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Flux-induced vortex in mesoscopic superconducting loops
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We predict the existence of a quantum vortex for an unusual situation. We study the order parameter in
doubly connected superconducting samples embedded in a uniform magnetic field. For samples with perfect
cylindrical symmetry, the order parameter has been known for a long time and no vortices are present in the
linear regime. However, if the sample is not symmetric, there exist ranges of the field for which the order
parameter vanishes along a line, parallel to the field. In many respects, the behavior of this line is qualitatively
different from that of the vortices encountered in type-II superconductivity. For samples with mirror symmetry,
this flux-induced vortex appears at the thin side for small fluxes and at the opposite side for large fluxes. We
propose direct and indirect experimental methods which could test our predictions.@S0163-1829~99!01813-5#
in

th
p

th
is
in
u-
a
re
ag
or

i
ot
g

-
e
th
th

th
ld
ct

on

ce

oe
e

re
th
re
es
be
c
o

is
er

llel
uc-
y
lin-

for

nc-
ob-

es.

n

of
the

in-
eet

t

The question of where and under what conditions an
dividual vortex appears~or disappears! is still an active
subject.1–6 Here we consider an unusual setup: that of
Little-Parks experiment,7–9 i.e., a superconducting loo
which encloses a magnetic flux.

We find that, for a narrow range of enclosed fluxes in
vicinity of a half-integer number of quanta, a vortex
present in the loop. This vortex is completely different
nature from the traditional vortices known from type-II s
perconductivity. In the traditional case, a minimum loc
magnetic field is required for the formation of a vortex; he
its formation is governed by the enclosed flux. As the m
netic field is increased, instead of having more and m
vortices coming in, the present vortex disappears~and a new
vortex appears only after an additional quantum of flux
enclosed by the loop!. Whereas traditional vortices cann
exist along films which are thinner than the coherence len
~they ‘‘need room for their cores’’!,2 the present vortex ex
ists for arbitrarily thin shells. Another atypical feature of th
present vortex is its high anisotropy, which depends on
thickness of the shell. Moreover, there are cases in which
order parameter vanisheson a surfacerather than a line.

Additional differences arise from the assumption that
total magnetic field remains equal to the applied fie
whereas traditional vortices exist for type-II supercondu
ors, for which the Ginzburg-Landau parameterk is larger
than 221/2, the present vortex is insensitive to the Lond
penetration depth and bears no connection withk; whereas
traditional vortices cannot stay in equilibrium if the distan
to the boundary is too short,3 the equilibrium position of the
present vortex is a continuous function of the flux and d
reach the boundaries. This assumption is justified when
ther the thickness or the width of the loop is small compa
to the magnetic penetration depth. The case in which
induced field is not negligible will be considered elsewhe

We shall consider two complementary geometri
samples which almost have axial symmetry, which will
analyzed using perturbation, and samples with eccentric
lindrical boundaries, which will be studied by means
PRB 590163-1829/99/59~13!/8896~6!/$15.00
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variation. In the first method the zeroth-order configuration
a cylindrical shell of superconducting material, with inn
radiusR, outer radiusR85R1w and heighth, whereR, w,
andh are constants. In early experiments7 h was much larger
thanR andw, whereas recent experiments8,9 meet the oppo-
site situation. We consider a uniform magnetic field para
to the axis of the shell and study the onset of supercond
tivity. In this regime the magnetic field is still unaffected b
the supercurrents and the Ginzburg-Landau equation is
earized to the eigenvalue problem

H0c05~ i¹22pA/F0!2c05c0 /j0
25E0c0 . ~1!

c0 is the order parameter,A is the magnetic potential,F0 is
the quantum of fluxoid (F0.0), and j0 is the coherence
length at the onset of superconductivity. The notations
the functionc0 , the operatorH0 , and the eigenvalueE0
have been introduced to remind the reader of the eigenfu
tion, the Hamiltonian, and the energy in a perturbation pr
lem. Equation ~1! is subject to the condition that (i¹
22pA/F0)c has no normal component at the boundari
~For the moment,c5c0 .) For a cylindrical shell and cylin-
drical coordinates (r ,u,z), Eq. ~1! is separable and has bee
solved in Ref. 10. Writingc05R(r )Q(u)Z(z), one easily
obtainsZ(z)5cos(kpz/h) and Q(u)5e2miu, with k and m
integers. SinceE0 always increases withk2, we pick k50
and the solution of Eq.~1! reduces to

c05Rm~r !e2miu. ~2!

The winding numberm is chosen so that the lowest value
E0 is obtained. For a thin shell it is the closest integer to
number of flux quanta enclosed by the shell.Rm was ob-
tained in Ref. 10; it depends on the magnetic field and
volves a combination of Kummer functions, adjusted to m
the boundary conditions.

A salient feature of the solution~2! is that there exist
magnetic fields for which Eq.~1! is degenerate. In the limi
of a thin shell this occurs when the enclosed fluxF equals
(m1 1

2 )F0 : for this flux, the eigenvaluesE0 obtained form
8896 ©1999 The American Physical Society
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and for m11 are the same and the lowest possible. If
shell is not thin, we can still defineF as the magnetic flux
enclosed by the ‘‘representative circle’’r 5R̄5R1w/2.
There still exist fluxesFm* @usually close to (m1 1

2 )F0#
where the values ofE0 for c05Rm(r )exp(2miu) and for
c05Rm11(r )exp(2@m11#iu) coalesce. As the magneti
field is swept accross the situationF5Fm* , the order param-
eterc0 changes discontinuously. With it, there is a jump
measurable quantities such as the current around the sh

We perturb now the problem and consider a sample wh
is not a perfect cylindrical shell. To fix ideas, we still keeph
andR constant, but take a nonuniform width

D~u!5wS 11
e

2(
j Þ0

b je
j i uD , ~3!

where w is the average width,e!1 and b2 j5b̄ j . Other
deviations from the perfect cylindrical problem lead to sim
lar behavior.

The ‘‘Hamiltonian’’ is still H0 , but the eigenvalue and
the eigenfunction are perturbed by the change in the bou
ary geometry. We writec5c01ec11e2c21••• and E
5E01eE11e2E21•••, wherec is the order parameter an
E21/2 is the coherence length. The eigenvalue in our prob
is related to the temperatureT by

R2E5~Tc2T!/~Tc2TR!, ~4!

whereTc is the critical temperature in the absence of ma
netic field andTR is the temperature at which the coheren
length equals the internal radiusR. The only reason for the
requirement of a ‘‘mesoscopic’’ sample is to decreaseTR
and thus widen the temperature scaleTc2TR ; our formalism
is valid for arbitrary positiveR, w, andh, and may cover the
entire range from a very thin ring to an almost full disk.
order to decreaseTR we also require clean materials~usually
type I!, which have a large coherence length at zero temp
ture.

To proceed, we define a metric by integrating in theun-

perturbedregion: (f1 ,f2)5*0
2pdu*R

R8
rdr f̄1f2 . It follows

that

~f1 ,H0f2!2~H0f1 ,f2!5R8E
0

2pS f2

]f̄1

]r
2f̄1

]f2

]r
D du.

~5!

Far from Fm* , we obtain the sequence of equations (H0

2E0)c15E1c0 , (H02E0)c25E1c11E2c0 , etc. The dif-
ference between this procedure and standard perturba
theory is thatH0 is not Hermitian; instead, it obeys Eq.~5!.
To take this into account, we need]c i /]r , evaluated atr
5R8. To obtain this we expandc aroundr 5R8 and require
to all orders ofe that the normal current vanishes atr 5R
1D(u). In this way we obtain thatE150; the expressions
for c1 andE2 are lengthy and will be reported elsewhere

For F'Fm* , the direct perturbation scheme described
the previous paragraph would lead to a divergentc1 . This
divergence is due to the degeneracy atF5Fm* . In this case
we use degenerate perturbation theory, i.e., we write
e

ll.
h

d-

m

-

a-

on

c05Rm~r !exp~2miu!2gRm11~r !exp~2@m11# iu!,
~6!

with the normalizationRm(R)5Rm11(R)51 andg a coef-
ficient which still has to be determined. Writing 2pR2A
5F0@bm1ed#r û, with R̄2bm5Fm* /F0 , and substituting
into Eq. ~5! f1 by c0 and f2 by Rm(r )exp(2miu) or
Rm11(r )exp(2@m11#iu), leads to a system of equations fo
g andE1 :

Amd1BmE15Cmb1g, ~7!

Am118 d1Bm11E15Cmb̄1 /g, ~8!

where

Am52E
R

R8
~mr2bmr 3!Rm

2 dr, ~9!

Am8 52E
R

R8
~mr2bm21r 3!Rm

2 dr, ~10!

Bm5E
R

R8
rRm

2 dr, ~11!

Cm5 1
2 wR8Rm~R8!Rm11~R8!

3@E02~bmR82~m11!/R8!~bmR82m/R8!#,

~12!

andR has been taken as the unit of length. This system
two solutions and we choose the one with lowerE1 . Note
that this timeE1Þ0. After obtainingc0 andE1 ,c1 andE2
were also evaluated, but the details will be reported e
where.

The value ofE provides the temperature at which the sh
becomes superconducting. We have calculated it fo
sample with a reasonable experimental shape:D(u)50.2R
20.01R cos(u). The results are shown in Fig. 1. A customa
approximation~e.g., Ref. 8! for results in a thick shell is
obtained by averaging the one-dimensional result for ide
thin shells. This procedure givesEav5*(pBr/F0
2m/r )2dr/w, whereB is the magnetic field,m is the integer
that minimizes this expression, and the integral is fromR to
R8. A somewhat better approximation is obtained by taki
Rm constant~e.g., Ref. 9!. This gives Econst5*(pBr/F0
2m/r )2rdr /*rdr . Econst is also shown in Fig. 1 for com-
parison. We see thatEconstis quite a good approximation, bu
it exhibits cusps when the value ofm changes, whereas fo
our treatmentE is smooth. This qualitative difference doe
not arise from the dependence ofRm on r; what happens is
that the superposition of two values ofm produces a sinu-
soidal dependence ofucu2 on u.11 The size and the extent o
the decline ofTc2T nearFm* are proportional toeb1 , which
measures the deviation from a uniform shell.

In Fig. 2 we show contour plots ofucu in a narrow radial
strip next to u50 for six equidistant fluxes betweenF
50.501 364F0 andF50.501 382F0 . F0* 50.501 376F0 is
contained in this range. We have chosen an example with
width D symmetric aboutu50 andu5p, so that the plots
can be continued by placing a mirror atu50. AsF increases
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and comes close toF0* , ucu decreases at the axial line (r
5R1D(0),u50), until in frame ~b! c@R1D(0),0#50:
this is the field at which the vortex appears. As the flux
increased further, the equilibrium position of the vort
moves towards the inner boundary, which is reached
frame ~e!. If the field is increased further, the vortex disa
pears. The extent of the flux range for which the vortex
ists is proportional toeb1 .

In the general case the vortex is located atu

5arg(2Cmb̄1); if m is small andD is symmetric, as in the
example we picked, this corresponds to the thinnest par
the shell. For large values ofm (m>5 for w50.2R), Cm
becomes negative and the vortex is located at the oppo
side of the shell.

Knowing c(r ,u), we can evaluate the supercurrent. F
ure 3 shows the streamlines for the same fluxes considere
Fig. 2. Each frame shows 1/20 of the shell, with the pla
u50 at the left.

The perturbational approach is theoretically instructi
but since the range of existence of the vortices increases
nonuniformity, we are interested in sample shapes that
very far from axial symmetry. We conjecture that the sc
nario found above is generic for samples that are not s
metric. To support this conjecture, we consider a sam
with cylindrical boundaries. The inner~outer! radius will
again be denoted byR (R8), but the axes of both boundarie
do not coalesce.F will still be the flux through a circle of
radius R̄5 1

2 (R1R8). It is natural to use bipolar
coordinates,12 x1 iy5ctanh@(a1ib)/2#, where x and y are
the Cartesian coordinates perpendicular to the axes andc a
constant which defines the lengthscale. The lines of cons
a are circles; we assign a15arcsinh(c/R8),a2
5arcsinh(c/R), and the sample occupies the regiona1<a
<a2 , 2p<b<p. Thinner samples@smaller (R82R)/R#
are obtained by taking small differencesa22a1 , whereas
more eccentric samples@largerD(p)/D(0)# are obtained by

FIG. 1. TemperatureT for the onset of superconductivity as
function of the magnetic fluxF enclosed by the ‘‘representative
circle. The graph shows two curves, which nearly coincide. T
lower curve corresponds to the formalism developed here; for c
parison,Econst ~see text! has also been drawn. The inset shows
enlarged view of the region enclosed by the rectangle. The lo
curve in the inset looks smooth, but was calculated using th
different algorithms in different regions:m50, degenerate pertur
bation andm51; likewise, nearF5F1* '1.5F0 , m51, degener-
ate perturbation andm52 match smoothly, and so on.
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taking botha1 and a2 small. The shape shown in Fig.
corresponds toa150.5, a250.7.

The magnetic potential can be written in the form

A5
F~cosha1cosb!

pcR̄2 F f ~a,b!2 f ~ ā,b!2
R̄2

2
G b̂,

f ~a,b!5c2 sin22 bFsinha/~cosha1cosb!

22 arctanS tan
b

2
tanh

a

2 D cotb G , ~13!

with ā5arcsinh(c/R̄).
An approximation for the order parameterc will be ob-

tained by means of a variational procedure.13 The eigenvalue
and the eigenvector for the onset of superconductivity m
be obtained by minimizing the ratio * u( i¹
22pA/F0)cu2dV/* ucu2dV, where dV is the element of
volume and the integrals are over the sample. Using
boundary conditions,c can be written as a Fourier series

e
-

er
e

FIG. 2. Contour plot of the absolute value of the order para
eter in a narrow radial slice of the superconducting shell, for
creasing values of the magnetic field. The horizontal coordinat
uuu, in the region 0<uuu<0.0002p; the vertical coordinate isR
<r<1.19R. The planeu50 is located at the left of each frame. I
~a!, ucu has a minimum at the line (r 51.19R,u50). In ~b!, c
vanishes along this line in the outer boundary and the vortex
pears. As the magnetic field increases, the vortex shifts towards
inner boundaryr 5R and reaches it in~e!. In ~f!, ucu.0 everywhere
and the vortex has disappeared.
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FIG. 3. Streamlines in a piece of the superconducting shell, for the same magnetic fields as in Fig. 2. The coordinates are the s
Fig. 2, but now 0<uuu<0.1p. In ~a! and ~b! we see streamlines throughu50 that carry electric current to the right~assuming that the
magnetic field comes out of the page!. These streamlines circulate around the superconducting loop~enclose the hollow region!. At the right
we see part of the screening currents, in clockwise circuits that do not enclose the hollow region. In~c! we see two counterclockwise
streamlines around the quantum vortex, three streamlines around the loop and the screening currents at the right. Along a path
vortex the phase of the order parameter changes by 2p. In ~d! the vortex has moved towards the inner boundary; the current around the
has now become counterclockwise. As the magnetic field increases, the vortex moves down until it disappears and the counte
current around the loop increases. The bottom frame shows a ‘‘panoramic’’ view of half of the shell, 0<uuu<p. The magnetic field is the
same as in~d!. The thick lines are streamlines and the thin lines are lines of constantucu. On this scale,ucu looks independent ofr and the
currents around the vortex and around the loop do not show up.
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D

1sml sinS ~2l 11!p

2

2a2a22a1

a22a1
D Gemib. ~14!

FIG. 4. Contour plot ofucu for a sample with cylindrical inner
and outer boundary. Darker areas denote smaller values ofucu. For
the chosen flux values,c50 roughly in the middle of the darkes
areas.~a! F52.5713F0 . ~b! F53.61F0 . The flux range for the
presence of the vortex in case~b! is about 40 times larger than i
case~a!.
(c is again independent ofz.! We truncate now this serie
and leave only a finite set of nonzero coefficients. The nu
ber of terms which is required to achieve some desired
curacy increases withF and with (R82R)/R, while it is not
very sensitive to eccentricity. In our calculations we ha
kept eight coefficients: cm022,0,cm021,0,cm0,0 ,

cm011,0,cm012,0,sm021,0,sm0,0 ,sm011,0, where the integer

m0 is chosen to obtain the minimum eigenvalue.
Regarding these coefficients as a vector

v5$cm022,0,cm021,0,cm0,0 ,cm011,0,

cm012,0,sm021,0,sm0,0 ,sm011,0%,

we can write* u( i¹22pA/F0)cu2dV5v†Mv and* ucu2dV
5v†Qv, where the elements of the matricesM and Q are
easily evaluated. We are, therefore, left with the minimiz
tion of the ratio (v†Mv …/„v†Qv). This ratio is minimized for
the eigenvector ofQ21M that has the lowest eigenvalue. Th
error introduced by truncation may be estimated by the s
of the discontinuity ofc at the values ofF for which m0
changes.
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Using this method, we rediscover the behavior obtain
for almost axially symmetric samples: near half-integ
fluxes, a vortex appears at the outer boundary and mo
towards the inner boundary as the flux is increased. W
looks more striking, is that again these vortices enter thro
the thin side for small numbers of quanta and through
opposite side whenF/F0 is sufficiently large. Ifa1,2 are
chosen to reproduce the shape used in our previous pe
bation example, the length of the range for which the vor
is present agrees to about 1028F0 with the result obtained by
perturbation. The values of the flux for which the vort
appears agree to about 1026F0 in both methods. Figure 4
shows contour plots ofucu for a150.5,a250.7 and for
fluxes chosen so that the vortex is approximately midw
between the inner and the outer boundary. For these va
of a1,2 and forF<5F0 , we estimate the error inc to be a
few percent of the maximum value ofucu.

In conclusion, we have found a setup for which a kind
vortex exists which to our knowledge has not been pre
ously reported. Its existence is governed by the flux enclo
in the entire shell rather than by the local magnetic fie
Likewise, the position of the vortex is a function of the ent
sample~and of the flux! rather than of local defects. Th
ocurrence of this vortex is a nearly periodic function of t
flux. The presence of a vortex implies that the flux li
within a very narrow known range.

It should be stated, however, that the magnetic field in
superconducting material itself does influence the nature
these vortices. For instance, we have found that if the fiel
constant in the region 0<r<R̄ and has opposite sign outsid
this region, then, asF increases close toFm* , a vortex and
an antivortex form at a point somewhere in the middle of
shell; as the flux increases further, the vortex moves fr
this point towards the inner boundary and the antivortex
wards the outer boundary, until they disappear. Moreove
the field vanishes in the entire shell, then the vortex beco
a cut,14 i.e., the order parameter vanishes on a surface
connects the inner and the outer boundaries.

Finally, we discuss the experimental possibilities for t
detection of the vortex predicted here. We require a sam
such that its size is of the order of the coherence length f
reasonable range of temperatures. Typical experiments
this purpose use samples made of Al, with a perimeter o
few mm. In order to observe the vortices directly, we requ
an imaging technique with spatial resolution of the order
0.1 mm. This requirement is met by scanning-tunneli
microscopy,15 magnetic decoration,16 and electron
holography.17 When interpreting electron holography
should be born in mind that for the vortex predicted he
d
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only the fluxoid equalsF0 ; its magnetic flux alone will be
much smaller and temperature dependent. Clearly, in o
to sense the local density of states or the current density
size of the order parameter must be above some thres
required by the sensitivity of the experiment. In this regim
Eq. ~1! for the onset of superconductivity becomes insu
cient and we have to analyze the nonlinear Ginzburg-Lan
equations. We have partially analyzed this situation and
ticipate here some results. The existence and behavior o
vortex remain qualitatively the same as reported here
some temperature range below the onset of supercondu
ity. This temperature range increases with the deviation fr
a uniform shell.

Direct observation of the vortex is expected to be a di
cult experiment, since the requirement of large cohere
lengths implies a small gap. In addition, evaporated Al u
ally has a rough surface. Therefore, it might be helpful
obtain indirect evidence for the scenario encountered here
the limit of thin shells, we know that there exist critica
points at fluxes close toFm* and at some temperature whic
we denote asT2

(m) . Below T2
(m) the currentI around the loop

exhibits hysteresis, whereas aboveT2
(m) it is reversible and

continuous. Moreover, above and nearT2
(m) , dI/dF has a

maximum near F5Fm* , which diverges asT2
(m) is

approached.18 Our analysis of the nonlinear Ginzburg
Landau equations shows that these features remain v
when the shell is thick. In particular, the divergence
dI/dF at the critical point is not smeared.

Therefore, we need a technique that measuresdI/dF,
which is proportional to the ac magnetic susceptibility. Th
is measured by applying a bias flux with a superimpos
small ac signal. The response is the ac component of
induced magnetic flux in some region. This induced flux h
already been measured by means of a superconducting i
ference microsusceptometer.9 Other techniques which seem
appropriate for this measurement are the piezoresis
cantilever19 and the ballistic Hall magnetometer.20 The Hall
magnetometer seems particularly promising, because, if o
part of the sample is located on the active region of
probe, it would allow us to measure the flux induced at t
part.
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