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129Xe spin relaxation in frozen xenon

R. J. Fitzgerald,* M. Gatzke,† David C. Fox,‡ G. D. Cates, and W. Happer
Department of Physics, Princeton University, Princeton, New Jersey 08544

~Received 2 September 1998!

We discuss the longitudinal spin relaxation of129Xe nuclei in frozen xenon. Over a large range of tempera-
tures and magnetic fields, the dominant spin-lattice relaxation mechanism is shown to be nuclear spin-flip
Raman scattering of lattice phonons. Two closely related interactions couple the lattice phonons to the spins of
129Xe nuclei: ~1! the nuclear spin-rotation interaction between nearest-neighbor atoms, and~2! the paramag-
netic antishielding of the externally applied field at the site of129Xe nuclei by the electrons of neighboring Xe
atoms. We show that relaxation rates can be predicted by using measured chemical shifts of gaseous and
condensed xenon. The predicted relaxation rates are in good agreement with measurements. We outline a
simple way to estimate the spin-rotation coupling and paramagnetic antishielding in terms of the small pertur-
bations of the outermost electron orbitals of one xenon atom due to a neighboring atom.
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I. INTRODUCTION
Since the very earliest work on nuclear magne

resonance,1 it has been known that immobile spin-1/2 nuc
in diamagnetic crystals can have relaxation times of m
hours. The observed relaxation is often due to paramagn
impurities. Here we discuss the relaxation of the spin-
isotope 129Xe in frozen xenon. Because freezing exclud
most impurities, intrinsic interactions characteristic of t
pure xenon crystal could dominate the relaxation. We sh
that at applied magnetic fields above a few hundred ga
and at temperatures between about 20 and 120 K, the
served longitudinal relaxation time in frozen xenon is w
described by nuclear spin-flip Raman scattering of phono

At magnetic fields between a few hundred and tens
thousands of gauss, the coupling is dominated by
phonon-induced spin-rotation interaction,

v5
cK

\
K•I•v5cKK•N, ~1.1!

between the nuclear spinK of a 129Xe atom and the angula
momentumN of the 129Xe atom and a nearest-neighbor ato
rotating about each other with angular velocityv. We use
the notation of Ramsey2,3 for the coupling coefficientcK
5cK(R), which depends on the internuclear separationR of
the pair. As indicated in Eq.~1.1!, the angular momentumN
of the pair of atoms is related to their angular velocityv
about each other by

\N5I•v. ~1.2!

The inertial tensorI of a pair of xenon atoms, displaced fro
each other byR, is

I5
M

2
~R212RR!, ~1.3!

whereM is the mass of a xenon atom and15xx1yy1zz is
the unit dyadic constructed from the Cartesian unit vect
PRB 590163-1829/99/59~13!/8795~17!/$15.00
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x, y, andz. The relaxation of129Xe nuclear spins in pure
high-pressure xenon gas and in xenon liquid is believed to
due to the interaction~1.1!.4,5

At fields of a few hundred thousand gauss, a very siza
contribution to the spin relaxation should also come fro
phonon-induced fluctuations of the paramagnetic antishi
ing interaction

v85
cK

\
K•I•v0 . ~1.4!

The Larmor frequency of an electron in the applied magne
field B0 is v05eB0/2mc, and the coupling coefficientcK is
the same as in Eq.~1.1!.

In Sec. II, we show that the closely related interactio
~1.1! and~1.4!, which act simultaneously in the crystal, hav
the largest influence on spin relaxation by causing Ram
scattering of phonons.6 In an analysis similar to that of van
Kranendonk for Raman scattering of phonons by the nuc
quadrupole interaction,7 we find that the spin-rotation inter
action ~1.1! leads to a longitudinal relaxation rate

1

T1
S5

9pcK0
2 T* 2

4\2vD

hS~e0 ,T* !. ~1.5!

The paramagnetic antishielding interaction~1.4! makes an
analogous contribution to the relaxation rate,

1

T1
P 5

9pcK0
2 T* 2

4\2vD
S v0

vD
D 2

hP~e0 ,T* !. ~1.6!

The relative temperatureT* 5T/TD is the ratio of the crystal
temperatureT to the Debye temperatureTD @55 K for Xe
~Ref. 8!#, andvD5kBTD /\ is the Debye frequency. We wil
use the dimensionless functione5e(R), defined by

e5R
d

dR
ln cK , ~1.7!
8795 ©1999 The American Physical Society
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to characterize the rate of change ofcK with increasing in-
ternuclear separationR. At the equilibrium separationR0 of
nearest-neighbor xenon atoms in the crystal,cK05cK(R0)
and e05e(R0). As in van Kranendonk’s analysis,7 the di-
mensionless efficiency functions hS(e0 ,T* ) and
hP(e0 ,T* ), defined below by Eqs.~2.42! and ~2.47!, ac-
count for the ‘‘freezing out’’ of phonons at low temperature
and are plotted in Fig. 1~a! using representative paramete
for solid xenon.

Building on Ramsey’s theory2 of the chemical shift in
molecules, Torrey5 pointed out a close connection betwe
the spin-rotation interaction~1.1! and the chemical shifts of
the nuclear magnetic resonance frequencies. The mag
field B acting on a nucleus in a diamagnetic medium is of
slightly smaller than the externally applied magnetic fieldB0
because of shielding currents of the surrounding electro
The chemical shift tensors is defined by

B5~12s!•B0 . ~1.8!

FIG. 1. ~a! The efficiency functionshS(e0 ,T* ) ~solid line! and
hP(e0 ,T* ) ~dashed line! parametrize the relaxation due to spin-fl
Raman scattering of phonons through the spin-rotation interac
~1.1! and the paramagnetic antishielding interaction~1.4!, respec-
tively. T* 5T/TD is the ratio of the crystal temperatureT to the
Debye temperatureTD . The functionshS and hP asymptotically
approach the constants 2686.8 and 8874.1 in solid Xe, using
estimatee05211.8 from Eq.~4.32! to characterize the variation in
the coupling strengthcK(R) with internuclear separationR. ~b! The
ratio hP/hS of the efficiencies, multiplied by the field-depende
factor (B0 /BD)2, gives the relative contributions of the parama
netic antishielding and spin-rotation interactions to the relaxa
rate. BD is the field for which the electron Larmor frequencyv0

equals the Debye frequencyvD .
,

tic
n

s.

In Sec. III we show that the spin-rotation coupling coef
cient cK0 is related to the isotropic chemical shiftssg of
gaseous xenon andsc of crystalline xenon by

cK0

h
5S mK

KmB
D S \

8pMR0
2D ~sg2sc!, ~1.9!

wheremB5e\/(2mc) is the Bohr magneton,mK is the mag-
netic moment of the129Xe nucleus,K51/2 is the spin of the
nucleus, andM is the mass of a xenon atom. We have us
Eq. ~1.9! along with recent measurements of the chemi
shifts of gaseous and crystalline xenon9 to determinecK0 /h
5227 Hz. Using this value ofcK0 , together with an esti-
mate ofe05211.8 atR054.4 Å , asderived in Sec. IV, we
have evaluated the predicted rate~1.5! and compared it with
our measurements of the longitudinal relaxation rate 1/T1 in
Fig. 2.

The excellent agreement between measurements10–12 and
theory illustrated by Fig. 2 shows that Raman scattering
phonons through the spin-rotation interaction~1.1! is a lim-
iting relaxation mechanism for129Xe in frozen xenon for
temperatures between 20 and 120 K. ForT*120 K, the
relaxation due to diffusion of vacancies is no long
negligible;8,13 for T&20 K, the 129Xe polarization lifetime
appears to be limited by cross relaxation to131Xe, as dis-
cussed below in Sec. V.

Norberg and his collaborators8 have already shown that a
analogous intrinsic relaxation mechanism, Raman scatte
of phonons through the nuclear quadrupole interaction
responsible for the spin-lattice relaxation of131Xe in solid
xenon. The quadrupole interaction is much more potent t
the spin-rotation interaction. For example, at 30 K and
fields B0.1000 G, the spin-lattice relaxation time of131Xe
is8 ;10 s, while the spin-lattice relaxation time of129Xe is11

;50 000 s.
The spin-rotation interaction~1.1!, which leads to the re-

laxation rate~1.5!, and fluctuations in the paramagnetic a
tishielding~1.4!, which leads to the relaxation rate~1.6!, are

n

ur

n

FIG. 2. Longitudinal relaxation rate 1/T1 of 129Xe in frozen
xenon as a function of temperature. The open circles are meas
values of the longitudinal relaxation rate at an applied magn
field ~typically 1000–2000 G! large enough to eliminate field
dependent relaxation. The solid line is the rate~1.5!, which would
be expected if the spin relaxation were solely due to Raman s
tering of phonons by the spin-rotation interaction~1.1! in frozen
xenon. At these fields, the relaxation rate~1.6! due to fluctuations of
the paramagnetic antishielding~1.4! is negligible.
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closely related to the mechanisms14 responsible for spin re
laxation of 13C in liquid CS2. Relaxation due to magneti
dipole interactions between13C spins is negligible, and the
relaxation is dominated by the spin-rotation interaction of
tumbling CS2 molecules, with a smaller but noticeable co
tribution at high applied magnetic fields from fluctuations
the diamagnetic shielding.15 The anisotropic shielding fluc
tuates for 13C as the molecule reorients in the liquid. Th
causes the magnetic field experienced by each13C nucleus to
fluctuate, and makes a contribution to the spin-relaxat
rate. For xenon ice at temperatures well below the melt
temperature, where effects of vacancy diffusion are negli
the modulation of the paramagnetic antishielding by phon
plays the same role as reorientation of CS2 molecules. Be-
cause of this different physical origin for the fluctuations, t
relaxation rates depend differently on the temperature
13C in liquid CS2 and for 129Xe in xenon ice. At tempera
tures comparable to the Debye temperature, the relaxa
rate of 129Xe is predicted to increase with the square of t
temperature for both the spin-rotation interaction~1.5! and
the antishielding interaction~1.6!. For 13C in liquid CS2, the
spin-rotation contribution to the rate increases with incre
ing temperature, but the contribution to the rate from
anisotropic shielding decreases. For both liquid CS2 and xe-
non ice, the contributions to the relaxation rate from the fl
tuating shielding are proportional toB0

2 .
As Ramsey2 pointed out, the spin-rotation coupling coe

ficient cK and the related change in the chemical shift
condensed xenon are mainly due to the ‘‘paramagne
electron currents. These can be generated by an applied
netic field or by the relative motion of contiguous xen
atoms when no applied field is present. In Sec. IV, we
the simple pseudopotential method of Wuet al.16 to derive
an expression forcK ,

cK

h
5

22mKe

pKMc
u f u2K 1

r 3L S~1!~S~1!1S~3!!. ~1.10!

Heree is the magnitude of the electron charge,c is the speed
of light, and^1/r 3& is the expectation value of 1/r 3 for a 5p
electron in an isolated xenon atom displaced a distancr
from the nucleus. The dimensionless parameterf, which can
be taken to bef 51 as a first approximation, is a gauge
how much the admixture coefficients for the wave functio
differ from the values obtained from simple orthogonaliz
tion. S(1) andS(3), defined below by Eqs.~4.17! and~4.18!,
are p and s overlap integrals of 5p wave functions. The
orthogonalization method leading to Eq.~1.10! gives esti-
mates which agree as well with experiment as, and are m
simpler to calculate than, those obtained by the usual sec
order perturbation method introduced by Ramsey,2 where a
sum over multicenter intermediate states must
evaluated.17 Since the orthogonalization method is close
related to well-developed pseudopotential methods
condensed-matter physics,18 it is amenable to straightforwar
improvement.

In Sec. V we describe the experiments10 used to obtain the
data of Fig. 2. The experimental measurements were fa
tated by the use of spin-exchange laser pumping of xe
gas mixed with alkali metal vapor. The gas was subseque
frozen. This allowed us to work with samples which h
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many orders of magnitude higher nuclear spin polarizat
than at thermal equilibrium. Chemical scavenging of resid
oxygen gas and other impurities by the alkali metal ensu
that the frozen xenon samples were of high purity.

An important check on the basic physics underlying t
work would be a measurement of the spin-relaxation rate
129Xe at very high magnetic fields, where the relaxation r
~1.6! due to fluctuations in the paramagnetic antishielding
comparable to the rate~1.5! due to the spin-rotation interac
tion.

II. SPIN-FLIP SCATTERING OF PHONONS

We will describe a solid xenon crystal with a simple D
bye model, with a common speed of soundcs for longitudi-
nal and transverse phonons.6 We can write the positionRn of
atom n as the sum of its equilibrium positionRn

(0) and a
displacement from equilibriumSn :

Rn5Rn
~0!1Sn . ~2.1!

The displacementSn will fluctuate because of thermal vibra
tions of the lattice and also because of the zero-point exc
tions of the phonons.

We can write the displacement as a superposition of
creation operatorsak j

† and annihilation operatorsak j of
phonons of momentum\k, vibrating along the direction of
the unit vectorxj . Because of our assumption of a comm
speed of sound for longitudinal and transverse phonons,
of the polarization unit vectorsx35z5B0 /B0 can be chosen
to be parallel to the externally applied magnetic fieldB0 , and
two additional unit vectorsx15x andx25y can be chosen to
make an orthonormal, Cartesian basis. Then the displ
ment operator for atomn is

Sn5A \

2NMcs
(
k j

xjak j

Ak
eik•Rn1H.c., ~2.2!

and the momentum operator is

Pn52 iA\Mcs

2N (
k j

Ak xjak je
ik•Rn1H.c. ~2.3!

We denote the Hermitian conjugate of the sums in Eqs.~2.2!
and ~2.3! by ‘‘H.c.’’

The sums~2.2! and~2.3! extend over phonon plane wave
of momentum\k and over the three mutually orthogon
unit vectorsxj of the phonon polarization. The crystal has
volumeV and is composed ofN atoms, each with massM. A
crystal with N atoms will haveN phonon states of a given
polarization. Each phonon state takes up a volume 8p3/V in
wave number space. The density of states in wave num
space is uniform within a sphere of radiuskD and there are
no states with wave numbers larger thankD . The Debye
wave numberkD , the Debye frequencyvD , the Debye en-
ergy ED , and the Debye temperatureTD are related to the
atomic number density of the crystal by

kD5
vD

cs
5

ED

\cs
5

kBTD

\cs
5S 6p2N

V D 1/3

, ~2.4!
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wherekB is Boltzmann’s constant. The phonon energyE is
related to the magnitude of the phonon momentum\k by

E5\csk. ~2.5!

The number of phonon states of a specific polarization
unit energy and per unit solid angle is, therefore,

r~E!5H 3NE2/~4pED
3 !, E,ED ;

0, E.ED .
~2.6!

Let unk j& be a basis state of the vibrating crystal withnk j
phonons of momentum\k and polarizationxj . Operating on
such a state, the phonon annihilation operatorak j eliminates
one phonon,

ak j unk j&5Ank j unk j21&. ~2.7!

In like manner, the phonon creation operatorak j
† increases

the phonon occupation number by one,

ak j
† unk j&5Ank j11 unk j11&. ~2.8!

The nuclear spinK of atoma will interact with the lattice
through pairwise spin-rotation couplings to each near
neighbor atomb. Let Nba be the angular momentum~in
units of\) of atomb and atoma about their center of mass
The spin-rotation interaction is

v5(
b

cK~Rba!Nba•K5
1

2\(
b

cK~Rba!Rba3Pba•K

5v ~1!1v ~2!1•••, ~2.9!

where

Pba5Pb2Pa ~2.10!

is the difference in the linear momenta of atomb and atom
a. Following Eq.~2.1!, we write the distance from the atom
a to atomb as

Rba5Rba
~0!1Sba , ~2.11!

whereRba
(0) is the difference in the equilibrium positions

Rba
~0!5Rb

~0!2Ra
~0! , ~2.12!

andSba is the difference between the displacements

Sba5Sb2Sa . ~2.13!

The nuclear spinK of atom a will also couple to the
lattice through the contribution to the chemical shift of pa
magnetic antishielding currents from neighboring atoms. T
potential for this interaction is

v85(
b

cK~Rba!v0•I•K5
M

2\(
b

cK~Rba!

3v0•~Rba
2 12RbaRba!•K5v8~1! 1v8~2! 1•••.

~2.14!

Since xenon freezes as a face-centered-cubic crystal, t
will be 12 terms in the sum over nearest-neighbors atomb
er

t-

-
e

ere

in Eqs.~2.9! and~2.14!, as sketched in Fig. 3. As we discus
in Sec. IV, the coupling coefficientcK(R) decreases so rap
idly with increasingR that only nearest-neighbor interaction
need be considered.

As indicated in Eqs.~2.9! and~2.14!, the spin-rotation and
paramagnetic antishielding interactions can be decompo
into n-phonon components:v (n) and v8(n) contain terms
which can absorbn phonons, or absorbn21 phonons and
emit 1 phonon, or absorbn22 phonons and emit 2 phonon
etc. To obtain this series, we use a power-series expansio
cK ,

cK~Rba!5cK0H 11
e0

R0
2 Sba•Rba

~0!1
e0

2 FSba
2

R0
2

1~e021!

3
~Sba•Rba

~0!!2

R0
4 G1•••J , ~2.15!

about the equilibrium separationR05uRba
(0)u, with cK0

5cK(R0) ande05e(R0).
Using the expansion~2.15! together with Eq.~2.11! in

Eqs. ~2.9! and ~2.14!, we find that the one-phonon interac
tions are

v ~1!5
cK0

2\ (
b

Rba
~0!3Pba•K ~2.16!

and

FIG. 3. The 12 nearest neighbors of a spin-up129Xe atoma. As
summarized in Table I, the ordered pairs of nearest neighbors
be partitioned into five setsLm , with m50,1,2,3,4. Pairs of atoms
in the same set subtend the same angleum at the central atoma.
The pairs (b,dm) for m51,2,3,4 are examples of members of th
setsLm . The 12 nearest-neighbor atoms paired with themsel
compose the setL0 .
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v8~1! 5
McK0

2\ (
b

v0•F e0

R0
2 Sba•Rba

~0!~R0
212Rba

~0!Rba
~0!!

12Sba•Rba
~0!12SbaRba

~0!2Rba
~0!SbaG•K . ~2.17!

The interactions~2.16! and~2.17! can cause the nuclear sp
to flip with the emission or absorption of a single phono
The two-phonon interactions are

v ~2!5
cK0

2\ (
b

S Sba3Pba1
e0

R0
2 Sba•Rba

~0!Rba
~0!3PbaD •K

~2.18!

and

v8~2!5
McK0

2\ (
b

v0•H Sba
2 12SbaSba

1
e0

R0
2 Rba

~0!
•Sba~2Sba•Rba

~0!12SbaRba
~0!2Rba

~0!Sba!

1
e0

2 FSba
2

R0
2

1~e021!
~Sba•Rba

~0!!2

R0
4 G

3~R0
212Rba

~0!Rba
~0!!J •K . ~2.19!

The interactions~2.18! and~2.19! can cause the nuclear sp
to flip with the emission of two phonons or the absorption
two phonons, or with the emission of one phonon and
sorption of another~Raman scattering!.

Except at impractically low crystal temperatures whe
the spin-relaxation times are so long as to be irrelevant,
single-phonon scattering described by Eqs.~2.16! and~2.17!
make negligible contributions to the spin-relaxation rate
comparison to the Raman scattering described by Eqs.~2.18!
and~2.19!. All phonons in the lattice, and especially the ve
abundant phonons with energiesE;kBTD;10214 erg, can
contribute to Raman scattering, but single-phonon absorp
or emission is possible only for the relatively few, extreme
long-wavelength phonons with energies equal to the Zee
energymKB0 /K;10220 erg of a nucleus of magnetic mo
ment mK;10224 erg/G in an applied magnetic fieldB0
;104 G. Furthermore, for the spin-rotation coupling, th
long-wavelength phonons displace neighboring atoms
nearly the same amount and produce little of the rela
momentum ~2.10! needed for the one-phonon interactio
~2.16!. For similar reasons, the emission or absorption of t
phonons during a spin-flip is negligible compared to Ram
scattering. Thus, we will focus on relaxation processes
which the initial state,

u i &5umK51/2; . . . ,nkaj a
,nkej e

, . . . &, ~2.20!

has the nuclear-spin projectionmK51/2 and hasnkaj a

phonons of momentum\ka and polarizationxj a
in the mode

from which a phonon will be absorbed, andnkej e
phonons of
.

f
-

e

n

an

y
e

o
n
r

momentum\ke and polarizationxj e
in the mode into which

a phonon will be emitted by Raman scattering. The fin
state,

u f &5umK521/2; . . . ,nkaj a
21,nkej e

11, . . .&,
~2.21!

has the nuclear-spin projectionmK521/2 and hasnkaj a
21

andnkej e
11 phonons in the respective modes.

According to Fermi’s golden rule, the transition ratedWf i
from the initial state to final states for which a phonon
emitted within the solid angledVe is

dWf i5
2p

\
uv f i u2r~Ee!dVe . ~2.22!

The energyEe of the emitted phonon differs from the energ
Ea of the absorbed phonon byumKB0 /Ku;10220 erg, the
energy absorbed or released in a nuclear spin flip. This
ference is negligible compared to the Debye energyED
;10214 erg, which characterizes the phonon spectrum,
we therefore setEe5Ea in subsequent expressions. We i
tegrate Eq.~2.22! over all directions of the emitted phono
and over all energies and directions of the absorbed pho
and sum over the polarizationsxj e

andxj a
of the emitted and

absorbed phonons, to obtain the total rate of the transi
mK51/2 to mK521/2,

Wf i5
2p

\ (
j ej a

E
0

ED
dEadVadVeuv f i u2r2~Ea!. ~2.23!

We take the origin of the coordinate system to be
equilibrium position of atoma, so Ra

(0)50. Then we find
that the matrix element of Eq.~2.18! is

v f i
~2!5^ f uv ~2!u i &5

cK0

4Ni
Ana~ne11!(

b
~e2 ike•Rb

~0!
21!

3~eika•Rb
~0!

21! wb•x1 . ~2.24!

The unnormalized, circular basis vectors are

x65x6 iy. ~2.25!

The direction of the spin-flipping magnetic field, associat
with the phonon-induced motion of the nearest-neigh
atomb, is defined by the vector

wb5xj e
3xj a

1
e0

2
~xj e

•nbnb3xj a
2xj a

•nbnb3xj e
!,

~2.26!

with the unit vector from the origin~the nucleusa with
Ra

(0)50) to the nearest-neighbor atomb given by

nb5Rb
~0!/Rb

~0! . ~2.27!

Similarly, the matrix element of Eq.~2.19! is

v f i8
~2!5^ f uv8~2!u i &5

cK0

4N

ED

Ea
Ana~ne11!(

b
~e2 ike•Rb

~0!
21!

3~eika•Rb
~0!

21! wb8•x1 , ~2.28!
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with

wb85
1

2vD
v0•$~xj e

xj a
1xj a

xj e
!1e0@nb•xj e

~nbxj a
1xj a

nb!

1nb•xj a
~nbxj e

1xj e
nb!#1e0@xj e

•xj a
1~e021!

3~nb•xj e
!~nb•xj a

!#nbnb%. ~2.29!

The two Raman-scattering interactions~2.18! and ~2.19!
connect the same initial and final states~2.20! and~2.21! and
thus their matrix elements add coherently. The relaxation
to the cross term between Eqs.~2.18! and~2.19! must vanish
when the integrals of Eq.~2.23! are carried out, because suc
a cross term would be linear inB0 , a behavior which is
excluded by symmetry. Explicit calculations confirm that t
contribution to Eq.~2.23! from the cross term vanishes.

We focus first on the spin-rotation interaction. Substit
ing Eq.~2.24! into Eq.~2.23! with v f i5v f i

(2) , and noting that
the longitudinal relaxation timeT1 for a spin-1/2 nucleus is
related to the transition rate~2.23! by

1/T152Wf i , ~2.30!

we find

1

T1
S5

pcK0
2

4N2\
(
bd

(
j ej a

E
0

ED
dEa r2~Ea! nkaj a

~nkej e
11!

3x1•wbwd•x2

3E dVa ~eika•Rb
~0!

21!

3~e2 ika•Rd
~0!

21!

3E dVe ~eike•Rd
~0!

21!

3~e2 ike•Rb
~0!

21!. ~2.31!

The integrals over the angles of propagation of absor
and emitted phonons can be carried out analytically, and
find for their average

1

4pE dV ~eik•Rb
~0!

21!~e2 ik•Rd
~0!

21!

511 j 0~kRbd
~0!!22 j 0~kR0!. ~2.32!

The spherical Bessel functions~the ‘‘sinc’’ functions! of Eq.
~2.32! are

j 0~x!5
sinx

x
. ~2.33!

The sum over the 12 nearest neighborsb and 12 neares
neighborsd in Eq. ~2.31! gives 144 ordered pairsbd. From
inspection of Fig. 3, we see that these can be divided
five setsLm (m50,1,2,3,4) ofgm ordered pairs with the
same separation

Rbd
~0!5smR0 , ~2.34!
e

-

d
e

to

and subtending the same angleum with the relaxing atoma.
For a pair of neighborsb andd in setLm , the angle is given
by

cosum5nb•nd . ~2.35!

The partitioning is summarized in Table I.
For pairs (b,d) in the same setLm , the angular integrals

~2.32! will be identical, and we designate them by

Jm~u!511 j 0~usmfD!22 j 0~ufD!, ~2.36!

where the phonon momentumu, in units of the Debye mo-
mentum\kD , is

u5k/kD5E/ED , ~2.37!

and

fD5kDR05~6p2A2!1/3 ~2.38!

is the phase advance over the nearest-neighbor distancR0
for a phonon with the Debye wave numberkD .

If we average Eq.~2.31! over phonon occupation numbe
in thermal equilibrium, the results are the Bose-Einstein d
tributions

^nkaj a
&5

1

eEa /kBT21
and ^nkej e

11&5
eEe /kBT

eEe /kBT21
.

~2.39!

Since polycrystalline samples have been used in mos
not all, magnetic resonance experiments on129Xe in the
solid phase of the xenon, we should average Eq.~2.31! over
all possible orientations of the xenon crystal. As a result
this averaging, which we denote by angle brackets^•••&, the
partial sums of Eq.~2.31! over pairs of nearest neighbors
the setLm can be written as

K x1•F (
~bd!PLm

(
j ej a

wbwdG•x2L 5gm(
l

cl~e0!Pl~cosum!,

~2.40!

where Pl denotes the Legendre polynomial of orderl. The
nonzero coefficientscl(e0) are

c0~e0!541
8

3
e01

4

9
e0

2 ,

c2~e0!5
2

9
e0

2 . ~2.41!

The derivation of Eqs.~2.40! and ~2.41! is outlined in the
Appendix.

TABLE I. Nearest-neighbor pairs can be partitioned into fi
setsLm . The number of ordered pairs in a set isgm . The pair
separation issmR0 . Also tabulated are cosum , where um is the
angle subtended by the pair, and the asymptotic values of
weightsDm from Eq. ~2.43! andDm8 from Eq. ~2.48!.

m gm sm cosum Dm(`) Dm8 (`)

0 12 A0 1 1.382200 2.248640
1 48 A1 1/2 0.345550 0.562160
2 24 A2 0 0.320796 0.438994
3 48 A3 21/2 0.407861 0.546642
4 12 A4 21 0.448817 0.627726
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Finally, we introduceT* 5T/TD , the ratio of the crystal
temperature to the Debye temperature. Then Eq.~2.31! re-
duces to Eq.~1.5!. The ‘‘freezing out’’ of phonons at tem
peratures below the Debye temperature (T* &1) is described
by the function

hS~e0 ,T* !5(
lm

gmcl~e0!Pl~cosum!Dm~T* !,

~2.42!

with the coefficientsDm(T* )—denoted by the same symb
as the analogous coefficients introduced by v
Kranendonk7—defined by

Dm~T* !5
1

T* 2E0

1

du u4
eu/T*

~eu/T* 21!2
Jm

2 ~u!. ~2.43!

The coupling efficiencyhS(e0 ,T* ) is shown as a function o
T* in Fig. 1~a! for representative parameters of solid xeno
For high temperatures (T* @1), the weightsDm(T* ) and
hencehS(e0 ,T* ) approach constant values~the asymptotic
values ofDm(T* ) are given in Table I!, and the relaxation
rate ~1.5! has a T* 2 dependence. For temperaturesT*
!0.01, one can readily show thathS(e0 ,T* ) is proportional
to T* 5. However, the predicted relaxation times for129Xe in
solid xenon are so long (T1

S*108 years forT* &0.01) that
the low-temperature limiting expressions are of no pract
significance.

As described in more detail in Sec. III, measurements
the chemical shift of the nuclear magnetic resonance
quencies of frozen and gaseous129Xe can be used with Eq
~1.9! to infer thatcK0 /h5227 Hz for frozen xenon. In Sec
IV, we estimatee05211.8. Evaluating Eq.~1.5! with these
values ofcK0 /h ande0 , and for a xenon crystal temperatu
T equal to the Debye temperatureTD555 K, we find that
the predicted longitudinal relaxation time isT1

S53.9 h, very
close to the observed relaxation time of 3.4 h forT551 K
andB0'1000 G.

We follow a nearly identical treatment to that above f
the paramagnetic antishielding contribution to the relaxat
rate, using primes to distinguish symbols for the param
netic antishielding calculations from their spin-rotation cou
terparts. Using Eqs.~2.19!, ~2.23!, ~2.30!, ~2.32!, ~2.36!, and
~2.39!, we find in analogy to Eq.~2.31!

1

T1
P 5

9pcK0
2

4\2vD
(
m

K x1•F (
~bd!PLm

(
j ej a

wb8wd8G•x2L
3E

0

1

du u2
eu/T*

~eu/T* 21!2
Jm

2 ~u!. ~2.44!

The angle brackets in Eq.~2.44! indicate an average over a
orientations of the xenon crystal, as is appropriate for a po
crystalline sample. In analogy to Eq.~2.40! we find

K x1•F (
~bd!PLm

(
j ej a

wb8wd8G•x2L
5gmS v0

vD
D 2

(
l

cl8~e0!Pl~cosum!, ~2.45!
n

.

l

f
-

n
-

-

-

with nonzero coefficients

c08~e0!5S 11
3e0

5
1

e0
2

15D
2

,

c28~e0!5
11e0

2~e016!2

630
,

c48~e0!5
2e0

2~e021!2

175
. ~2.46!

The derivation of Eqs.~2.45! and ~2.46! is outlined in the
Appendix.

Substituting Eq.~2.45! into Eq. ~2.44!, we obtain Eq.
~1.6!, where we have introduced, as in Eq.~2.42!, the phonon
freeze-out function

hP~e0 ,T* !5(
lm

gmcl8~e0!Pl~cosum!Dm8 ~T* !,

~2.47!

with the coefficients

Dm8 ~T* !5
1

T* 2E0

1

du u2
eu/T*

~eu/T* 21!2
Jm

2 ~u!. ~2.48!

The asymptotic values ofDm8 (T* ) are listed in Table I.
For high temperaturesT* @1, the ratio of the paramag

netic antishielding relaxation rate~1.6! to that from spin ro-
tation ~1.5! is given by

1/T1
P

1/T1
S

;S v0

vD
D 2 hP~e0 ,`!

hS~e0 ,`!
53.30S v0

vD
D 2

53.30S B0

BD
D 2

,

~2.49!

whereBD582 T is the field for whichv05vD , and we have
used the valuee05211.8 derived in Sec. IV. As shown in
Fig. 1~b!, the ratio of efficiencies in Eq.~2.49! is only weakly
dependent on temperature forT* *0.4 (T*20 K!: it is only
3.50 atT* 50.4 (T522 K!, but 7.39 atT* 50.1 (T55.5 K!.

Raman scattering through the spin-rotation interaction
through the paramagnetic antishielding interaction are re
ation mechanisms acting simultaneously and independe
since their cross terms do not contribute to the relaxati
The total relaxation rate due to Raman scattering is thus

1

T1
5

1

T1
S1

1

T1
P . ~2.50!

We conclude this section by showing that the relaxat
rates due to one-phonon scattering are completely neglig
compared to the rates due to Raman scattering. Using
~2.16! to calculate the high-temperature relaxation rate d
one-phonon scattering, we find

1

T1
S;l

MR0
2mK

4

TD
5 S cK0

h D 2

TB0
4 , ~2.51!

where the coefficient is
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l5
210p4fD

2

hkB
4

57.9431095 erg25 s21 K4. ~2.52!

HeremK is the magnetic moment of the spin-1/2 nucleus a
B0 is the magnitude of the applied magnetic field. Equat
~2.51! can be derived by methods similar to, but simp
than, those sketched above. Substituting values of phys
parameters8 appropriate for the relaxation of solid129Xe:
M52.18310222 g, R054.431028 cm, mK523.90
310224 erg/G, T5TD555 K, cK0 /h5227 Hz, andB0

510 kG, we findT1
S;5.231014 years. Even forB05BD

5820 kG,T1
S;1.23107 years.

Using Eq.~2.17! to calculate the one-phonon scatterin
we find

1

T1
P ;l8

MR0
2mK

2 mB
2

TD
5 S cK0

h D 2

TB0
4~e0

218e0120!,

~2.53!

with

l85
12p4fD

2

hkB
4 59.2931093 erg25 s21 K4. ~2.54!

The rate~2.53! from fluctuations in the paramagnetic an
shielding is bigger than the rate~2.51! due to the spin-
rotation interaction by a factor;(mB /mK)2;107. Using the
above parameters with the Bohr magnetonmB59.27
310221 erg/G ande05211.8, we findT1

P;1.23108 years
for B0510 kG, and 2.7 years forB05BD , so the predicted
rate from Eq.~2.53! is still negligible. The cross term be
tween the matrix elements for the two single-phonon int
actions again vanishes.

III. SPIN-ROTATION COUPLING AND THE CHEMICAL
SHIFT

In the next two sections we analyze two closely rela
phenomena: the spin-rotation interaction between collid
Xe atoms, and the paramagnetic antishielding of an ex
nally applied magnetic field at a Xe nucleus caused by
electrons of neighboring atoms. Much of the fundamen
physics of these phenomena was discussed by Ram2

Torrey5 showed how to use the connection between
chemical shift and the spin-rotation interaction to account
the relaxation of129Xe in dense Xe gas. In this section w
discuss aspects of the physics that are largely independe
models of the electronic structure. In Sec. IV we outline
simple way to estimate the spin-rotation coupling coe
cients.

Consider the following two situations:
~1! A stationary crystal in an externally applied magne

field B0 . Associated with this field is the Larmor frequenc

v05
e

2mc
B0 , ~3.1!

where2e is the electron charge andm the electron mass
We choose a gauge in which the spatially uniform, externa
applied magnetic fieldB05“3A0 is described by the vecto
potential
d
n
r
al

,

-

d
g
r-
e
l
y.
e
r

of

-

y

A05
1

2
B03r , ~3.2!

and we denote the ground-state many-electron wave func
at time t by C15C1(r1 ,r2 , . . . ,t), where the location of
the first electron isr1 , the location of the second isr2 , etc.

~2! A rotating crystal with no externally applied magnet
field. The crystal is rotating with the angular velocity
2v0 , with v0 defined by Eq.~3.1!. We denote the ground
state many-electron wave function for this case byC2
5C2(r1 ,r2 , . . . ,t).

In both of the two cases outlined above, which we den
with a subscripti 51 or 2, current densitiesJi5Ji(r ) will be
induced at each pointr in the crystal. We ignore any current
coming from the paired electron spins or from the nucle
spins, and we assume that only themotion of the electrons
and nuclei contributes toJi . We will also ignore any contri-
butions to the current from thermal vibrations of the crys
~phonons!, although an important result of this phonon-fre
analysis will be used to make a connection between chem
shifts of xenon and phonon-induced, spin-lattice relaxat
rates. The currentJi will generate a magnetic fieldBi at the
nucleus of atoma, which we take to be at the origin of
spatial coordinate system. According to the Biot-Savart l
the field is

Bi5E d3r
r3Ji

cr3
. ~3.3!

The operator for the electron current density at the spa
position r is

Ĵe5
2e

2m(
j

@d~r2r j !pj1pjd~r2r j !#5 Ĵp1 Ĵd , ~3.4!

where the mechanical momentum for the electronj is pj
5pj1(e/c)A0(r j ), and the canonical momentum ispj
5\“ j / i . The sum in Eq.~3.4! includes each electronj in the
crystal. As indicated in Eq.~3.4!, Ĵe is the sum of a para-
magnetic part,

Ĵp5
2e

2m(
j

@d~r2r j !pj1pjd~r2r j !#, ~3.5!

and a diamagnetic part,

Ĵd5
2e2

mc (
j

A0~r j !d~r2r j !5v03r r̂e . ~3.6!

Here the operator for the electron charge density is

r̂e52e(
j

d~r2r j !. ~3.7!

The expressions~3.5! and ~3.6! for the paramagnetic and
diamagnetic current densities are appropriate for the gaug
Eq. ~3.2!. The expectation valuêJe& of the total electronic
current density~3.4! is gauge invariant.

In the rotating crystal,A050, and there is no diamagneti
contribution to the current density. There is, however, a c
tribution from the rotating, charged nuclei, given by
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Jn252v03rrn , ~3.8!

wherern5Z(nd(r2Rn
(0)) is the charge density atr from Xe

nuclei of atomic numberZ554 located at positionsRn
(0) in

the crystal. TheRn
(0) will rotate with the rotating crystal, bu

they will be time independent for the nonrotating crystal
the magnetic field.

The total current densities for the two cases are

J15Jp11Jd15^C1uĴpuC1&1^C1uĴduC1&,

J25Jp21Jn25^C2uĴpuC2&1Jn2 . ~3.9!

Substituting Eq.~3.9! into Eq. ~3.3!, we find that the corre-
sponding magnetic fields at the origin are

B15Bp11Bd1 , ~3.10!

B25Bp21Bn2 . ~3.11!

To find the expectation value of the current density ope
tors, we need the ground-state electronic wave functionsC i .
In the case of a stationary crystal in an applied magn
field, the wave function is

C15e2 iE1t/\F1 , ~3.12!

whereF15F1(r1 ,r2 , . . . ) is thelowest-energy solution o
the time-independent Schro¨dinger equation

~H ~0!1\v0•L1V~2!2E1!F150. ~3.13!

HereH (0) is the Hamiltonian of the stationary crystal with n
applied field,L5(1/\)( j r j3pj is the total orbital angular
momentum of the electrons~in units of \), and V(2)

5(m/2)( j uv03r j u2 is the ‘‘diamagnetic potential.’’
In the rotating crystal with no magnetic field, the groun

state electronic wave function is19

C25e2 iE2t/\ei v0•L tF2 , ~3.14!

whereF25F2(r1 ,r2 , . . . ) is thelowest-energy stationary
state of the Schro¨dinger equation19 in a coordinate system
rotating along with the crystal at angular velocity2v0 ,

~H ~0!1\v0•L2E2!F250. ~3.15!

Equations~3.13! and~3.15! differ only by the diamagnetic
potential V(2), which is second order inv0 . Thus, the
ground-state energiesE1 andE2 are the same to orderv0 , as
are the wave functionsC1(t50)5F1 andC2(t50)5F2 .
Also, the paramagnetic current densitiesJp15^C1uĴpuC1&
andJp25^C2uĴpuC2& will be the same to orderv0 at time
t50. For the nonrotating crystal, the currents induced by
applied magnetic field are time independent; in the rotat
crystal, the current distribution̂F2uĴpuF2& viewed in the
rotating frame is time independent, but the current distri
tion ^C2uĴpuC2& seen from the laboratory frame will rotat
rigidly with the crystal.

Since the paramagnetic currents at the timet50 are the
same to orderv0 , the paramagnetic contributions to th
magnetic fields are equal as well, and we can write the
ference of the fields~3.10! and ~3.11! at t50 as
-

ic

-

e
g

-

f-

B3[B12B25E d3r
1

cr3 r3~v03r !~re1rn!.

~3.16!

This is the field that would be produced at the origin at tim
t50 if the charge densitiesre5^F1ur̂euF1& and rn were
rotating rigidly forward with angular velocityv0 . These
charge densities, however, are almost exactly the sam
those for isolated Xe atoms. The differences are mostly
to the small spillover of the outermost electrons into t
cores of neighboring atoms. While this spillover is of gre
importance to the paramagnetic currents~see Sec. IV!, it pro-
duces negligible diamagnetism and we ignore its contri
tion to Eq.~3.16!.

The field~3.16! will have contributions fromre but notrn
for the central atoma, and it will have contributions from
both re and rn for all other atoms. For the neighboring a
oms, the rotation about the origin can be viewed as a co
bination of linear translation and a rotation about each
om’s nucleus. A neutral, translating atom produces
magnetic field outside of its electronic shells. Although t
rotation of the electron charge densityre about the nucleus
of an atom produces a magnetic dipole field outside of
atom, the dipole fields from the atoms surrounding the c
tral atoma cancel at the origin because of the high symm
try of the fcc lattice. Thus, the only significant contributio
to the fieldB3 comes from the rotating electron charge de
sity re of atoma. This contribution is the same as that of th
diamagnetic current~3.6! produced when the atoma is iso-
lated and in an externally applied magnetic fieldB0 . In this
case, the total field at the nucleus would beB01B35(1
2sg)B0 , wheresg is the isotropic chemical shift of xeno
gas. We conclude from Eq.~3.16! that

B12B252sgB052
2mcsg

e
v0 . ~3.17!

Although the results~3.16! and ~3.17! were derived fort
50, they are valid for all times. The fieldB2 rotates with the
angular velocity2v0 , but for the polycrystalline sample
considered here, the ensemble-averaged value ofB2 will be
parallel tov0 , and the rotation will leaveB2 unchanged.

In the crystal rotating with angular velocity2v0 , the
relative angular momentumNba between atoma and
nearest-neighbor atomb will be given by Eqs.~1.2! and
~1.3!, with v52v0 and the interatomic displacementR
5Rba

(0)5Rb
(0) from Eq. ~2.12!. The spin-rotation interaction

~1.1! between the nuclear spinK of atoma and the relative
angular momentaNba , summed over all 12 nearest neig
borsb, must be the same as the interaction2mK•B2 of the
nuclear momentmK5(m/K)K of atom a with the induced
field B2. Therefore, from Eqs.~1.1! and ~1.3!,

2
mK

K
K•B25

cK0

\
K•F(

b

M

2
~Rb

~0!212Rb
~0!Rb

~0!!G•~2v0!

52
4cK0MR0

2

\
K•v0 , ~3.18!

where the sum in square brackets is half the moment of
ertia of the cube containing atoma and all 12 nearest neigh
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borsb sketched in Fig. 3. Because of the high symmetry
the fcc crystal, the moment of inertia of the cube reduces
the scalar 8MR0

2 , and Eq.~3.18! implies that

B25
4cK0MR0

2K

\mK
v0 . ~3.19!

In the stationary crystal, the total field acting at the orig
is B01B15(12sc)B0 , wheresc is the isotropic chemica
shift of xenon crystals. Thus

B152scB052
2mcsc

e
v0 . ~3.20!

Substituting Eqs.~3.20! and~3.19! into Eq. ~3.17! we obtain
the fundamental relation~1.9!.

Raftery et al.9 recently measured the relative chemic
shift sg2sc between the gas and the solid phases of129Xe.
At T577 K, they determinedsg2sc531731026. Substi-
tuting this result into Eq.~1.9!, along with the known
parameters8 for 129Xe, M52.18310222 g, R054.4 Å,
mK523.90310224 erg/G, andK51/2, we find

cK0

h
5227 Hz. ~3.21!

IV. ESTIMATES OF cK

Here we discuss a simple theoretical method, based o
orthogonalization procedure introduced by Wuet al.,16

which gives paramagnetic modifications of magnetic shie
ing coefficients or spin-rotation coupling coefficients whi
are about as close to experimental observation as those
tained by Ramsey’s2 second-order perturbation theory as a
plied by Adrian.17 No sum over intermediate states of pe
turbation theory is needed, since the method is basical
first-order estimate ofcK by pseudopotential theory. It coul
be improved by the systematic application of higher-or
corrections.18

We estimate the magnetic fieldB2 of Eq. ~3.11! that is
produced at the origin when a crystal rotates with angu
velocity 2v0 , as discussed in Sec. III. For single-partic
electron wave functions~orbitals! we will use the ‘‘tight-
binding’’ approximation, which should be especially appr
priate for solid noble gases. The many-electron wave fu
tion F2 of Eq. ~3.14! will be a Slater determinant of th
single-electron orbitalsf j n5f j n(r ) for an electron at posi-
tion r and in the quantum statej localized near the equilib
rium positionRn

(0) of nucleusn. We write the orbitals as

f j n5x j neiqn•r, ~4.1!

the product of an orbital amplitudex j n5x j n(r ), and a phase
factor eiqn•r, where

qn52
m

\
v03Rn

~0! ~4.2!

is the spatial frequency the electron would have if it we
moving with the velocity2v03Rn

(0) of nucleusn in the
rotating crystal.
f
to

l

an

-

b-
-

a

r

r

-
c-

We want to estimate the magnetic fieldB2 of Eq. ~3.11! at
the origin of the rotating coordinate system where t
nucleusa is located. From Eq.~3.5! we see that at timet
50, an electron in the orbitalf j n contributes a paramagneti
current density

j j n5
2e\

m
qnux j nu21F2e\

2mi
x j n* “x j n1c.c.G . ~4.3!

The first term in Eq.~4.3! is the current resulting from trans
lation of the orbital charge density at the velocity\qn /m.
When Eq.~4.3! is summed over all orbitals and multiplied b
2 to account for the spin-up and spin-down electrons oc
pying each orbital, the field at the origin resulting from th
first term is very nearly cancelled by the fieldBn2 from the
nuclear currentJn2 of Eq. ~3.8!, as discussed in the previou
section. Thus the field at the origin is almost entirely due
the current densityJ25J2(r ) given by contributions from the
second term of Eq.~4.3!,

J25
2e\

mi (
j n

x j n* “x j n1c.c. ~4.4!

Substituting Eq.~4.4! into the Biot-Savart Law~3.3!, we find
for the field at the origin

B25
22e\

mc (
j n

E d3r x j n*
l

r 3
x j n , ~4.5!

wherel52 i r3“ is the electron orbital angular momentu
operator~in units of \).

The orbitalsf j n in Eq. ~4.1! are solutions to the Schro¨-
dinger equation

F2
\2

2m
¹21v~r !2 i\v0•r3“2e j nGf j n50. ~4.6!

The orbital energy ise j n . The effective single-particle po
tential v(r ) has the periodicity of the crystal lattice, but th
solutions of Eq.~4.6! are not Bloch functions because of th
presence of the nonperiodic potential2 i\v0•r3“, which
represents Coriolis and centrifugal forces on the electr
Substituting expressions~4.1! and~4.2! into Eq.~4.6!, we see
that if the potentialv were the same as the potential of a fr
Xe atom located atRn

(0) , the orbital amplitudesx j n would be
identical to the orbitalsx j n

(0) of free Xe atoms, to first order in
v0. The outermost, 5p orbitals of the Xe atom are respon
sible for most of the phenomena under consideration h
and we will write them as

x j n
~0!~r !5x5pkn

~0! ~r !5A 3

4p

U5p~sn!

sn
sn•xk , ~4.7!

wherexk (k51,2,3) is a unit vector along one of the thre
crystal coordinate axes and the displacement of the elec
from the nucleusn is

sn5r2Rn
~0! . ~4.8!

Because contributions from the orbitals to the fieldB2 in
Eq. ~4.5! are weighted by 1/r 3, we need only consider com
ponents of the electron wave functions within the core of
central atoma. In principle, we should sum over all electro
orbitals of the crystal in Eq.~4.5!. However, the spin-paired
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electrons in the closed shells of atoma will make negligible
contributions to the field. In the tight-binding approximatio
considered here, the orbital amplitudes for next-nearest
more distant atoms will be too small near the origin to co
tribute substantially to the sum in Eq.~4.5!. Only for an
orbital centered on one of the nearest-neighbor atomsb can
we expect a substantial contribution toB2 . Such orbitals will
‘‘spill over’’ into the core of atoma, where they will have a
secondary peak due to the attraction to the nucleus of
atoma. Following Wuet al.,16 we can approximate this pen
etration of the nearest-neighbor cores by orthogonalizing
orbitals of atomb to the orbitals of atoma. We consider
only the overlaps of the 5p orbitals, since they will contrib-
ute much more to the fieldB2 than any others. Nearr50, we
can approximate the orbitalf5pbb of atomb by

f5pbb'x5pbb
~0! eiqb•r2 f(

a
x5paa

~0! Sab . ~4.9!

The elementsSab of the overlap tensor are given by

Sab5E d3r x5paa
~0!* eiqb•rx5pbb

~0! , ~4.10!

The coefficientf '1 is an empirical fitting parameter to b
determined from measured chemical shifts. Even though
overlap coefficientsSab are small, the second term of E
~4.9! is still much larger, within the core of atoma, than the
first term, which we will henceforth ignore.

Using Eq.~4.7! and noting thatsa5r sinceRa
(0)50, we

write Eq. ~4.9! as

f5pbb'2 fA 3

4p

U5p~r !

r
r•Sb , ~4.11!

where the overlap vectors are

Sb5(
a

xaSab . ~4.12!

Substituting Eq.~4.11! into Eq. ~4.5!, and noting that nea
the nucleusa, x5pbb'f5pbb , we find that the contribution
from atomb to the fieldB2 at the origin is

B2b5
2ei\u f u2

mc K 1

r 3L(
b

Sb* 3Sb . ~4.13!

The radial matrix element is

K 1

r 3L 5E
0

`

dr
1

r
U5p

2 ~r !517.78aB
23 , ~4.14!

whereaB55.2931029 cm is the Bohr radius, and the nu
merical value of Eq. ~4.14! was obtained using the
exponential-type wave functions of Clementi and Roetti.20

The evaluation of the overlap tensor~4.10! is facilitated
by using a coordinate system centered between atomsa and
b, with the unit vectorx38 along the interatomic axis and tw
additional unit vectors,x18 andx28 , completing the orthonor-
mal Cartesian basis. Then the components of the ove
tensor become
nd
-

e

e

e

ap

Sab8 5
3

4pE d3r eiqb•rU5p~r !U5p~s!
r a8sb8

rs
, ~4.15!

where s5sb , r a85xa8•r , sb85xb8•s, etc. We may set
exp (iqb•r )511 iqb•r in Eq. ~4.15!, sinceuqb•r u&1022 for
values ofr where the other factors of the integrand are n
negligibly small. Most of the elements of the tensor~4.15!
vanish by symmetry; the nonvanishing parts are

Sab8 5S~a!dab1 i
q18R0

2
S~1!«ab22 i

q28R0

2
S~1!«ab1

1 i
q38R0

2
S~a!dab , ~4.16!

where « i jk is the antisymmetric tensor with«12351. The
overlap ofp orbitals is

S~1!5S~2!5
3

8pE d3r U5p~r !U5p~s!
r 18s181r 28s28

rs
,

~4.17!

and the overlap ofs orbitals is

S~3!5
3

4pE d3r U5p~r !U5p~s!
r 38s38

rs
. ~4.18!

Since Sb5( i j xi8Si j8 xj8•xb5( jSj8(xj8•xb), and since bothxb

andxj8 are elements of orthonormal bases, we have

(
b

Sb* 3Sb5(
b

Sb8* 3Sb85 iS~1!~S~1!1S~3!!qb3Rba
~0! ,

~4.19!

and the expression~4.13! for the field at the origin become

B2b5Nba

4e\

Mc
u f u2K 1

r 3L S~1!~S~1!1S~3!!. ~4.20!

Here

Nba5
M

2m
Rba

~0!3qb ~4.21!

is the sum of the angular momenta of atomsb anda about
their center of mass.

The interaction2mK•B2b of the magnetic momentmK
5(mK /K)K of the nucleus of atoma with the fieldB2b Eq.
~4.20! produced by nearest-neighbor atomb must be the
same as the spin-rotation interaction~1.1!. Equating

cK0K•Nba52
mK

K
K•B2b , ~4.22!

we obtain our estimate~1.10! for cK0 .
Because of the axial symmetry and even parity of

integrands in Eqs.~4.17! and~4.18!, the two-center integrals
reduce to two-dimensional integrals. For example, the ov
lap integral fors orbitals is

S~3!52E
0

`

U5p~r !ks~r ! r 2dr

528.516 exp~21.181 Å21R!, ~4.23!



ra
e
ti.
en

a
ra

-

x

o-
-

5
.1
e
he
b

ater
ger

shift

t

pic
us,

ing

ns
per-

rgy
es

etic

8806 PRB 59FITZGERALD, GATZKE, FOX, CATES, AND HAPPER
whereR is the~possibly nonequilibrium! separation between
the nuclei. The integrand of Eq.~4.23! contains the factor

ks~r !52
3

2Eu0

p

U5p~s!cosc cosu sinu du. ~4.24!

R, r , and s form a triangle withs subtending the angleu
and r subtending the anglec, so

s5AR21r 222Rr cosu, and cosc5
R2r cosu

s
.

~4.25!

The angleu0 is defined by

u05H 0, r<R/2;

cos21 R/2r , r .R/2.
~4.26!

The overlap integral forp orbitals is

S~1!52E
0

`

U5p~r !kp~r ! r 2dr58.457 exp~21.578 Å21R!,

~4.27!

where

kp~r !5
3

4Eu0

p r

s
U5p~s!sin3u du. ~4.28!

The overlap integrals were determined by numerical integ
tion atR/aB58.28,8.30, . . . ,8.36 using the exponential-typ
Roothaan wave functions tabulated by Clementi and Roet20

They were very well described in this range by the expon
tial functions of the internuclear separationR given in Eqs.
~4.23! and~4.27!. We also found that over the same interv
of internuclear separations, the product of overlap integ
needed to evaluate Eq.~1.10! was well described by

S~1!~S~1!1S~3!!5244.52 exp~22.693 Å21R!,
~4.29!

Substituting into Eq.~1.10! values for the physical con
stants, a mean xenon massM52.18310222 g, 129Xe
nuclear spinK51/2 and nuclear magnetic momentmK5
23.90310224 erg/G, and Eq.~4.29! for the product of the
overlap integrals, we find

cK

h
521.9663106u f u2 exp~22.693 Å21R! Hz

5214.1u f u2 Hz at R5R054.4 Å .
~4.30!

To obtain the valuecK0 /h5227 Hz inferred in Sec. III
from the measured chemical shifts of solid and gaseous
non, we must haveu f u51.38. We would expect18 to find f
51 in Eq. ~4.9! if the spillover of the wave functions from
atom b to atoma could be determined by simple orthog
nalization of 5p wave functions of free xenon atoms. How
ever, we expect fairly substantial modifications of thep
orbitals of xenon atoms in the solid. For example, the 9
eV band gap of solid xenon21 is substantially less than th
12.13 eV first ionization potential of a free xenon atom. T
5p orbitals of xenon atoms in the solid must therefore
-

-

l
ls

e-

6

e

more extended than those of a free xenon atom. This gre
extension would lead to a larger overlap integral and lar
values ofu f u.

We may also use Eq.~4.30! with Eq. ~1.7! to estimate

e522.693 Å21R, ~4.31!

and thus,

e05e~4.4 Å !5211.8. ~4.32!

Adrian17 calculated thate/R522.506 Å21, which yields
e05211.0 forR054.4 Å and agrees with our result~4.32!
to within 7%. As discussed by Lurieet al.,22 the experimen-
tal data on the temperature dependence of the chemical
in solid 129Xe are not accurate enough to determinee0 to
better than about 8%.

We can use Eqs.~4.21!, ~4.2!, and ~3.1! to write Eq.
~4.20! in terms ofB0 ,

B2b5
e2

mc2 u f u2K 1

r 3L S~1!~S~1!1S~3!!~Rb
~0!Rb

~0!2R0
21!•B0 .

~4.33!

From Eqs.~3.17! and~3.20! we see that for the total field a
the origin,B25(bB2b , we have very nearly

B25B11sgB052sp•B0 , ~4.34!

a result that is essentially independent of any microsco
model of the electronic structure, as shown in Sec. III. Th
in solid Xe, B152sc•B0 , with the shielding tensorsc
5sg11sp , the sum of the isotropic shielding coefficientsg
for xenon gas and the paramagnetic antishielding tensorsp
due to neighboring Xe atoms. Using Eqs.~4.34! and ~4.33!
we find that a Xe atom displaced a distanceR from the
shielded nucleus contributes a paramagnetic antishield
tensor

sp5
e2

mc2 u f u2K 1

r 3L S~1!~S~1!1S~3!!~R212RR!.

~4.35!

The zz component of the tensor is

sp;zz5
e2R2

mc2 u f u2K 1

r 3L S~1!~S~1!1S~3!!sin2u, ~4.36!

whereR•x3 /R5cosu.
The only previous estimate of paramagnetic contributio

to the shielding of pairs of xenon atoms seems to be a
turbation calculation by Adrian,17 who derives an estimate

sp;zz5
16mB

2

DE K 1

r 3L ~S~1!2S~3!!2 sin2u ~4.37!

for the paramagnetic shielding coefficients. In Adrian’s
notation,17 the Bohr magnetonmB was denoted byb and the
overlap integralsS(1) and S(3) were denoted bySpp and
2Sss , respectively. Adrian chose a mean excitation ene
DE529.6 eV to permit him to sum the perturbation seri
by closure. Adrian’s estimate~4.37! gives the correct sign for
the observed pressure-dependent shift of the diamagn
shielding, but only about 66% of the magnitude.22
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V. EXPERIMENTS

We have carried out experiments10 on 129Xe nuclear spin
relaxation in solid Xe to determine how much of the me
sured relaxation might be due to the Raman scattering
phonons discussed above. We used samples for which
value of the nuclear spin polarization had been increa
through spin-exchange optical pumping to many orders
magnitude above the thermal equilibrium value.11,23 This
made it possible to study the relaxation of the spin polari
tion over severale foldings and over a large range of tem
peratures and applied magnetic fields.

The sample cells used for these measurements were p
glass cylinders filled with a few milligrams of Rb metal th
had been distilled to reduce impurity contamination. The
gas used to fill the cells either had the naturally occurr
isotopic mixture, with 26.4%129Xe, or was from two
batches that had been isotopically enriched, one to 72
and the other to 80.8%129Xe. After the alkali metal and ga
had been loaded into the cell, it was detached from the g
filling manifold by fusing the glass fill tube with a han
torch. This left a small ‘‘tip,’’ several mm in length, which
served later to contain the frozen xenon. In addition to xen
gas, some of the cells were also filled with 80 to 100 torr
N 2 gas to quench excited Rb atoms and prevent reradi
resonance light from depolarizing the spins of the Rb ato
For applied fields above about 1000 G, the nuclear sp
relaxation timeT1 did not depend on the presence of N2 in
the cell. For smaller applied fields, however, the relaxat
rates did depend on the amount of N2 in the cell. As we
discuss below, this was probably due to the dependenc
the grain size of the polycrystalline frozen xenon on t
amount ofN2 gas in the cell.

During optical pumping, a simple oven was used to ma
tain the cells at a temperature of about 90 °C, and a long
dinal magnetic field of a few gauss ensured that small am
ent magnetic fields caused no spin depolarization. A la
electron spin polarization of the Rb atoms was maintaine
the cells by laser optical pumping with 3 to 5 W from a
Ti:sapphire laser at the 7947 Å RbD1 line. Spin-exchange
collisions between Xe atoms and the polarized Rb ato
transferred spin angular momentum from the Rb electron
the nuclei of129Xe atoms. In about 1/2 hour the129Xe nuclei
reached a saturated polarizationP0.0.15, which was ad-
equate for subsequent studies of spin relaxation.

After the nuclear spin polarization had saturated,
sample cells were moved to a separate apparatus where
uid nitrogen was used to freeze the polarized129Xe gas into
the tip of the cell. The tip with the frozen xenon was plac
in a coil, 1/4 inch in diameter and tuned to resonate at
MHz. The coil and sample cell were placed inside a flowi
He gas cryostat, where the sample could be held at any
sired temperature between 4.2 and 77 K, or in a flowing2
gas cryostat for temperatures between 77 K and room t
perature. The coil with input and output coupling capacit
constituted one branch of an Anderson-type LR balan
twin-T bridge circuit.24 A Hewlett-Packard signal generato
~HP 3325A! served as a radio frequency~rf! source, and the
signal across the balanced bridge was amplified by
Princeton Applied Research preamplifier~PAR 115! and de-
tected using a lock-in amplifier~PAR 5202!. The cryostat
-
of
he
d
f

-

rex

e
g

%

s-

n
f
ed
s.
-

n

of
e

-
u-
i-
e

in

s
to

e
liq-

1

e-

-
s
d

a

containing the sample and the coil was situated betwee
pair of Helmholtz coils, 75 cm in diameter, which provided
static field perpendicular to the axis of the resonator coil. T
uniformity of the static field was determined to be better th
one part in 105 over the sample volume~several mm3). The
nuclear spin polarization was measured by detecting
nuclear magnetic induction signal across the coil in the st
field BXe5vXe /gXe51800 G, the resonant field for129Xe at
vXe /(2p)52.1 MHz. HeregXe is the 129Xe gyromagnetic
ratio. We let the 129Xe relax in the fixed static fieldB0 ,
which could be set anywhere from a few gauss to about 2
G. We sampled the polarization five or six times during t
relaxation by briefly changing the field toBXe . With this
scheme, we could only measure relaxation times long co
pared with the time required to change the field to and fr
BXe .

The nuclear magnetic induction signal was created by
plying a small rf magnetic field 2B1 cos(v0t) to the coil and
sweeping the static magnetic fieldB0 rapidly throughBXe .

The field sweep rateḊ5gXedB0 /dt and the Rabi frequency
v15gXeB1 were adjusted so that the polarization loss dur
the sweep across the resonance was very small. For a s

rateḊ@v1
2 but small compared to the second moment of

absorption line shape for the nuclear spins in the solid,

fractional loss25 of polarization isDP/P'pv1
2/Ḋ. Detection

losses were reduced to less than 1% by reducing the rf fi
strength or by increasing the sweep rate. The sample t
perature was held constant in the cryostat during the en
decay, which could be a week or more at low temperatu
and large magnetic fields. With this detection method, a
decrease in signal between successive samplings of the
polarization was due to spin-lattice relaxation.

Our experiments showed that for sufficiently large ma
netic fieldsB0*1000 G, and for temperaturesT>20 K, the
measured129Xe polarizationP was well described by an
exponential decayP5P0 exp(2t/T1) with a single time con-
stantT1 . Furthermore, in this regime the relaxation timesT1
were independent of magnetic field~up to our maximum
field of ;2000 G!, isotopic composition of the Xe, and th
presence of any other gas, e.g., N2 , He, or Kr. The high-field
relaxation rates for 20 K,T,120 K are shown in Fig. 2.
Also shown is our prediction~1.5! for the relaxation rate due
to Raman scattering via the spin-rotation interaction, us
cK0 /h5227 Hz from Eq.~3.21! and e05211.8 from Eq.
~4.32!. The good agreement between experimental and th
retical relaxation rates strongly suggests that the sp
rotation interaction~1.1! dominates the relaxation of soli
129Xe in this regime. For higher temperaturesT.120 K, the
relaxation becomes dominated by vacancy diffusion.8,13

For T*20 K and fieldsB0;1000 G, Eq.~2.49! implies
that the relaxation rate due to the paramagnetic antishield
is smaller than that due to the spin rotation interaction b
factor;(B0 /BD)2;1026. However, at the largest currentl
available magnetic fields (;25 T! fluctuations in the para-
magnetic antishielding should contribute about 25% of
total relaxation rate.

For T&20 K or for B0&1000 G, we have found tha
Raman scattering is insufficient to account for the obser
129Xe relaxation rate, so other mechanisms must be imp
tant. A thorough discussion of these other relaxation mec
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8808 PRB 59FITZGERALD, GATZKE, FOX, CATES, AND HAPPER
nisms is beyond the scope of this paper, but more details
be found in Refs. 10–12. We present here only a survey
the evidence for one probable mechanism, cross relaxatio
131Xe in the solid.

As shown in Fig. 4, the relaxation rate of129Xe in the
solid has a strong dependence on magnetic field forB0
&1000 G. At these lower fields, the coupling of the elect

FIG. 4. Dependence on magnetic field of the longitudinal rel
ation rate 1/T1 of 129Xe in frozen xenon at various temperature
The data at 110 K were taken with a cell sealed off at a tempera
of 25 °C, when it contained 600 Torr of xenon, isotopically e
riched to 72.9%129Xe, and 100 Torr of N2 gas. The data for all
other temperatures were taken with a sample cell filled with 2
Torr cm3 of xenon~at 25 °C), isotopically enriched to 80.8%129Xe
with only 3.4% 131Xe, and no other gases. The cell volume w
about 3.2 cm3. The faster relaxation rates at low magnetic fields
due to mechanisms other than Raman scattering of phonons.
solid lines are to guide the eye.
an
of
to

quadrupole moment of the spin-3/2131Xe nuclei to electric-
field gradients near crystal grain boundaries can bring
131Xe sublevel energy splittings close to resonance with
129Xe, allowing for rapid cross relaxation. Because of t
short relaxation time of131Xe, however, the polarization
transferred to the131Xe is rapidly lost, which makes cros
relaxation to 131Xe an effective relaxation mechanism fo
129Xe.10–12 This interpretation is supported by the da
shown in Fig. 5 of the time dependence of the polarizat
for four different cells atB051000 G andT54.2 K. Cell~a!,
with only 3.4% 131Xe, had significantly slower relaxation
than cell ~b! containing natural Xe with 21.2%131Xe. The
Xe in cell ~d!, which contained Kr buffer gas, was found
freeze much more slowly than in cell~c! with He buffer gas,
suggesting that the grain sizes of the polycrystalline ice
cell ~d! were larger than in cell~c!. From the slower relax-
ation rate exhibited by cell~d!, coupled with the non-
exponential decay shown by all four cells and the dep
dence on131Xe concentration, we conclude that129Xe spin
diffusion to the grain boundaries, where the129Xe cross re-
laxes to 131Xe, plays an important role in the relaxation
low temperatures and low fields. Related studies at 4.2
have been reported by TonThatet al.12
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APPENDIX: SET AVERAGES

We can use Eq.~2.26! to sum the dyadswbwd of Eq.
~2.40! over all phonon polarization states to find
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FIG. 5. Experimentally observed nuclear-spin polarization of129Xe as a function of time at a temperatureT54.2 K and at an applied
field B051000 G.~a! The cell was filled at 25 °C with 600 Torr of xenon gas, isotopically enriched to 80.8%129Xe with only 3.4%131Xe.
~b! The cell was filled at 25 °C with 600 Torr of xenon gas of natural isotopic composition, 26.4%129Xe and 21.2%131Xe. ~c! The cell was
filled at 25 °C with xenon gas, enriched as in~a! and at a partial pressure of 600 Torr; in addition the cell was filled with helium gas
partial pressure of 2600 Torr.~d! The cell was filled at 25 °C with xenon gas, enriched as in~a! and at a partial pressure of 300 Torr;
addition the cell was filled with krypton gas at a partial pressure of 300 Torr. The pronounced nonexponential decay of the polari
cell ~c! is probably a consequence of spin diffusion to grain boundaries, where polarization can be transferred from129Xe to rapidly relaxing
131Xe. The listed values ofT1 correspond to the straight-line fits. Raman scattering of phonons makes a negligible contribution
low-temperature relaxation seen here.
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(
j ej a

wbwd521e0@22nbnb2ndnd#1
1

2
e0

2@~nb•nd!21

2~nb•nd!nbnd1~nb3nd!~nb3nd!#. ~A1!

The bold numerals in Eq.~A1! denote the correspondin
multiple of the unit dyadic, for example,252(xx1yy
1zz).

We assume the xenon ice is polycrystalline, with the
dividual crystallites so small that spin diffusion ensures u
form polarization throughout the sample. Then express
~A1! should be averaged over all orientations of the xen
crystal. Let a rigid-body rotationR5R(f,u,c) rotate the
crystal about the central nucleusa from the reference posi
tion of Fig. 3 to an orientation specified by the Euler ang
(f,u,c). Then the unit vectornb to the nearest-neighborb
is rotated to the new unit vector

Rnb5R(
q

~21!qjqnb;2q5(
pq

~21!qjpDpq
1 nb;2q .

~A2!

HereDpq
1 5Dpq

1 (f,u,c) is a WignerD function, an irreduc-
ible representation of the full rotation group, and the sph
cal unit vectors are

j152
x1

A2
5

x1 iy

2A2
, j05z, j215

x2

A2
5

x2 iy

A2
. ~A3!

We define the orientational average for a quantityf
5 f (f,u,c) that depends on the crystal orientation by

^ f &5
1

8p2E f df sinu du dc. ~A4!

The orientational average of the dyadic~A1! will be denoted
by

Wm[K (
j ej a

wbwdL . ~A5!

The averaged dyadic~A5! is the same for any pair (bd) in
the set Lm , so the orientationally averaged partial su
~2.40! becomes
-
-
n
n

s

i-

K x1•F (
~bd!PLm

(
j ej a

wbwdG•x2L 5gmx1•Wm•x2 .

~A6!

Using the orthogonality properties of the WignerD func-
tions to average the dyad components of Eq.~A1!, and re-
calling thatnb•nd5cosum, we find

^nbnd&5
1

3
nb•nd5

1

3
cosum . ~A7!

A special case of Eq.~A7! is

^nbnb&5^ndnd&5
1

3
. ~A8!

By similar arguments, we can show that

^~nb3nd!~nb3nd!&5
1

3
sin2 um . ~A9!

Substituting Eqs.~A1!, ~A7!, ~A8!, and~A9! into Eq.~A5!
we find

Wm[K (
j ej a

wbwdL 5S 21
4e0

3
1

2e0
2

9
1

e0
2P2

9 D1,

~A10!

where P25P2(cosum)5(3 cos2 um21)/2 is the Legendre
polynomial of order 2. Noting thatx1•1•x252, we find
from ~A10! that

x1•Wm•x25S 41
8e0

3
1

4e0
2

9 D 1
2e0

2

9
P25(

l
cl~e0!Pl .

~A11!

Equation~A11!, together with Eq.~A6!, completes the proof
of Eqs.~2.40! and ~2.41!.

We now turn to the more complicated relaxation produc
by the fluctuations in the paramagnetic antishielding. Us
Eq. ~2.29! to sum the dyads of Eq.~2.44! over the phonon
polarization vectors, we find
(
j ej a

wb8wd85S v0

vD
D 2H 1

2
~11zz!1

e0

2
@~nbnb1ndnd!1z•~nbnb1ndnd!•z11z•~nbnb1ndnd!z1z~nbnb1ndnd!•z#

1
e0

2

2
@~nb•nd!~z•nbnd•z 11nbnd1zndnb•z1z•ndnbz!1z•~nbnbndnd1ndndnbnb1nbndndnb

1ndnbnbnd!•z#1
e0

2
@z•nbnbz1zndnd•z1~e021!z•~nbnbnbnb1ndndndnd!•z#

1
e0

2

2
@4z•~nbnbndnd!•z1~e021!~nb•nd!z•~nbnbnbnd11nbnbndnb1ndnbndnd1nbndndnd!•z#

1
e0

2

4
z•~nbnbndnd!•z@312~e021!1~e021!2~nb•nd!2#J . ~A12!
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The orientational average of the dyadic~A12! is

Wm8 [K (
j ej a

wb8wd8L . ~A13!

The averaged dyadic~A13! is the same for any pair (bd) in
the setLm , so the partial sum~2.45! becomes

K x1•F (
~bd!PLm

(
j ej a

wb8wd8G•x2L 5gmx1•Wm8 •x2 .

~A14!

To evaluate Eq.~A13!, we need, in addition to the ave
aged dyads~A7! and~A8!, the averaged tetrads which occ
in Eq. ~A12!, for examplê nbnbndnd&. We note that

nb5A4p

3 (
q

~21!qjqY1,2q
b 52A4p$j^ Y1

b%00.

~A15!

Here the spherical harmonic isY1,2q
b 5Y1,2q(ub ,fb), where

the colatitude angleub and azimuthal anglefb specify the
direction ofnb .

In Eq. ~A15! we have used the tensor-coupling notation
the outstanding reference book by Varshalovich, Moska
and Khersonskii,26

VLM5$TL1
^ UL2

%LM5 (
M1M2

TL1M1
UL2M2

CL1M1L2M2

LM

~A16!

to denote the coupling of two spherical tensorsTL1M1
and

UL2M2
to an irreducible product tensorVLM with total angu-

lar momentum quantum numberL and azimuthal quantum
numberM. HereCL1M1L2M2

LM is a Clebsch-Gordan coefficien

For example, in Eq.~A15! the irreducible product tenso
$j^ Y1

b%00 with L50 andM50 is formed from the products
of tensor componentsjq, with L151 and M15q, and
tensor componentsY1,2q(ub ,fb)5Y1,2q

b , with L251 and
M252q.

As an illustrative example, we evaluate^nbnbndnd&. We
first use Eq.~A15! to recouple the dyadnbnb with 9 j
coefficients26

nbnb54p~$j^ Y1
b%0^ $j^ Y1

b%0!00

54p(
L

~2L11!H 1 1 0

1 1 0

L L 0
J

3~$j^ j%L ^ $Y1
b

^ Y1
b%L!00

52
1

A3
$j^ j%001A8p

3
~$j^ j%2^ Y2

b!00.

~A17!

In evaluating Eq.~A17! we used the value 1/(3A2L11 ) for
the 9j coefficient,26 and we also made use of the well-know
recoupling identity for spherical harmonics of the sam
arguments26
f
v,

$YL1
^ YL2

%LM5A~2L111!~2L211!

4p~2L11!
CL10L20

L0 YLM .

~A18!

Note that the orientational average of the tensor

VJM~LL8!5$$j^ j%L ^ $j^ j%L8%JM ~A19!

formed from the unit vectorsjm is

^VJM~LL8!&5(
M8

VJM8~LL8!

8p2

3E df sinu du dcDM8M
J

~f,u,c!

5V00~LL !dLL8dJ0dM0 . ~A20!

We can use 6j or 9j coefficients where needed to recoup
the product ofnbnb of Eq. ~A17! with the analogous expres
sion for ndnd to obtain a superposition of tensors like E
~A19!. Then, using Eq.~A20! to retain only the rotationally
invariant terms in the average, we find that

^nbnbndnd&5
1

3
$j^ j%00$j^ j%00

12
A5

15
~$j^ j%2^ $j^ j%2!00P2 . ~A21!

Here and subsequently, Legendre polynomials without
plicit arguments are assumed to have the argumentnb•nd
5cosum. In deriving Eq.~A21! we made use of the additio
formula for spherical harmonics with different arguments26

$YL~nb! ^ YL~nd!%005~21!L
A2L11

4p
PL~nb•nd!.

~A22!

In like manner, we find that

^nbnbnbnd&5^nbnbndnb&5^ndnbndnd&5^nbndndnd&

5F1

3
$j^ j%00$j^ j%00

12
A5

15
~$j^ j%2^ $j^ j%2!00P2Gnb•nd .

~A23!

and

^nbndndnb&5
1

3
$j^ j%00$j^ j%00~nb•nd!2

1
A3

6
~$j^ j%1^ $j^ j%1!00unb3ndu2

1
A5

45
~$j^ j%2^ $j^ j%2!00@51P2#.

~A24!

To evaluate the nested dot products needed for Eq.~A14!
we use Eqs.~A21!, ~A23!, and~A24! to derive the following
identities:
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x1•$z•^nbnbndnd&•z%•x25
2

15
P2 ; ~A25!

x1•$z•^nbnbnbnd&•z%•x25
2

15
P1 ; ~A26!

x1•$z•^nbndndnb&•z%•x25
2

9
2

4

45
P2 . ~A27!

Using Eqs.~A12!, ~A13!, ~A25!, ~A26!, and ~A27! we
find

x1•Wm8 •x25S v0

vD
D 2H 11

e0

2 F8

3G1
e0

2

2 F8

9
1

88

90
P2G

1
e0

2 F4~e021!

15 G
1

e0
2

2 F8~e021!18~2e011!P2

45 G
1

e0
2

4 F 2

15S 2~e021!2

15
1

11e0
2120e0132

21
P2

1
12

35
~e021!2P4D G J . ~A28!

To facilitate verification of Eq.~A28!, the quantities in
square brackets are given in the same order as those o
dyadic ~A12!, from which they are obtained.
c

,

.

the

Collecting coefficients of the Legendre polynomials, w
rewrite Eq.~A28! as

x1•Wm8 •x25S v0

vD
D 2H S 11

3e0

5
1

e0
2

15D
2

1
11e0

2~e016!2P2

630

1
2e0

2~e021!2P4

175 J 5S v0

vD
D 2

(
l

cl8~e0!Pl ,

~A29!

which, together with Eq.~A14!, completes the proof of Eqs
~2.45! and ~2.46!.

The expressions derived here are appropriate for p
crystalline samples of xenon ice, which at present seem
be the only form used for nuclear magnetic resonance. H
ever, it is straightforward to generalize the set average
single crystals with arbitrary orientations to the applied ma
netic fieldB0 . Instead of the average~A4! over the full ro-
tation group, one can use an average^ f &5(48)21(GG f over
the 48 elementsG of the point groupOh , the full symmetry
group of the cube. From products of the irreducible repres
tations ofOh one can find unit representations for which t
group average is nonzero, in analogy to Eq.~A20!. For the
paramagnetic antishielding, the rate calculated for the sin
crystal depends weakly on the orientation of the crystal w
respect to the externally applied magnetic fieldB0 , but for
the spin-rotation interaction the calculated rate is exactly
same whether the point groupOh is used for a single crysta
or the full rotation group is used for a polycrystalline samp
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