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A model which accounts for the competition between hybridization and local excliaByéteractions in
anomalous Ce systems is proposed. In this model a localized magnetic mgmé&i2 has an antiferromag-
netic Cogblin-SchrieffefCS) coupling withl =3 conduction electrons partial waves, due to hybridization, and
a contact coupling with=0 partial waves due to the LE interaction. The last term breaks th&lpsi{mmetry
of the CS model. Using the perturbative renormalization group, we show that th¢) $idund state of the CS
model remains the ground state even in the presence of a LE interaction stronger than the CS coupling. We
discuss the effect of the LE on the Kondo temperature. Moreover, when the LE coupling reaches a critical
value the system has a non-Fermi-liquid non-8Y¢round state, and when it is stronger than the critical value
the system falls into an undercompensated Kondo t&63-182609)00210-9

[. INTRODUCTION In dense Ce and Yb systems, the Kondo effect, which
favors a nonmagnetic heavy Fermi-liquid ground state, com-

In normal rare earth systems, intra-atomic correlationgpetes with the indirect pair coupling, which originates from
tend to form a stable #' configuration. The local exchange both LE and hybridization and tends to produce a magnetic
(LE) interaction produces a ferromagnetiEM) coupling ground state. The presence of Kondo anomalies is often
(Js>0) between the spin density b0 conduction elec- aken as an evidence that hybridization dominates over LE.

tron partial waves at the rare earth ion @), and the spin However, electronic structure calculations suggest that in
of the rare earth ion in the Hund's rule ground multipget ~ @nomalous Ce compounds such as CeTe, CeSe, and CeAg

: : : . : the magnetic interaction is determined by LE rather than by
This coupling results in an exchange interaction betwse@n e : : ;
and J;, the Hund'’s rule ground multiplet total angular mo- th? hybr|d|zat|on-|nduceq pair couphr‘?gThe' explanation of .
. . . this apparent paradox is one of the main purpose of this
mentum, with coupling constang{— 1)Js¢, whereg; is the

Landefactor. Since the local spin couplinly; is ferromag- paper.

ic th i . i AEM) f Recently we have shownusing a spin 1/2 two band
netic, the coupling constant is antiferromagnétié=M) for model including competing ferromagnetic and antiferromag-

the first half of the rare earth series, and FM for the secongletic exchange interaction, that the Kondo effect may persist
half. In addition, the LE interaction prc_)duces an mdwgctat low temperature even in the presence of a strong local
magnetic coupling of the Ruderman-Kittel-Kasuya-Yosidagychange. However, those conclusions come from a model
(RKKY) type between the magnetic moment of the rare earthy, which the degeneracy of thieshell is neglected. In this
ions, which is responsible for the onset of magnetic otder. paper we study a realistic model in which the orbital degen-
In diluted Ce and Yb systems, the hybridization induceseracy is included, and both hybridization and local exchange
local spin fluctuations within the ground state configurationare retained. The model in the form given here applies to Ce
of the impurity 4" (4f* for Ce and 43 for Yb), via virtual ~ and Yb systems; detailed results will be given for the case of
mixing with the excited 4! configurations, producing a cerium.
guenching of the localized magnetic moment at low tempera- The CS model is invariant under SN transformations
ture. The simplest model which describes the anomalous the angular momentum space. This symmetry, which is
phenomena related to hybridization and, at the same timéyigher than spherical, has to be a result of approximations in
accounts for the orbital degrees of freedom offtirapurity,  the starting Hamiltonian, namely the degenerate Anderson
is the degenerate Anderson mofethich can be mapped model. SUN) symmetry is broken by the presence, i.e., of
onto the CS model in the spin fluctuation lirdit. The CS interactions  which split the excited f-impurity
model, in which a localized magnetic moment momént configuration$:® As shown by Hirst, the coupling betweén
has an AFM contact interactiody,,<O with =3 conduc- and conduction electrons is more general than the usual CS
tion electron partial waves, acts on the lowest Hund’s rulecoupling if we consider the realistic atomic level structure in
multiplet of the ground configuration. The CS Hamiltonian the excited configuratiorsStudying a generalizeld.e., non-
gives results in good agreement with experimental data o08U(N)] CS model, we have shown that this kind of symme-
dilute compounds, and is widely used to understand théry breaking scales to weak couplifignd therefore the pres-
Kondo related anomalies in Ce and Yb systéms. ence of multiplet splittings does not alter the low-
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temperature physics of the model. However, the LEthe f (conduction electron tensor operator of ordar and
interaction also induces a breaking of the 8y(symmetry  componentq=—n, ... ,n. The rank of the tensors), as-
of the CS model. Therefore, in this paper we also study theumes all integer values from=0 to N,,=mir{N;,N}—1,
stability of the SUN) symmetry with respect to the presence whereN.=2j.+ 1. The operator&'g andtg are orthonormal,
of LE interaction. since

This paper is organized as follows. In Sec. Il we describe
the model Hamiltonian and the tensor operator approach IPTEROI LA SRR ne: n'\tos oy
adopted. In Sec. Il we describe the method used, namely,TrC[tq(]C)(tq’) (o) I=TrlTa(i1)(Ty) (Jf)]_énn'ﬁq*q'('s)
the perturbative renormalization group, and derive the scal-
ing equations. In Sec. IV we illustrate the results of the scalThe scalar product between two tensor operators is defined in
ing procedure in some relevant cases. In Sec. V the implicahe following way:
tions of the results are briefly discussed.

II. MODEL T“(jf>~t“<jc>=§ (= D)ITHG Ot (o) (6)

The CS Hamiltoniahmay be written as
, The generalized Hamiltonian considered in this paper is
f written as follows:

it
Hes= > E Eknkm_Jhybz >

k m=—j; KK m,m’:—jf =i 2,
T t Sm.m’ T H= ; mZ—' €Nkmt+ nZO anTh ty
X Ck/m’ckmcfmcfm'_N_Ck/m/ckm . (1) =—js =
f o=1/2
Hereey is the energy of =3 conduction electrons with wave +> > €n,,+biTip;. @
vectork, Jn;, is the AFM coupling constant generated from v o=-12

hybridization through the Schrieffer-Wolff canonical
transformatior’* j; is the total angular momentum of the
impurity in the Hund’s rules ground multiplef (=5/2 for
the 4f! configuration and ;= 7/2 for the 42 configuration
andN¢=2j;+1 is thef ground multiplet degeneracy. The
operatorc,, annihilates a conduction electron in a spin-orbit
eigenstate made ¢f=3 partial waves.

The LE Hamiltonian, projected onto the Hund's rules
ground multiplet space, may be written as

The first term in Hamiltoniar{7) describes the band energy
of thel =3 partial waves. The second one describes the con-
tact coupling between the multiplet and the total magnetic
moment density of thé=3 partial waves at the impurity
site. Since the angular momentum indices of the localized
state andl=3 conduction electron partial waves are the
same, the rank of both tensdy,(j;) andt,(j{) assumes all
integer values froom=0 to N,,=N;—1. We have renamed,
for simplicity, T,(j;1)—Tn, ta(js)—t,. The sum of the first

o=1/2 and second terms in Ed7) gives a ‘“generalized CS”
HLEZZ 2 evﬁvg_(gj_l)Jsfs(o).Jf, 2) Hamiltonian, where the SW) symmetry can be broken.
v oo=-12 The third term in Eq(7) describes the band energylof0

where e, is the energy of =0 conduction electrons with partial waves. The Ia;t term.describes the contact coupling

wave vectorv. Jg>0 is the FM coupling constant, the _betwe_en]f_ and _the spin density _df=0 partial waves at the

Landefactor isg,=6/7 for Ce andy,=8/7 for Yb ands(0) impurity site. Sincej.=1/2 for this bgnd, and therefoie,,

is the spin density of=0 electrons at the impurity site. =1, only the tensors of rank I.(js), andt,(1/2), are
The two HamiltoniansHcs and H, e may be rewritten present. We have renamed, for simplicity(1/2)—p,. The

using multipolar tensor operators fband conduction elec- S4™M of the last two terms in Eq7) gives a Kondo Hamil- .
trons defined 2 tonian, which describes the compensated Kondo problem if

js=1/2, and the undercompensated probleryif 1/2.
Il The Hamiltonian(7) with generica,, andb, is obviously
Tg(jf)= 2 _ Vv2n+ 1(—1)J'f—m’ more general thamdcs. g =HcstH g, _since the CS part
mm’=—j; does not have SUW) symmetry. A particular modeH o el
may be written in the forn¢7) using the orthogonality prop-
erty of tensor operators

It n o Jjs
| g m) Clom G- ()
]. an=Tr¢ Trg Tgtg H models (8
Njo=> > V2n+1(—1)ic™
d Je kk" mm’'=—j. blzTrfTrcTé p(l) Hmodel- (9)
v je N e + @ We analyze the case &f,,,ge=Hcs i g- The CS model
-m g m Ckrm Ckm- Hcs contributes only to the first two terms in EGl). We

. _ S find a,=—Jpyp, and thereforea,>0 (AFM); both tensors
The symbols (', § 1) are the 3 symbols}®j¢ (j) isthe T, andt,, withn=0,1, ... Ny—1, act in a space of dimen-
f (conduction electron total angular momenturfi,"(t,") is  sionN;. The LE interactiorH, g contributes only to the last
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tions. Diagrams should be read in the following way: circles
k K’ v v (a) (squarepsare CS(LE) interaction vertices, lines running from
r P left to right (right to left) are propagators of electrghole)
@ _€q3— ’“‘I'_ states. Lines above the horizontal line connecting vertices
kK W v correspond to electronéholeg with energy e, EF§e<B
®1) S —|6B| (—B+|8B|<e<Eg), whereEg is the Fermi level.
i i Lines below are electrons or holes at the band edges. Bplid
K K Y r, andq lines arel=3 electron(hole) states with energy
el €, €, ande,, respectively. Dashed, p, andu lines are
(62) qX _‘_u‘_ =0 electron?hole) states with energy, , €,, ande, . The
propagators of the intermediate statgsr, u, andp lines
are integrated over the intermediate states moments.
X . v v (b) The connected two-vertex diagrartisl) and (b2) in Fig.
D) r \_V\_R:,f 1(a_) contribute to the scaling equation at the second.order,
a '~--h'---—. while the connected three-vertex diagrafn$) and (c2) in
Fig.1(b) contribute at the third order. Disconnected two-
koo kr Wor Yo vertex diagramga) in Fig. 1(a), give rise to a wave function
(cZ)M —@ renormalization factor, and therefore contribute to the scal-
N q ing equations only at the third ord@r.

We find a system oN; coupled scaling equatiofwe set

FIG. 1. (a) Two-vertex diagrams which contribute to the scaling for simplicity the band density of statgs=1 for bothl=3
equations. The diagrams are explained in the fjtThree-vertex  and|=0 partial waves

diagrams which contribute to the scaling equations. The diagrams
are explained in the text.

da,=

n'n” n’

> M), ayapta,>, /\/nqaﬁntanbfj\/?}é In B,
two terms in Eg. (7). We find b;=—(g;
—1)Jg\/Trs I2Trg j2, with Tr, j2=1/2, and therefore, for (10
Ce systemsh; = /5/28]; >0 (AFM); T, acts in a space of

dimensionN;, while p; acts in a space of dimensidd, bi b}

—| — 1.2
=2. Therefore, in the case of Ce systems, the generalizedﬁbl_ \/Trf ZTr j2+Trf J2+b1§4 Nn,an,]é In B,
Hamiltonian (7) has six independent parameters;, n 2oz z (11)
=1,...,5 and;.

In Ref. 7 we considered a two band model in which awhere
localized spin 1/2 has a FM exchange interaction with one

band (which stands forl=0 partial waves and an AFM n n n"2
exchange coupling with the other ofghich corresponds to Mﬂ,n,,=(2n’ +1)(2n"+ 1)[ L . ]

| =3 partial waves This model may be rewritten in the form Ie Je e

of the Hamiltonian(7) if we take j;=1/2. For this spin 1/2 X[(_l)n+n’+n”_l](_1)2jf+2jC, (12)

two band model, only two parameters are different from
zero,a; = —Jp/2>0 (AFM) andb; = —J/2<0 (FM).

Code ,
NB=(2n'+1) ! .f}(—l)”“‘
I1l. SCALING EQUATIONS Je Js
We adopt the perturbative scaling method introduced by (— )N N
Andersont! This method is based on the idea that, as the * N; (=1)™, (13
band cutoff is reduced, an increasing number of states can be
eliminated from the conduction band, provided that the origi-and
nal interaction between theimpurity and the conduction
electrons is transformed into a renormalized effective one.
+ + +
Following this procedure, we therefore reduce the band cut- N2:(2n D(n 21)n :2n 1/\/}1_ (14
off B (we assume for simplicity that the band cutoff is the 6 TrsJ; 3

same forl =3 andl =0 partial wavesto B—|6B|, and find o 0
the transformed HamiltonianH’=H—6H, with 6H  The quantmes{}i ﬁ jz} are the § symbols!

= E?Eoc%lnTn-thr 6b,T,-p;. We have calculateda,, and If j=1/2, the systen10), (11) reduces to the two scaling
Sb, up to third order in the coupling constants, since it isequations already discussed in Ref. 7 for the spin 1/2 two-
known that, in the cases of the Kondo and CS models, it iband model. In the rest of the paper we will focus the atten-
just at this order that both the proper low-temperature behawion on the case of # ground state configuration, even if the
ior and the correct expression for the Kondo temperature arlamiltonian(7) and the scaling equations above have a more
recovered. general validity. Therefore, the Hamiltonian has six indepen-

In Fig. 1 we show diagrammatically the scattering pro-dent parameters, and the full space of the scaling trajectories
cesses which contribute up to third order to the scaling equéias dimension 6.
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TABLE I. The fixed points found in this work. Het@=Tr; J2/ Tr.j2. The terminology generalizes that
used in Ref. 8, wheréAl) was called(a), (B1) (b), (C1) (c), (D1) (d), (E2) (e), and(F1) (f). Going to all
orders in the scaling equations, the strong coupling fixed pd&2$ and (C1) will be moved to @=0)b,
—o) and @—«,b;=0), respectively.

Fixed point a; a, asz a, as b,
(A1) 0 0 0 0 0 0
(A2) 0 0 0 0 0 JC
(B1) 1 0 0 0 0 0
(B2) C/(C+1) 0 0 0 0 JCI(C+1)
(Cy 1 1 1 1 1 0
(D1) 1 0 1 0 1 0
(ED) 1 -1 1 -1 1 0
(F1) 1 0 0.3883 0 —2.0087 0
(G) 0.69 0.54 0.38 0.25 0.16 1.74
IV. RESULTS eralized CS model continue to scale to weak coupling. Ac-

. . . . tually, a small LE deviation from a point in subspdcg e.g.,
The general system of scaling equatiob®), (11) is quite pointa,=3,, b;=0, scales to weak coupling, as we can

complicated when the full six-dimensional space of param- : ) ~ )
e if we setb;=Ab,; with |Ab;|<1, a,=a,+Aa, with

eters is considered. Therefore we have focused our attentixf? 1 ° ;
on four physically relevant sets of starting points. The vari- Aan <1 (here |Aay|~[Ab,[), and derive the linearized

ous fixed points found in this work are summarized in TableScaling equation fob, , namely ,

I, where the terminology generalizes that used in Ref. 8. We

note.that th'e' fixed poin{Al), a;=a,=az=a,=as= b, . 5Ab1~Ab12 Nﬁ?ﬁ& In B. (15)

=0, is the trivial, unstable, weak coupling fixed point. This n

fixed point can be reached from all subspaces of starting

points we will consider below. SinceNﬁ>0,A b, decreases in absolute value when the cut-
(i) Generalized Cogblin-Schrieffer moddlhe first set of ~ off is decreased.

starting pointgset(i)] considered in this work is defined by These conclusions are valid if the LE term is small, i.e., if

the condition b;=0, a,#0). This set describes models in [Abs|<1,|Ab,|<|a,|. However, as we will see belojsee

which the LE interaction is neglecteghybridization only — casediii) and(iv)] a finite LE term may change strongly the

problem), and includes, e.g., the SNJ symmetric CS ground state properties of the model.

model itself. In this subspace, the Hamiltoni@ reducesto (i) Local exchange onlyThe second set considerfsbt
the generalized CS HamiltonidriThe space of the trajecto- (ii)] is defined by the conditiorb;#0, a;=a,=az=a,
ries we are dealing with has dimension 5. =a5=0. This condition reduces the six-dimensional space to

All the scaling trajectories starting from the subspacea line, the linea,=0Vn, along which we found two fixed
(b;=0,a,#0) remain in this subspace during the scalingpoints (A1) and (A2). We have already discussed the weak
flow. Depending on the starting point, a trajectory may endcoupling fixed pointAl). (A2) is the stable strong coupling
in one of the following fixed points(Al), which is the un- fixed point a;=0,a,=0,a3;=0,a,=0,a5=0,b;= JC,
stable weak coupling fixed point(Bl) b;=0,a;=1, where C=TrfJ§/Ter§. For example, in the casq;
a,=0,a;=0,a,=0,a5=0, which is the fixed point of =5/2,C=35, and(A2) is the strong coupling fixed point of
the compensated dipolar Kondo effediC1l) a;=1,a, the undercompensated Kondo motfeln the casej;=1/2,
=1l,a3=1,a4=1,a5=1,b,;=0. This is the strong coupling we find C=1 and(A2) is the strong coupling fixed point of
fixed point of the CS model(D1) b;=0,a,=a,=0,a; the compensated Kondo problem. The trajectories starting
=az=as=1, (E}) by;=0,a=a,=—-1,a;=az=as=1, froma,=0, b;>0 end in(C1), while the trajectories starting
(F) b;=0,a,=a,=0,a;,=1,a5=-2.0087,a3=0.3883. from a,=0,b;<0 end in(A2): thus when the dipolar cou-
The physically most relevant of those fixed pointg(@l), pling is antiferromagnetick(;>0) andj{>1/2, the under-
which is the strong coupling fixed point of the W sym-  compensated Kondo effect takes place.
metric CS model. We have already studied in detail this sub- (iii) Cogblin-Schrieffer+ local exchangeThe third set
space and the stability of its fixed points in Ref. 8. we considefset(iii)] is the SUN) symmetric set, defined by

In Ref. 8 we have shown that all the trajectories startingthe conditionsb;# 0, a,=a+0: this condition reduces the
from the AFM quadrant §,>0) always lead to the fixed six-dimensional space of the scaling trajectories to a plane,
point (C1). Numerically, we have seen that the trajectoriesthe plane &,=a,b;). The model HamiltoniatH g, ¢ is a
starting from the AFM quadrant lead to the fixed paiBtl)  starting point of type(iii), as we have seen above. In the
even in the presence of a small LE tefie.,b;=Ab;, and plane defined by the séii), all the three fixed pointéAl),
|Ab,|<1, |Ab,y|<]a,|). Therefore, the main result obtained (A2), and(C1) are present. It is interesting to study the sta-
in Ref. 8 for the generalized CS model does not changeility of (A2) and(C1) in the whole six-dimensional space,
gualitatively due to the presence of a small LE term: theand the competition between the fixed poifi®d) and(A2)
SU(N) symmetry breaking interactions described in the genwhen the starting parameters are varied.
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FIG. 2. Sketch of the scaling trajectories for the cése a,
=a,bq, j1=5/2.

The fixed point (A2) is stable in the whole six-
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dimensional space, as we have seen numerically and by lin- B

earizing the scaling equations arouffi2). If we seta,
=Aa,, where|Aa,|<1, andb;=Ab;+/C, where|Ab,]
<1, the linearized scaling equations are

Aa,~CAa, N5 In B, (16)
Ay~ 221 510 B (17)
1"" N n .
UNE

Since N'1>0 and Tg j§>0, the fixed point is stable along

each direction.

The fixed point(C1) is also stable in the whole six-

dimensional space. If we set,=Aa,+ 8,1, where|Aa,|
<1, andb;=Ab,, where|Ab;|<1, the linearized scaling
equations are

6Aa,~N;Aa,é In B, (18

5Ab1~NfAb15 In B, (19)

FIG. 3. Variation of parameters upon scaling, as a function of
the band cutoff foij;=5/2. (a) The starting point are chosen in the
undercompensated Kondo regime. Solid line: starting paint
=0,b;=0.24. Dash-dotted lines: starting poit 0.02,b;=0.24.
The parameters,, hardly distinguishable from the horizontal axis,
scale to weak coupling. The paramegrscales to strong coupling.
(b) The starting points are chosen in the CS regime. From left to
right: starting pointa=0.02,b,=0.22 (solid lineg, starting point
a=0.02,b;=0.20 (dot-dashed lines starting pointa=0.02,b,;
=0.18 (dotted lineg. The parametera, scales to strong coupling,
while b, scales to weak coupling.

(A2), and starting from valuels;<0,a>0 end in(C1). The
trajectories starting from valudg <0,a<0 end in the weak
coupling fixed point(Al).

The two physical interactions in Hamiltonidfcg, g are
both AFM, corresponding to starting points of the typge
>0,a>0. We have found two physical regimes for this
Hamiltonian: in the first one the system falls into an under-
compensated Kondo ground state as the temperature ap-
proaches zerol(;>Ba) and in the second one the system
falls into a CS model ground staté,(< Ba). Sinces~10,

and therefore a small deviation from the fixed point de-this means that, for the case of Ce compourjgs 6/2), the

creases in absolute value as the cutoff is decreased.
The scaling equations are valid only faj<1b;<1: for
the full solution of the modeli.e., if we go beyond pertur-
bative regime the strong coupling fixed pointéA2) and
(CD) will be moved, respectively ta=0,b;—> and a
—o, b;=0, as for the Kondo and the CS mod&ls.
Only trajectories starting from the axdse., from b,

borderline between the two regimes is reached when
Jst/|Inyl ~25. Therefore, the compensated CS state is the
ground state even {f) | is 25 times smaller thad;.

For the usual CS modél.e.,b;=0,a,=a>0), the char-
acteristic temperaturg, may be derived from the third order
scaling equations, by defining it as the value reached by the
band cutoffB when the coupling constant becomes equal to

=0,a#0 or fromb;#0,a=0) remain in the plane during a given value, e.g., one half the value at the fixed point. It
the scaling flow: SUJ) symmetry is generally broken dur- can be shown that

ing the scaling. However, most of the trajectories starting

from set(iv) end in the starting plane. In Fig. 2 the projection

of those trajectories onto the SN symmetric plane is
shown. We have found that the trajectories starting flgm
>0,a>0, end in(A2) whenb,;>Ba and in(C1) whenb;

<pBa, with 8~10. The trajectories which fall on the line

b,~ Ba (the dashed line in Fig.)2eave the plane and fall
into a NFL fixed point(G1) obtained numerically a®;
=1.74,a,=0.69,a,=0.54,a;=0.38,a,=0.25,a;=0.16.
The trajectories starting from FM valués>0,a<0 end in

TSS: B(N; a)l/Nf exp(—1/Ns a), (20)

in agreement with the exact expresstofhe same is true for
the Kondo modeli.e.,b;=b>0,a,=0), with

2
b ) Treis ;{ \ /Trf ‘]zz Trc jzz)
expp ———m——|.
b

VT 2 Tr j2

Th=B

(21)
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Since T[;j§=1/2, the expression in Eq21) reduces to the
usual formula TK=B\[J[exp(10), where J=
—\2b/\[Tr; J2. For the modeH g, J=(g;—1)J, andJ
<0 (AFM) for Ce systems, the case considered in this work.
Therefore, in the CS regime, we define the characteristic
temperature for our model in the same way, as the value
reached byB whena,~0.5. In the Kondo regimely is the
value reached b whenb;~ 3.

In Fig. 3(a) we show the variation of the parameters upon
scaling as a function of the band cutoff for starting points in
the undercompensated Kondo regime. In particular, we show

the cased,=0.24,a=0 (solid line) andb,;=0.24,a=0.02

(dot-dashed line The Kondo temperature of the model is the

value of B for which b;(B)=3 [crossing between the hori-
zontal solid line and;(B)]. We see that, whea increases,
the Kondo temperature of the model is reduced.

In Fig. 3(b) we show the variation of the parameters upon
scaling as a function of the band cutoff for starting points in

the CS regime. We showfrom left to righy the casesa
=0.02,b;=0.22(solid ling), a=0.02,b;=0.20 (dot-dashed
line), anda=0.02,b;=0.18 (dotted ling. The Kondo tem-
perature of the model is the value &f for which a(B)
=0.5[crossing between the horizontal solid line a(d)].
We see that, ad, increases and therefore the rabg/a

approaches the critical value, the characteristic temperature

of the generalized CS mod¢Fig. 3(b)] approaches the

Kondo temperature of the undercompensated Kondo model
[Fig. 3(@]: the transition takes place when the two charac-
teristic temperatures are equal. Since, apart from the prefa

tors, TS>~Bexp(-1/6a) if b;=0, and Tk
~B exp(—/35/2b;) if a=0, we expect the transition to be
aroundb;~18a. The critical ratiob,/a is overestimated,

because we have neglected the prefactors and the fact t

both TSS and T§ change when botla,, andb are different
from zero[see Figs. &) and 3b)].

(iv) Dipolar coupling + local exchangeThe last set of
starting points we considgset(iv)] is the one defined by the
condition a;#0,a,=az;=a,=as=0,b;#0. Again, we
have reduced the six-dimensional trajectories space to
plane. This set is interesting because it describes, e.g., a

polar Kondo coupling plus a local exchange interaction,

which is the generalization of the two bafat two-channel

FIG. 4. Sketch of the scaling trajectories for the céise a;
#0,b,#0,a,=az=a,=as=0, andj;=5/2.

All the trajectories of typdiv) remain of type(iv) during
the scaling. Therefore, the scaling equations reduce to

2 3 2
a as+a.b
day=| — ——+———15InB, (22)
Trf JZ Trf ‘]Z
b2 b3+b,a?
sby=| — L+ ——2shB. (23
VT Jz2 Trg JZ2 Tre J;

g_orjlelz, the scaling equations coincide with those found
in Ref. 7.

In Fig. 4 we show the trajectories projected onto the plane
(a1, by), which are quite similar to those of ca§é), ex-
cept for the fact that the NFL fixed point now lies in the
Wﬁ ne. The trajectories starting from the FM quadrant
<0,b;<0 end in(Al). The trajectories starting from,;
<0,b;>0 end in(A2). The trajectories starting from;
>0,b;<0 end in(B1). The trajectories starting from the
AFM quadrant may end irfA2), (B1), (B2). They end in
%6\2) if a;<+\/Cb;, in (B1) if a;>+/Ch;, and in(B2) if a;
di-\/abl' We have therefore three regimes for the AFM
model: the compensated dipolar Kondo regime for
>/Cb,, the NFL regime fom,=+/Cb;, and the undercom-

model studied in Ref. 7 to the case in which the localized?®nsated Kondo state fa <yCb;. In the compensated
moment isj = 1/2. In the planed,, b,) there are four fixed Kondo regime, the characteristic temperature of the model is

1 . _ _ C
points, (A1), which is the unstable weak coupling fixed point the value of B for which a,(B)=0.5. Whenb,=0,Tg
discussed abovéA2), which is the fixed point of the under- =B\(2a,/C)exp(-C/2a;). As b, increases, the character-
compensated Kondo effect, stable in the whole space, as wetic temperature decreases. In the undercompensated Kondo
have seen befor¢B1) which is the fixed point of the com- regime, the characteristic temperature of the model is the
pensated dipolar Kondo effect. It is stable in the plane buvalue of B for which by(B)=\C/2. When b;=0,T}
not in the whole space, as we have seen numerically and by B\/(2b1/:?C)exp(— JC/2b;). Asa, increases, the charac-

linearizing the scaling equations around(B2) b, = \/C/(1
+C), a;=C/(1+C), a,=0,a3=0,a,=0,a5=0, which is
stable only along the lina;=\/Ch;. This fixed point is the
generalization of the non-Fermi-liquiNFL) fixed point
found by Pang and Cd%for the two-channel Kondo model.
The two channel Kondo model is recovered whjgr 1/2
and, in that caseC=1. For the full solution of the model
(i.e., if we go beyond the perturbative regimthe strong
coupling fixed points(A2) and (B2) will be moved toa
—m, b;=0 anda; =0, b;—», respectively"?

teristic temperature decreases. When the ratiéb,; ap-
proaches the critical ratioag /b;=+/C), the characteristic
scale of the compensated model approaches that of the un-
dercompensated model. The crossover between the two re-
gimes is given by the conditioa, /b, =+/C, when the two
characteristic temperatures are equal.

For j;=1/2 the fixed point(A2) describes the compen-
sated Kondo ground state; in this case the scaling trajectories
shown in Fig. 4 coincide with those calculated in Ref. 7. In
particular, when the two interactions have opposite signs, the
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ground state is always determined by the AFM interaction In a dense system, the Kondo effect competes with the

and is the compensated Kondo state. pair coupling between localized momenrlig«y which is
generated by both hybridization and local exchange. A study
V. DISCUSSION AND CONCLUSIONS of this competition at mean-field level shows that the system

is magnetic when the couplinigyy is larger thanT .56

We have proposed and studied a model to describe thﬁ/hen\lsf/|‘]hyb|<1, the system will be nonmagnetic with a
competition between hybridization and LE in anomalous Cé&eayy Fermi-liquid ground state if the pair coupling is lower
systems, accounting for the effects of the orbital degrees gfya the Kondo temperature. Let us imagine now that the LE
freedom of thef electrons. In this model, a localizédmpu-  ¢oypling increases and becomes stronger than hybridization
rity has a generalized CS coupling with=3 conduction (Js¢/|3ny>1): the system can still have a Kondo-like
electron partial waves and a LE interaction withO partlgl ground state if both conditiondg /| Jhyb|< 25 and | giey
waves. The LE interaction breaks the $U(symmetry in <Ty are satisfied. Wheﬂlsf/|~]hyb|:25 OrJSflthyb|>25 the
angular momentum space of the CS model. The preserysiem will have a NFL or an undercompensated Kondo
model is also the starting point for studying the role of groung state, respectively, if the Kondo temperature is still
qrystal-fleld effects on the competition between hybr|d|za—|arger than the pair coupling. However, in the presence of a
tion and local exchange. _ very strong LE coupling, the pair coupling will dominate

We have shown that the SNf symmetry breaking scales qyer the Kondo effect, and therefore the system will become
to weak coupling when the ratidy/[Jpy| is lower than & magnetic and the effects related to hybridization will be sup-
critical value of the order of 25. In this regime the systempressed. Since the CS ground state is realized even for rela-
falls, at low temperature, into the ground state of the I$)J( tively large ratios]sf/|Jhyb|, it is fully possible that for large
CS model. However, due to the presence of LE, the charaga|yes of /|3y, (but <25) the magnetic interaction is
teristic temperature of the model is lower than the Kondoyominated by the local exchange contribution: thus the
temperature of the CS model alone. Moreover, whemyesent results provide an explanation for the dominance of
Jst/|Inye| ~ 25, the system falls into a non-Fermi-liquid non- | £ iy the magnetic interaction, even in systems such as CeS,

SU(N) ground state. Finally, wheds/|Jny|>25, the sys-  ceSe, CeAg, where a Kondo phenomenology with reduction
tem has an undercompensated Kondo state. of the ordered moments is established.

In Ref. 8 we have already shown that the 8l))(symme-
try breaking interactions described by a generalized CS
model(e.qg., virtual mixing with the realistic atomic levels in
the excited configurationscale to weak coupling. Here, we
have shown that SUN) symmetry is stable even in the pres-  The authors are indebted to G. Amoretti and P. Santini for
ence of a LE coupling, provided thdt<25Jy,|. Those several helpful discussions, and to A.C. Hewson for useful
results justify the success of the CS model in explaining theorrespondence. O. Jepsen is acknowledged for the careful
low temperature physics of anomalous Ce and Yb systemsteading of the mauscript.
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