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129 spin relaxation in frozen xenon
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(Received 2 September 1998

We discuss the longitudinal spin relaxation’8fXe nuclei in frozen xenon. Over a large range of tempera-
tures and magnetic fields, the dominant spin-lattice relaxation mechanism is shown to be nuclear spin-flip
Raman scattering of lattice phonons. Two closely related interactions couple the lattice phonons to the spins of
12%e nuclei: (1) the nuclear spin-rotation interaction between nearest-neighbor atomg2)athe paramag-
netic antishielding of the externally applied field at the sit¢®Ke nuclei by the electrons of neighboring Xe
atoms. We show that relaxation rates can be predicted by using measured chemical shifts of gaseous and
condensed xenon. The predicted relaxation rates are in good agreement with measurements. We outline a
simple way to estimate the spin-rotation coupling and paramagnetic antishielding in terms of the small pertur-
bations of the outermost electron orbitals of one xenon atom due to a neighboring atom.
[S0163-182609)05513-7

l. INTRODUCTION X, Yy, andz. The relaxation of!?*Xe nuclear spins in pure,

Since the very earliest work on nuclear magnetichigh-pressure xenon gas and in xenon liquid is believed to be
resonance,it has been known that immobile spin-1/2 nuclei due to the interaction1.1).*®
in diamagnetic crystals can have relaxation times of many At fields of a few hundred thousand gauss, a very sizable
hours. The observed relaxation is often due to paramagnetisontribution to the spin relaxation should also come from
impurities. Here we discuss the relaxation of the spin-1/Zphonon-induced fluctuations of the paramagnetic antishield-
isotope *?%Ke in frozen xenon. Because freezing excludesing interaction
most impurities, intrinsic interactions characteristic of the
pure xenon crystal could dominate the relaxation. We show Ck
that at applied magnetic fields above a few hundred gauss v'=7-K-lay. (1.4
and at temperatures between about 20 and 120 K, the ob-

served longitudinal relaxation time in frozen xenon is well The | armor frequency of an electron in the applied magnetic
described by nuclear spin-flip Raman scattering of phononsie|q B, is w,=eBy/2mc, and the coupling coefficierty is

At magnetic fields between a few hundred and tens ofne same as in Ed1.1).
thousands of gauss, the coupling is dominated by the |, sec. |1, we show that the closely related interactions
phonon-induced spin-rotation interaction, (1.1) and(1.4), which act simultaneously in the crystal, have
the largest influence on spin relaxation by causing Raman
scattering of phonorsIn an analysis similar to that of van
Kranendonk for Raman scattering of phonons by the nuclear
quadrupole interactiohwe find that the spin-rotation inter-
between the nuclear spl of a 1?°Ke atom and the angular action(1.1) leads to a longitudinal relaxation rate
momentumN of the 1?°Xe atom and a nearest-neighbor atom
rotating about each other with angular velocity We use 1 97-rcﬁoT*2
the notation of Ramséy for the coupling coefficientcy =0
=ck(R), which depends on the internuclear separaRowf 1 4h wp
the pair. As indicated in Ed1.1), the angular momentuiN
of the pair of atoms is related to their angular velociy
about each other by

Ck

K-l w=cK-N, (1.0

v=
7(€0, T*). 1.9

The paramagnetic antishielding interactih4) makes an
analogous contribution to the relaxation rate,

2 2 2
AN=1- . (1.2 i:M(ﬂ) PPleo T, (1.6
T]F_’ 4ﬁ2wD wp o

The inertial tensof of a pair of xenon atoms, displaced from
each other byR, is The relative temperatuf® =T/Tj, is the ratio of the crystal
temperatureT to the Debye temperatur€, [55 K for Xe

M (Ref. 8], andwp=kgTp /% is the Debye frequency. We will
I= 7(R21— RR), (1.3 use the dimensionless functier= €(R), defined by
whereM is the mass of a xenon atom afe xx+yy+zzis = Riln c 1.7
the unit dyadic constructed from the Cartesian unit vectors drR K '
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FIG. 2. Longitudinal relaxation rate T/ of ?°Xe in frozen

(b) 1 xenon as a function of temperature. The open circles are measured
values of the longitudinal relaxation rate at an applied magnetic
field (typically 1000—-2000 & large enough to eliminate field-
dependent relaxation. The solid line is the réteb), which would

be expected if the spin relaxation were solely due to Raman scat-
tering of phonons by the spin-rotation interactighl) in frozen
xenon. At these fields, the relaxation réte6) due to fluctuations of

the paramagnetic antishieldiridy.4) is negligible.

B T T In Sec. lll we show that the spin-rotation coupling coeffi-
00 02 04 06 038 10 12 14 cient cgo is related to the isotropic chemical shiftg, of
T gaseous xenon angl. of crystalline xenon by

FIG. 1. (a) The efficiency functions;%(eq,T*) (solid line) and
7€y, T*) (dashed lingparametrize the relaxation due to spin-flip Cko MK
Raman scattering of phonons through the spin-rotation interaction h Kug/\ 87M R2 (gg—00), (1.9
(1.1) and the paramagnetic antishielding interact{&), respec-
tively. T*=T/Tp is the ratio of the crystal temperatufieto the whereug=e#/(2mc) is the Bohr magnetony is the mag-
Debye temperaturp . The functions® and »” asymptotically  netic moment of thé?e nucleusK = 1/2 is the spin of the
approach the constants 2686.8 and 8874.1 in solid Xe, using OWucleus, andM is the mass of a xenon atom. We have used
estimateey= — 11.8 from Eq.(4.32) to characterize the variation in Eqg. (1.9 along with recent measurements of the chemical

th? COL:J;’“ZQ Sftﬁngttfl;?(.R) Z‘I’gz i?ﬁ.g”ﬁgai,seﬁfﬂgzl (32) Zzzem shifts of gaseous and crystalline xefida determinecy,/h
ratio i T 07 jhe emciencies, phed by P =—27 Hz. Using this value oo, together with an esti-

Bp)?, gi h lati ibuti f th - . .
factor (By/Bp)*, gives the relative contributions of the paramag ate ofey= — 11.8 atRy=4.4 A | asderived in Sec. IV, we

netic antishielding and spin-rotation interactions to the relaxatio . L
rate.Bp is the fiegI]d for wFr)ﬂch the electron Larmor frequeney ave evaluated the predicted ra1e5) and compared it with
equals the Debye frequenay, . our measurements of the longitudinal relaxation rafig 1n
Fig. 2.
- o The excellent agreement between measurertfeitsind
to characterize the rate of changeayf with increasing in-  theory illustrated by Fig. 2 shows that Raman scattering of
ternuclear SeparatiOR At the equilibrium SeparatiORO of phonons through the Spin-rotation interact(dn]_) is a lim-
nearest-neighbor xenon atoms in the crysta=ck(Ro)  iting relaxation mechanism fot?*Xe in frozen xenon for
and €= €(Ry). As in van Kranendonk’s analysfsthe di-  temperatures between 20 and 120 K. Aoe120 K, the
mensionless  efficiency  functions 75(ey,T*) and relaxation due to diffusion of vacancies is no longer
77(€,T*), defined below by Eqgs(2.42 and (2.47, ac- negligible®3 for T<20 K, the ?%Ke polarization lifetime
count for the “freezing out” of phonons at low temperatures, appears to be limited by cross relaxation tfXe, as dis-
and are plotted in Fig. (&) using representative parameters cussed below in Sec. V.
for solid xenon. Norberg and his collaboratdreave already shown that an
Building on Ramsey’s theofyof the chemical shift in analogous intrinsic relaxation mechanism, Raman scattering
molecules, Torreypointed out a close connection betweenof phonons through the nuclear quadrupole interaction, is
the spin-rotation interactiofL.1) and the chemical shifr of  responsible for the spin-lattice relaxation 6fXe in solid
the nuclear magnetic resonance frequencies. The magnetienon. The quadrupole interaction is much more potent than
field B acting on a nucleus in a diamagnetic medium is ofterthe spin-rotation interaction. For example, at 30 K and for
slightly smaller than the externally applied magnetic fiBjd  fields B,>1000 G, the spin-lattice relaxation time &#Xe
because of shielding currents of the surrounding electrongs® ~10 s, while the spin-lattice relaxation time &%Xe is**
The chemical shift tensaw is defined by ~50000 s.
The spin-rotation interactiofil.1), which leads to the re-
laxation rate(1.5), and fluctuations in the paramagnetic an-
B=(1-0)-B,. (1.8) tishielding(1.4), which leads to the relaxation rat&.6), are
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closely related to the mechanisthsesponsible for spin re- many orders of magnitude higher nuclear spin polarization
laxation of *3C in liquid CS,. Relaxation due to magnetic than at thermal equilibrium. Chemical scavenging of residual
dipole interactions betweel’C spins is negligible, and the oxygen gas and other impurities by the alkali metal ensured
relaxation is dominated by the spin-rotation interaction of thethat the frozen xenon samples were of high purity.

tumbling CS molecules, with a smaller but noticeable con-  An important check on the basic physics underlying this
tribution at high applied magnetic fields from fluctuations inwork would be a measurement of the spin-relaxation rate of
the diamagnetic shielding. The anisotropic shielding fluc- 12°Xe at very high magnetic fields, where the relaxation rate
tuates for'C as the molecule reorients in the liquid. This (1.6) due to fluctuations in the paramagnetic antishielding is
causes the magnetic field experienced by ed€hnucleus to  comparable to the ratd.5) due to the spin-rotation interac-
fluctuate, and makes a contribution to the spin-relaxatioriion.

rate. For xenon ice at temperatures well below the melting

temperature, where effects of vacancy diffusion are neglible, Il. SPIN-FLIP SCATTERING OF PHONONS
the modulation of the paramagnetic antishielding by phonons _ _ _
plays the same role as reorientation of ,GdBolecules. Be- We will describe a solid xenon crystal with a simple De-

cause of this different physical origin for the fluctuations, thebye model, with a common speed of soundor longitudi-
relaxation rates depend differently on the temperature fonal and transverse phonoh#e can write the positioR,, of
13C in liquid CS, and for 12°Xe in xenon ice. At tempera- atom v as the sum of its equilibrium positioR(®) and a
tures comparable to the Debye temperature, the relaxatiodisplacement from equilibriurg, :
rate of 12%Xe is predicted to increase with the square of the
temperature for both the spin-rotation interactidn5) and R,=R\Y+s,. (2.1
the antishielding interactiofi..6). For *3C in liquid CS,, the
spin-rotation contribution to the rate increases with increasThe displacemert, will fluctuate because of thermal vibra-
ing temperature, but the contribution to the rate from thetions of the lattice and also because of the zero-point excita-
anisotropic shielding decreases. For both liquid, @8d xe-  tions of the phonons.
non ice, the contributions to the relaxation rate from the fluc- We can write the displacement as a superposition of the
tuating shielding are proportional &. creation operatorsalj and annihilation operatorg,; of

As Ramse¥ pointed out, the spin-rotation coupling coef- phonons of momenturik, vibrating along the direction of
ficient cx and the related change in the chemical shift forthe unit vectorx; . Because of our assumption of a common
condensed xenon are mainly due to the “paramagnetic’speed of sound for longitudinal and transverse phonons, one
electron currents. These can be generated by an applied magf-the polarization unit vectors;=z=B,/B, can be chosen
netic field or by the relative motion of contiguous xenonto be parallel to the externally applied magnetic fiBld and
atoms when no applied field is present. In Sec. IV, we usdéwo additional unit vectorg,;=x andx,=y can be chosen to
the simple pseudopotential method of Wtial® to derive  make an orthonormal, Cartesian basis. Then the displace-
an expression focy, ment operator for atorw is

CK _ZMKe

1 | 4 Xiay
= f2<_>s(l) sS4+ 53y, 1.1 _ E: 19KI Lik-R,
h ’7TKMC| | r.3 ( ) ( @ SV 2NMCS 5 \/E e +H.C., (22)

Hereeis the magnitude of the electron charges the speed 514 the momentum operator is
of light, and(1/r®) is the expectation value of ¥ for a 5p

electron in an isolated xenon atom displaced a distance MG
from the nucleus. The dimensionless paramétarhich can P =—j > Jkxage R+ He (2.3
be taken to b =1 as a f imation, | f ’ 2N A7

e taken to as a first approximation, is a gauge o i

how much the admixture coefficients for the wave functions . . .
differ from the values obtained from simple orthogonaliza- "€ denote the Hermitian conjugate of the sums in E22)

tion. S andS®), defined below by Eqg4.17) and (4.18, ~ and(2.3 by "H.c.”

are w and o overlap integrals of )5/ w(?;\(/e fl7J)I’ICti0r(1$. '?)he The sumg2.2) and(2.3) extend over phonon plane waves
orthogonalization method leading to E@..10 gives esti- of .momentumﬁk and over the three_ mutually orthogonal
mates which agree as well with experiment as, and are muciit vectorsx; of the phonon polarization. The crystal has a
simpler to calculate than, those obtained by the usual seconylumeV and is composed dfl atoms, each with magd. A

order perturbation method introduced by Ram&eyhere a crystgl With N atoms will haveN phonon states of a g?ven
sum over multicenter intermediate states  must bé)olanzatmn. Each phonon state takes up a volumé/¥ in

evaluated. Since the orthogonalization method is closelyv‘""“/e number space. The density of states in wave number

related to well-developed pseudopotential methods forPace is uniform within a sphere of radikis and there are

condensed-matter physitit is amenable to straightforward NO States with wave numbers larger thian. The Debye
improvement. wave numbekp, the Debye frequencyp, the Debye en-

In Sec. V we describe the experimelitssed to obtain the €rgy Ep, and the Debye temperatull, are related to the
data of Fig. 2. The experimental measurements were facili2fomic number density of the crystal by
tated by the use of spin-exchange laser pumping of xenon o 13
gas mixed with alkali metal vapor. The gas was subsequently L Ep _keTp _ ( 6m N)
frozen. This allowed us to work with samples which had Ccs fhcg heg \% '

D™ (2.9
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wherekg is Boltzmann’s constant. The phonon enekgys
related to the magnitude of the phonon momentiknby

E=7fck. (2.5

The number of phonon states of a specific polarization per

unit energy and per unit solid angle is, therefore,

3NE?/(47ED),

E:
PE=10 ExE,.

E<Ep; 2.6

Letn,;) be a basis state of the vibrating crystal witf)
phonons of momenturhk and polarizatiorx; . Operating on
such a state, the phonon annihilation operajgreliminates
one phonon,

a | Nig) = Vnig [ — 1). (2.7

In like manner, the phonon creation operaaﬁ[ increases
the phonon occupation number by one,

aL |nk]'>: \/nk]'"‘l |nkj+1>.

The nuclear spifK of atomea will interact with the lattice

(2.9

through pairwise spin-rotation couplings to each neares

neighbor atomg. Let Ng, be the angular momenturtin
units of) of atomB and atoma about their center of mass.
The spin-rotation interaction is

1
v=2, c(Rpa)Npar K= 572 C(Rpa)Rpa X Pgo-K

—o W@y .. (2.9

where

is the difference in the linear momenta of atg@rand atom

FITZGERALD, GATZKE, FOX, CATES, AND HAPPER

PRB 59

FIG. 3. The 12 nearest neighbors of a spinidfXe atoma. As
summarized in Table I, the ordered pairs of nearest neighbors can

tE)e partitioned into five setd ,,, with m=0,1,2,3,4. Pairs of atoms

in the same set subtend the same argjleat the central atona.

The pairs 8,6,,) for m=1,2,3,4 are examples of members of the
setsA,,. The 12 nearest-neighbor atoms paired with themselves
compose the set,.

in Egs.(2.9) and(2.14), as sketched in Fig. 3. As we discuss
in Sec. IV, the coupling coefficiert, (R) decreases so rap-
idly with increasingR that only nearest-neighbor interactions
need be considered.

As indicated in Eqs(2.9) and(2.14), the spin-rotation and
paramagnetic antishielding interactions can be decomposed
into n-phonon componentso™ and v’ contain terms

«. Following Eq.(2.1), we write the distance from the atom Which can absorm phonons, or absorh—1 phonons and

a to atompB as

— 0
Rga=Rin+Sga, (2.19)
whereRY) is the difference in the equilibrium positions
R =RY R, (2.12
andSg, is the difference between the displacements
S,Ba:SB_Sa' (213)

The nuclear spirK of atom a will also couple to the

lattice through the contribution to the chemical shift of para-
magnetic antishielding currents from neighboring atoms. Thé

potential for this interaction is

M
U’ZEB: Ck(Rga) @g-1-K= ﬁ% ck(Rga)

X @y (R5,1-RgRga) - K=v'® +0'@ ...
(2.14

emit 1 phonon, or absonh—2 phonons and emit 2 phonons,
etc. To obtain this series, we use a power-series expansion of
CK

— o oo, €S,
CK(RBEY) CK()‘].‘I' EgSﬁa Rﬂa+ 2 Rg +(€O 1)
(Spa* Risa)”
xﬁ—f +... (2.15
Ro

bout the equilibrium separatiorRo=|R(ﬁoa)|, with cg

=ck(Rg) and eg=¢€(Ry).

Using the expansiorni2.15 together with Eq.(2.13) in
Egs. (2.9 and (2.14), we find that the one-phonon interac-
tions are

Cko
(1Y (0) .
v o7 EB, RpaXPgqo K (2.1

Since xenon freezes as a face-centered-cubic crystal, there
will be 12 terms in the sum over nearest-neighbors at8ms and
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Mcko
2h

1) =

€,
v % wy- E‘)zsﬁa.Rgog(Rgl— RORY)
0

+2Sg,- R Sp R~ RiiSs, |- K. (2.17)

The interaction$2.16) and(2.17) can cause the nuclear spin
to flip with the emission or absorption of a single phonon.
The two-phonon interactions are

Cko €o
@D =230 | SpaX Pgat=2Ssa REARSIX Pgq | - K
v 2% 5 Ba Ba RS Ba Ba'*Ba Ba
(2.18
and
v (2) = o7 % wo-{Szal—S,gaSga

— (0) _ R(0)
1 S,BaRBa RBaSBa)

a

€
+ Eog RY)- Sp,(2S,-RY)

(Spa Ria)?

e—1)
RS

X (R31— R}B";R%)] K. (2.19

The interaction$2.18 and(2.19 can cause the nuclear spin
to flip with the emission of two phonons or the absorption of
two phonons, or with the emission of one phonon and ab
sorption of anothefRaman scattering

Except at impractically low crystal temperatures where
the spin-relaxation times are so long as to be irrelevant, th
single-phonon scattering described by E@s16) and(2.17)
make negligible contributions to the spin-relaxation rate in
comparison to the Raman scattering described by g8
and(2.19. All phonons in the lattice, and especially the very
abundant phonons with energis-kgTp~10"* erg, can
contribute to Raman scattering, but single-phonon absorptio
or emission is possible only for the relatively few, extremely

long-wavelength phonons with energies equal to the ZeemaVQl

energyukBo/K~10"%° erg of a nucleus of magnetic mo-
ment ux~10"2* erg/G in an applied magnetic fielB,
~10* G. Furthermore, for the spin-rotation coupling, the

long-wavelength phonons displace neighboring atoms by Wp=Xj XXj +
nearly the same amount and produce little of the relative

momentum (2.10 needed for the one-phonon interaction
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momentumik, and polarizatiomje in the mode into which

a phonon will be emitted by Raman scattering. The final
state,

|f>:|mK: _1/2, P ,nkaja—l,nke]-e-i— 1, .. .>,
(2.21
has the nuclear-spin projectiong 1/2 and hamkaja—l
and Ny t1 phonons in the respective modes.

According to Fermi’s golden rule, the transition rafé/;;
from the initial state to final states for which a phonon is
emitted within the solid angld(, is

2
dei=7|Ufi|2P(Ee)dQe- (2.22
The energyE, of the emitted phonon differs from the energy
E, of the absorbed phonon HytBy/K|~10"2° erg, the
energy absorbed or released in a nuclear spin flip. This dif-
ference is negligible compared to the Debye enekpy
~10 1 erg, which characterizes the phonon spectrum, and
we therefore seE.=E_, in subsequent expressions. We in-
tegrate Eq(2.22 over all directions of the emitted phonon
and over all energies and directions of the absorbed phonon,
and sum over the polarizati01>1§e andxja of the emitted and

absorbed phonons, to obtain the total rate of the transition
mg=1/2 tomy=—1/2,

2 Ep

T2 |, dEdQudQdvilpi(Ea). (223
ela

Wi =

We take the origin of the coordinate system to be the
equilibrium position of atomw, so R(®=0. Then we find
that the matrix element of E¢2.18) is

e o =(t?) =g DS (e -1)
s(ekaRE 1) WX, (2.2

The unnormalized, circular basis vectors are

" X =XLly. (2.29

The direction of the spin-flipping magnetic field, associated

ith the phonon-induced motion of the nearest-neighbor
atom 3, is defined by the vector

Xj - NgNpXXj =X -NgngX Xie)’

(2.2

€0
?(

(2.16. For similar reasons, the emission or absorption of twowith the unit vector from the originthe nucleusa with

phonons during a spin-flip is negligible compared to RamarR{®)=0) to the nearest-neighbor atoghgiven by
scattering. Thus, we will focus on relaxation processes for

which the initial state,

||>:|mK:1/2, e ,nkaja,nkeje, . .>,

(2.20

has the nuclear-spin projectiomy=1/2 and hasnkaja
phonons of momenturhik, and polarizatiorx; in the mode
from which a phonon will be absorbed, angeje phonons of

ng=RYIRY . (2.27
Similarly, the matrix element of Eq2.19 is
, L(2)1:\ _ CKO Ep PN
o= (10" @) =50 P (DS (e 1)
4N E, =
(e Ry 1) wi-x, | (2.28
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with TABLE |. Nearest-neighbor pairs can be partitioned into five
setsA,,. The number of ordered pairs in a setgs. The pair
, separation iso,Ry. Also tabulated are cas,, where 6,, is the
Wﬁ:EwO'{(Xjera'ijane)‘FEo[nﬁ‘xje(nﬁxja+xjanﬁ) angle subtended by the pair, and the asymptotic values of the
weightsD, from Eq.(2.43 andD/, from Eq.(2.48.

+nB'Xja(nBXje+XjenB)]+ Eo[Xje'Xja+(60_1)

m Om Om costn D (%) Dr’n(oo)
X(Ng-X; )(Ng-X; ) IngNg}. (229 4 12 0 1 1.382200  2.248640
1 48 Ji 1/2 0.345550 0.562160
The two Raman-scattering interactio(s18 and (2.19 2 24 NA 0 0.320796 0.438994
connect the same initial and final sta{@20 and(2.21) and 3 48 V3 -1/2 0.407861 0.546642
thus their matrix elements add coherently. The relaxation due 12 N -1 0.448817 0.627726

to the cross term between E¢2.18 and(2.19 must vanish
when the integrals of Eq2.23 are carried out, because such . . .
9 4223 and subtending the same anglg with the relaxing atom.

a cross term would be linear By, a behavior which is F ir of neiahb 45 A th e is i
excluded by symmetry. Explicit calculations confirm that thebOr a pair of neighborg ands'in setAp, the angle Is given

contribution to Eq.(2.23 from the cross term vanishes.

We focus first on the spin-rotation interaction. Substitut- COSOp=ng-Ns. (2.39
ing Eq.(2.24) into Eq.(2.23 with vs;=v{?, and noting that
the longitudinal relaxation tim@, for a spin-1/2 nucleus is
related to the transition rat@.23 by

The partitioning is summarized in Table I.
For pairs 8,6) in the same seA ,,, the angular integrals
(2.32 will be identical, and we designate them by

UTy=2Ws, (2.39 In(U)=1+jo(Uomdp) —2jo(Udp), (230
we find where the phonon momentum in units of the Debye mo-
. mentum#kp , is
1 @cC E
i ;OE 2 J DdEapz(Ea) nk i (nk j +l) u:k/szE/EDv (237)
T_‘]_ 4N h ﬁ5 Jela 0 aa ee
and
XX+'WBW5'X_ ¢D:kDRO:(67T2\/§)1/3 (23&

is the phase advance over the nearest-neighbor disRfce
for a phonon with the Debye wave numbey.
If we average Eq(2.31) over phonon occupation numbers

% f dQ, (ka5 1)

. (0) ) je E - . -
x(e e 1) in thermal equilibrium, the results are the Bose-Einstein dis-
tributions
ik..RO
Xf dQe (el s —1) 1 eFe/keT
—ik..RO <nkaja>=m and <nkeje+1>:m-
X (e ke Rg — 1), (2.3) 239

The integrals over the angles of propagation of absorbed Since polycrystalline samples have been used in most, if
and emitted phonons can be carried out analytically, and waot all, magnetic resonance experiments tfiXe in the
find for their average solid phase of the xenon, we should average (B®1 over

all possible orientations of the xenon crystal. As a result of
1 ik.R(O) _ik.RO this averaging, which we denote by angle brackets ), the
Ef d (e™"s —1)(e ° =1 partial sums of Eq(2.31) over pairs of nearest neighbors in
the setA, can be written as

=1+ jo(kRs3) — 2jo(kRy). (232

The spherical Bessel functiofithe “sinc” functions) of Eq. <X+' B 12;4 WgWs 'X> =9m2| ci(€o)Pi(cosbp),

(2.32) are (2.40
) sinx where P, denotes the Legendre polynomial of ordeiThe
Jo(x)= VR (233  nonzero coefficients,(ey) are

The sum over the 12 nearest neighb@rand 12 nearest Col€g) =4+ §60+ fEé

neighborss in Eq. (2.31) gives 144 ordered pai8s. From 3 9

inspection of Fig. 3, we see that these can be divided into >

five setsA,, (m=0,1,2,3,4) ofg,, ordered pairs with the C,( €)= 56%, (2.41)

same separation
© The derivation of Eqs(2.40 and (2.4)) is outlined in the
Rgs=omRo, (2.34  Appendix.
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Finally, we introducelT* =T/T, the ratio of the crystal with nonzero coefficients
temperature to the Debye temperature. Then B®1) re-

duces to Eq(1.5). The “freezing out” of phonons at tem- , 3¢, €2\?
peratures below the Debye temperatuf& £ 1) is described Co(€o)=| 1+ 5 t1g ¢
by the function

, 11€5(eo+6)?

760, T)=3 Gni(€0)Pi(COSn) Dn(T), Col€0)=~gz5
(2.42

, 2€3(ep—1)?
with the coefficientD ,(T*)—denoted by the same symbol Cie)=—775 - (2.49
as the analogous coefficients introduced by van
Kranendonk—defined by The derivation of Eqs(2.45 and (2.46 is outlined in the

Appendix.

Substituting Eq.(2.49 into Eq. (2.44), we obtain Eq.
(1.6), where we have introduced, as in £Eg.42), the phonon
freeze-out function

1 1 eu/T* )
D(T*)= T*zjo du u“me(u). (2.43

The coupling efficiency;>(eq, T*) is shown as a function of

T* in Fig. 1(a) for representative parameters of solid xenon. P o , )

For high temperaturesT¢>1), the weightsD,(T*) and 7 (€0, T )_% 9mCi (€0) P1(COSOm)Dy(T),
hencenS(ey, T*) approach constant valugthe asymptotic (2.47)
values ofD,,(T*) are given in Table)l and the relaxation -

rate (1.5) has aT*2 dependence. For temperaturds  With the coefficients

<0.01, one can readily show thaf(e,,T*) is proportional -
u

to T*5. However, the predicted relaxation times féfXe in A )

solid xenon are so longT¢=10® years forT* <0.01) that Dn(T%)= ﬁfo du uz(eu/T*_l)ZJm(u)' (2.48
the low-temperature limiting expressions are of no practical

significance. The asymptotic values dd, (T*) are listed in Table I.

As described in more detail in Sec. lll, measurements of For high temperature$* > 1, the ratio of the paramag-
the chemical shift of the nuclear magnetic resonance frenetic antishielding relaxation raté.6) to that from spin ro-
quencies of frozen and gaseotfSXe can be used with Eq. tation (1.5) is given by
(1.9 to infer thatcyy/h=—27 Hz for frozen xenon. In Sec.
IV, we estimatee,= —11.8. Evaluating Eq(1.5 with these 1/-|-1P wo |2 77 (€0,) wo 2 Bo 2
values ofcyy/h andegy, and for a xenon crystal temperature —S~( ) W: .3(< ) =3.3€(B—) ,
T equal to the Debye temperatufg =55 K, we find that Ty 7 €0 b
the predicted longitudinal relaxation timeT§=3.9 h, very (249
close to the observed relaxation time of 3.4 h Tor51 K whereB, =82 T is the field for whichwy= wp , and we have

andB,~1000 G. o used the value,= —11.8 derived in Sec. IV. As shown in
We follow a nearly identical treatment to that above for ig 1(p), the ratio of efficiencies in Eq2.49) is only weakly

the paramagnetic antishielding contribution to the relaxatiorljependent on temperature f6f =0.4 (T=20 K): it is only

rate, using primes to distinguish symbols for the paramags 5o aiT* =0.4 (T=22K), but 7.39 aff’* =0.1 (T=5.5 K).

netic antishielding calculations from their spin-rotation coun-  Raman scattering through the spin-rotation interaction and
terparts. Using Eqd2.19), (2.23, (2.30, (2.32, (2.36, and  {hrough the paramagnetic antishielding interaction are relax-

wp wp

(2.39, we find in analogy to Eq(2.31) ation mechanisms acting simultaneously and independently,
5 since their cross terms do not contribute to the relaxation.
1 9mcko ;o The total relaxation rate due to Raman scattering is thus
FT 5 < DS Zwﬁwa'x>
T]_ 4h wp M (B eAm Jela 1 1 1
1 eu/T* — =t . (2.50
X JO du uz(eu/T*—_l)ZJﬁ"'(u) (2.49 T, T3 T

We conclude this section by showing that the relaxation
The angle brackets in Eq2.44) indicate an average over all rates due to one-phonon scattering are completely negligible
orientations of the xenon crystal, as is appropriate for a polyeompared to the rates due to Raman scattering. Using Eq.
crystalline sample. In analogy to E(.40 we find (2.16 to calculate the high-temperature relaxation rate due
one-phonon scattering, we find
-

wg ) ?
:gm<_) EI ¢ (€o)Pi(cosby,), (2.49

wp

> Wiw;
(BS)eAn jela

- X_
> 1 M Rg#ﬁ( Cko
A h

2
- —RY 4
= T ) TBY, (2.51)

where the coefficient is
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210_4 42 1
=T¢D=7.94><1095 erg® st K4 (252 Ao=5BoXT, 3.2
B

Here . is the maanetic moment of the spin-1/2 nucleus anaand we denote the ground-state many-electron wave function
K 9 P at timet by ¥, =W¥,(r,,r,, ... t), where the location of

By is the magnitude of the applied magnetic field. Equation ) . ! :
. -9 : the first electron is, the location of the second s, etc.

(2.52) can be derived by methods similar to, but simpler . L : ) ’ .

than, those sketched above. Substituting values of physic?\llel(z) A rotating crystal with no externally applied magnetic

i . : . d. The crystal is rotating with the angular velocity
paraeter’ appopriate for the relaxation of SOiXe: "~ ay, with wy defined by Eq(3.1). We denote the ground-
— 4. , o— 4. , K— — 9.

X102 erg/G, T=Tp=55 K, cxo/h=—27 Hz, andB, state many-electron wave function for this case ¥y

. =Wy(rq,ro, ... 1).
— S 4 _ 2\l'1,f2
=10 kG, we find Ty 75'2X 10** years. Even foiBo=Bp In both of the two cases outlined above, which we denote
=820 kG, T7~1.2X 10’ years.

s . with a subscript=1 or 2, current densitied = J;(r) will be
Using Eq.(2.17) to calculate the one-phonon scattering, jnqyced at each poitin the crystal. We ignore any currents
we find coming from the paired electron spins or from the nuclear

2 2 2 9 spins, and we assume that only thetion of the electrons
iNA,MROMK“B<@) TBY( €2+ 8eg+20) and nuclei contributes td . We will also ignore any contri-
P 5 o\ €0 0 ’ . R .
T T3 h butions to the current from thermal vibrations of the crystal
(2.53 (phonong, although an important result of this phonon-free
analysis will be used to make a connection between chemical
shifts of xenon and phonon-induced, spin-lattice relaxation
127T4¢2|3 rates. The curreni; will generate a magnetic fielB; at the
'=———=0.29x10" erg ® s! K% (2.59 nucleus of atomy, which we take to be at the origin of a
hkg spatial coordinate system. According to the Biot-Savart law
the field is

with

The rate(2.53 from fluctuations in the paramagnetic anti-
shielding is bigger than the rat€.51) due to the spin-
rotation interaction byqfactw(MB/MK)2~107. Using the BFJ 43 r><‘]i_ 3.3
above parameters with the Bohr magnetqp=9.27 crd

X 10~ 2! erg/G andey=—11.8, we findTE ~1.2x 1¢° years

for Bo=10 kG, and 2.7 years fd,=Bp, so the predicted The operator for the electron current density at the spatial
rate from Eq.(2.53 is still negligible. The cross term be- positionr is

tween the matrix elements for the two single-phonon inter-
actions again vanishes.

. —e aoa
ng; [8(r—r))m+m8(r—r)]=d,+34, (3.9
[ll. SPIN-ROTATION COUPLING AND THE CHEMICAL . ..
SHIFT where the mechanical momentum for the electjois
=pj+(e/c)Ay(rj), and the canonical momentum Iig;
In the next two sections we analyze two closely related=7%V;/i. The sum in Eq(3.4) includes each electrgrin the
phenomena: the spin-rotation interaction between collidingrystal. As indicated in Eq(3.4), J, is the sum of a para-
Xe atoms, and the paramagnetic antishielding of an extermagnetic part,
nally applied magnetic field at a Xe nucleus caused by the
electrons of neighboring atoms. Much of the fundamental . —e
physics of these phenomena was discussed by Ramsey. JpImE [o(r—rj)pj+p;o(r—r;)], (3.5
Torrey’ showed how to use the connection between the !
chemical shift and the spin-rotation interaction to account forand a diamagnetic part,
the relaxation of*?%Xe in dense Xe gas. In this section we

discuss aspects of the physics that are largely independent of . —€? -

models of the electronic structure. In Sec. IV we outline a ‘]d:m_c; Ao(r)o(r=rj)=awoXrpe. (3.6
simple way to estimate the spin-rotation coupling coeffi-

cients. Here the operator for the electron charge density is

Consider the following two situations:
(1) A stationary crystal in an externally applied magnetic

field B,. Associated with this field is the Larmor frequency Pe™ —e}j: o(r=rj). 3.7
e The expressiong3.5 and (3.6 for the paramagnetic and
“’OZ_ZmCBO' 3.9 diamagnetic current densities are appropriate for the gauge of

Eqg. (3.2. The expectation valuél,) of the total electronic
where —e is the electron charge and the electron mass. current density(3.4) is gauge invariant.
We choose a gauge in which the spatially uniform, externally In the rotating crystalA,=0, and there is no diamagnetic
applied magnetic fiel8,=V X Ay is described by the vector contribution to the current density. There is, however, a con-
potential tribution from the rotating, charged nuclei, given by
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Jn2=— woXTrp,, (3.8 1
e oo B,=B1— By~ [ & a1 X (woX 1) (pet o).
wherep,=Z2X ,6(r — R(V )) is the charge density atfrom Xe

nuclei of atomic numbeZ =54 located at positionR(") in (316
the crystal. Ther(®) will rotate with the rotating crystal, but This is the field that would be produced at the origin at time
they will be time independent for the nonrotating crystal int=0 if the charge densitiep.=(®,|p|®;) and p, were

the magnetic field. rotating rigidly forward with angular velocityw,. These
The total current densities for the two cases are charge densities, however, are almost exactly the same as
. . those for isolated Xe atoms. The differences are mostly due
J1=Jp1+ Jg1= (W 1| Ip| ¥ 1) + (¥ 1| 4| V1), to the small spillover of the outermost electrons into the
cores of neighboring atoms. While this spillover is of great
J2=Jp2+Jn2=<\If2|3p|\If2>+Jn2. (3.9 importance to the paramagnetic currefsise Sec. 1Y, it pro-

duces negligible diamagnetism and we ignore its contribu-
tion to Eq.(3.16.
The field(3.16 will have contributions fronp, but notp,,
B.—=B..+B (3.10 for the central atom, and it will have contributions from
17 Fp1 T Pl both p, and p, for all other atoms. For the neighboring at-

(3.11) oms, the rotation about the origin can be viewed as a com-
bination of linear translation and a rotation about each at-

To find the expectation value of the current density operaom’s nucleus. A neutral, translating atom produces no

tors, we need the ground-state electronic wave functbbns  magnetic field outside of its electronic shells. Although the

In the case of a stationary crystal in an applied magneticotation of the electron charge denspy about the nucleus

Substituting Eq(3.9) into Eq. (3.3), we find that the corre-
sponding magnetic fields at the origin are

BZZ Bp2+ an .

field, the wave function is of an atom produces a magnetic dipole field outside of the
ot atom, the dipole fields from the atoms surrounding the cen-
V=e O, (3.12  tral atoma cancel at the origin because of the high symme-

try of the fcc lattice. Thus, the only significant contribution
to the fieldB; comes from the rotating electron charge den-
sity p of atoma. This contribution is the same as that of the
(HO+ %y L+VP—E;)d,=0. (3.13  diamagnetic curren3.6) produced when the atoma is iso-
lated and in an externally applied magnetic fi@gl. In this
HereH(© is the Hamiltonian of the stationary crystal with no case, the total field at the nucleus would Bg+B;=(1
applied field,L =(1/2)Z;r;Xp; is the total orbital angular —¢)B,, whereo is the isotropic chemical shift of xenon
momentum of the electrongin units of #), and V(® gas. We conclude from E@3.16) that
=(m/2)|wyx1;|? is the “diamagnetic potential.”

where®,=®,(r,r,, ...) is thelowest-energy solution of
the time-independent Schdimger equation

In the rotating crystal with no magnetic field, the ground- _ _ 2mcoy
state electronic wave function'fs B1=By=—0¢Bo=—— . (3.17
P,=g Eatlhgloolig, (3.149  Although the resultg3.16 and (3.17 were derived fort

=0, they are valid for all times. The fieB, rotates with the
angular velocity— wg, but for the polycrystalline samples
considered here, the ensemble-averaged vallg, afill be
parallel towy, and the rotation will leav®, unchanged.
(HO + % 6y L — E)D,=0. (3.15 In the crystal rotating with angular velocity wg, the
relative angular momentuniNg, between atome and
Equationg(3.13 and(3.15 differ only by the diamagnetic Nnearest-neighbor atong will be given by Egs.(1.2) and
potential V@, which is second order inw,. Thus, the (1.3, with @=—w, and the interatomic displacemeRt
ground-state energiés, andE, are the same to ordesy, as = RE)=RY from Eqg. (2.12. The spin-rotation interaction
are the wave function® ;(t=0)=®,; and ¥ ,(t=0)=d,. (1.1) between the nuclear spk of atoma and the relative

Also, the paramagnetic current densitibg=(¥;|J¥;) - EERAY TRICbae: BETRE M0 E e e
5 . . , mu [ :
and J,,=(V,|J,|W,) will be the same to ordes, at time P M B2

t=0. For the nonrotating crystal, the currents induced by th
applied magnetic field are time independent; in the rotatin

crystal, the current distributiond>2|jp|(1>2> viewed in the Uk Cro M o o0
rotating frame is time independent, but the current distribu- — 7 =K -By=—~=K- > f(R(B) 1-RPR) |- (— o)
tion (\I’2|jp|\1'2> seen from the laboratory frame will rotate g
rigidly with the crystal. 4coMRZ
Since the paramagnetic currents at the tirsd are the == TK “ 0y, (3.18
same to orderwy, the paramagnetic contributions to the
magnetic fields are equal as well, and we can write the difwhere the sum in square brackets is half the moment of in-
ference of the field$3.10 and(3.11) att=0 as ertia of the cube containing atomand all 12 nearest neigh-

where®,=d,(rq,r,, ...) is thelowest-energy stationary
state of the Schudinger equatiolf in a coordinate system
rotating along with the crystal at angular velocityew,

nuclear momenjuy = (u/K)K of atom « with the induced
g‘?ield B,. Therefore, from Eqs1.1) and(1.3),
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bors B sketched in Fig. 3. Because of the high symmetry of We want to estimate the magnetic fiddd of Eq. (3.11) at
the fcc crystal, the moment of inertia of the cube reduces téhe origin of the rotating coordinate system where the

the scalar B/IR(ZJ, and Eq.(3.18 implies that nucleusea is located. From Eq(3.5 we see that at timé
=0, an electron in the orbitap;, contributes a paramagnetic
AcoMR3K current density
=————ay. (3.19
h . —eh —ef
JjV:?qV|XjV|2+ erVVXjV_I—C-C- . (43)

In the stationary crystal, the total field acting at the origin
is Bo+B;=(1—0¢)Bg, Whereo, is the isotropic chemical The first term in Eq(4.3) is the current resulting from trans-

shift of xenon crystals. Thus lation of the orbital charge density at the velocitg, /m.
When Eq.(4.3) is summed over all orbitals and multiplied by
B.— — o .Bo— — 2mco 32 2 to account for the spin-up and spin-down electrons occu-
17 7 0cPo™ e @0 (3.20 pying each orbital, the field at the origin resulting from the

o _ ) first term is very nearly cancelled by the fidh}, from the
Substituting Eqs(3.20 and(3.19 into Eq.(3.17) we obtain  nyclear currend,, of Eq. (3.8), as discussed in the previous
the fundamental relatioft..9). section. Thus the field at the origin is almost entirely due to

Raftery et al? recently measured the relative chemicalthe current density,=J,(r) given by contributions from the
shift o4 — o between the gas and the solid phases’®e.  second term of Eq4.3),

At T=77 K, they determinedry— o.=317x 10" °. Substi-

tuting this result into Eq.(1.9), along with the known _—ef "

parametefs for ?%e, M=2.18<10 % g, Ry=4.4 A, 2= % XjVXju+C.C. 4.4
wr=—3.90x10"?* erg/G, andK =1/2, we find

Substituting Eq(4.4) into the Biot-Savart Law3.3), we find

Cko for the field at the origin

T: —27 Hz. (32])
_ —2efi 3 x|
By=— JZ & X5 X (4.5
IV. ESTIMATES OF cg
wherel=—ir XV is the electron orbital angular momentum

Here we discuss a simple theoretical method, based on &herator(in units of4).
orthogonalization procedure introduced by Wat al,™® The orbitalsé;, in Eq. (4.1) are solutions to the Schro
which gives paramagnetic modifications of magnetic shield—dmger equation )
ing coefficients or spin-rotation coupling coefficients which
are about as close to experimental observation as those ob- ) )
tained by Ramsey“ssecond-order perturbation theory as ap- oy vV tu(n—ihey TXV—¢j,
plied by Adrian!” No sum over intermediate states of per- ] ) ] ) )
turbation theory is needed, since the method is basically an€ orbital energy is;,. The effective single-particle po-
first-order estimate afy by pseudopotential theory. It could tentialv (r) has the periodicity of the crystal lattice, but the

be improved by the systematic application of higher-ordelsomtions of Eq(4.6) are lnot_ Bloch fqnctions because lof the
corrections® presence of the nonperiodic potentiaiz mg-r XV, which

We estimate the magnetic fieB, of Eq. (3.1]) that is  represents Coriolis and centrifugal forces on the electron.
produced at the origin when a crystal rotates with angulapubstituting expressioré.1) and(4.2) into Eq.(4.6), we see
velocity —wy, as discussed in Sec. Ill. For single-particlethat if the potentiab were the same as the potential of a free
electron wave functiongorbitals we will use the “tight-  Xe atom located &R, the orbital amplitudes;, would be
binding” approximation, which should be especially appro-identical to the orbitals(fg) of free Xe atoms, to first order in
priate for solid noble gases. The many-electron wave funcey. The outermost, p orbitals of the Xe atom are respon-
tion @, of Eq. (3.14 will be a Slater determinant of the sible for most of the phenomena under consideration here,
single-electron orbitalg);, = ¢;,(r) for an electron at posi- and we will write them as

2
$i,=0. (4.6

tion r and in the quantum stajdocalized near the equilib- 3 Ug.(s))
rium positionR(®) of nucleusy. We write the orbitals as Oy = (O (ry= A [ 5P\
p v v va(r)_XSpkv(r)_ A Sy Sv'xka (47)
. =V, iqy'r . .
b =X €™ (4.2) wherex, (k=1,2,3) is a unit vector along one of the three

the product of an orbital amplitudg,= x;,(r), and a phase crystal coordinate axes and the displacement of the electron
factorei® " where v from the nucleus is

s,=r—R\. (4.9

m
0,=— 7 wox R 4.2)

% Because contributions from the orbitals to the fiBldin

Eq. (4.5 are weighted by 1#, we need only consider com-
is the spatial frequency the electron would have if it wereponents of the electron wave functions within the core of the
moving with the velocity— wyx R(®) of nucleus» in the  central atom. In principle, we should sum over all electron
rotating crystal. orbitals of the crystal in Eq4.5). However, the spin-paired
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electrons in the closed shells of atamwill make negligible
contributions to the field. In the tight-binding approximation A fdsf e'ds rUsp(r)Usp(S) , (415
considered here, the orbital amplitudes for next-nearest and

more distant atoms will be too small near the origin to con-where s=s;, r,=x;-r, s,=x;-s, etc. We may set
tribute substantially to the sum in E@.5. Only for an  exp(qgg-r)=1+iqs-r in Eq.(4.15, since|qg-r|=10"2 for
orbital centered on one of the nearest-neighbor atBrean  values ofr where the other factors of the integrand are not
we expect a substantial contributionBg. Such orbitals will  negligibly small. Most of the elements of the tengdr15
“spill over” into the core of atoma, where they will have a  vanish by symmetry; the nonvanishing parts are
secondary peak due to the attraction to the nucleus of the

atome. Following Wuet al,*® we can approximate this pen- ' @) _d1Ro G2Ro )
etration of the nearest-neighbor cores by orthogonalizing the Sap=S" Gapt | S
orbitals of atomg to the orbitals of atomy. We consider

only the overlaps of the b orbitals, since they will contrib- Q3 0
ute much more to the fielB, than any others. Near=0, we
can approximate the orbitahs,,; of atom g by

——S@s,, (4.16

where g;, is the antisymmetric tensor with;,3=1. The
overlap of 7 orbitals is

¢5pbﬁ“Xg%)bﬁeiqﬁ‘r_ i X‘(E?))aasab' 4.9
a 3 riS;+rss;
_ SV=52=— f d®r Usp(N)Usp(s) ————
The elements,, of the overlap tensor are given by 8w rs @17
Sab:f d3r Xg(:));a i9g rxg(?bﬁ' (4.10 and the overlap ofr orbitals is
The coefficientf~1 is an empirical fitting parameter to be 8(3)— f d3 rU5p(r)U5p(s) ras 3. (4.18

determined from measured chemical shifts. Even though the
overlap coefficientsS,, are small, the second term of Eq. Since §,=3;;x/ 'SIiX X, =2S] (X -Xp), and since bothx,
(4 9) is still much Iarger within the core of atom, than the andx are e|ement3 of orthonormal bases, we have

first term, which we will henceforth ignore.
Using Eq.(4.7) and noting thas,=r sinceR{®=0, we

a = 1x v —ig(D g 4 g3 (0)
write Eq. (4.9 as 3 §x8=3 s x=isH(SV+5¥)gsxRE,
(4.19
3 Usgy(r
Dsppp~— T \/4— 5;)( )r-Sb, (4.1)  and the expressiof#.13 for the field at the origin becomes
v
where the overlap vectors are BZB:NBa4 |f|2< >S(1>(S(1)+ s¥).  (4.20
=2 XaSab- (412 Here
a
o . . M (0)
Substituting Eq.(4.11) into Eq. (4.5, and noting that near Nga=5m Rpa™ s (4.21
the nucleusy, xspns~ éspng. We find that the contribution
from atom g to the fieldB, at the origin is is the sum of the angular momenta of atopi&nd a about
their center of mass.
2eifn|f|?/ 1 The interaction— uy - B, of the magnetic momenfy
Bos="c \r3 2 S XS (413 =(uy/K)K of the nucleus of atora with the fieldB,; Eq.
(4.20 produced by nearest-neighbor atggnmust be the
The radial matrix element is same as the spin-rotation interacti@inl). Equating
1\ _ (71 K-Ngo=— “XK.B 4.2
= =f0 dr ~Ug(n=17.785°, (4.14) CkoK -Npga == 7~ K-Bag, (4.22

we obtain our estimatél.10 for ckg.

Because of the axial symmetry and even parity of the
integrands in Eq94.17 and(4.18, the two-center integrals
reduce to two-dimensional integrals. For example, the over-
lap integral foro orbitals is

whereag=5.29x10 ° cm is the Bohr radius, and the nu-

merical value of Eq.(4.14 was obtained using the

exponential-type wave functions of Clementi and Rd®&tti.
The evaluation of the overlap tens@t.10 is facilitated

by using a coordinate system centered between atoiasd

B, with the unit vectoixg along the interatomic axis and two 3) % )

additional unit vectorsx; andx,, completing the orthonor- s :zfo Usp(r)ko(r) redr

mal Cartesian basis. Then the components of the overlap

tensor become =—-8.516exp—1.181 A 'R), 4.23
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whereR is the (possibly nonequilibriunmseparation between more extended than those of a free xenon atom. This greater

the nuclei. The integrand of E.23 contains the factor

3 (=
—Ef Usp(s)cosyrcosdsing df.  (4.24
)

R, r, ands form a triangle withs subtending the anglé
andr subtending the angl¢, so

s=JR?+r?-2Rrco9, and cosﬁ=w.
(4.25
The angled, is defined by
0, r=sR/2;
60:{005‘1 R/2r, r>R/2. (4.29

The overlap integral forr orbitals is

s= ZJWUSp(r)kw(r) r2dr=8.457 exp—1.578 A 'R),
0
(4.27)

where

3(7r )
k,(r)= ZLO gusp(s)sme'e de. (4.28

extension would lead to a larger overlap integral and larger
values of|f|.
We may also use Ed4.30 with Eq. (1.7) to estimate

e=—-2.693 A IR, (4.3

and thus,

eo=€(4.4 A)=-11.38. (4.32

Adrian'’ calculated thate/R=—2.506 A1, which yields
€o=—11.0 forRy=4.4 A and agrees with our resui#.32
to within 7%. As discussed by Luriet al,?* the experimen-
tal data on the temperature dependence of the chemical shift
in solid *?°€e are not accurate enough to determineto
better than about 8%.

We can use Eqgs(4.2)), (4.2, and (3.1) to write Eq.
(4.20 in terms ofB,,

e? 1
BZB=W|f|Z<r—3> SP(SY+8)(RPRY ~R31) - By.
(4.33

From Egs.(3.17 and(3.20 we see that for the total field at
the origin,B,=X4B,5, we have very nearly
BZZBl+ O'gBOI_ (434)

O'p'Bo,

The overlap integrals were determined by numerical integraa result that is essentially independent of any microscopic
tion atR/ag=8.28,8.30. . . ,8.36 using the exponential-type model of the electronic structure, as shown in Sec. Ill. Thus,
Roothaan wave functions tabulated by Clementi and R&ktti. in solid Xe, B;=— o, By, with the shielding tensoio,
They were very well described in this range by the exponen= o041+ o}, the sum of the isotropic shielding coefficianj

tial functions of the internuclear separati®given in Egs.

for xenon gas and the paramagnetic antishielding teagor

(4.23 and(4.27). We also found that over the same interval due to neighboring Xe atoms. Using Eq4.34 and(4.33
of internuclear separations, the product of overlap integralsve find that a Xe atom displaced a distarRefrom the

needed to evaluate E¢L.10 was well described by

SY(SV+53)=—-4452exp—2.693 A IR),
(4.29

Substituting into Eq(1.10 values for the physical con-

stants, a mean xenon madd=2.18x10 % g, *°Xe
nuclear spinK=1/2 and nuclear magnetic momep =
—3.90x 10 ?* erg/G, and Eq(4.29 for the product of the
overlap integrals, we find

C
FK =—1.966< 10°f|2exp( —2.693 A 'R) Hz

=—14.1f|?> Hz at R=Ry=4.4 A.
(4.30

To obtain the valueyy,/h=—27 Hz inferred in Sec. lll

from the measured chemical shifts of solid and gaseous xe-

non, we must havéf|=1.38. We would expet? to find f

shielded nucleus contributes a paramagnetic antishielding
tensor

e? 1
— 2 g1 gB®y(R21—
o, mC2|f| <r3>s< (SPY+59)(R?1-RR).

(4.39

The zz component of the tensor is

&R% ol L\ a4 c@nag
O'p;ZZ:m—CZ“l r—g S( (S +S )S|n20, (43@

whereR- X3 /R=cos.

The only previous estimate of paramagnetic contributions
to the shielding of pairs of xenon atoms seems to be a per-
turbation calculation by Adrial, who derives an estimate

1615/ 1 (1)_ (32 i
O'p;zz:E F (S —-S ) S|r12(9 (437}

=1 in Eq. (4.9 if the spillover of the wave functions from for the paramagnetic shielding coefficieat In Adrian’s
atom B to atoma could be determined by simple orthogo- notation!’ the Bohr magnetomg was denoted by and the
nalization of 5 wave functions of free xenon atoms. How- overlap integralsS®) and S®) were denoted bys,, and
ever, we expect fairly substantial modifications of the 5 —S_, respectively. Adrian chose a mean excitation energy
orbitals of xenon atoms in the solid. For example, the 9.16AE=—9.6 eV to permit him to sum the perturbation series
eV band gap of solid xenéhis substantially less than the by closure. Adrian’s estimat@.37) gives the correct sign for
12.13 eV first ionization potential of a free xenon atom. Thethe observed pressure-dependent shift of the diamagnetic
5p orbitals of xenon atoms in the solid must therefore beshielding, but only about 66% of the magnitude.
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V. EXPERIMENTS containing the sample and the coil was situated between a
We have carried out experimeHftan 12%e nuclear spin pair of.HeImhoItz cqlls, 75 cmin d.|ameter, which provujed a
L . : static field perpendicular to the axis of the resonator coil. The
relaxation in solid Xe to determine how much of the mea-~ . ; L .
lflmformlty of the static field was determined to be better than

sured relaxation might be due to the Raman scattering e part in 1B over the sample voluméseveral mr). The

phonons discussed aboye. we _use_d samples for _Wh'Ch trH%clear spin polarization was measured by detecting the
value of the nuclear spin polarization had been increasefj,qiear magnetic induction signal across the coil in the static
through spin-exchange optical pumping to many orders ofqq B, = / yxe=1800 G, the resonant field fdfXe at
magnitude above the thermal equilibrium vatdé® This /(2)(;)2591 Mtz Herey, is the 12%e gyromagnetic
made it possible to study the relaxation of the spin poIariza-ra);ieo_ We Iet. the 129>'<e reIaxXEi}n the fixed static field,,
tion over severag foldings and over a large range of tem- \yhich could be set anywhere from a few gauss to about 2000
peratures and applied magnetic fields. G. We sampled the polarization five or six times during the
The sample cells used for these measurements were pyreXlaxation by briefly changing the field tBy,. With this
glass cylinders filled with a few milligrams of Rb metal that scheme, we could only measure relaxation times long com-
had been distilled to reduce impurity contamination. The Xepared with the time required to change the field to and from
gas used to fill the cells either had the naturally occurringB,,.
isotopic mixture, with 26.4%%°Xe, or was from two The nuclear magnetic induction signal was created by ap-
batches that had been isotopically enriched, one to 72.9%lying a small rf magnetic field B; coswqt) to the coil and
and the other to 80.8%?%Xe. After the alkali metal and gas sweeping the static magnetic fieR}, rapidly throughBye.

ha_d been Ipaded into t.he cell, it was Qetached from the gasrpe field sweep raté = yydB,/dt and the Rabi frequency
filing manifold by fusing the glass fill tube with a hand w1= yxB1 Were adjusted so that the polarization loss during

torch. This left a small “tip,” several mm in length, which e sweep across the resonance was very small. For a sweep

served later to contain the frozen xenon. In addition to xenon teAs> w2 but I dtoth q fth
gas, some of the cells were also filled with 80 to 100 torr of &teA> w1 but small compared to the second moment of the

N, gas to quench excited Rb atoms and prevent reradiate%Psorption line shape for the nuclear spins in the solid, the

resonance light from depolarizing the spins of the Rb atomsfractional los$® of polarization isA P/P~ ww3/A. Detection

For applied fields above about 1000 G, the nuclear spinlosses were reduced to less than 1% by reducing the rf field

relaxation timeT, did not depend on the presence of M strength or by increasing the sweep rate. The sample tem-
the cell. For smaller applied fields, however, the relaxatiorperature was held constant in the cryostat during the entire

rates did depend on the amount of, kh the cell. As we decay, which could be a week or more at low temperatures

discuss below, this was probably due to the dependence @hd large magnetic fields. With this detection method, any

the grain size of the polycrystalline frozen xenon on thedecrease in signal between successive samplings of the spin
amount ofN, gas in the cell. polarization was due to spin-lattice relaxation.

During optical pumping, a simple oven was used to main- Our experiments showed that for sufficiently large mag-
tain the cells at a temperature of about 90 °C, and a longitunetic fieldsB,=1000 G, and for temperaturds=20 K, the
dinal magnetic field of a few gauss ensured that small ambimeasured'?*Xe polarizationP was well described by an
ent magnetic fields caused no spin depolarization. A largexponential deca® = P, exp(—t/T;) with a single time con-
electron spin polarization of the Rb atoms was maintained irstantT,. Furthermore, in this regime the relaxation tinigs
the cells by laser optical pumping with ® 5 W from a  were independent of magnetic fiel[dp to our maximum
Ti:sapphire laser at the 7947 A Rb, line. Spin-exchange field of ~2000 G, isotopic composition of the Xe, and the
collisions between Xe atoms and the polarized Rb atomgresence of any other gas, e.g,,Me, or Kr. The high-field
transferred spin angular momentum from the Rb electrons teelaxation rates for 20 K T<120 K are shown in Fig. 2.
the nuclei of'2%e atoms. In about 1/2 hour thé%Xe nuclei  Also shown is our predictiofil.5) for the relaxation rate due
reached a saturated polarizatifiy=0.15, which was ad- to Raman scattering via the spin-rotation interaction, using
equate for subsequent studies of spin relaxation. Cko/h=—27 Hz from Eq.(3.21) and e,=—11.8 from Eq.

After the nuclear spin polarization had saturated, the4.32. The good agreement between experimental and theo-
sample cells were moved to a separate apparatus where litgtical relaxation rates strongly suggests that the spin-
uid nitrogen was used to freeze the polariZzé@e gas into  rotation interaction(1.1) dominates the relaxation of solid
the tip of the cell. The tip with the frozen xenon was placed'**Xe in this regime. For higher temperatufgs 120 K, the
in a coil, 1/4 inch in diameter and tuned to resonate at 2.telaxation becomes dominated by vacancy diffugibh.

MHz. The coil and sample cell were placed inside a flowing For T=20 K and fieldsBy,~1000 G, Eq.(2.49 implies

He gas cryostat, where the sample could be held at any dé¢hat the relaxation rate due to the paramagnetic antishielding
sired temperature between 4.2 and 77 K, or in a flowipg N is smaller than that due to the spin rotation interaction by a
gas cryostat for temperatures between 77 K and room tenfactor ~(B,/Bp)?~ 10" . However, at the largest currently
perature. The coil with input and output coupling capacitorsavailable magnetic fields~25 T) fluctuations in the para-
constituted one branch of an Anderson-type LR balancedhagnetic antishielding should contribute about 25% of the
twin-T bridge circuit?* A Hewlett-Packard signal generator total relaxation rate.

(HP 3325A served as a radio frequengyf) source, and the For T<20 K or for By=<1000 G, we have found that
signal across the balanced bridge was amplified by &aman scattering is insufficient to account for the observed
Princeton Applied Research preamplifi¥AR 115 and de-  ?%Xe relaxation rate, so other mechanisms must be impor-
tected using a lock-in amplifie(PAR 5203. The cryostat tant. A thorough discussion of these other relaxation mecha-
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00l g ' ' ' ' ' quadrupole moment of the spin-3/3Xe nuclei to electric-
' field gradients near crystal grain boundaries can bring the
4 131xe sublevel energy splittings close to resonance with the
129¢e, allowing for rapid cross relaxation. Because of the
short relaxation time of'*Xe, however, the polarization
transferred to the"*Xe is rapidly lost, which makes cross
relaxation to **Xe an effective relaxation mechanism for
3 129¢e.10-12 This interpretation is supported by the data
shown in Fig. 5 of the time dependence of the polarization
- for four different cells aBy,=1000 G andl = 4.2 K. Cell(a),
e with only 3.4% %Xe, had significantly slower relaxation
B, G) than cell(b) containing natural Xe with 21.29%%Xe. The
Xe in cell (d), which contained Kr buffer gas, was found to

FIG. 4. Dependence on magnetic field of the longitudinal relax-freeze much more slowly than in cétl) with He buffer gas,
ation rate 1T, of '?°e in frozen xenon at various temperatures. suggesting that the grain sizes of the polycrystalline ice in
The data at 110 K were taken with a cell sealed off at a temperatureell (d) were larger than in cellc). From the slower relax-
of 25°C, when it contained 600 Torr of xenon, isotopically en- ation rate exhibited by cel(d), coupled with the non-
riched to 72.9%129)(9, and 100 Torr of N gas. The data for all exponentia| decay shown by all four cells and the depen_
other temperatures were taken with a sample cell filled with 206Q4ence on13ixe concentration, we conclude th&Xe spin
Torr cn? of xenon(at 25°C), isotopically enriched to 80.8%%e iffusion to the grain boundaries, where tH¥Xe cross re-
with only 3.4% ***Xe, and no other gases. The cell volume Was |5ves to 18ly@. plays an important role in the relaxation at

about 3.2 cri. The faster relaxation rates at low magnetic fields are| temperatures and low fields. Related studies at 4.2 K
due to mechanisms other than Raman scattering of phonons. The 112 '
solid lines are to guide the eye. I?1ave been reported by TonThettal.

UT, 5"
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As shown in Fig. 4, the relaxation rate éf®e in the
solid has a strong dependence on magnetic field Bgr We can use Eq(2.26 to sum the dyadsvsw, of Eq.
=1000 G. At these lower fields, the coupling of the electric(2.40 over all phonon polarization states to find

APPENDIX: SET AVERAGES

I I 1 I 1
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FIG. 5. Experimentally observed nuclear-spin polarizatiot“3Ke as a function of time at a temperatufe=4.2 K and at an applied
field Bo=1000 G.(a) The cell was filled at 25 °C with 600 Torr of xenon gas, isotopically enriched to 83%8%e with only 3.4%%Xe.
(b) The cell was filled at 25 °C with 600 Torr of xenon gas of natural isotopic composition, 2826 and 21.2%Xe. (c) The cell was
filled at 25 °C with xenon gas, enriched as(a and at a partial pressure of 600 Torr; in addition the cell was filled with helium gas at a
partial pressure of 2600 Tor€d) The cell was filled at 25 °C with xenon gas, enriched agajnand at a partial pressure of 300 Torr; in

addition the cell was filled with krypton gas at a partial pressure of 300 Torr. The pronounced nonexponential decay of the polarization in

cell (c) is probably a consequence of spin diffusion to grain boundaries, where polarization can be transferfé@ecmrapidly relaxing
131Xe. The listed values oT; correspond to the straight-line fits. Raman scattering of phonons makes a negligible contribution to the
low-temperature relaxation seen here.
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E WgWs | -
(B8 €Am Jela

S X_ > =0mXs - W X_.
(A6)

1
EWﬁW[S 2+ €[ 2—ngng—nsnsl+ eo[(nﬁ ng?1 <x+~

Jela
—(ng-ngngns+(ngXng)(ngxngl. (Al)

The bold numerals in Eq(Al) denote the corresponding
multiple of the unit dyadic, for example2=2(xx+yy

Using the orthogonality properties of the Wigrarfunc-
tions to average the dyad components of El), and re-
calling thatng- ns=cosé,,, we find

+22).
We assume the xenon ice is polycrystalline, with the in- 1 1
dividual crystallites so small that spin diffusion ensures uni- (ngns)= 3N nﬁzgcosgm_ (A7)

form polarization throughout the sample. Then expression
(A1) should be averaged over all orientations of the xenon
crystal. Let a rigid-body rotatiolR=R(¢, 6,¢) rotate the
crystal about the central nucleusfrom the reference posi-

A special case of EqA7) is

1
tion of Fig. 3 to an orientation specified by the Euler angles <anB>:<n5n6>:§' (A8)
(¢,6,¥). Then the unit vecton, to the nearest-neighbgd
is rotated to the new unit vector By similar arguments, we can show that
Rng=RD, (—1)%n; .= —1)9 D ng_q. 1
B Eq: (=1)%ng;—q % (—=1)%&Dpqng:—q <(n,8><n5)(nﬁ><n6)>:§3|nz O (A9)
(A2)
HereD =Dy (#,6,4) is a WignerD function, an irreduc- Substituting Eqs(A1), (A7), (A8), and(A9) into Eq.(A5)

ible representation of the full rotation group, and the spheriwe find
cal unit vectors are

23t 9t

460 26% E(Z)PZ
Xy X+iy X—iy m= 2W5W5 ,

&=- =2 &= (A3) lela
2 -2 E (A10)
We define the orientational average f_or a_quantfty where P,=P,(cosb,)=(3cog §,—1)/2 is the Legendre
=f(¢,0,4) that depends on the crystal orientation by polynomial of order 2. Noting thak, -1-x_=2, we find

1 from (A10) that
<f>:ﬁf fd¢ sind do di. (A4)

8¢ 463) 263

—P c P .
The orientational average of the dyadil) will be denoted 9 2 2| (€o)Py
by (A11)

Xy -Wp-X_=

Equation(Al11l), together with Eq(A6), completes the proof
WmE<Z WBW5>- (A5)  of Egs.(2.40 and(2.42).
lela We now turn to the more complicated relaxation produced
The averaged dyadi@5) is the same for any pairds) in by the fluctuations in the paramagnetic antishielding. Using
the setA,,, so the orientationally averaged partial sumEg. (2.29 to sum the dyads of Eq2.44 over the phonon
(2.40 becomes polarization vectors, we find

(1+zz)+ [(anB+n5n5)+z (Ngng+ngns) - 214+ z- (NgNg+ Ny s)Z+Z(NgNg+Nyny) - Z]

5
Jela B wp

2

0

+ —[(Ng-Ns)(Z-Ngns-Z1+ngns+znsng-z+2z-NsNgz) +z- (NgNgNsNs+NsNsN N+ NgNsNsN
2[(5 8)(Z-ngN; sNs sNg sNpZ) (ngngnsns+nsnsngng+ngnsnsng

+nsngngnys) - z]+ [z NgNgz+2zNnsns- 2+ (€9—1)Z- (NgNgNgNg+ NN sNsNys) - Z]

2
0

+ —[4z-(nghgngns)-z+(eg—1)(Ng-Ng)z- (NgNgNgNs+ +NgNgnsnNg+NsNgNsNs+Ngnsnsng) - Z
2[ (ngngnsnys) (€0—1)(Ng-Ny)z- (NgNgngns sNaNsNg+NsNgNsNs+NgNsNsN5) - Z]

2
+ %z (Ngngnsns)-Z[3+2(€ep— 1)+ (9~ 1)%(Ng-Ng)?] . (A12)
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The orientational average of the dyadi&l2) is (2L, +1)(2L,+1) |,
{YL,®Y hv= An(2L+ 1) CLioL,0Yim-

w;nz<12j w;3w55>. (A13) (A18)
o8 Note that the orientational average of the tensor

The averaged dyadi@A13) is the same for any paird?) in )
the setA,,, so the partial suni2.45 becomes Vom(LL) ={{{0 & @{é0 & fam (A19)

formed from the unit vector§,, is
< X+ .

To evaluate Eq(A13), we need, in addition to the aver- i 3
aged dyad$A7) and(A8), the averaged tetrads which occur X | désingdodyDy, (¢, 0,4)
in Eq. (A12), for example(ngngnsns). We note that

DI AR

(B&)EAm jeja

~x_> =gmXs - W/ - x_.
(A14)

Viyur(LL")
<VJM(LL/)>:2 JM—Z
M’ 8

™

=Voo(LL) L1+ 306Mmo- (A20)
[4m W i ici
7T _aevB —_ A= B e can use por 9] coefficients where needed to recouple
N 3 % (=17 Y1-q 4m{£8 Yitoo- the product ofgng of Eq. (A17) with the analogous expres-

(A15) sion for nshs to obtain a superposition of tensors like Eq.

. o (A19). Then, using Eq(A20) to retain only the rotationally
Here the spherical harmo”'cﬁﬁq:Ylﬁq(gﬁ=¢B)’ where  jnvariant terms in the average, we find that
the colatitude angl#; and azimuthal anglé; specify the

direction ofn,. 1
B —
In Eq. (A15) we have used the tensor-coupling notation of (n5n5n5n5>—3{§® &loot €9 &l oo
the outstanding reference book by Varshalovich, Moskalev,

26 5
and Khersonskif, +2\1/—;({§®§}2®{§®§}2)00P2- (A21)

VLM={TL1®UL2}LM= > TLlMluLz,\,,zct'l\",\,lleM2 Here and subsequently, Legendre polynomials without ex-
MM plicit arguments are assumed to have the argumegnn

(A16) =coYy,. In deriving Eq.(A21) we made use of the addition
to denote the coupling of two spherical tensdis, and formula for spherical harmonics with different arguméhts
1M1
UL,m, to an irreducible product tensdf, ,, with total angu- PL+1
lar momentum quantum numbér and azimuthal quantum {YL(ng)®YL(Ns)}oo=(—1)" 2. PL(ngny).
numberM. HereC"} | _is a Clebsch-Gordan coefficient. (A22)

For example, in Eq(A15) the irreducible product tensor

{£2 Y} oo with L=0 andM =0 is formed from the products In like manner, we find that

of tensor components,, with L;=1 and M,=q, and (NgngngNs) =(NgNgnsng)=(NsNgNsns ={NgNsN4Ns
tensor componentéi’l,_q(eﬂ,d),;):Yf_q, with L,=1 and 1
M2=-q. =
. . =|51&® ®
As an illustrative example, we evaluafegnnsns). We 3169 8ol £8 &oo

first use Eqg.(A15) to recouple the dyadgng with 9j

coefficient® +21—\/§({§®§}2®{§®§}2)00P2 Ng-Ns.
ngng=4m({£0 Y@ {£0 Y }o)oo (A23)
1 1 0 and
=47, (2L+1)§1 1 O 1
C L L o <n,3nan¢sn,8>:§{§®§}oo{§®§}oo(nﬁ'n5)2

X ({£e & o{Y{@ Y } )o

1

8
\/§{§® oot \/g({§® £,8Y8) 0. P
(AL7) + s £0 8,0 {E982)d 5+ P2].

In evaluating Eq(A17) we used the value 1/(2L+1) for (A24)
the 9 coefficient?® and we also made use of the well-known  To evaluate the nested dot products needed for(&ty4)
recoupling identity for spherical harmonics of the samewe use Eqs(A21), (A23), and(A24) to derive the following
argumenté identities:

3
"‘\/?—({f@ &10{&2 &1)odngX nsl?
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2 Collecting coefficients of the Legendre polynomials, we
XiAZ-(NgNgNsNs) - 24X = 7P (A25)  rewrite EqQ.(A28) as
2 , wg |2 3eg eg 2 116%(60—!— 6)%P,
x+-{z~<nﬁnﬁnﬁnﬁ>-z}-x,=1—5P1; (A26) X4 W/ X_= . t= "t Yt 60
2 2 2
2 4 260(60_1) P4 _ o ,
Xe {z(ngnsnsng) -zt x_= g = 7zP2. (A27) t—7s [T op §|: ¢ (€0)Pr,
Usin (A29)
g Egs.(A12), (A13), (A25), (A26), and (A27) we
find which, together with Eq(A14), completes the proof of Egs.
2 2 (2.45 and (2.46.
8 8 88 ; . .
Xy W -x_= ﬂ) [l+2 il —+ —Pz} The expressions derived here are appropriate for poly-
@b 23] 2[9 90 crystalline samples of xenon ice, which at present seems to
€ 4(ep—1) be the only form used for nuclear magnetic resonance. How-
+ = —15 ever, it is straightforward to generalize the set averages to

single crystals with arbitrary orientations to the applied mag-
€2 8(ep— 1)+8(250+1)P2} netic fieldB,. Instead of the averagé\4) over the full ro-

tation group, one can use an averdfe=(48) '=sGf over

2| 45 the 48 element§& of the point groupO,,, the full symmetry
€2l 2/ 2(eg—1)%2 11€l+20e+32 group of the cube. From products of the irreducible represen-
+ 2118 15 + 51 P, tations ofO;, one can find unit representations for which the

group average is nonzero, in analogy to E420). For the
12 paramagnetic antishielding, the rate calculated for the single
+ 3—5(60— 1)2P4> H ) (A28) crystal depends weakly on the orientation of the crystal with
respect to the externally applied magnetic figlg, but for
To facilitate verification of Eq.(A28), the quantities in the spin-rotation interaction the calculated rate is exactly the
square brackets are given in the same order as those of tkame whether the point grow, is used for a single crystal
dyadic (A12), from which they are obtained. or the full rotation group is used for a polycrystalline sample.
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