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Puddles of helium in two dimensions: A Monte Carlo study
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In this paper we report simulation studies of two-dimensional puddles of litjdéd using variational wave
functions. We extract the line tension of these puddles and the energy in the bulk. We also study the surface
profile and width of the surface region of the puddles as a function of system size. The wave functions are used
to investigate the binding of bosotHe. We find that mass-3 bosons are very weakly self-bound in two
dimensions and fermions of the same mass are very unlikely to bind. Further we believe that a monolayer film
of 3He on graphite will not bind into a liquid puddle; it would be a gas at low densities and a solid at very high
densities[S0163-182699)06113-5

[. INTRODUCTION Wu-Feenberg expansitfiwe estimate the energy of fermion
The properties of liquid and soliHe in two dimensions 3He and conclude that it will not bind. We have also esti-
(2D) are interesting for the study of simple adsorbed systemsated corrections to this energy in the presence of a graphite
and because they serve as a simple example of a twsubstrate and find that the system would continue to remain
dimensional quantum system. The properties of the homogesnbound.
neous phase have been studied, theoreti¢allysing mo- Section Il describes the variational wave function used in
lecular dynamic$,and using Monte Carlo techniqué® In  the simulation along with a brief description of the simula-
this paper we investigate the simplest inhomogeneous phasien method. The results from simulations &fle are pre-
in two dimensions, viz., a puddle, using shadow wave funcsented in Sec. lll. We then proceed to investigdtée
tions. This is a natural continuation of a similar study of puddles, both bosonic and fermionic, in Sec. IV and discuss
three-dimensional helium drops? It provides us with in-  our results for films of*He on graphite.
sight into the nature of quantum droplets and quantum inter-
faces. One would like to know if a finite collection of He Il. METHOD
atoms will bind in 2D, how the binding energy varies with
system size, and how these results change upon substitution The Hamiltonian for a system df helium atoms in two
of “He with 3He. One would also like to know the nature of dimensions is given by
the interface between the liquid and vacuum and the line
tension of the interface. It is known that thermal capillary p2 N N
wave fluctuations grow unbounded with system size in clas- H=— ﬁE Vi+ E V(rij). 1
sical drops in two and three dimensidis? Do interfacial ' 1<)
fluctuations grow with system size in these quantum systemﬁ/e use the Aziz |
and are these unbounded at absolute zero? Some of thege . o .47
guestions are answered in the present investigation, whilgms_ The va
others need more_extenswe study and S|m.ulat|on.s. true ground state enerdy, of this system of helium atoms
A related question concerns the properties’de in 2D. that form a dro
N ! . p,
Variational calculations suggest that one needs about eight
3He atoms to form a bound state in 3bWhat about two

potential developed by Aziz and
to represent the interaction between helium at-
riational theorem gives us an upper bound on the

dimensions? Theoretical studies by Miller and Nasariow de Yr(RH yr(R)

first indicated the absence of a self-bound liquid phase for E.<E.— )
2D 3He. They also believed that the liquid phase would not =T '

be present in a monolayer film dfHe adsorbed on a sub- J dR ¢+(R) ¢+(R)

strate. However, variational Monte Carlo simulations by

Brami and co-workeré seemed to contradict this last result. We use a shadow wave functidhmodified by a form fac-
They found a bound phase for a monolayer film3fe on  tor, as the trial function/+(R), i.e.,

graphite with a binding energy of 150—200 nikelative to

the energy of a singléHe atom interacting with the graphite -

substratg Nuclear magnetic resonan¢dMR) experiments ‘//T(R):f E(R,9)dS, €)
performed on a monolayer fim ofHe by Godfrin and

Lauter® lead them to believe that the liquid phase is absenwhere R=(r,r,, ... ry), denotes the positions of the He
in the first layer of 3He on graphite and with increasing atoms andS=(s,,s;, ...,Sy) denotesN auxiliary shadow

coverage the film goes from a dense gas to a solid phase. Weiriables which are coupled to each other and to the real
have simulate?He bosons in 2D, both finite size puddles asvariables, and are integrated out in the definition of the wave
well as the homogeneous phase. Using this together with thieinction. The functiorE is chosen to be
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N N TABLE |. Variational parameters and energies as a function of
E(R,S)zFl(S)exp(—E ur(rij)_CE (r—s)? number of particlesN (o=2.556 A).
i< i
N N Co? blo 6(K) a sylo dolo  EIN(K)
—i2<' Us(sij))- 4 2 28 112 009 092 165 1.3 —0.09 (1)
) 9 3.0 112 0.09 093 3.50 1.2 —0.26 (2)

The pseudopotential for the real particlegr;;) is of the 16 30 112 0.09 091 470 1.2 —0.380(8)
McMillan form ur(rij)z(b/rij)S, while the pseudopotential 36 3.1 112 0.09 093 7.10 1.3 —-0.4717)
for the shadow variables is a scaled version of the Aziz4 31 112 008 093 940 14 —0.528(5)
potentiall” v(s;)=aVa,i{ds;j). Hereb, «, and 5 are 121 31 112 0.09 093 1270 1.5 —0570(7)
variational parameters. Reals and shadows are coupled in Egss 34 112 008 094 1430 1.45-0.602(7)
(4) through the Gaussian coupling term whose strefigjie 512 31 1.13 0.09 0093 26.00 2.0 —0.621(2)
a variational parametef=;(S) is a one-body form factor 1024 31 113 009 093 36.60 2.1 —0.640(2)
which is a product of Fermi functions,

N 1 with hard walls. At the start of each run the particles were
Fus)=11

11+ exd (si—So)/do] |’ 5 gistributed uniformly in a circlésmaller than the boxwith

a density p,=0.0395 A~? which is equal to the zero-
wheres, andd, are additional variational parameters, andpressure value determined from simulations of the homoge-
the s; are measured relative to the center of mass of the@eous systefh[the homogeneous simulations use a trial
shadow particles. The wave function without the form factorwave function which is a shadow wave functign(R) with-
has been used to simulate the homogeneous phati¢eoin  out the one-body form factor imposed on the shadowke
two dimensions and provides a good description of thissystem was allowed to equilibrate for about 100 000 passes.
systenf The form factor introduces inhomogeneity in the Each pass consisted of 5 sweeps and during each sweep an
system and binds the shadows, to their center of mass, coattempt was made to move every particle in the system once.
sequently binding the real particles. It is of course wellAfter equilibration, the simulation was run for a further
known that some type of form factor is necessary to stabilizee00 000 passes during which the energy was computed by
large 3D drops. They have been widely usednd are usu- averaging uncorrelated estimates. The parameters were var-
ally expressed in terms of the particle coordinates. We havizd until a minimum in energy was obtained for each system
used the shadow variables. With this type of from factor itsize. Table | shows the minimum energy per particle along
can be showhthat when a particle is removed to a large with the optimum variational parameters. For the case of 512
distance from the center of mass of the puddle the wavand 1024 particles, a neighbor table scheme was used to
function delays exponentially. One can also shahat the  reduce the computation time, and the simulation cell was
energy obtained variationally with this form factor is very changed from a circular box to a square box with periodic
close to that obtained with a wave function in which there isboundary conditions. In these large systems, a cutoff af 2.5
no form factor but in which the shadow pseudopotential is avas chosen for the potential. A tail correcttdmwas made to
function of the local density. Both energies are close to thehe energy. We tested this correction by running a 512-
values obtained by Green’s Function Monte CAGFMC)  particle system with and without the cutoff and found iden-
simulations'® The trial energy for this wave function is tical results within the statistical uncertainties of the calcula-
given by tions. It can be seen from the table that the parameters that
optimize the inner regionC, b, &, and «, do not vary

|H E(RS) much with system size. Their values are also close to the
ETZJ f f dR dS dSp(R,S,S') W , (6) optimum values one would expect from simulations of bulk

0 “He at a densityy, .2 The parameters, andd, are of course

where the probability density sensitive to the size of the system. However, it is seen that
the energy is fairly insensitive to variations dfy. This is

E(R,S) E(R,S) because the interface fluctuates considerably in these

p(r,S,S")= : puddles, leading to fluctuations in the energy in the course of

f f f dR dS dS E(R,S) E(R,S) a run with a given set of parameters. Consequently changing

7) the interfacial width by a small amount by changihgdoes
not affect the energy significantly. The energy per particle

The Metropolis method is used to sample this probabilitycan be fit to a quadratic function with bulk, surface, and
density and estimate the energy in square brackets if6Eg. “curvature” terms,

The variational parameters are varied until one obtains a
minimum in the energy for each system size that is simu- E/N=e,+ex+ex>. 8
lated. Herex=N"*2 e, should be very close to the bulk energy
. PUDDLES OF “He per pf;lrticle of the homoger_1eous phase in .the limit of Iagrzge
ande;=4mvylp,, wherey is the line tension of the fluid.
We simulated the system with the number of particlesThe results from fitting the parameters in Ef) are shown
ranging from 2 to 1024. The system was put in a circular boxn Table Il along with the extracted line tension, and the line
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TABLE Il. Parameters that fit the energy in E() and the ' '
corresponding line tension.

T1Iri
0.25 % 1w BTIIITLarzesen, |
Range ofN e, (K) e (K) e (K) ¥y (KIA) #%%i
9-1024 -0.6769) 1.1 0.4(4) 0.063(8) 020 | & i ]
16-1024 -0.681) 1.2(2) 0.04(75 0.07(1) Y g :
36-1024 -0.641) 0.7(3) 25(17) 0.07(2) ) - : x
9 015 . ]

of best fit is indicated in Fig. 1. We see that the line tension 0.10 | - - .
has a value of about 0.07 (2) K/A. The experimental T - -
value for the surface tension of a three-dimensional drop is

0.27 K/A2. A GFMC simulation of the planar interfate 0.05 1 N=121 3 1168 3512 21024 -
yields a value of 0.265. A2. This close agreement with Y E E
experiment shows that the Aziz | potential is accurate g9 ‘ > o
enough to provide a reliable value for the 3D surface tension. 0.0 10.0 20.0 80.0 40.0

It is interesting to compare the value we have obtained for /o

the line tension with the 3D surface tension. If we define a FIG. 2. The density profile in systems withN

reduced surface tensioﬁpgz’e‘ and a reduced line tension =121, 165, 512, 1024 particles.

yp, Y2, with p; and p, the 3D and 2D densities, respec-
tively, then these reduced quantities both have the dimerinterior of the droplet is about 0.038 A2, which is close to
sions of energy. We find that the reduced line tension ighe value p,=0.04 A2 in bulk “He. We see that the
approximately 10 times smaller than the reduced surface terpuddles have an interface whose width increases with in-
sion. However, there does not seem to be a unique, naturalreasing size. One measure of the width is the valugydf
way to define these reduced quantites. The other, plausibl&@able I.d, varies from 3.07 to 5.37 A a varies from 16 to
method is to use the microscopic length scalewhich ap-  1024. This is to be compared with a variatiordigof 3.83 to
pears in the two-body Aziz potential. Usingto define re- 6.65 A asN varies from 20 to 700 particles in 3D droBfsA
duced surface and line tensions we again find a ratio of apmore direct measure of the width of the interface is the dis-
proximately 10. We speculate that the binding energy oftance over which the density falls from 90% of its bulk value
puddles, on a smooth graphite substrate, will be very close tt 10%. This is tabulated for various drops sizes in Table IIl.
those of the strictly 2D system. Our basis for this speculatiorA plot of this width vsN¥#is shown in Fig. 3. Although one
is that the binding energy of the fluid first layer on graphite iscannot fit a perfect straight line through the points in the plot,
only 5% greater than that of the 2D systéiWe expect it seems plausible that/~NY4, i.e., W~ /L. This result is
puddles to show a very similar difference. expected for a classical interface at finite temperattifé.
The density of the puddles as a function of radial distanceThe reason we see this in our system is because any wave
is shown for the larger puddle sizes in Fig. 2. The density ofunction whose form is given by E@3) leads to a probabil-
the auxiliary “shadow” variablegwhich is not shown heje ity density that can be mapped to a classical system. With
follows the density of the real particles very closely; the twopseudopotentials of the kind we have used the equivalent
are almost identical. We also observe that the density in thpotential functions of the classical system are short ranged.
We would thus expect, in the absence of gravity, that the
0.0 : : 0.0 interfacial width in 2D will grow proportional to the square
a root of the length of the interface. This classical result arises
from the excitation of long-wavelength surface waves on a
2D line. This argument essentially explains why we find the
classical result for our wave function. In 3D the mean square
width increases logarithmically with the linear dimension of
the surface. In most circumstances in 3D, gravity acts per-

—04 < g ~0.04
’ / TABLE Ill. Width W of the interface as a function &f. HereW

-0.2 F // 1-0.02

E/N (K) ‘He
E/N (K) *He

e - is the distance over which the density falls from 90% of its bulk
-06 / 1 -0.08 value to 10%.
N W o
08 00 0.10 . 020 ~008 36 4.3(1)
x=N 64 4.7(1)
FIG. 1. The energy per particle fit to a quadratic function de- 121 4.98(5)
fined in Eq.(8). The data points fofHe are fit by the solid line, the 165 5.1(5)
scale for which is indicated on the left, while the data points for 512 6.8(1)
3He are fit by the dashed line, the scale for which is indicated on 1024 7.0(2)

the right.
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8.0 . of the density profile in a puddle with 512 particles. Also
shown on the same graph is a 728-particle 3D drop simulated
by Pieper and co-workefd. The x andy axes have been
rescaled on this graph. Theaxis has been rescaled so that
} ] the bulk density in the interior of the puddle asymptotes to a
value of 1, and thex axis is rescaled so that the second
derivative of the profile in the radial direction goes to zero at
x=1. This is done so that we can compare 2D and 3D drops
of different sizes on the same scale. The solid line is the
Fermi function in the one-body form factér,(S) used for
the 512-particle simulation and is rescaled in the same fash-
50 L T | ion. It can be seen that the density profile does not follow the
’ E one-body form factor accurately in the interfacial region. No
1 amount of adjusting of parameteiieeeping the energy low
7 yields a symmetric profile. This is a feature observed in all
40 , ‘ ‘ the puddles that we have simulated. This is markedly differ-
20 3.0 4.0 5.0 6.0 ent from classical simulations of three-dimensional dfops
N where the density profile is very well described by a hyper-

FIG. 3. The widthw of the interface as a function of system DOlic tangent(a shifted and rescaled version of the Fermi
size.Wis the distance over which the density falls from 90% of its function) and is symmetric. We do not know if this feature is
bulk value to 10%. fundamentally characteristic of helium. The density profiles

in 3D “He drops, studied variationally by Pieper and
pendicular to the interface and suppresses interfacial fluctugo-workers>" also possess this asymmetry.
tions leading to a finite interfacial width in 3B.However, There is a special feature of the interfaces of three- and
physical realizations of a 2D system are often in the form oftwo-dimensional boson drops which might explain the asym-
a film on a substrate which is perpendicular to the gravitametry. In drops of*He in 3D it has been shown that the
tional field. Consequently stabilization of the interfacial fluc- condensed Bose state has a high amplitude in the interfacial
tuations is not possible in such systems. We believe, howregion?*?*In the interior of the droplet the amplitude of the
ever, that if our wave function is modified to include the condensed state is a constant, with the value expected from
zero-point fluctuations of these surface waves, |0ng_rangbu|k simulations. However, it peaks in the interfacial region.
correlations will be present in the wave function and thesdn principle we could attempt to calculate the condensate
will be sufficient to invalidate the classical analogy. fraction for our 2D system and see if it also peaked in the

A closer examination of the interfacial region of the interfacial region. Unfortunately our shadow wave function
puddles reveals a fundamental asymmetry in the interfacd20ses serious technical difficulties if one wishes to compute
The one-body form factor has the property that it is symmetthe condensed state function. These have been overcome for
ric about the point at which the density has dropped to onethe homogeneous fluif, but we have, as yet, no reliable
half of the value in the interior of the drop. The form factor method for inhomogeneous systems.
has a reflection symmetry about this point. Figure 4 is a plot We should mention that the profiles of fermionic 3D

drops are markedly different from their bosonic counterparts.
12l ' ' ] Simulations reveal an interfacial regirihat is much larger
than a*He drop with the same number of particles. Further-
more, the density oscillates significantly in the bulk region of
the drop due to filling of momentum shells, a feature absent
in the bosonic simulations.

The two-dimensional puddles are low-density systems
and we know from studying the homogeneous system that
they are very weakly correlated. For this reason we believe
that a good variation calculation will provide a reasonably
accurate description of these puddles. We know that for the
homogeneous system the variation energy, at low densities,
is within 10% of the GFMC valué® Since the interfacial
region is even less dense, we expect that our variation calcu-
lations will be at least as accurate for the properties of the
interface. This claim is supported by the fact that the differ-
0.0 ‘ . L W ence in the surface tension found in variational and GFMC

0.0 0.4 0.8 1.2 calculations is only 49%°
scaled radial distance

7.0

Wic
(2]
o

o
=3

scaled density

o
IS

FIG. 4. The scaled density profile and the corresponding Fermi IV. PUDDLES OF 3He
function (dashed ling The circles are the scaled density profile for
a 512-particle 2D puddle while the diamonds represent a scaled We now turn our attention to the existence of puddles of
728-particle 3D drop. 3He. We start by dealing with the strictly two-dimensional
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TABLE IV. Variational parameters and energies for puddles ofsume that the shadow wave functigg(R) used to simulate

boson®He as a function oN (0=2.556 A). the homogeneous phase of mass-3 bosons is an exact ground
> state. For the fermion system we choose a wave function

N Co° blo 6(K) a s/o dolo  EIN(K) ¥=(R), which is a product ofsg(R), and a Slater determi-

2 15 112 009 093 31 1.2 —0.001 (10) nant .of plane waves with wave xectdfszir;zd spin fun_ctions

3 14 112 009 093 40 12 0.0120) é(i f|II|.ng a Fermi disk of radiukg= (2mp)~'%, wherep is the

9 14 112 009 093 68 12 —0009 (10) density,le,

10 14 112 009 093 7.0 1.2 —0.003 (6) Ye(R)= yg(R) Defexpliki 1) xi(o))]. 9

11 14 112 0.09 093 7.6 1.2 —0.001 (10)
12 1.4 112 009 093 7.8 1.2 —0.010 (5) A few definitions are in order. Lagg(r) be the pair corre-
13 14 1.12 009 093 86 1.2 —0.013 (5) lation function for the boson system described #y(R),
16 1.4 112 009 093 89 1.2 -0016 (6) andu(k) be defined by
36 1.3 112 0.09 093 134 1.3 —-0.029 (3)
64 14 112 009 092 175 1.5 -0.041 (3) u(k)ESB(k)_lzpf exp(ik-n)[ga(r)—1], (10
121 14 112 0.09 093 225 1.6 —0.046 (2)
512 14 112 0.09 093 450 2.0 —0.055 (1) whereSg(k) is the structure factor.
The energy per patrticle for the 2D fermion system can be
expanded in a permutation expanstdn,

system. It has been suspected for some time thati2®wiill
not bind®3 If this is true, then puddles otHe will not form.

Before making any predictions for 2BHe we first studied whereeg=e{*)= —0.063 K is the energy for the mass-3 bo-

the mass-3 boson system in 2D. Once again we simulated thg,, system. The zeroth- and first-order correctiinsper-

homogeneous liquid phase of this system using a tria}nutationQ are given b)eev':: €12, ande\l,\,,:: erpA, where
shadow wave functiogg(R) which is identical tog(R) in e is the Fermi energy and

Eq. (3) except that the one-body form factor for the shadows
is not included. We determined the equilibrium dengay

er=eg+ et ey, 1D

zero pressuleto be p{*)=0.0121 A 2 and the energy at A= f116x3u(2kpx) ml2—x(1—x?)12

this density to bee{>)=—0.063 (2) K per particle, respec- 0

tively. The corresponding density and energy for mass-4 B

bosons in 2D are p{¥=0.0395 A"2 and e{’= +arctar( —XH . (12)
—0.687 (2) K, respectively.We see that bosons of mass 3 (1-x3)'2

are very weakly bound in 2D. Further the equilibrium den-At the equilibrium densityp@, the Fermi energye

sity is also extremely low. Next, we proceeded to determine:0 6114 K ticl ge: ’_0 305821 Here\ F

the minimum number of mass-3 bosons that would bind in_ > 0-~~ ' Per particié, an : - Here was

2D. We simulated puddles of bosonitde with the same determined by simulating the system at a densffy, to

trial shadow wave functionsr(R) described in Sec. Il. The find gs(r), and then numerically integrating EQL2). This
results of these simulations are shown in Table IV. The 512Yields correctionse,r=0.3057 K, andey=—0.0027 K.
particle run used a neighbor table scheme with a cutoff oiVe see that the first-order correction is two orders of mag-
5.00 since the density in these systems is very low. We SeQltude smaller thar} the zerpth order. Higher-order correc-
that the minimum number of mass-3 bosons that bind in 20310NS to the energy involve higher powers of the density, and
is greater than or equal to 12. For puddles with fewer parWe suspect that they contribute an extremely small amount to
ticles the fluctuations in the energy are large enough to delh€ energy of the fermion system. The bulk of the contribu-
stroy binding. We also fit the energy per particle to a qua_t|on to the energy of th_e fermion system in 2D is from the
dratic in x=N"Y2 as we did in Sec. lll. The results of the €nergy of the free Fermi gas. Because the mass-3 boson sys-
fitting are shown in Table V and the best fitting curve in Fig.t8M condenses at such a very low density, we believe that

1. We see thae, in Table V is close to the bulk value(® ~ OUr variational estimate of the energy will be very close to
:'_0 063 K Thbe line tension for mass-3 bosons is an Orde];he exact value. For this reason we can be confident in as-

; 3 i ind i 20
of magnitude lower than the line tension for the mass-4 cases,er(t:'ng tp\_at IHekW|fIIbr]o(t:j_b|n<z)|n %D' di .
and cannot be accurately determined from these simulations. an this fack of binding beé observed in Some expermen-
To estimate the binding energy fdHe fermions we used tal realization of the _2D system? The closest one _could come
the Wu-Feenberg expansiéhThis expansion appears to be to a real 2D system is a monolayer tfie on graphite. One

idl h | ities. W could a;k i.f this thin film would put_jdle and form a region (_Jf
very rapidly convergent at these very low densities. We asdense liquid. We have already estimated how much the bind-

ing energy of a thin film of*He on graphite would be low-

ered relative to its 2D value due to opening out of the wave
function in thez direction®® We expect the opening of the

wave function to lower the energy because while the greater
volume available to the particles will decrease the magnitude
36-512 —0.060(5 0.09(9) 0.6(5 0.003(3) of the potential energy it will at the same time decrease the
kinetic energy to a larger extent. We follow the same proce-

TABLE V. Parameters that fit the energy per particle in 8.
and the corresponding line tension for boste.

Range ofN &, (K) es (K) e. (K)  y(K/IA)
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dure as in the reference mentioned ab®/ehe Hamiltonian more accurate information on the size dependence of the
for a film of N helium atoms in the presence of graphite is width one needs to simulate much larger systems using a
i 3 geometry that con_sists qf a strip of helium at.t_he center of a

H™ =T, +Ty+ T+ Vyect Viene (13)  rectangular cell with periodic boundary conditions. Further-

where theT’s represent the kinetic energy operators and thd"ore. the wave function we have used in our simulation does
V's represents the potential energy. For simplicity we assum@0t contain in it quantum zero-point capillary wave fluctua-

that the carbon can be modeled as a smooth substrate withfl@ns: These may bind the fluctuations of the interface and
potential that varies only in thedirection. The above equa- Prevent them from increasing indefinitely. A possible way to
tion can be rewritten as include this in the wave function is to use the dispersion

relation for w?=k? for capillary waves, assume a harmonic
Hfilm _ HC—= 2D 4 Vae-He_ V'ﬁ"e_He (14) Hamiltonian for capillary waves, and modify the wave func-
c ) o tion in a manner similar to modifications for the bulk done
where H*=T,+Vye.c is the part of the Hamiltonian that 1,y Reatto and Chest&?.This modified wave function could
represents the interaction with the carbon, &t is the  pg simulated, with the strip geometry described above, and
Hamiltonian for 2D helium. Let(z) be the ground state one could check to see if the addition of zero-point capillary
wave function of one helium atom in the presence of thgyayes results in bounded interfacial fluctuations. Computa-
carbon substrate. Then a plausible trial wave function for thgjgn of the condensate fraction in 2D systems, particularly
film is ¥ m(R) = ¢g(R)I1}'$(z;) and using this in Eq(14)  inhomogeneous ones, is another important direction for fu-
yields an upper bound for the energper particle relative to  ture work. This would enable us to check if the presence of
the carbon binding energy: the condensate modifies the interfacial profile for a quantum
’ ) system and makes it asymmetric in contrast with the sym-
el —ef<eptAe; (15 metric one seen in classical systems.
i.e., the binding energy changes hpz(Vﬁe_He—vae_He)_ From our simulations for the mass-3 boson system we
Monte Carlo simulations yield a valuge= —0.0195 (5) K  believe that the mass-3 fermion system will not bind, either
per particle. We see that this correction to the binding energfS & pure 2D system or in the form of a monolaye?igé on
eg is still insufficient to overcome the free Fermi gas energydraphite. Experiments seem to corroborate this hypothesis
term from the zeroth-order Wu-Feenberg correction. Thigilthough some simulations seem to suggest otherwise. A
leads us to conclude that a monolayer film%fe will not ~ clear-cut answer will need more careful and detailed experi-
bind and puddle on a graphite substrate. Increasing the def?ents and/or simulations. Experiments also suggest that the
sity of the film would make it go from a gas phase to athird layer has a bound state consisting of a puddle of
high-density gas phase to a solid without an intervening ligliquid.*® Future work would also involve investigating in de-
uid phase. tail the properties of the second- and third-layer fims'ke
The work of Brami and Co-worke’}‘%direcﬂy contradicts oOn graphite to check if these condense to form a self-bound
our results on the binding of monolayéHe films. In the liquid.
same paper the authors quote results for the binding energy
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