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Puddles of helium in two dimensions: A Monte Carlo study

B. Krishnamachari* and G. V. Chester
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853

~Received 10 August 1998!

In this paper we report simulation studies of two-dimensional puddles of liquid4He, using variational wave
functions. We extract the line tension of these puddles and the energy in the bulk. We also study the surface
profile and width of the surface region of the puddles as a function of system size. The wave functions are used
to investigate the binding of boson3He. We find that mass-3 bosons are very weakly self-bound in two
dimensions and fermions of the same mass are very unlikely to bind. Further we believe that a monolayer film
of 3He on graphite will not bind into a liquid puddle; it would be a gas at low densities and a solid at very high
densities.@S0163-1829~99!06113-5#
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I. INTRODUCTION

The properties of liquid and solid4He in two dimensions
~2D! are interesting for the study of simple adsorbed syste
and because they serve as a simple example of a
dimensional quantum system. The properties of the homo
neous phase have been studied, theoretically,1,2 using mo-
lecular dynamics,3 and using Monte Carlo techniques.4–8 In
this paper we investigate the simplest inhomogeneous p
in two dimensions, viz., a puddle, using shadow wave fu
tions. This is a natural continuation of a similar study
three-dimensional helium drops.9,10 It provides us with in-
sight into the nature of quantum droplets and quantum in
faces. One would like to know if a finite collection of H
atoms will bind in 2D, how the binding energy varies wi
system size, and how these results change upon substit
of 4He with 3He. One would also like to know the nature
the interface between the liquid and vacuum and the
tension of the interface. It is known that thermal capilla
wave fluctuations grow unbounded with system size in c
sical drops in two and three dimensions.11,12 Do interfacial
fluctuations grow with system size in these quantum syst
and are these unbounded at absolute zero? Some of
questions are answered in the present investigation, w
others need more extensive study and simulations.

A related question concerns the properties of3He in 2D.
Variational calculations suggest that one needs about e
3He atoms to form a bound state in 3D.10 What about two
dimensions? Theoretical studies by Miller and Nasano13

first indicated the absence of a self-bound liquid phase
2D 3He. They also believed that the liquid phase would n
be present in a monolayer film of3He adsorbed on a sub
strate. However, variational Monte Carlo simulations
Brami and co-workers14 seemed to contradict this last resu
They found a bound phase for a monolayer film of3He on
graphite with a binding energy of 150–200 mK~relative to
the energy of a single3He atom interacting with the graphit
substrate!. Nuclear magnetic resonance~NMR! experiments
performed on a monolayer film of3He by Godfrin and
Lauter15 lead them to believe that the liquid phase is abs
in the first layer of 3He on graphite and with increasin
coverage the film goes from a dense gas to a solid phase
have simulated3He bosons in 2D, both finite size puddles
well as the homogeneous phase. Using this together with
PRB 590163-1829/99/59~13!/8852~7!/$15.00
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Wu-Feenberg expansion16 we estimate the energy of fermio
3He and conclude that it will not bind. We have also es
mated corrections to this energy in the presence of a grap
substrate and find that the system would continue to rem
unbound.

Section II describes the variational wave function used
the simulation along with a brief description of the simul
tion method. The results from simulations of4He are pre-
sented in Sec. III. We then proceed to investigate3He
puddles, both bosonic and fermionic, in Sec. IV and disc
our results for films of3He on graphite.

II. METHOD

The Hamiltonian for a system ofN helium atoms in two
dimensions is given by

H52
\2

2m(
i

N

¹ i
21(

i , j

N

V~r i j !. ~1!

We use the Aziz I potential developed by Aziz an
co-workers17 to represent the interaction between helium
oms. The variational theorem gives us an upper bound on
true ground state energyE0 of this system of helium atoms
that form a drop,

E0<ET5

E dR cT~R!H cT~R!

E dR cT~R! cT~R!

. ~2!

We use a shadow wave function,18 modified by a form fac-
tor, as the trial functioncT(R), i.e.,

cT~R!5E J~R,S!dS, ~3!

whereR[(r1 ,r2 , . . . ,rN), denotes the positions of the H
atoms andS[(s1 ,s2 , . . . ,sN) denotesN auxiliary shadow
variables which are coupled to each other and to the
variables, and are integrated out in the definition of the wa
function. The functionJ is chosen to be
8852 ©1999 The American Physical Society
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J~R,S!5F1~S!expS 2(
i , j

N

ur~r i j !2C(
i

N

~r i2si !
2

2(
i , j

N

vs~si j !D . ~4!

The pseudopotential for the real particlesur(r i j ) is of the
McMillan form ur(r i j )5(b/r i j )

5, while the pseudopotentia
for the shadow variables is a scaled version of the A
potential,17 vs(si j )5aVAziz(dsi j ). Here b, a, and d are
variational parameters. Reals and shadows are coupled in
~4! through the Gaussian coupling term whose strengthC is
a variational parameter.F1(S) is a one-body form factor
which is a product of Fermi functions,

F1~S!5)
i

N F 1

11 exp@~si2s0!/d0#G , ~5!

wheres0 and d0 are additional variational parameters, a
the si are measured relative to the center of mass of
shadow particles. The wave function without the form fac
has been used to simulate the homogeneous phase of4He in
two dimensions and provides a good description of t
system.8 The form factor introduces inhomogeneity in th
system and binds the shadows, to their center of mass,
sequently binding the real particles. It is of course w
known that some type of form factor is necessary to stabi
large 3D drops. They have been widely used,10 and are usu-
ally expressed in terms of the particle coordinates. We h
used the shadow variables. With this type of from facto
can be shown9 that when a particle is removed to a larg
distance from the center of mass of the puddle the w
function delays exponentially. One can also show9 that the
energy obtained variationally with this form factor is ve
close to that obtained with a wave function in which there
no form factor but in which the shadow pseudopotential i
function of the local density. Both energies are close to
values obtained by Green’s Function Monte Carlo~GFMC!
simulations.10 The trial energy for this wave function i
given by

ET5E E E dR dS dS8p~R,S,S8!FH J~R,S8!

J~R,S8!
G , ~6!

where the probability density

p~r ,S,S8!5
J~R,S! J~R,S8!

E E E dR dS dS8 J~R,S! J~R,S8!

.

~7!

The Metropolis method is used to sample this probabi
density and estimate the energy in square brackets in Eq~6!.
The variational parameters are varied until one obtain
minimum in the energy for each system size that is sim
lated.

III. PUDDLES OF 4He

We simulated the system with the number of partic
ranging from 2 to 1024. The system was put in a circular b
z
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with hard walls. At the start of each run the particles we
distributed uniformly in a circle~smaller than the box!, with
a density rb50.0395 Å22 which is equal to the zero
pressure value determined from simulations of the homo
neous system8 @the homogeneous simulations use a tr
wave function which is a shadow wave functioncT(R) with-
out the one-body form factor imposed on the shadows#. The
system was allowed to equilibrate for about 100 000 pas
Each pass consisted of 5 sweeps and during each swee
attempt was made to move every particle in the system o
After equilibration, the simulation was run for a furthe
100 000 passes during which the energy was computed
averaging uncorrelated estimates. The parameters were
ied until a minimum in energy was obtained for each syst
size. Table I shows the minimum energy per particle alo
with the optimum variational parameters. For the case of 5
and 1024 particles, a neighbor table scheme was use
reduce the computation time, and the simulation cell w
changed from a circular box to a square box with perio
boundary conditions. In these large systems, a cutoff of 2s
was chosen for the potential. A tail correction19 was made to
the energy. We tested this correction by running a 5
particle system with and without the cutoff and found ide
tical results within the statistical uncertainties of the calcu
tions. It can be seen from the table that the parameters
optimize the inner region,C, b, d, and a, do not vary
much with system size. Their values are also close to
optimum values one would expect from simulations of bu
4He at a densityrb .8 The parameterss0 andd0 are of course
sensitive to the size of the system. However, it is seen
the energy is fairly insensitive to variations ind0 . This is
because the interface fluctuates considerably in th
puddles, leading to fluctuations in the energy in the cours
a run with a given set of parameters. Consequently chang
the interfacial width by a small amount by changingd0 does
not affect the energy significantly. The energy per parti
can be fit to a quadratic function with bulk, surface, a
‘‘curvature’’ terms,

E/N5eb1esx1ecx
2. ~8!

Herex5N21/2, eb should be very close to the bulk energ
per particle of the homogeneous phase in the limit of largex,
and es

254pg/rb , whereg is the line tension of the fluid.
The results from fitting the parameters in Eq.~8! are shown
in Table II along with the extracted line tension, and the li

TABLE I. Variational parameters and energies as a function
number of particles,N (s52.556 Å).

N Cs2 b/s d ~K! a s0 /s d0 /s E/N ~K!

2 2.8 1.12 0.09 0.92 1.65 1.3 20.09 (1)
9 3.0 1.12 0.09 0.93 3.50 1.2 20.26 (2)
16 3.0 1.12 0.09 0.91 4.70 1.2 20.380(8)
36 3.1 1.12 0.09 0.93 7.10 1.3 20.471(7)
64 3.1 1.12 0.08 0.93 9.40 1.4 20.528(5)
121 3.1 1.12 0.09 0.93 12.70 1.5 20.570(7)
165 3.4 1.12 0.08 0.94 14.30 1.4520.602(7)
512 3.1 1.13 0.09 0.93 26.00 2.0 20.621(2)
1024 3.1 1.13 0.09 0.93 36.60 2.1 20.640(2)
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of best fit is indicated in Fig. 1. We see that the line tens
has a value of about 0.07 (2) K/Å . The experimen
value for the surface tension of a three-dimensional dro
0.27 K/Å 2. A GFMC simulation of the planar interface19

yields a value of 0.265. Å22. This close agreement with
experiment shows that the Aziz I potential is accur
enough to provide a reliable value for the 3D surface tens
It is interesting to compare the value we have obtained
the line tension with the 3D surface tension. If we define
reduced surface tensionTr3

22/3 and a reduced line tensio
gr2

21/2, with r3 and r2 the 3D and 2D densities, respe
tively, then these reduced quantities both have the dim
sions of energy. We find that the reduced line tension
approximately 10 times smaller than the reduced surface
sion. However, there does not seem to be a unique, nat
way to define these reduced quantites. The other, plaus
method is to use the microscopic length scales, which ap-
pears in the two-body Aziz potential. Usings to define re-
duced surface and line tensions we again find a ratio of
proximately 10. We speculate that the binding energy
puddles, on a smooth graphite substrate, will be very clos
those of the strictly 2D system. Our basis for this speculat
is that the binding energy of the fluid first layer on graphite
only 5% greater than that of the 2D system.25 We expect
puddles to show a very similar difference.

The density of the puddles as a function of radial dista
is shown for the larger puddle sizes in Fig. 2. The density
the auxiliary ‘‘shadow’’ variables~which is not shown here!
follows the density of the real particles very closely; the tw
are almost identical. We also observe that the density in

TABLE II. Parameters that fit the energy in Eq.~8! and the
corresponding line tension.

Range ofN eb ~K! es ~K! ec ~K! g (K/Å )

9–1024 -0.676~9! 1.1 ~1! 0.4 ~4! 0.063~8!

16–1024 -0.68~1! 1.2 ~2! 0.04 ~75! 0.07 ~1!

36–1024 -0.66~1! 0.7 ~3! 2.5 ~17! 0.07 ~2!

FIG. 1. The energy per particle fit to a quadratic function d
fined in Eq.~8!. The data points for4He are fit by the solid line, the
scale for which is indicated on the left, while the data points
3He are fit by the dashed line, the scale for which is indicated
the right.
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interior of the droplet is about 0.038 Å22, which is close to
the value rb50.04 Å22 in bulk 4He. We see that the
puddles have an interface whose width increases with
creasing size. One measure of the width is the value ofd0 in
Table I.d0 varies from 3.07 to 5.37 Å asN varies from 16 to
1024. This is to be compared with a variation ind0 of 3.83 to
6.65 Å asN varies from 20 to 700 particles in 3D drops.10 A
more direct measure of the width of the interface is the d
tance over which the density falls from 90% of its bulk val
to 10%. This is tabulated for various drops sizes in Table
A plot of this width vsN1/4 is shown in Fig. 3. Although one
cannot fit a perfect straight line through the points in the p
it seems plausible thatW;N1/4, i.e., W;AL. This result is
expected for a classical interface at finite temperature.11,12

The reason we see this in our system is because any w
function whose form is given by Eq.~3! leads to a probabil-
ity density that can be mapped to a classical system. W
pseudopotentials of the kind we have used the equiva
potential functions of the classical system are short rang
We would thus expect, in the absence of gravity, that
interfacial width in 2D will grow proportional to the squar
root of the length of the interface. This classical result ari
from the excitation of long-wavelength surface waves on
2D line. This argument essentially explains why we find t
classical result for our wave function. In 3D the mean squ
width increases logarithmically with the linear dimension
the surface. In most circumstances in 3D, gravity acts p

TABLE III. Width W of the interface as a function ofN. HereW
is the distance over which the density falls from 90% of its bu
value to 10%.

N W/s

36 4.3~1!

64 4.7~1!

121 4.98~5!

165 5.1~5!

512 6.8~1!

1024 7.0~2!

-

r
n

FIG. 2. The density profile in systems withN
5121, 165, 512, 1024 particles.
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PRB 59 8855PUDDLES OF HELIUM IN TWO DIMENSIONS: A . . .
pendicular to the interface and suppresses interfacial fluc
tions leading to a finite interfacial width in 3D.11 However,
physical realizations of a 2D system are often in the form
a film on a substrate which is perpendicular to the grav
tional field. Consequently stabilization of the interfacial flu
tuations is not possible in such systems. We believe, h
ever, that if our wave function is modified to include th
zero-point fluctuations of these surface waves, long-ra
correlations will be present in the wave function and the
will be sufficient to invalidate the classical analogy.

A closer examination of the interfacial region of th
puddles reveals a fundamental asymmetry in the interfa
The one-body form factor has the property that it is symm
ric about the point at which the density has dropped to o
half of the value in the interior of the drop. The form fact
has a reflection symmetry about this point. Figure 4 is a p

FIG. 3. The widthW of the interface as a function of syste
size.W is the distance over which the density falls from 90% of
bulk value to 10%.

FIG. 4. The scaled density profile and the corresponding Fe
function ~dashed line!. The circles are the scaled density profile f
a 512-particle 2D puddle while the diamonds represent a sc
728-particle 3D drop.
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of the density profile in a puddle with 512 particles. Als
shown on the same graph is a 728-particle 3D drop simula
by Pieper and co-workers.21 The x and y axes have been
rescaled on this graph. They axis has been rescaled so th
the bulk density in the interior of the puddle asymptotes t
value of 1, and thex axis is rescaled so that the seco
derivative of the profile in the radial direction goes to zero
x51. This is done so that we can compare 2D and 3D dr
of different sizes on the same scale. The solid line is
Fermi function in the one-body form factorF1(S) used for
the 512-particle simulation and is rescaled in the same fa
ion. It can be seen that the density profile does not follow
one-body form factor accurately in the interfacial region. N
amount of adjusting of parameters~keeping the energy low!
yields a symmetric profile. This is a feature observed in
the puddles that we have simulated. This is markedly diff
ent from classical simulations of three-dimensional drop22

where the density profile is very well described by a hyp
bolic tangent~a shifted and rescaled version of the Fer
function! and is symmetric. We do not know if this feature
fundamentally characteristic of helium. The density profi
in 3D 4He drops, studied variationally by Pieper an
co-workers,21 also possess this asymmetry.

There is a special feature of the interfaces of three-
two-dimensional boson drops which might explain the asy
metry. In drops of4He in 3D it has been shown that th
condensed Bose state has a high amplitude in the interfa
region.23,24 In the interior of the droplet the amplitude of th
condensed state is a constant, with the value expected
bulk simulations. However, it peaks in the interfacial regio
In principle we could attempt to calculate the condens
fraction for our 2D system and see if it also peaked in
interfacial region. Unfortunately our shadow wave functi
poses serious technical difficulties if one wishes to comp
the condensed state function. These have been overcom
the homogeneous fluid,18 but we have, as yet, no reliabl
method for inhomogeneous systems.

We should mention that the profiles of fermionic 3
drops are markedly different from their bosonic counterpa
Simulations reveal an interfacial region10 that is much larger
than a4He drop with the same number of particles. Furth
more, the density oscillates significantly in the bulk region
the drop due to filling of momentum shells, a feature abs
in the bosonic simulations.

The two-dimensional puddles are low-density syste
and we know from studying the homogeneous system
they are very weakly correlated. For this reason we beli
that a good variation calculation will provide a reasonab
accurate description of these puddles. We know that for
homogeneous system the variation energy, at low densi
is within 10% of the GFMC value.7,8 Since the interfacial
region is even less dense, we expect that our variation ca
lations will be at least as accurate for the properties of
interface. This claim is supported by the fact that the diff
ence in the surface tension found in variational and GFM
calculations is only 4%.19

IV. PUDDLES OF 3He

We now turn our attention to the existence of puddles
3He. We start by dealing with the strictly two-dimension
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ed
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system. It has been suspected for some time that 2D3He will
not bind.13 If this is true, then puddles of3He will not form.
Before making any predictions for 2D3He we first studied
the mass-3 boson system in 2D. Once again we simulated
homogeneous liquid phase of this system using a t
shadow wave functioncB(R) which is identical tocT(R) in
Eq. ~3! except that the one-body form factor for the shado
is not included. We determined the equilibrium density~at
zero pressure! to be re

(3)50.0121 Å22 and the energy a
this density to beeb

(3)520.063 (2) K per particle, respec
tively. The corresponding density and energy for mas
bosons in 2D are re

(4)50.0395 Å22 and eb
(4)5

20.687 (2) K, respectively.7 We see that bosons of mass
are very weakly bound in 2D. Further the equilibrium de
sity is also extremely low. Next, we proceeded to determ
the minimum number of mass-3 bosons that would bind
2D. We simulated puddles of bosonic3He with the same
trial shadow wave functioncT(R) described in Sec. II. The
results of these simulations are shown in Table IV. The 5
particle run used a neighbor table scheme with a cutof
5.0s since the density in these systems is very low. We
that the minimum number of mass-3 bosons that bind in
is greater than or equal to 12. For puddles with fewer p
ticles the fluctuations in the energy are large enough to
stroy binding. We also fit the energy per particle to a qu
dratic in x5N21/2 as we did in Sec. III. The results of th
fitting are shown in Table V and the best fitting curve in F
1. We see thateb in Table V is close to the bulk valueeb

(3)

520.063 K. The line tension for mass-3 bosons is an or
of magnitude lower than the line tension for the mass-4 ca
and cannot be accurately determined from these simulati

To estimate the binding energy for3He fermions we used
the Wu-Feenberg expansion.16 This expansion appears to b
very rapidly convergent at these very low densities. We

TABLE IV. Variational parameters and energies for puddles
boson3He as a function ofN (s52.556 Å ).

N Cs2 b/s d ~K! a s0 /s d0 /s E/N ~K!

2 1.5 1.12 0.09 0.93 3.1 1.2 20.001 (10)
3 1.4 1.12 0.09 0.93 4.0 1.2 0.010~20!

9 1.4 1.12 0.09 0.93 6.8 1.2 20.009 (10)
10 1.4 1.12 0.09 0.93 7.0 1.2 20.003 (6)
11 1.4 1.12 0.09 0.93 7.6 1.2 20.001 (10)
12 1.4 1.12 0.09 0.93 7.8 1.2 20.010 (5)
13 1.4 1.12 0.09 0.93 8.6 1.2 20.013 (5)
16 1.4 1.12 0.09 0.93 8.9 1.2 20.016 (6)
36 1.3 1.12 0.09 0.93 13.4 1.3 20.029 (3)
64 1.4 1.12 0.09 0.92 17.5 1.5 20.041 (3)
121 1.4 1.12 0.09 0.93 22.5 1.6 20.046 (2)
512 1.4 1.12 0.09 0.93 45.0 2.0 20.055 (1)

TABLE V. Parameters that fit the energy per particle in Eq.~8!
and the corresponding line tension for boson3He.

Range ofN eb ~K! es ~K! ec ~K! g(K/Å )

36–512 20.060~5! 0.09 ~9! 0.6 ~5! 0.003~3!
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sume that the shadow wave functioncB(R) used to simulate
the homogeneous phase of mass-3 bosons is an exact gr
state. For the fermion system we choose a wave func
cF(R), which is a product ofcB(R), and a Slater determi
nant of plane waves with wave vectorsk i and spin functions
x i filling a Fermi disk of radiuskF5(2pr)1/2, wherer is the
density, i.e.,

cF~R!5cB~R! Det@exp~ ik i•r j ! x i~s j !#. ~9!

A few definitions are in order. LetgB(r ) be the pair corre-
lation function for the boson system described bycB(R),
andu(k) be defined by

u~k![SB~k!215rE exp~ ik•r !@gB~r !21#, ~10!

whereSB(k) is the structure factor.
The energy per particle for the 2D fermion system can

expanded in a permutation expansion,16

eF5eB1eWF
0 1eWF

1 , ~11!

whereeB5eb
(3)520.063 K is the energy for the mass-3 b

son system. The zeroth- and first-order corrections~in per-
mutations! are given byeWF

0 5eF/2, andeWF
1 5eFrD, where

eF is the Fermi energy and

D5E
0

1

16x3u~2kFx!Fp/22x~12x2!1/2

1arctanS 2x

~12x2!1/2D Gdx. ~12!

At the equilibrium densityre
(3) , the Fermi energyeF

50.6114 K per particle, andD520.305 821. HereD was
determined by simulating the system at a densityre

(3) , to
find gB(r ), and then numerically integrating Eq.~12!. This
yields correctionseWF

0 50.3057 K, andeWF
1 520.0027 K.

We see that the first-order correction is two orders of m
nitude smaller than the zeroth order. Higher-order corr
tions to the energy involve higher powers of the density, a
we suspect that they contribute an extremely small amoun
the energy of the fermion system. The bulk of the contrib
tion to the energy of the fermion system in 2D is from t
energy of the free Fermi gas. Because the mass-3 boson
tem condenses at such a very low density, we believe
our variational estimate of the energy will be very close
the exact value. For this reason we can be confident in
serting that3He will not bind in 2D.20

Can this lack of binding be observed in some experim
tal realization of the 2D system? The closest one could co
to a real 2D system is a monolayer of3He on graphite. One
could ask if this thin film would puddle and form a region
dense liquid. We have already estimated how much the b
ing energy of a thin film of4He on graphite would be low-
ered relative to its 2D value due to opening out of the wa
function in thez direction.25 We expect the opening of th
wave function to lower the energy because while the gre
volume available to the particles will decrease the magnit
of the potential energy it will at the same time decrease
kinetic energy to a larger extent. We follow the same pro

f
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dure as in the reference mentioned above.25 The Hamiltonian
for a film of N helium atoms in the presence of graphite

Hfilm5Tx1Ty1Tz1VHe-C1VHe-He
3 , ~13!

where theT’s represent the kinetic energy operators and
V’s represents the potential energy. For simplicity we assu
that the carbon can be modeled as a smooth substrate w
potential that varies only in thez direction. The above equa
tion can be rewritten as

Hfilm2HC5H2D1VHe-He
3 2VHe-He

2 , ~14!

where HC5Tz1VHe-C is the part of the Hamiltonian tha
represents the interaction with the carbon, andH2D is the
Hamiltonian for 2D helium. Letf(z) be the ground state
wave function of one helium atom in the presence of
carbon substrate. Then a plausible trial wave function for
film is Cfilm(R)5cB(R)) i

Nf(zi) and using this in Eq.~14!
yields an upper bound for the energy~per particle! relative to
the carbon binding energy:

efilm2eC<eB1De; ~15!

i.e., the binding energy changes byDe5^VHe-He
3 2VHe-He

2 &.
Monte Carlo simulations yield a valueDe520.0195 (5) K
per particle. We see that this correction to the binding ene
eB is still insufficient to overcome the free Fermi gas ener
term from the zeroth-order Wu-Feenberg correction. T
leads us to conclude that a monolayer film of3He will not
bind and puddle on a graphite substrate. Increasing the
sity of the film would make it go from a gas phase to
high-density gas phase to a solid without an intervening
uid phase.

The work of Brami and co-workers14 directly contradicts
our results on the binding of monolayer3He films. In the
same paper the authors quote results for the binding en
of a monolayer film of4He. They find a large increase in th
binding energy when compared with 2D helium. This res
also contradicts other work carried out by our group25 and
we have been unable to reproduce the results of Brami
co-workers.

V. CONCLUSIONS AND FUTURE WORK

We have simulated puddles of bosonic4He and 3He in
2D. We see that the energy per particle in these pud
decreases with system size and approaches the value
pected for bulk homogeneous 2D He. The width of the
terface region increases with system size. However, to ob
e
e

h a
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e
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-

gy

lt

nd

es
ex-
-
in

more accurate information on the size dependence of
width one needs to simulate much larger systems usin
geometry that consists of a strip of helium at the center o
rectangular cell with periodic boundary conditions. Furth
more, the wave function we have used in our simulation d
not contain in it quantum zero-point capillary wave fluctu
tions. These may bind the fluctuations of the interface
prevent them from increasing indefinitely. A possible way
include this in the wave function is to use the dispers
relation forv25k3 for capillary waves, assume a harmon
Hamiltonian for capillary waves, and modify the wave fun
tion in a manner similar to modifications for the bulk do
by Reatto and Chester.26 This modified wave function could
be simulated, with the strip geometry described above,
one could check to see if the addition of zero-point capill
waves results in bounded interfacial fluctuations. Compu
tion of the condensate fraction in 2D systems, particula
inhomogeneous ones, is another important direction for
ture work. This would enable us to check if the presence
the condensate modifies the interfacial profile for a quan
system and makes it asymmetric in contrast with the s
metric one seen in classical systems.

From our simulations for the mass-3 boson system
believe that the mass-3 fermion system will not bind, eit
as a pure 2D system or in the form of a monolayer of3He on
graphite. Experiments seem to corroborate this hypoth
although some simulations seem to suggest otherwise
clear-cut answer will need more careful and detailed exp
ments and/or simulations. Experiments also suggest tha
third layer has a bound state consisting of a puddle
liquid.15 Future work would also involve investigating in d
tail the properties of the second- and third-layer films of3He
on graphite to check if these condense to form a self-bo
liquid.

ACKNOWLEDGMENTS

This work was carried out on the IBM SP2 at the Corn
Theory Center, which is funded by the National Scien
Foundation, New York State, IBM, and Cornell Universit
Part of this work was supported by the National Scien
Foundation under Grant No. DMR 9200409. This work a
made use of the MSC Multi-User-Computer Facility,
MRL Central Facility supported by the National Scien
Foundation under Grant No. DMR-9121564. We would li
to thank the Phandaripande group for providing us with
results of their simulations, and Kevin Schmidt for giving
the wave function of a He atom on graphite.
.

ev.

.

*Present address: 9009 Great Hills Trail, #724, Austin, TX 7875
1A. D. Novaco, Phys. Rev. A7, 678 ~1973!; 8, 3065~1973!.
2M. D. Miller, C.-W. Woo, and C. E. Campbell, Phys. Rev. A6,

1942 ~1972!.
3C. E. Campbell and M. Schick, Phys. Rev. A3, 691 ~1971!.
4T. C. Padmore, Phys. Rev. Lett.15, 828 ~1974!.
5K. S. Liu, M. H. Kalos, and G. V. Chester, Phys. Rev. B13, 1971

~1976!.
6X. Z. Ni, and L. W. Bruch, Phys. Rev. B33, 4584~1986!.
7P. A. Whitlock, G. V. Chester, and M. H. Kalos, Phys. Rev. B38,

2418 ~1988!.
9. 8B. Krishnamachari, Ph.D. thesis, Cornell University, 1997.
9S. Zhang, M. H. Kalos, G. V. Chester, S. A. Vitiello, and L

Reatto, Physica B194, 523~1994!; S. Zhang, Ph.D. thesis, Cor-
nell University, 1992.

10V. R. Pandharipande, S. C. Pieper, and R. B. Wiringa, Phys. R
B 34, 4571~1986!; S. A. Chin and E. Krotschek,ibid. 45, 852
~1992!; M. V. Rama Krishna and K. B. Whaley, J. Chem. Phys
93, 6738~1990!.

11J. S. Rowlinson and B. Widom,Molecular Theory of Capillarity
~Clarendon Press, Oxford, 1992!.

12J. H. Sikkenk, J. J. Hilhorst, and A. F. Bakker, Physica A131,



-

T.

.

son
n-
is

R.

s.

8858 PRB 59B. KRISHNAMACHARI AND G. V. CHESTER
587 ~1985!.
13M. D. Miller, and L. H. Nosanow, J. Low Temp. Phys.32, 145

~1978!.
14B. Brami, F. Joly, and C. Lhuillier, J. Low Temp. Phys.94, 63

~1994!.
15H. Godfrin and H.-J. Lauter, inProgress in Low Temperature

Physics, edited by W. P. Halperin~Elsevier Science, Amster
dam, 1995! Vol. XIV, p. 213.

16F. Y. Wu and E. Feenberg, Phys. Rev.128, 943 ~1962!.
17R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G.

McConville, J. Chem. Phys.70, 4330~1979!.
18S. A. Vitiello, K. J. Runge, and M. H. Kalos, Phys. Rev. Lett.60,

1970 ~1988!; T. MacFarland, S. A. Vitiello, L. Reatto, G. V
Chester, and M. H. Kalos, Phys. Rev. B50, 13 577~1994!.

19J. L. Valles and K. E. Schmidt, Phys. Rev. B38, 2879~1988!.
20We have recently completed a GFMC study of the mass-3 bo
system in two dimensions. We find that the GFMC binding e
ergy is 0.03 K per particle lower than our variational value. Th
small shift does not alter our conclusion that 2D3He does not
bind.

21S. C. Pieper~private communication!.
22S. M. Thompson, K. E. Gubbins, J. P. R. B. Walton, R. A.

Chantry, and J. S. Rowlinson, J. Chem. Phys.81, 530 ~1984!.
23S. A. Chin, J. Low Temp. Phys.93, 921~1993!; D. S. Lewart, V.

R. Pandharipande, and S. C. Pieper, Phys. Rev. B37, 4950
~1988!.

24A. Griffin and S. Stringari, Phys. Rev. Lett.76, 259 ~1996!.
25P. A. Whitlock, G. V. Chester, and B. Krishnamachari, Phy

Rev. B38, 2418~1998!.
26L. Reatto, and G. V. Chester, Phys. Rev.155, 88 ~1967!.


