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Competition between Coqblin-Schrieffer and local exchange interactions in Kondo systems
by the perturbative renormalization group
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A model which accounts for the competition between hybridization and local exchange~LE! interactions in
anomalous Ce systems is proposed. In this model a localized magnetic momentj f55/2 has an antiferromag-
netic Coqblin-Schrieffer~CS! coupling withl 53 conduction electrons partial waves, due to hybridization, and
a contact coupling withl 50 partial waves due to the LE interaction. The last term breaks the SU(N) symmetry
of the CS model. Using the perturbative renormalization group, we show that the SU(N) ground state of the CS
model remains the ground state even in the presence of a LE interaction stronger than the CS coupling. We
discuss the effect of the LE on the Kondo temperature. Moreover, when the LE coupling reaches a critical
value the system has a non-Fermi-liquid non-SU(N) ground state, and when it is stronger than the critical value
the system falls into an undercompensated Kondo state.@S0163-1829~99!00210-6#
n
e

o-

on
c
da
r
r.
e

ion

ra
ou
im

ul
n
o

th

ich
m-
m
etic
ften
LE.
t in

eAg
by

this

g-
sist
cal
del

en-
ge
Ce
of

is
s in
son
of

l CS
in

e-
-
-

I. INTRODUCTION

In normal rare earth systems, intra-atomic correlatio
tend to form a stable 4f n configuration. The local exchang
~LE! interaction produces a ferromagnetic~FM! coupling
(Js f.0) between the spin density ofl 50 conduction elec-
tron partial waves at the rare earth ion sites~0!, and the spin
of the rare earth ion in the Hund’s rule ground multipletSf .
This coupling results in an exchange interaction betweens~0!
and Jf , the Hund’s rule ground multiplet total angular m
mentum, with coupling constant (gJ21)Js f , wheregJ is the
Landéfactor. Since the local spin couplingJs f is ferromag-
netic, the coupling constant is antiferromagnetic~AFM! for
the first half of the rare earth series, and FM for the sec
half. In addition, the LE interaction produces an indire
magnetic coupling of the Ruderman-Kittel-Kasuya-Yosi
~RKKY ! type between the magnetic moment of the rare ea
ions, which is responsible for the onset of magnetic orde1

In diluted Ce and Yb systems, the hybridization induc
local spin fluctuations within the ground state configurat
of the impurity 4f n (4 f 1 for Ce and 4f 13 for Yb!, via virtual
mixing with the excited 4f n61 configurations, producing a
quenching of the localized magnetic moment at low tempe
ture. The simplest model which describes the anomal
phenomena related to hybridization and, at the same t
accounts for the orbital degrees of freedom of thef impurity,
is the degenerate Anderson model,2 which can be mapped
onto the CS model in the spin fluctuation limit.3,4 The CS
model, in which a localized magnetic moment momentJf
has an AFM contact interactionJhyb,0 with l 53 conduc-
tion electron partial waves, acts on the lowest Hund’s r
multiplet of the ground configuration. The CS Hamiltonia
gives results in good agreement with experimental data
dilute compounds, and is widely used to understand
Kondo related anomalies in Ce and Yb systems.5
PRB 590163-1829/99/59~13!/8828~7!/$15.00
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In dense Ce and Yb systems, the Kondo effect, wh
favors a nonmagnetic heavy Fermi-liquid ground state, co
petes with the indirect pair coupling, which originates fro
both LE and hybridization and tends to produce a magn
ground state. The presence of Kondo anomalies is o
taken as an evidence that hybridization dominates over
However, electronic structure calculations suggest tha
anomalous Ce compounds such as CeTe, CeSe, and C
the magnetic interaction is determined by LE rather than
the hybridization-induced pair coupling.6 The explanation of
this apparent paradox is one of the main purpose of
paper.

Recently we have shown,7 using a spin 1/2 two band
model including competing ferromagnetic and antiferroma
netic exchange interaction, that the Kondo effect may per
at low temperature even in the presence of a strong lo
exchange. However, those conclusions come from a mo
in which the degeneracy of thef shell is neglected. In this
paper we study a realistic model in which the orbital deg
eracy is included, and both hybridization and local exchan
are retained. The model in the form given here applies to
and Yb systems; detailed results will be given for the case
cerium.

The CS model is invariant under SU(N) transformations
in the angular momentum space. This symmetry, which
higher than spherical, has to be a result of approximation
the starting Hamiltonian, namely the degenerate Ander
model. SU(N) symmetry is broken by the presence, i.e.,
interactions which split the excited f-impurity
configurations.8,9 As shown by Hirst, the coupling betweenf
and conduction electrons is more general than the usua
coupling if we consider the realistic atomic level structure
the excited configurations.9 Studying a generalized@i.e., non-
SU(N)] CS model, we have shown that this kind of symm
try breaking scales to weak coupling,8 and therefore the pres
ence of multiplet splittings does not alter the low
8828 ©1999 The American Physical Society
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PRB 59 8829COMPETITION BETWEEN COQBLIN-SCHRIEFFER AND . . .
temperature physics of the model. However, the
interaction also induces a breaking of the SU(N) symmetry
of the CS model. Therefore, in this paper we also study
stability of the SU(N) symmetry with respect to the presen
of LE interaction.

This paper is organized as follows. In Sec. II we descr
the model Hamiltonian and the tensor operator appro
adopted. In Sec. III we describe the method used, nam
the perturbative renormalization group, and derive the s
ing equations. In Sec. IV we illustrate the results of the sc
ing procedure in some relevant cases. In Sec. V the impl
tions of the results are briefly discussed.

II. MODEL

The CS Hamiltonian3 may be written as

HCS5(
k

(
m52 j f

j f

ekn̂km2Jhyb(
kk8

(
m,m852 j f

j f

3Fck8m8
† ckmcf m

† cf m82
dm,m8

Nf
ck8m8

† ckmG . ~1!

Hereek is the energy ofl 53 conduction electrons with wav
vectork, Jhyb is the AFM coupling constant generated fro
hybridization through the Schrieffer-Wolff canonic
transformation,3,4 j f is the total angular momentum of th
impurity in the Hund’s rules ground multiplet (j f55/2 for
the 4f 1 configuration andj f57/2 for the 4f 13 configuration!
and Nf52 j f11 is the f ground multiplet degeneracy. Th
operatorckm annihilates a conduction electron in a spin-or
eigenstate made ofl 53 partial waves.

The LE Hamiltonian, projected onto the Hund’s rul
ground multiplet space, may be written as

HLE5(
n

(
s521/2

s51/2

enn̂ns2~gJ21!Js f s~0!•Jf , ~2!

where en is the energy ofl 50 conduction electrons with
wave vectorn. Js f.0 is the FM coupling constant, th
Landéfactor isgJ56/7 for Ce andgJ58/7 for Yb ands(0)
is the spin density ofl 50 electrons at the impurity site.

The two HamiltoniansHCS and HLE may be rewritten
using multipolar tensor operators forf and conduction elec
trons defined as9,8

Tq
n~ j f !5 (

m,m852 j f

j f

A2n11~21! j f2m8

3S j f n j f

2m8 q mD cf m8
† cf m , ~3!

tq
n~ j c!5(

kk8
(

m,m852 j c

j c

A2n11~21! j c2m8

3S j c n jc

2m8 q mD ck8m8
† ckm . ~4!

The symbols (2m8
j

q
n

m
j ) are the 3j symbols,10 j f ( j c) is the

f ~conduction! electron total angular momentum,Tq
n(tq

n) is
e

e
h

ly,
l-
l-
a-

t

the f ~conduction! electron tensor operator of ordern, and
componentq52n, . . . ,n. The rank of the tensors,n, as-
sumes all integer values fromn50 to Nm5min$Nf ,Nc%21,
whereNc52 j c11. The operatorsTq

n andtq
n are orthonormal,

since

Trc@ tq
n~ j c!~ tq8

n8!†~ j c!#5Trf@Tq
n~ j f !~Tq8

n8!†~ j f !#5dnn8dq,q8 .
~5!

The scalar product between two tensor operators is define
the following way:

Tn~ j f !•tn~ j c!5(
q

~21!qTq
n~ j f !t2q

n ~ j c!. ~6!

The generalized Hamiltonian considered in this pape
written as follows:

H5(
k

(
m52 j f

m5 j f

eknkm1 (
n50

2 j f

anTn•tn

1(
n

(
s521/2

s51/2

ennns1b1T1•p1 . ~7!

The first term in Hamiltonian~7! describes the band energ
of the l 53 partial waves. The second one describes the c
tact coupling between thef multiplet and the total magnetic
moment density of thel 53 partial waves at the impurity
site. Since the angular momentum indices of the localiz
state andl 53 conduction electron partial waves are t
same, the rank of both tensorTn( j f) and tn( j f) assumes all
integer values fromn50 to Nm5Nf21. We have renamed
for simplicity, Tn( j f)→Tn , tn( j f)→tn . The sum of the first
and second terms in Eq.~7! gives a ‘‘generalized CS’’
Hamiltonian, where the SU(N) symmetry can be broken
The third term in Eq.~7! describes the band energy ofl 50
partial waves. The last term describes the contact coup
betweenJf and the spin density ofl 50 partial waves at the
impurity site. Sincej c51/2 for this band, and thereforeNm
51, only the tensors of rank 1,T1( j f), and t1(1/2), are
present. We have renamed, for simplicity,t1(1/2)→p1 . The
sum of the last two terms in Eq.~7! gives a Kondo Hamil-
tonian, which describes the compensated Kondo problem
j f51/2, and the undercompensated problem ifj f.1/2.

The Hamiltonian~7! with generican andb1 is obviously
more general thanHCS1LE5HCS1HLE , since the CS part
does not have SU(N) symmetry. A particular modelHmodel
may be written in the form~7! using the orthogonality prop
erty of tensor operators

an5Trf Trc T0
nt0

n Hmodel, ~8!

b15TrfTrcT0
1 p0

1 Hmodel. ~9!

We analyze the case ofHmodel5HCS1LE . The CS model
HCS contributes only to the first two terms in Eq.~7!. We
find an52Jhyb, and thereforean.0 ~AFM!; both tensors
Tn andtn , with n50,1, . . . ,Nf21, act in a space of dimen
sionNf . The LE interactionHLE contributes only to the las
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two terms in Eq. ~7!. We find b152(gJ

21)Js fATrf Jz
2 Trc j z

2, with Trc j z
251/2, and therefore, for

Ce systems,b15A5/28Js f .0 ~AFM!; T1 acts in a space o
dimensionNf , while p1 acts in a space of dimensionNc
52. Therefore, in the case of Ce systems, the general
Hamiltonian ~7! has six independent parameters:an , n
51, . . . ,5, andb1 .

In Ref. 7 we considered a two band model in which
localized spin 1/2 has a FM exchange interaction with o
band ~which stands forl 50 partial waves! and an AFM
exchange coupling with the other one~which corresponds to
l 53 partial waves!. This model may be rewritten in the form
of the Hamiltonian~7! if we take j f51/2. For this spin 1/2
two band model, only two parameters are different fro
zero,a152Jhyb/2.0 ~AFM! andb152Js f/2,0 ~FM!.

III. SCALING EQUATIONS

We adopt the perturbative scaling method introduced
Anderson.11 This method is based on the idea that, as
band cutoff is reduced, an increasing number of states ca
eliminated from the conduction band, provided that the or
nal interaction between thef impurity and the conduction
electrons is transformed into a renormalized effective o
Following this procedure, we therefore reduce the band
off B ~we assume for simplicity that the band cutoff is t
same forl 53 andl 50 partial waves! to B2udBu, and find
the transformed HamiltonianH85H2dH, with dH
5(n50

Nm danTn•tn1db1T1•p1 . We have calculateddan and
db1 up to third order in the coupling constants, since it
known that, in the cases of the Kondo and CS models,
just at this order that both the proper low-temperature beh
ior and the correct expression for the Kondo temperature
recovered.5.

In Fig. 1 we show diagrammatically the scattering pr
cesses which contribute up to third order to the scaling eq

FIG. 1. ~a! Two-vertex diagrams which contribute to the scali
equations. The diagrams are explained in the text.~b! Three-vertex
diagrams which contribute to the scaling equations. The diagr
are explained in the text.
ed

e
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e
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tions. Diagrams should be read in the following way: circl
~squares! are CS~LE! interaction vertices, lines running from
left to right ~right to left! are propagators of electron~hole!
states. Lines above the horizontal line connecting verti
correspond to electrons~holes! with energy e, EF,e,B
2udBu (2B1udBu,e,EF), whereEF is the Fermi level.
Lines below are electrons or holes at the band edges. Solk,
r , and q lines are l 53 electron~hole! states with energy
ek , e r , andeq , respectively. Dashedn, r, andm lines are
l 50 electron~hole! states with energyen , er , andem . The
propagators of the intermediate states~q, r , m, andr lines!
are integrated over the intermediate states moments.

The connected two-vertex diagrams~b1! and ~b2! in Fig.
1~a! contribute to the scaling equation at the second ord
while the connected three-vertex diagrams~c1! and ~c2! in
Fig.1~b! contribute at the third order. Disconnected tw
vertex diagrams~a! in Fig. 1~a!, give rise to a wave function
renormalization factor, and therefore contribute to the sc
ing equations only at the third order.5

We find a system ofNf coupled scaling equation~we set
for simplicity the band density of statesr51 for both l 53
and l 50 partial waves!

dan5F (
n8n9
Mn8n9

n an8an91an(
n8
Nn8

n an8
2

1anb1
2N 1

nGd ln B,

~10!

db15F2
b1

2

ATrf Jz
2 Trcj z

2
1

b1
3

Trf Jz
2

1b1(
n8
Nn8

1 an8
2 Gd ln B,

~11!

where

Mn8n9
n

5~2n811!~2n911!H n n8 n9

j f j f j f
J 2

3@~21!n1n81n921#~21!2 j f12 j c, ~12!

Nn8
n

5~2n811!F H n8 j f j f

n j f j f
J ~21!n1n8

1
~21!Nf

Nf
G (21)Nf , ~13!

and

N 1
n5

~2n11!~n11!n

6 Tr f Jz
2

5
2n11

3
N n

1 . ~14!

The quantities$ j 4

j 1
j 5

j 2
j 6

j 3% are the 6j symbols.10

If j f51/2, the system~10!, ~11! reduces to the two scaling
equations already discussed in Ref. 7 for the spin 1/2 tw
band model. In the rest of the paper we will focus the att
tion on the case of 4f 1 ground state configuration, even if th
Hamiltonian~7! and the scaling equations above have a m
general validity. Therefore, the Hamiltonian has six indep
dent parameters, and the full space of the scaling trajecto
has dimension 6.

s
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TABLE I. The fixed points found in this work. HereC5Trf Jz
2/ Trcj z

2 . The terminology generalizes tha
used in Ref. 8, where~A1! was called~a!, ~B1! ~b!, ~C1! ~c!, ~D1! ~d!, ~E1! ~e!, and~F1! ~f!. Going to all
orders in the scaling equations, the strong coupling fixed points~A2! and ~C1! will be moved to (a50,b1

→`) and (a→`,b150), respectively.

Fixed point a1 a2 a3 a4 a5 b1

~A1! 0 0 0 0 0 0
~A2! 0 0 0 0 0 AC
~B1! 1 0 0 0 0 0
~B2! C/(C11) 0 0 0 0 AC/(C11)
~C1! 1 1 1 1 1 0
~D1! 1 0 1 0 1 0
~E1! 1 21 1 21 1 0
~F1! 1 0 0.3883 0 22.0087 0
~G1! 0.69 0.54 0.38 0.25 0.16 1.74
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IV. RESULTS

The general system of scaling equations~10!, ~11! is quite
complicated when the full six-dimensional space of para
eters is considered. Therefore we have focused our atten
on four physically relevant sets of starting points. The va
ous fixed points found in this work are summarized in Ta
I, where the terminology generalizes that used in Ref. 8.
note that the fixed point~A1!, a15a25a35a45a55b1
50, is the trivial, unstable, weak coupling fixed point. Th
fixed point can be reached from all subspaces of star
points we will consider below.

~i! Generalized Coqblin-Schrieffer model. The first set of
starting points@set~i!# considered in this work is defined b
the condition (b150, anÞ0). This set describes models
which the LE interaction is neglected~hybridization only
problem!, and includes, e.g., the SU(N) symmetric CS
model itself. In this subspace, the Hamiltonian~7! reduces to
the generalized CS Hamiltonian.8 The space of the trajecto
ries we are dealing with has dimension 5.

All the scaling trajectories starting from the subspa
(b150, anÞ0) remain in this subspace during the scali
flow. Depending on the starting point, a trajectory may e
in one of the following fixed points.~A1!, which is the un-
stable weak coupling fixed point.~B1! b150, a151,
a250, a350, a450, a550, which is the fixed point of
the compensated dipolar Kondo effect.~C1! a151, a2
51, a351, a451, a551, b150. This is the strong coupling
fixed point of the CS model.~D1! b150, a25a450, a1
5a35a551, ~E1! b150, a25a4521, a15a35a551,
~F1! b150, a25a450, a151, a5522.0087,a350.3883.
The physically most relevant of those fixed points is~C1!,
which is the strong coupling fixed point of the SU(N) sym-
metric CS model. We have already studied in detail this s
space and the stability of its fixed points in Ref. 8.

In Ref. 8 we have shown that all the trajectories start
from the AFM quadrant (an.0) always lead to the fixed
point ~C1!. Numerically, we have seen that the trajector
starting from the AFM quadrant lead to the fixed point~C1!
even in the presence of a small LE term~i.e., b15Db1 , and
uDb1u!1, uDb1u!uanu). Therefore, the main result obtaine
in Ref. 8 for the generalized CS model does not cha
qualitatively due to the presence of a small LE term:
SU(N) symmetry breaking interactions described in the g
-
on
-
e
e

g

e
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eralized CS model continue to scale to weak coupling. A
tually, a small LE deviation from a point in subspace~i!, e.g.,
the pointan5ãn, b150, scales to weak coupling, as we ca
see if we setb15Db1 with uDb1u!1, an5ãn1Dan with
uDanu!1 ~here uDanu;uDb1u), and derive the linearized
scaling equation forb1 , namely ,

dDb1;Db1(
n
N n

1ã n
2d ln B. ~15!

SinceN n
1.0,Db1 decreases in absolute value when the c

off is decreased.
These conclusions are valid if the LE term is small, i.e.

uDb1u!1, uDb1u!uanu. However, as we will see below@see
cases~iii ! and~iv!# a finite LE term may change strongly th
ground state properties of the model.

~ii ! Local exchange only. The second set considered@set
~ii !# is defined by the conditionb1Þ0, a15a25a35a4
5a550. This condition reduces the six-dimensional space
a line, the linean50;n, along which we found two fixed
points ~A1! and ~A2!. We have already discussed the we
coupling fixed point~A1!. ~A2! is the stable strong coupling
fixed point a150, a250, a350, a450, a550, b15AC,
where C5Trf Jz

2/Trcj z
2 . For example, in the casej f

55/2,C535, and~A2! is the strong coupling fixed point o
the undercompensated Kondo model.12 In the casej f51/2,
we find C51 and~A2! is the strong coupling fixed point o
the compensated Kondo problem. The trajectories star
from an50, b1.0 end in~C1!, while the trajectories starting
from an50, b1,0 end in~A2!: thus when the dipolar cou
pling is antiferromagnetic (b1.0) and j f.1/2, the under-
compensated Kondo effect takes place.

~iii ! Coqblin-Schrieffer1 local exchange. The third set
we consider@set~iii !# is the SU(N) symmetric set, defined by
the conditionsb1Þ0, an5aÞ0: this condition reduces the
six-dimensional space of the scaling trajectories to a pla
the plane (an5a,b1). The model HamiltonianHCS1LE is a
starting point of type~iii !, as we have seen above. In th
plane defined by the set~iii !, all the three fixed points~A1!,
~A2!, and~C1! are present. It is interesting to study the s
bility of ~A2! and ~C1! in the whole six-dimensional space
and the competition between the fixed points~C1! and ~A2!
when the starting parameters are varied.
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The fixed point ~A2! is stable in the whole six-
dimensional space, as we have seen numerically and by
earizing the scaling equations around~A2!. If we set an

5Dan , where uDanu!1, andb15Db11AC, where uDb1u
!1, the linearized scaling equations are

Dan;CDanN 1
nd ln B, ~16!

Db1;
Db1

Trc j z
2
d ln B. ~17!

SinceN 1
n.0 and Trc j z

2.0, the fixed point is stable alon
each direction.

The fixed point ~C1! is also stable in the whole six
dimensional space. If we setan5Dan1dn,1 , where uDanu
!1, andb15Db1 , where uDb1u!1, the linearized scaling
equations are

dDan;NfDand ln B, ~18!

dDb1;NfDb1d ln B, ~19!

and therefore a small deviation from the fixed point d
creases in absolute value as the cutoff is decreased.

The scaling equations are valid only foruau!1,b1!1: for
the full solution of the model~i.e., if we go beyond pertur-
bative regime! the strong coupling fixed points~A2! and
~C1! will be moved, respectively toa50, b1→` and a
→`, b150, as for the Kondo and the CS models.13

Only trajectories starting from the axes~i.e., from b1
50, aÞ0 or from b1Þ0, a50) remain in the plane during
the scaling flow: SU(N) symmetry is generally broken dur
ing the scaling. However, most of the trajectories start
from set~iv! end in the starting plane. In Fig. 2 the projectio
of those trajectories onto the SU(N) symmetric plane is
shown. We have found that the trajectories starting fromb1
.0, a.0, end in~A2! when b1.ba and in ~C1! when b1
,ba, with b;10. The trajectories which fall on the lin
b1;ba ~the dashed line in Fig. 2! leave the plane and fal
into a NFL fixed point ~G1! obtained numerically asb1
51.74,a150.69,a250.54,a350.38,a450.25,a550.16.
The trajectories starting from FM valuesb1.0, a,0 end in

FIG. 2. Sketch of the scaling trajectories for the case~iii ! an

5a,b1 , j f55/2.
in-

-

g

~A2!, and starting from valuesb1,0, a.0 end in~C1!. The
trajectories starting from valuesb1,0, a,0 end in the weak
coupling fixed point~A1!.

The two physical interactions in HamiltonianHCS1LE are
both AFM, corresponding to starting points of the typeb1
.0, a.0. We have found two physical regimes for th
Hamiltonian: in the first one the system falls into an und
compensated Kondo ground state as the temperature
proaches zero (b1.ba) and in the second one the syste
falls into a CS model ground state (b1,ba). Sinceb;10,
this means that, for the case of Ce compounds (j f55/2), the
borderline between the two regimes is reached wh
Js f /uJhybu;25. Therefore, the compensated CS state is
ground state even ifuJhybu is 25 times smaller thanJs f .

For the usual CS model~i.e., b150, an5a.0), the char-
acteristic temperatureT0 may be derived from the third orde
scaling equations, by defining it as the value reached by
band cutoffB when the coupling constant becomes equa
a given value, e.g., one half the value at the fixed point
can be shown that

T0
CS5B~Nf a!1/Nf exp~21/Nf a!, ~20!

in agreement with the exact expression.5 The same is true for
the Kondo model~i.e., b15b.0, an50), with

T0
K5BS b

ATrf Jz
2 Trc j z

2D Trcj z
2

expS 2
ATrf Jz

2 Trc j z
2

b
D .

~21!

FIG. 3. Variation of parameters upon scaling, as a function
the band cutoff forj f55/2. ~a! The starting point are chosen in th
undercompensated Kondo regime. Solid line: starting pointa
50, b150.24. Dash-dotted lines: starting pointa50.02,b150.24.
The parametersan , hardly distinguishable from the horizontal axi
scale to weak coupling. The parameterb1 scales to strong coupling
~b! The starting points are chosen in the CS regime. From lef
right: starting pointa50.02,b150.22 ~solid lines!, starting point
a50.02,b150.20 ~dot-dashed lines!, starting point a50.02,b1

50.18 ~dotted lines!. The parametersan scales to strong coupling
while b1 scales to weak coupling.
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Since Trcj z
251/2, the expression in Eq.~21! reduces to the

usual formula T0
K5BAuJuexp(1/J), where J5

2A2b/ATrf Jz
2. For the modelHLE , J5(gJ21)Jsf , andJ

,0 ~AFM! for Ce systems, the case considered in this wo
Therefore, in the CS regime, we define the characteri
temperature for our model in the same way, as the va
reached byB whenan;0.5. In the Kondo regime,TK is the
value reached byB whenb1;3.

In Fig. 3~a! we show the variation of the parameters up
scaling as a function of the band cutoff for starting points
the undercompensated Kondo regime. In particular, we s
the casesb150.24,a50 ~solid line! andb150.24,a50.02
~dot-dashed line!. The Kondo temperature of the model is th
value ofB for which b1(B)53 @crossing between the hor
zontal solid line andb1(B)]. We see that, whena increases,
the Kondo temperature of the model is reduced.

In Fig. 3~b! we show the variation of the parameters up
scaling as a function of the band cutoff for starting points
the CS regime. We show~from left to right! the casesa
50.02,b150.22 ~solid line!, a50.02,b150.20 ~dot-dashed
line!, anda50.02,b150.18 ~dotted line!. The Kondo tem-
perature of the model is the value ofB for which a(B)
50.5 @crossing between the horizontal solid line anda(B)].
We see that, asb1 increases and therefore the ratiob1 /a
approaches the critical value, the characteristic tempera
of the generalized CS model@Fig. 3~b!# approaches the
Kondo temperature of the undercompensated Kondo m
@Fig. 3~a!#: the transition takes place when the two char
teristic temperatures are equal. Since, apart from the pre
tors, T0

CS;B exp(21/6a) if b150, and T0
K

;B exp(2A35/2b1) if a50, we expect the transition to b
aroundb1;18a. The critical ratiob1 /a is overestimated,
because we have neglected the prefactors and the fact
both T0

CS and T0
K change when bothan and b are different

from zero@see Figs. 3~a! and 3~b!#.
~iv! Dipolar coupling 1 local exchange. The last set of

starting points we consider@set~iv!# is the one defined by the
condition a1Þ0, a25a35a45a550, b1Þ0. Again, we
have reduced the six-dimensional trajectories space t
plane. This set is interesting because it describes, e.g.,
polar Kondo coupling plus a local exchange interactio
which is the generalization of the two band~or two-channel!
model studied in Ref. 7 to the case in which the localiz
moment isj f>1/2. In the plane (a1 , b1) there are four fixed
points,~A1!, which is the unstable weak coupling fixed poi
discussed above,~A2!, which is the fixed point of the under
compensated Kondo effect, stable in the whole space, a
have seen before,~B1! which is the fixed point of the com
pensated dipolar Kondo effect. It is stable in the plane
not in the whole space, as we have seen numerically an
linearizing the scaling equations around it.~B2! b15AC/(1
1C), a15C/(11C), a250, a350, a450, a550, which is
stable only along the linea15ACb1 . This fixed point is the
generalization of the non-Fermi-liquid~NFL! fixed point
found by Pang and Cox14 for the two-channel Kondo mode
The two channel Kondo model is recovered whenj f51/2
and, in that case,C51. For the full solution of the mode
~i.e., if we go beyond the perturbative regime! the strong
coupling fixed points~A2! and ~B2! will be moved to a
→`, b150 anda150, b1→`, respectively.13
.
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All the trajectories of type~iv! remain of type~iv! during
the scaling. Therefore, the scaling equations reduce to

da15F2
a1

2

Trf Jz
2

1
a1

31a1b1
2

Trf Jz
2 Gd ln B, ~22!

db15F2
b1

2

ATrf Jz
2 Trc j z

2
1

b1
31b1a1

2

Trf Jz
2 Gd ln B. ~23!

For j f51/2, the scaling equations coincide with those fou
in Ref. 7.

In Fig. 4 we show the trajectories projected onto the pla
(a1 , b1), which are quite similar to those of case~iii !, ex-
cept for the fact that the NFL fixed point now lies in th
plane. The trajectories starting from the FM quadranta1
,0, b1,0 end in ~A1!. The trajectories starting froma1
,0, b1.0 end in ~A2!. The trajectories starting froma1
.0, b1,0 end in ~B1!. The trajectories starting from th
AFM quadrant may end in~A2!, ~B1!, ~B2!. They end in
~A2! if a1,ACb1 , in ~B1! if a1.ACb1 , and in~B2! if a1

5ACb1 . We have therefore three regimes for the AF
model: the compensated dipolar Kondo regime fora1

.ACb1 , the NFL regime fora15ACb1 , and the undercom-
pensated Kondo state fora1,ACb1 . In the compensated
Kondo regime, the characteristic temperature of the mode
the value of B for which a1(B)50.5. When b150, T0

c

5BA(2a1 /C)exp(2C/2a1). As b1 increases, the characte
istic temperature decreases. In the undercompensated K
regime, the characteristic temperature of the model is
value of B for which b1(B)5AC/2. When b150, T0

u

5BA(2b1 /AC)exp(2AC/2b1). As a1 increases, the charac
teristic temperature decreases. When the ratioa1 /b1 ap-
proaches the critical ratio (a1 /b15AC), the characteristic
scale of the compensated model approaches that of the
dercompensated model. The crossover between the two
gimes is given by the conditiona1 /b15AC, when the two
characteristic temperatures are equal.

For j f51/2 the fixed point~A2! describes the compen
sated Kondo ground state; in this case the scaling trajecto
shown in Fig. 4 coincide with those calculated in Ref. 7.
particular, when the two interactions have opposite signs,

FIG. 4. Sketch of the scaling trajectories for the case~iv! a1

Þ0, b1Þ0, a25a35a45a550, and j f55/2.
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ground state is always determined by the AFM interact
and is the compensated Kondo state.

V. DISCUSSION AND CONCLUSIONS

We have proposed and studied a model to describe
competition between hybridization and LE in anomalous
systems, accounting for the effects of the orbital degree
freedom of thef electrons. In this model, a localizedf impu-
rity has a generalized CS coupling withl 53 conduction
electron partial waves and a LE interaction withl 50 partial
waves. The LE interaction breaks the SU(N) symmetry in
angular momentum space of the CS model. The pre
model is also the starting point for studying the role
crystal-field effects on the competition between hybridiz
tion and local exchange.

We have shown that the SU(N) symmetry breaking scale
to weak coupling when the ratioJs f /uJhybu is lower than a
critical value of the order of 25. In this regime the syste
falls, at low temperature, into the ground state of the SU(N)
CS model. However, due to the presence of LE, the cha
teristic temperature of the model is lower than the Kon
temperature of the CS model alone. Moreover, wh
Js f /uJhybu;25, the system falls into a non-Fermi-liquid no
SU(N) ground state. Finally, whenJs f /uJhybu.25, the sys-
tem has an undercompensated Kondo state.

In Ref. 8 we have already shown that the SU(N) symme-
try breaking interactions described by a generalized
model~e.g., virtual mixing with the realistic atomic levels i
the excited configurations! scale to weak coupling. Here, w
have shown that SU(N) symmetry is stable even in the pre
ence of a LE coupling, provided thatJs f,25uJhybu. Those
results justify the success of the CS model in explaining
low temperature physics of anomalous Ce and Yb syste
K.
n

he
e
of

nt
f
-

c-
o
n

S

e
s.

In a dense system, the Kondo effect competes with
pair coupling between localized momentsI RKKY which is
generated by both hybridization and local exchange. A st
of this competition at mean-field level shows that the syst
is magnetic when the couplingI RKKY is larger thanTK .15,16

WhenJs f /uJhybu!1, the system will be nonmagnetic with
heavy Fermi-liquid ground state if the pair coupling is low
than the Kondo temperature. Let us imagine now that the
coupling increases and becomes stronger than hybridiza
(Js f /uJhybu.1): the system can still have a Kondo-lik
ground state if both conditionsJs f /uJhybu,25 and I RKKY
,TK are satisfied. WhenJs f /uJhybu525 orJs f /uJhybu.25 the
system will have a NFL or an undercompensated Kon
ground state, respectively, if the Kondo temperature is s
larger than the pair coupling. However, in the presence o
very strong LE coupling, the pair coupling will dominat
over the Kondo effect, and therefore the system will beco
magnetic and the effects related to hybridization will be su
pressed. Since the CS ground state is realized even for
tively large ratiosJs f /uJhybu, it is fully possible that for large
values ofJs f /uJhybu ~but ,25) the magnetic interaction i
dominated by the local exchange contribution: thus
present results provide an explanation for the dominanc
LE in the magnetic interaction, even in systems such as C
CeSe, CeAg, where a Kondo phenomenology with reduc
of the ordered moments is established.
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