference does
ference between this procedure and standard perturbatiarot arise from the dependence &f, on r; what happens is
theory is thatH, is not Hermitian instead, it obeys Eq5).  that the superposition of two values of produces a sinu-
To take this into account, we need; /dr, evaluated at soidal dependence ¢f|2 on 6.1 The size and the extent of
=R’. To obtain this we expang aroundr =R’ and require  the decline ofT.— T near®}, are proportional t&3,, which
to all orders ofe that the normal current vanishesrat R~ measures the deviation from a uniform shell.
+D(6). In this way we obtain thaE; =0, the expressions In Fig. 2 we show contour plots d¢f}| in a narrow radial
for s, andE, are lengthy and will be reported elsewhere. strip next to §=0 for six equidistant fluxes betweed®
For®~d7, the direct perturbation scheme described in=0.501 364p, and®=0.501382,. ®%=0.50137@, is
the previous paragraph would lead to a divergént This  contained in this range. We have chosen an example with the
divergence is due to the degeneracybat ®},. In this case  width D symmetric abou=0 and #= =, so that the plots
we use degenerate perturbation theory, i.e., we write can be continued by placing a mirror@t 0. As® increases
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FIG. 1. Temperaturd for the onset of superconductivity as a
function of the magnetic fluxb enclosed by the “representative”
circle. The graph shows two curves, which nearly coincide. The
lower curve corresponds to the formalism developed here; for com-
parison,E s (See text has also been drawn. The inset shows an
enlarged view of the region enclosed by the rectangle. The lower
curve in the inset looks smooth, but was calculated using three
different algorithms in different regionsn= 0, degenerate pertur-
bation andm=1; likewise, nead = ®} ~1.5b,, m=1, degener-
ate perturbation anth=2 match smoothly, and so on.

and comes close td§, || decreases at the axial line (
=R+D(0),6=0), until in frame (b) ¢{R+D(0),0]=0:
this is the field at which the vortex appears. As the flux is
increased further, the equilibrium position of the vortex FIG. 2. Contour plot of the absolute value of the order param-
moves towards the inner boundary, which is reached igter in a narrow radial slice of th.e supercond.ucting shell, .for in.-
frame (e). If the field is increased further, the vortex disap- creasing values of the magnetic field. The horizontal coordinate is

ears. The extent of the flux range for which the vortex exJ 6l. in the region 6<|6|<0.0002r; the vertical coordinate iR
ipsts is proportional tae3 9 <r=<1.1R. The planed=0 is located at the left of each frame. In
l.

. (@, || has a minimum at the linerE1.1R,6=0). In (b),
In- the _gen_eral _Case the vgrtex 1S Igcateq at vanishes along this line in the outer boundary and the vortex ap-
=arg(—CppBy); if mis small andD is symmetric, as in the pears. As the magnetic field increases, the vortex shifts towards the
example we picked, this corresponds to the thinnest part ghner boundary =R and reaches it ife). In (f), ||>0 everywhere
the shell. For large values oh (m=5 for w=0.2R), C,, and the vortex has disappeared.

becomes negative and the vortex is located at the opposite
side of the shell. _taking botha, and a, small. The shape shown in Fig. 4
Knowing #(r, ), we can evaluate the supercurrent. F'g‘corresponds ta;=0.5, a,=0.7.
ure 3 shows the streamlines for the same fluxes considered in Tpe magnetic potential can be written in the form
Fig. 2. Each frame shows 1/20 of the shell, with the plane
0=0 at the left. i -,
The perturbational approach is theoretically instructive, A ®(cosha +cosp) fa ﬁ)—f(EB)—R—}B
but since the range of existence of the vortices increases with mCR2 . ’ 2|7
nonuniformity, we are interested in sample shapes that are
very far from axial symmetry. We conjecture that the sce-
nario found above is generic for samples that are not sym-
metric. To support this conjecture, we consider a sample
with cylindrical boundaries. The inneoutep radius will
again be denoted bR (R"), but the axes of both boundaries —9 arctarE tanétanhg
do not coalesce® will still be the flux through a circle of 2

radius R=3(R+R’). It is natural to use bipolar . .

coordinates? x+iy=ctan(a+iB)/2], wherex andy are  with a=arcsinh¢/R).

the Cartesian coordinates perpendicular to the axescand An approximation for the order parametgrwill be ob-
constant which defines the lengthscale. The lines of constamained by means of a variational procedtit&he eigenvalue

a are circles; we assign a;=arcsinh€/R’),a, and the eigenvector for the onset of superconductivity may
=arcsinh€/R), and the sample occupies the regien<a be obtained by minimizing the ratio [|(iV
<a,, —w<B=<mx. Thinner samplegsmaller R'—R)/R]  —27A/®y)y|2dV/[|¢|?dV, wheredV is the element of
are obtained by taking small differenceas— «;, whereas volume and the integrals are over the sample. Using the
more eccentric samplékargerD(7)/D(0)] are obtained by boundary conditionsys can be written as a Fourier series

= 2B\
= RN\ =

EARSE

f(a,B)=c?sin 2 B| sinha/(cosha+ cosp)

cotg|, (13
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FIG. 3. Streamlines in a piece of the superconducting shell, for the same magnetic fields as in Fig. 2. The coordinates are the same as in
Fig. 2, but now G<|6|<0.1w. In (a) and(b) we see streamlines through=0 that carry electric current to the rigtdssuming that the
magnetic field comes out of the pag&hese streamlines circulate around the superconductingémpose the hollow regionAt the right
we see part of the screening currents, in clockwise circuits that do not enclose the hollow redionwk see two counterclockwise
streamlines around the quantum vortex, three streamlines around the loop and the screening currents at the right. Along a path around the
vortex the phase of the order parameter changesmyi2 (d) the vortex has moved towards the inner boundary; the current around the loop
has now become counterclockwise. As the magnetic field increases, the vortex moves down until it disappears and the counterclockwise
current around the loop increases. The bottom frame shows a “panoramic” view of half of the shpl|,<Om. The magnetic field is the
same as ir(d). The thick lines are streamlines and the thin lines are lines of corigtAn®On this scale|| looks independent af and the
currents around the vortex and around the loop do not show up.

oz 2a—ay,—a; (¢ is again independent af) We truncate now this series
= E 2 CmCOSlm——— and leave only a finite set of nonzero coefficients. The num-
m=—w |[=0 oy~ g . . . . .
ber of terms which is required to achieve some desired ac-
(2417 2a—ar—ay ' curacy increases wite and with R’ —R)/R, while it is not
+Sm SN 2 —a e™t. (19 very sensitive to eccentricity. In our calculations we have
2 1

kept eight coefficients: Cmy—2,01Cmy—1,0:Cmy,0»
Cmgy-+1,01Cmy +2,0:Smy— 1,0:Smy 0+ Smg-+ 1,01 where the integer

Mg is chosen to obtain the minimum eigenvalue.
Regarding these coefficients as a vector

V={Cm,—2,0:Cm,—1,0:Cmy,0+Cmy+10-

Crmg-+2,0+Smy—1,01Smy,0:Smy+ 1,0} »

we can writef|(iV—27A/®) ¢|?dV=vMv and [|4|?dV
(a) (b) =v'Qv, where the elements of the matrickk and Q are
FIG. 4. Contour plot of | for a sample with cylindrical inner ~ €@Sily evaluat.ed.TWe are, therefore, left with the minimiza-
and outer boundary. Darker areas denote smaller valugg ofor  tion of the ratio ¢'Mv)/(v'Qv). This ratio is minimized for

the chosen flux valuesy=0 roughly in the middle of the darkest the eigenvector o® ™ 'M that has the lowest eigenvalue. The
areas.(a) ®=2.5713b,. (b) ®=3.61D,. The flux range for the error introduced by truncation may be estimated by the size

presence of the vortex in cage) is about 40 times larger than in of the discontinuity ofy at the values ofPb for which mg
case(a). changes.
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Using this method, we rediscover the behavior obtainednly the fluxoid equalsb,; its magnetic flux alone will be
for almost axially symmetric samples: near half-integermuch smaller and temperature dependent. Clearly, in order
fluxes, a vortex appears at the outer boundary and moves sense the local density of states or the current density, the
towards the inner boundary as the flux is increased. Whadize of the order parameter must be above some threshold
looks more striking, is that again these vortices enter throughequired by the sensitivity of the experiment. In this regime
the thin side for small numbers of quanta and through the=q_ (1) for the onset of superconductivity becomes insuffi-
opposite side wherb/®, is sufficiently large. Ifa;, are  cient and we have to analyze the nonlinear Ginzburg-Landau
chosen to reproduce the shape used in our previous pertysq ations. We have partially analyzed this situation and an-
bation example, the length of the range for which the vorteX;cinate here some results. The existence and behavior of the
is present agrees to about T@ with the result obtained by yortex remain qualitatively the same as reported here for
perturbation. The values of th_e flux for which th_e VorteX some temperature range below the onset of superconductiv-
appears agree to about T8, in both methods. Figure 4 ity This temperature range increases with the deviation from
shows contour plots ofy| for @;=0.5,,=0.7 and for 5 yniform shell.
fluxes chosen so that the vortex is approximately midway pijrect observation of the vortex is expected to be a diffi-
between the inner and the outer boundary. For these valuggit experiment, since the requirement of large coherence
of a; , and for®<5®,, we estimate the error itk to be @ |engths implies a small gap. In addition, evaporated Al usu-
few percent of the maximum value pf|. ally has a rough surface. Therefore, it might be helpful to

In conclusion, we have found a setup for which a kind of gptain indirect evidence for the scenario encountered here. In
vortex exists which to our knowledge has not been previthe jimit of thin shells, we know that there exist critical
ously reported. Its existence is governed by the flux enclosegyints at fluxes close t#* and at some temperature which
in the entire shell rather than by the local magnetic fleld.We denote ag-(zm)_ BelowT(zm) the current around the loop

Likewise, the position of the vortex is a function of the entire exhibits hysteresis, whereas aboi it is reversible and

sample(and of the flux rather than of local defects. The . b q ) d1/dd h
ocurrence of this vortex is a nearly periodic function of the €ONtiNUOUS. Moreover,*a Oveé an qéEﬂ , dl (m)as. a
maximum near =&~ , which diverges asT,"” is

flux. The presence of a vortex implies that the flux lies _ _ )

within a very narrow known range. approached® Our analysis of the nonlinear Ginzburg-
It should be stated, however, that the magnetic field in thd-andau equations shows that these features remain valid

superconducting material itself does influence the nature ofhen the shell is thick. In particular, the divergence of

these vortices. For instance, we have found that if the field i§l!/d® at the critical point is not smeared.

constant in the regions@rsﬁand has opposite sign outside Therefore, we need a technique that measurgsi®,

this region, then, a® increases close td?,, a vortex and which is proportional to the ac magnetic susceptibility. This

an antivortex form at a point somewhere in the middle of the> measure_d by applying a blas_, flux with a superimposed
. . small ac signal. The response is the ac component of the
shell; as the flux increases further, the vortex moves from . : . L
. . : . induced magnetic flux in some region. This induced flux has
this point towards the inner boundary and the antivortex to- o
.already been measured by means of a superconducting inter-

wards the outer boundary, until they disappear. Moreover, i . : .
. X X ) erence microsusceptometeOther techniques which seem
the field vanishes in the entire shell, then the vortex becomes . ; . -
ppropriate for this measurement are the piezoresistive

14 :
acut ™ i.e., the order parameter vanishes on a surface thE(i}antileveiLg and the ballistic Hall magnetomet&The Hall
connects the inner and the outer boundaries.

Finally, we discuss the experimental possibilities for themagnetometer seems particularly promising, because, if only

; ; . gart of the sample is located on the active region of the

detection of the vortex predicted here. We require a sampl . .
TR robe, it would allow us to measure the flux induced at that

such that its size is of the order of the coherence length for gart
reasonable range of temperatures. Typical experiments for
this purpose use samples made of Al, with a perimeter of a This research was supported by the US-Israel Binational
few wm. In order to observe the vortices directly, we requireScience Foundation and by the Israel Science Foundation.
an imaging technique with spatial resolution of the order ofWe thank A. Auerbach, Y. Eckstein, B. Fisher, and V.
0.1 um. This requirement is met by scanning-tunnelingKogan for useful suggestions. We thank V. Bruyndoncx, V.
microscopyt® magnetic decoratioff, and electron Moshchalkov, B. Pannetier, and C. Van Haesendonck for
holographyt’ When interpreting electron holography it clarifying for us some of the experimental possibilities and
should be born in mind that for the vortex predicted herelimitations.
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