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Large magnonic band gaps and defect modes in one-dimensional comblike structures
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We report the existence of large gaps in the band structure of a comblike structure composed of a one-
dimensional magnonic waveguide along whichN8 dangling side branches are grafted atN equidistant sites.
These gaps originate not only from the periodicity of the system but also from the resonance states of the
grafted branches~which play the role of resonators!. The width of these gaps is sensitive to the length of the
side branches as well as to the numbersN andN8. The presence of defect branches in the comblike structure
can give rise to localized states inside the gaps. We show that these states are very sensitive to the length of the
side branches, to the periodicity, toN or/andN8 and to the length of the defect branches. Analytic expressions
are given for the band structure of combs for largeN and for the transmission coefficient for an arbitrary value
of N andN8 with and without defects.@S0163-1829~99!09313-3#
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I. INTRODUCTION

Low-dimensional magnets, materials in which magneti
arises from a configuration with a dimensionality less th
three, have been shown both theoretically and exp
imentally to exhibit fascinating collective behaviors.1–3 Dur-
ing the last decade several studies have addressed the
lem of magnon band structures in one-dimensional magn
composites such as superlattices. Most of these studies f
attention on the existence of stop bands in the spin-w
spectra of magnetic superlattices. Albuquerqueet al.4 calcu-
lated the dispersion relation for spin waves propagating
general direction of an infinite superlattice made of two
ternating ferromagnetic layers. They showed that in a cer
frequency domain the superlattice dispersion curves exh
broad pass bands and narrow stop bands. Dobrzyn
Djafari-Rouhani, and Puszkarski5 investigated the existenc
of surface-localized magnons in the spin-wave spectra
semi-infinite ferromagnetic superlattices. Barnas6 analyzed
theoretically the spin-wave spectra of infinite, semi-infini
and finite ferromagnetic superlattices in the exchan
dominated region. Hinchey and Mills7 have carried out the
study of magnetic properties of superlattices constructed
alternating films of ferromagnetic and antiferromagnetic la
ers. More recently, Vasseuret al.8 calculated the spin-wave
spectra of two-dimensional composite materials consistin
periodic square arrays of parallel cylinders made of a fe
magnetic material embedded in a ferromagnetic backgrou
They also demonstrate that the existence of the stop b
was related to the physical parameters of the materials
volved. Owing to the analogy between magnonic excitatio
and other excitations, the subject of propagation of ela
waves,9 acoustic waves,10 and electronic waves11 in compos-
ite and low-dimensional media has received wide attent
It is worth mentioning that the interest in the systems exh
PRB 590163-1829/99/59~13!/8709~11!/$15.00
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iting complete or pseudogaps was initiated by the pionee
experimental work of Yablonovitch on macroscopic pho
nic crystals in 1987.12

A search for composite systems that exhibit complete s
bands in their excitation spectra is motivated both by pra
cal and fundamental reasons. From the practical point
view, such systems can be used to design filters that proh
the corresponding waves at certain frequencies while all
ing free propagation at others. From the fundamental poin
view, John’s proposal pointing out that the existence of co
plete photonic band gaps could lead to the Anderson lo
ization of light in disordered photonic crystals13 suggests that
wave propagation in slightly perturbed periodic composi
can lead to novel phenomena. It is worth mentioning that
original concept of classical wave localization was put fo
ward in a classic paper by John in 1984.14 A systematic
account of the theoretical and experimental work on ba
gap crystals and Anderson localization is compiled in a
cent extensive review article.15 Also, the problem of the
emergence of localized states in the photonic band gap
introducing defects in the periodic structure, for instance
removing or adding some inclusions16–19or by changing the
characteristics~material or diameter! of several inclusions,
has been addressed recently.20 These properties have als
started to be investigated in quasi-one-dimensional photo
crystals.16,21

Research in the area of high-temperature superconduc
has spurred renewed interest into the properties of lo
dimensional magnetic systems constituted of networks
quasi-one-dimensional chains. For instance, one of the m
exciting recent developments in this direction has been
discovery of superconductivity in the dopedS51/2 ladder
system Sr0.4Ca13.6Cu24O41.84 under pressure.22 In these mate-
rials ladders, located in two-dimensional crystal layers,
composed of parallel one-dimensional chains of copper
8709 ©1999 The American Physical Society
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8710 PRB 59H. AL-WAHSH et al.
oxygen atoms linked by ‘‘rungs’’ of additional oxygen a
oms. On the other hand recent improvements in manufac
ing techniques that permit the fabrication of extremely th
wires of transition metals23–25 ~especially grown by decora
tion of atomic steps! offer hope for the fabrication of con
tinuous quasi-one-dimensional wires of magnetic materi
Furthermore, advancements in the modern semicondu
technology that allow for the fabrication of nanostructur
with controllable chemical composition and geometry su
as quantum wires, dots, rings, crossbars, etc,26 suggest
the possibility in a near future of designing and manufact
ing networks of one-dimensional magnetic wires. One c
notice that these improvements have been used to de
quasi-one-dimensional photonic band-gap waveguide at
submicrometer scale.16,21 These recent developments ha
encouraged us to undertake a theoretical investigation
magnetic excitations in networks composed of on
dimensional continuous magnetic media. The present s
focuses on a simple one-dimensional comblike structure w
multiple dangling side branches~MDSB! ~see Fig. 1!. The
geometry of the side branch attached to a waveguide has
peculiar property of giving rise to zeros of transmissi
along the waveguide.27,28 These zeros of transmissio
occur at particular frequencies that are related to the len
and physical characteristics of the side branch. These
quencies broaden into gaps when several side branche
grafted at equidistant nodes along the waveguide. This w
demonstrates that the widths of the pass bands~and hence of
the stop bands! in the magnonic band structure can be co
trolled by appropriate modification of the geometry and
chemical nature of the network’s constituents. The proper
of the magnetic networks are calculated within the fram
work of the interface response theory~IRT! of continuous
media.29 In addition to the excitation spectra of period
comb structures, we have also calculated the transmis
spectra of finite combs. Finally, we address the issue of
existence of localized states in the forbidden bands of
magnonic band structure. Such localized states result f
the presence of a defect side branch inside the comb. Le
mention that semiconductorT-shaped structure,28,30 serial
stub structures,31 as well as one-dimensional wires wit
DSB32 have also been emphasized to have useful app
tions in electronic devices or interesting fundamental pr
erties.

The outline of this paper is as follows. In Sec. II w
initially review the IRT of continuous media. This theor

FIG. 1. Schematic of the one-dimensional waveguide studie
the present work. The material media are designated by an indi,
with i equal 1 for the backbone~heavy line! and 2 for the dangling
side branches~DSB!. There areN8(56) DSB of lengthd2 grafted
at equidistant sites separated by a lengthd1 .
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allows the calculation of the Green’s functions~GF! of a
network structure in terms of the GF of its elementary co
stituents. In the second part of Sec. II, we use the IRT a
the semiclassical torque equation for the magnetization
determine the magnetic GF for an infinite Heisenberg fer
magnetic medium. This GF provides a basis for the desc
tion of the bulk spin waves. We then give the inverse of t
surface Green’s function for a semi-infinite medium with
free end as well as the GF for a finite wire of lengthd. In
Sec. III, we calculate the dispersion relation of a wavegu
composed ofN8 DSB grafted periodically along an infinite
wire. In addition to the band structure of the infinite period
waveguide, we derive an expression for the transmission
efficient of a finite comb. This finite comb is constitute
from the sameN8 DSB arranged onN equidistant sites along
an infinite wire. Section IV is devoted to the analysis of t
effect of geometry and materials on the band gap and
transmission coefficient of the networks. The appearanc
localized modes inside the gaps when a defect side bran
inserted in the waveguide is examined in Sec. V. Fina
some conclusions are drawn in Sec. VI.

II. THEORETICAL MODEL

A. Interface response theory of continuous media: Overview

In this paper, we study the propagation of spin waves
composite systems composed of one-dimensional segm
~or side branches! grafted on a one-dimensional substra
waveguide~or backbone!. This study is performed with the
help of the IRT~Ref. 29! of continuous media that permit
the calculation of the Green’s function of any composite m
terial in terms of the GF of its elementary constituents. In
following, we present a brief review of the basic concep
and the fundamental equations of this theory.

Let us consider any composite material contained in
space of definitionD and formed out ofN different homoge-
neous pieces situated in their domainsDi . Each piece is
bounded by an interfaceMi , adjacent in general toj (1< j
<J) other pieces through subinterface domainsMi j . The
ensemble of all these interface spacesMi will be called the
interface spaceM of the composite material.

The elements of the Green’s functiong(DD) of any com-
posite material can be obtained from29

g~DD !5G~DD !2G~DM !G21~MM !G~MD !

1G~DM !G21~MM !g~MM !G21~MM !G~MD !,

~1!

where G(DD) is the Green’s function of a reference co
tinuous medium andg(MM ), the interface elements of th
Green’s function of the composite system. The inve
g21(MM ) of g(MM ) are obtained for any point in the spac
of the interfacesM5$øMi% as a superposition of the differ
ent gi

21(Mi ,Mi),
29 the inverses ofgi(Mi ,Mi) for each con-

stituent i of the composite system. The latter quantities a
given by the equation

gi
21~Mi ,Mi !5D i~Mi ,Mi !Gi

21~Mi ,Mi !, ~2!

where

in
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D i~Mi ,Mi !5I ~Mi ,Mi !

1Ai~Mi ,Mi !, ~ I is the unit matrix!

~3!

and

Ai~X,X8!5Vci
~X9!Gi~X9,X8!uX95X , ~4!

where$X,X9%PMi andX8PDi .
In Eq. ~4!, the cleavage operatorVci

acts only in the sur-

face domainMi of Di and cuts a finite or semi-infinite siz
block out of the infinite homogeneous medium.29 A i is
called the surface response operator of blocki.

The new interface states can be calculated from29

det@g21~MM !#50 ~5!

showing that, if one is interested in calculating the interfa
states of a composite, one only needs to know the invers
the Green’s function of each individual block in the space
their respective surfaces and/or interfaces.

Moreover if U(D) ~Ref. 33! represents an eigenvector
the reference system, Eq.~1! enables the calculation of th
eigenvectorsu(D) of the composite material

u~D !5U~D !2U~M !G21~MM !G~MD !

1U~M !G21~MM !g~MM !G21~MM !G~MD !.

~6!

In Eq. ~6!, U(D), U(M ), and u(D) are row vectors.
Equation~6! provides a description of all the waves reflect
and transmitted by the interfaces, as well as the reflec
and the transmission coefficients of the composite system
this case,U(D) must be replaced by a bulk wave launched
one homogeneous piece of the composite material.33

B. Inverse surface Green’s functions
of the elementary constituents

We report here the expression for the Green’s function
a homogeneous infinite ferromagnetic medium. We give a
the inverse of the surface Green’s function for a semi-infin
medium with a free surface and for a slab of thicknessd ~or
segment of lengthd!.

1. Green’s function for an infinite ferromagnetic medium

Here we turn to the calculation of the magnetic GF’s
an infinite ferromagnetic medium. In using the Heisenb
model of a ferromagnet we are neglecting the effects
dipole-dipole interactions compared with the exchange c
tribution to the Hamiltonian. Therefore, in evaluating t
needed Green’s function, it is convenient to use a continu
approximation. Such an approximation is valid provided t
the relevant wavelengths are large compared with the la
spacing. Therefore, we will deal only with long-waveleng
excitations.

A medium denoted ‘‘i’’ and described in a Cartesian co
ordinate system (O,x1 ,x2 ,x3) is assumed to have a simp
cubic structure with lattice parametera. We take the sponta
neous magnetizationM0 to be in thex1 direction. The equa-
tion of motion for the total magnetizationM can be ex-
e
of
f

n
In

f
o
e

r
g
f
-

m
t
e

pressed in terms of the total effective magnetic fieldH as

dM

dt
5g~M3H!2G~M2M0i 1!, ~7!

whereg is the gyromagnetic ratio andG is a phenomenologi-
cal damping factor~considered to be a positive constan!.
The fieldsM andH are given by

M5M0i 11m~r ,t !, ~8a!

H5H0i 11hex~r ,t !1Hextexp@ j ~k.r2vt !#. ~8b!

It is understood thati 1 is a unit vector parallel to the stati
fields M0 and H0 in the x1 direction andm(r ,t) represents
the instantaneous deviation from its average valueM0i 1 .
The term proportional toHext in Eq. ~8b! represents an ex
ternally applied driving field of wave vectork and frequency
v. Finally the termhext(r ,t) in ~8b! is an effective field aris-
ing from the exchange interactions between neighbor
magnetic moments. This exchange fieldhex(r ,t) may be
written as,34

hex~r ,t !5
2

~g\!2 (
d

Jr ,r 1dM ~r1d,t !, ~9!

whereJr ,r 1d is the exchange interaction between magne
sites atr and r1d. In this paper, we assume thatJr ,r 1d
couples only nearest neighbors in the simple cubic latt
On expandingM (r1d,t) in terms ofM (r ,t) and its deriva-
tives using Taylor series, taking into account that for ea
site r there are six neighbors coupled by the exchangeJ, we
obtain to the lowest order that,

hex~r ,t !5
2J

~g\!2 @61a2¹2#M ~r ,t !. ~10!

Note that in doing the above expansion we use a continu
representation of the ferromagnet, as was mentioned be
and thus we are restricting ourselves to long-wavelength
citations. Inserting Eqs.~8a!, ~8b!, and ~10! into the torque
Eq. ~7!, and making the usual linear spin-wave approxim
tion ~i.e., neglecting small terms that are of the second or
in m, sinceumu!M0 at low temperatures! we arrive at the
following equation of motion form,

dm

dt
1Gm5 i 13$gM0Hextexp@ j ~k.r2vt !#

2~gH02D8¹2!m%, ~11!

where D85(2Ja2M0 /g\2). From the property of transla
tional invariance of the medium and on assuming a ti
dependence in the form exp(2jvt), we may write

m~r ,t !5m~x3!exp@ j ~ki • l2vt !#, ~12!

where ki[(k1 ,k2) and l[(x1 ,x2) are two-dimensional
wave vectors. If we now substitute Eq.~12! into ~11!, after
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8712 PRB 59H. AL-WAHSH et al.
some algebraic manipulations we arrive at the following d
ferential equation form1(x3),

D8

gM0
S ]2

]x3
22ki

21
v1 j G2gH0

D8 Dm1~x3!

52~Hext
x3 1 jH ext

x2 !exp~ jk3x3!, ~13!

where m1(x3)5m3(x3)1 jm2(x3), and m1(x3)50. k3 is
the x3 component of the propagation vectork5(ki ,k3).
Now we are in a position to calculate the Green’s funct
we need. On using Eq.~13! the Fourier-transformed Green
function between two points~sites! r (x1 ,x2 ,x3) and
r 8(x18 ,x28 ,x38) of the considered infinite ferromagnetic m
dium ‘‘ i’’ associated with the magnetizationm1(x3) satisfies
the following equation

Fi

a i
S ]2

]x3
22a i

2DGi~ki ,x3 ,x38!5d~x32x38! ~14!

and can be expressed as35

Gi~ki ,x3 ,x38!52
e2a i ux32x38u

2Fi
, ~15!

where

a i5Fki
22

v2g iH0

Di8
G1/2

~16a!

and

Fi5
Di8a i

g iM0i
. ~16b!

Let us note that Eq.~15! may be generalized to other exc
tations, such as elastic waves in solids or liquids33

electrons,36 and electromagnetic waves.37 In Eq. ~16a! and in
what follows, the damping constantG is considered to be
zero. The Green’s function for a one-dimensional infin
waveguide is obtained by settingki50 in Eq. ~16!, i.e., a i

5 jA(v2g iH0)/Di85 j a i8 .

2. Inverse surface Green’s functions of the semi-infinite medium

One considers a semi-infinite medium ‘‘i’’ with a ‘‘free
surface’’ located at the positionx350 in the directionOx3
of the Cartesian coordinate system (O,x1 ,x2 ,x3) and infinite
in the other two directions. In this case

gi
21~MM !5gi

21~00!52Fi . ~17!

3. Inverse surface Green’s functions of a slab (or segment)

One considers a slab of widthdi bounded by two free
surfaces located atx350 andx35di in the directionOx3 of
the Cartesian coordinates system (O,x1 ,x2 ,x3) and infinite
in the two other directions. In this case
-

gi
21~MM !5S 2

FiCi

Si

Fi

Si

Fi

Si
2

FiCi

Si

D
5F gi

21~0,0! gi
21~0,di !

gi
21~di ,0! gi

21~di ,di !
G , ~18!

whereFi has the same meaning as above and

Ci5ch~a idi !, ~19a!

Si5sh~a idi !. ~19b!

One can see that in the interface domainM corresponding
to the interfacesx350 andx35di , the surface Green’s func
tion is a 232 square matrix. To obtain the Green’s functio
for one-dimensional segments of waveguides, one ne
only to take the limitki→0 in Eq. ~18!. In order to study
elementary spin-wave excitations, we calculate the Gree
function in the interface space for a one-dimensional infin
backbone with a periodic array of MDSB.

III. BAND STRUCTURES AND TRANSMISSION
COEFFICIENTS

A. One-dimensional infinite backbone with periodic array
of MDSB

Here, we treat the case of a comblike structure compo
of an infinite one-dimensional waveguide or backbone~me-
dium 1!, along whichN8 finite side branches~medium 2! of
lengthd2 are grafted periodically with spacing periodd1 at N
sites,N andN8 being integers~see Fig. 1!. Let us first write
the Green’s function of this composite system. The infin
line can be modeled as an infinite number of finite segme
~i.e., one-dimensional slab! of lengthd1 in the directionx3 ,
each one being pasted to two neighbors. The interface
main is constituted of all the connection points between fin
segments. Each connection point~site! on the infinite chain
will be defined by the integern such that2`,n,1`. On
each siten, N8 DSB of lengthd2 are connected. Here an
afterwards the cross sections of all media are considere
be much smaller than the considered wavelength, so a
neglect the quantum-size effect~or the subband structure!.
The respective contributions of media 1 and 2 to the inve
Green’s function at the interface space of the composite
tem are given by Eq.~18!. The inverse Green’s function o
the composite system is then obtained as an infinite ban
matrix g`

21(MM ) defined in the interface domain constitute
of all the sitesn.

To find the contribution of medium 1 to the diagonal e
ements of the matrixg`

21(MM ) one has to take the elemen
g1

21(0,0)@5g1
21(di ,di)# of Eq. ~18! and multiply it by 2

~because at each site we have two pasted segments belo
to medium 1!. The contribution of medium 2 to the diagon
elements is obtained by calculating the inverse of the ma
given by Eq. ~18!, taking the element g2(0,0)
@5g2(di ,di)#, finding its reciprocal and multiplying it by
N8. Therefore, the diagonal elements of the mat
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g`
21(MM ) are given by2$2(F1C1 /S1)1N8(F2S2 /C2)%.

The off-diagonal elements are given byF1 /S1 @see Eq.~18!#.
Taking advantage of the translational periodicity of t

system in the directionx3 , this matrix can be Fourier trans
formed as

@g`~k,MM !#215
2F1

S1
@2j1cos~kd1!#, ~20!

where k is the modulus of the one-dimensional reciproc
vector k, d1 stands for the period of the system andj5C1
1(N8F2/2F1)(S1S2 /C2).

The dispersion relation of the infinite periodic comblik
waveguide is given by Eq.~5!, that is,@g`(k,MM )#2150.
This relation takes the simple form

cos~kd1!5C11
N8F2

2F1

S1S2

C2
. ~21!

On the other hand, in thek space, the Green’s function of th
infinite homogenous magnonic waveguide is

g`~k,MM !5
S1

F1

1

$22@j2cos~kd1!#%
. ~22!

After inverse Fourier transformation, Eq.~22! yields38

g`~n,n8!5
S1

F1
•

t un2n8u11

t221
, ~23!

where the integersn andn8 refer to the sites (2`,n,n8,
1`) on the infinite line and the parametert is given by

t5ejkd1. ~24!

B. Transmission coefficient of the finite comblike structures

Infinite magnonic comblike structures are not physica
realizable but finite comb structures are. Therefore, in
section, we investigate the transmission properties of a fi
comb. This comb, as represented in Fig. 2, is constructe
follows: a finite piece containingN equidistant groups o
DSB is cut out of the infinite periodic system illustrated
Fig. 1, and this piece is subsequently connected at its
tremities to two semi-infinite leading lines. The finite com
is therefore composed ofN8 DSB ~medium 2! of lengthd2
grafted periodically with a spacing periodd1 at N sites on a
finite line ~medium 1!, N andN8 being integers. For the sak

FIG. 2. Waveguide withN856 DSB of lengthd2 grafted at a
finite number Nof equidistant sites separated by a lengthd1 and
connected at its extremities to two semi-infinite leading lines.
l

is
te
as

x-

of simplicity, the semi-infinite leads and medium 1 are a
sumed to be constituted of the same material. We calcu
analytically the transmission coefficient of a bulk spin wa
coming fromx352`.

The system of Fig. 2 is constructed from the infinite com
of Fig. 1. In a first step, one suppresses the segments lin
sites 0 and 1, and sitesN and N11. For this new system
composed of a finite comb and two semi-infinite leads,
inverse Green’s function at the interface space,gt

21(MM ),
is an infinite banded matrix defined in the interface dom
of all the sitesn, 2`,n,1`. This matrix is similar to the
one associated with the infinite comb. Only a few mat
elements differ, namely, those associated with the siten
50, n51, n5N, andn5N11.

The cleavage operator Vcl(MM )5gt
21(MM )

2g`
21(MM ),29 is the following 434 square matrix defined

in the interface domain constituted of sites 0, 1,N, N11

Vcl~MM !5S A 2B 0 0

2B A 0 0

0 0 A 2B

0 0 2B A

D , ~25a!

where

A5
F1C1

S1
and B5

F1

S1
. ~25b!

In a second step, two semi-infinite leads constituted of
same material as medium 1 are connected to the extrem
n51 andn5N of the finite comb. With the help of the IRT
one deduces that the perturbing operatorVp(MM ) allowing
the construction of the system of Fig. 2 from the infini
comb is then defined as the 434 square matrix@see Eq.
~17!#

Vp~MM !5S A 2B 0 0

2B A2F1 0 0

0 0 A2F1 2B

0 0 2B A

D . ~26!

Using Eqs.~23! and ~26!, one obtains the matrix operato
D(MM )5I (MM )1Vp(MM )g`(MM ) in the spaceM of
sitesn,n850, 1, N, N11. For the calculation of the trans
mission coefficient, we need only the matrix elemen
D~1,1!, D(1,N), D(N,1), andD(N,N), which can be set in
the form of a 232 matrix DS(MM )

DS~MM !5S 11Ct CtN

CtN 11CtD ~27a!

with

C52
@ t2~C12S1!#

~ t221!
. ~27b!

The surface Green’s functionds(MM ) of the finite comb
with two connected semi-infinite leads in the space of site
andN is
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8714 PRB 59H. AL-WAHSH et al.
dS~MM !5gS~MM !DS
21~MM !5

S1

F1

t

t221

1

detDS~MM !

3F11Ct~12t2N22! tN21

tN21 11Ct~12t2N22!
G ,

~28!

with

gS~MM !5
S1

F1

t

t221 S 1 tN21

tN21 1 D ~29!

and

detDS~MM !5112Ct1C2t2~12t2N22!. ~30!

In Eq. ~29!, gS(MM ) is the matrix constituted of elements o
g`(MM ) associated with sites 1 andN. We now calculate
the transmission coefficient with a bulk spin wave comi
from, x352`, U(x3)5e2a1x3. Substituting this incident
wave in Eq.~6! and considering Eqs.~15! and ~28!, we ob-
tain the transmitted waveu(x38), with x38>Nd1 , as

u~x38!522S1•
tN

t221
•

e2a1@x382~N21!d1#

detDS~MM !
. ~31!

One deduces that the transmission coefficient is

T5U 2S1~ t221!

t2N@12t~C12S1!#22tN@ t2~C12S1!#2U2

. ~32!

IV. LARGE MAGNONIC STOP BANDS AND
TRANSMISSION SPECTRA

In this section, we analyze the band structure and
transmission factor of the one-dimensional comblike str
ture, namely Eqs.~21! and ~32!. One can notice from Eq
~21! that the pass bands are obtained when the right-h
side takes on values in the range@21, 11#. In the limit N8
50, one simply recovers free-wave propagation along
backbone (k[a18 , T51!. On the other hand, increasing th
numberN8 will prevent the right-hand side of Eq.~21! from
becoming smaller than unity and hence, contributes to
creasing the widths of the pass bands~or increasing the
widths of the band gaps!. However, at frequencies satisfyin
the conditions:S150 or S250, the right-hand side of Eq
~21! becomes one, and these frequencies necessarily fa
side the pass bands.

Equation ~32! for the transmission factorT in the case
N51 can be written as

T5U 2F1C2

N8F2S212F1C2
U2

. ~33!

It is clear that this coefficient equals zero whenC250, i.e.,

a28d25~m1 1
2 !p. ~34!

The corresponding frequency will be

vg5g2H01D28H ~m1 1
2 !

p

d2
J 2

~35a!
e
-

nd

e

e-

in-

or symbolically

Vg5Hg1$~m1 1
2 !p%2, ~35b!

where m is a positive integer,Vg5vgd2
2/D28 is a reduced

frequency, andHg5g2H0d2
2/D28 . From the above equation

one can notice that for this composite system there exist
infinite set of forbidden frequenciesVg corresponding to the
eigenmodes of the DSB. These DSB work as resonators
consequently, this composite system filters out the frequ
ciesVg . One also observes from Eq.~34! that T is equal to
zero whena28d2 is an odd multiple ofp/2. T reaches its
maximum value of 1 whena28d2 is a multiple of p. This
latter case is illustrated in Fig. 3. In the caseN.1, the zeros
of the transmission coefficient enlarge into gaps. It is wo
mentioning that the existence of transmission zeros has
ready been demonstrated in wave guides with a resona
coupled stub for electrons,28 phonons,39–40 photons,41 and
acoustic waves.42 This phenomenon is related to the res
nances associated with the finite additional path offered
the wave propagation.

We now turn to discussing our numerical results for t
band structure and transmission coefficient. We limit o
selves to the case ofidentical media(a185a28) constituting
the backbone and the side branches. Finally, we also c
sider simple combs withN851 and for which the length of
the distance between DSB amounts to the length of the
branches~i.e., d15d2!. Equation ~21! then reduces to a
second-order polynomial equation that can be straight
wardly solved for the frequency to give

V5H̃1$arc cos@~1/3!~cos„kd1…6Acos2„kd1…13!#%2,
~36!

where V5vd1
2/D18 is the reduced frequency andH̃

5g1H0d1
2/D18 . The plus and minus signs give the two sol

tions of the second-order polynomial equation. The arc
function appearing on the right-hand side of Eq.~36! shows
that there are an infinite number of dispersion curves that
repeated periodically. In Fig. 4~a! we only show the first
seven dispersion curves in the band structure of the infi
comb composite. There is a complete absolute gap below
lowest band due to the presence of the external fieldH0 .
There exist other absolute gaps, between the first and
second bands, the second and the third bands, the fourth

FIG. 3. Transmission coefficient versus reduced frequency fo
waveguide withN5N851 in the case of identical media 1 and
For convenienceHg is considered to be 1.
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the fifth bands, and between the fifth and the sixth ban
The second and the fifth bands are flat bands, which co
spond to localized modes inside each resonator.These modes
do not penetrate into the backbone. The tangential points
between the third and the fourth bands are degenerate po
they appear atkd15p and2p. Another degenerate point i
the tangential point between the sixth and the seventh ba
that appears atkd150. One can also notice antisymmet
between the third and fourth bands and between the sixth
seventh bands as well. This antisymmetry is clearly visi
when plotting the corresponding transmission factor. Fig
4~b! shows the frequency dependence of the transmission
d25d1 , N851 andN510. The flat bands in Fig. 4~a!, as-
sociated with localized modes inside the resonators~i.e.,
C250!, do not contribute to the transmission. The number
oscillations in the transmission factor within the pass ban
which corresponds to the third and the fourth or to the si
and seventh bands, has been noted to be unfailinglyN
21. This number isN21 within the pass band, which cor
responds to the band that has no tangential points with
other bands~see also Fig. 5!.

Figure 5~a! shows the first five bands for the case of tw
identical media withd250.4d1 andN851. The third band is
flat. As previously noted, such a band corresponds to lo
ized modes inside the resonators. One can notice that a
crease or an increase in the length of the DSB removes
degenerate points. The transmission factor is also influen
by this change in geometry. This phenomenon is illustra
in Fig. 5~b! @N andN8 have the same values as in Fig. 4~b!#.
Interestingly the width of the pass bands~stop bands! de-
creases~increases! with this other choice of the lengthd2 . A
comparison between Figs. 4~b! and 5~b! indicates that the
number of sites in the combN is important in achieving

FIG. 4. ~a! The first seven bands, in the magnonic band struct
of the infinite periodic comb. We have chosend15d2 , D185D28 ,

H̃51, N851, and N→`. The plot is given as the reduced fre
quency versus the dimensionless quantitykd1 (2p<kd1<1p),
wherek is the modulus of the propagation vector. One observes
absolute gap below the first band due to the presence of the ext
field H0 . ~b! Transmission coefficient versus the reduced freque
for a waveguide withN851 andN510. The other parameters ar
the same as in Fig. 4~a!.
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completely formed gaps. This number is of the order ofN
'6 in Fig. 4~b! whered25d1 ~similar results are obtained
for d2 /d150.5, 1, 1.5, 2, 2.5, . . . !, while it becomes of the
order ofN.10 in Fig. 5~b! with d250.4d1 .

Figure 6 depicts the effect of variation in the numberN of
sites on the transmission factorT for a finite comb consti-
tuted of two identical media withd15d2 . We show the fre-
quency dependence of the transmission forN851 and N
52, 5, and 10 in the top, middle, and bottom panels, resp

e

n
nal
y

FIG. 5. ~a! The first five bands in the band structure of th
infinite periodic comb withd250.4d1 , N851, andN→`. The two
media are identical.~b! The transmission factorT for N510, N8

51, andH̃51. The other parameters are the same as in Fig. 5~a!.

FIG. 6. Transmission coefficient versus the reduced freque
for several values ofN(N851). Both media are considered to b

identical, H̃51, andd15d2 . The top, middle, and bottom pane
depict the transmission forN52, 5, and 10, respectively. Note tha
increasingN results in turning some of the pseudogaps into co
plete gaps, but leaves their widths virtually intact.
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8716 PRB 59H. AL-WAHSH et al.
tively. It is apparent again that asN increases the pseudoga
in the transmission turn into full gaps. However, one do
not need exceedingly large values ofN, at the reasonably
small value ofN55 the gaps are already formed. Moreov
for a given frequency range, there is an optimum value oN
above which any additional increment inN leaves the bands
practically unaffected.

Next, we discuss the dependence of the transmission
tor on the number of dangling side branches. The results
illustrated in Fig. 7 for three values ofN8 in the case of two
identical media withd15d2 . The top, middle and bottom
panels display the frequency dependence of the transmis
for N510 andN852, 4, and 8, respectively. We call atte
tion to the fact that the width of the pass bands~stop bands!
decreases~increases! with increasing number of DSB. We
can also note that an increase inN8 results in an increase in
the amplitude of oscillations of the transmission coefficie

Let us stress that, unlike in the usual two-dimensio
composite system where the contrast in physical prope
between the constituent materials is a critical paramete
determining the existence of the gaps,8 the occurrence of
narrow magnonic bands,does not require the use of tw
different materials. In other words, the magnonic structure
tailored within a single homogenous medium, although
boundary conditions impose the restriction that the wa
only propagate in the interior of the waveguides.

Finally, we end this section with an investigation of th
influence of the geometry on the transmission of the com
like systems. We compute the frequency dependence o
transmission factor ford250.7d1 . The results are displaye
in Fig. 8, in the top and middle panels withN8 ~51! kept
fixed andN taking the values 4 and 12, respectively. One c

FIG. 7. Same as in Fig. 6, except that nowN8 is varied (N
510 is fixed!. The top, middle, and bottom panels depict the tra
mission forN852, 4, and 8, respectively. Noteworthy is the shrin
ing ~widening! of the pass-bands~stop bands! with increasingN8.
We call attention to the increasing of the oscillation amplitudes w
increasingN8.
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notice that varyingN results in turning the pseudogaps in
full gaps. The convergence to full gaps can be achieved
general for a reasonably small number of sites. In the mid
and bottom panelsN ~512! is kept fixed andN8 takes the
values 1 and 10, respectively. The most interesting featur
that the width of the pass bands~stop bands! decreases~in-
creases! with increasingN8. On comparing the results o
Figs. 8 and 7, one can notice the same qualitative behav
but with a more significant widening of the gaps in Fig.
with increasingN8.

As is clear from Eq.~21!, the pass bands described in th
above applications are mainly concentrated around frequ
cies satisfying eitherS150 or S250. These conditions in-
volve the two characteristic lengthsd1 andd2 , which means
that the bands originate either from the periodicity of t
system or from the resonance states of each DSB. On
other hand, the narrowness of the bands suggests tha
condition for constructive interference can only be satisfi
in small frequency intervals, in relation with the numbersN
andN8. If one first considers the scattering of an incomi
wave by the DSB at a single site~i.e. N51!, Eq. ~32! easily
reveals that the transmission will be suppressed if one
creases the numberN8 of DSB @see Eq.~33!#, except at
frequencies whereS2'0. Now, grafting the DSB’s at two or
more sites on the backbone~i.e., N>2! opens new channel
for transmission at frequencies in the vicinity of the fr
quency corresponding to the solutions ofS150. This means
that the condition for constructive interference is allowed
small intervals whose frequencies are related to the n
characteristic lengthd1 . These pass bands slightly increa
in width upon increasing the numberN of sites. At the same
time, for a givenN, increasingN8 gives rise to tighter con-

-

h

FIG. 8. Transmission coefficient versus the reduced freque
for the waveguide withd250.7d1 . The two media are identical an

H̃51. In the top and middle panelsN851 andN equals 4 and 12
while in the middle and bottom panelsN512 andN8 equals 1 and
10. It is noticeable that the width of the pass bands~stop bands!
decreases~increases! with increasingN8.
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dition for constructive interference, thus contributing to
reduction in width of the pass bands.

V. DEFECT MODES

In this section, we investigate the existence of localiz
modes inside the gaps when defect dangling side branch
lengthd3 are inserted at one site of the waveguide~see Fig.
9!. With the help of the interface response theory29 one can
arrive, analytically, at the following result for the localize
states in the case of an infinite comb (N→`),

11
S1

F1
S N8

F2S2

C2
2N38

F3S3

C3
D t

t221
50. ~37!

In the preceding relation,N38 stands for the number of th
defect DSB and the rest of the symbols have their us
meaning.

Next, with the help of Eq.~37! we study the effects o
variation in the length of the defect branch on the existe
of localized states. We assume that our system is comp
of identical media and thatN85N3851 andd25d1 . Figure

FIG. 9. Same as in Fig. 2 except that a defect composed
N3856 DSB of lengthd3 is introduced in the middle of the finite
comb andN856. For simplicity the total number of sites is consi
ered to be odd.
d
of

al

e
ed

10 gives the frequencies of the localized modes as funct
of the ratiod3 /d1 . The hatched areas correspond to the b
bands of the perfect comb. The frequencies of the locali
modes are very sensitive to the lengthd3 . The localized
modes emerge from the bulk bands, decrease in freque
with increasing lengthd3 , and finally merge into a lower
bulk band where they become resonant states. At the s
time, new localized modes emerge from the bulk bands.
us note that for any given reduced frequency in Fig. 10, th
is a periodic repetition of the modes as functions ofd3 /d1 .

Under the assumption that the defects are located in
middle of a finite comb~for simplicity one can take the num
ber of sites to be odd see Fig. 9!, we have obtained an ana
lytical expression for the transmission factorT through the
defective comb

of

FIG. 10. Frequencies of the localized modes associated withN38
defect DSB of lengthd3 in an infinite comb. The other paramete

areN85N3854, N→`, d25d1 , andH̃51. The system is assume
to be composed of identical media.
T5U 2F1B2
2

~B12F1!@~B12F1!~B312B112N8F2S2 /C2!22B2
2#
U2

, ~38!
nce

we
ith

ps.
in

her
where

B15
F1

S1

@C1~ t2t2N21!1t2N21#

t~12t2~N21!!
, ~39!

B25
F1

S1

~ tN212tN11!

t~12t2~N21!!
, ~40!

and
B352N38
F3S3

C3
. ~41!

The transmission coefficient is also affected by the prese
of a defect inside the comb. In particular,T exhibits narrow
peaks associated with the localized modes. In Fig. 11,
compare the transmission coefficients for two combs w
and without defects. The results are illustrated forN85N38
54, N55, d25d1 , andd351.3d1 . Figure 11~b! shows one
localized mode in the second, the third, and the fourth ga
The localized mode inside the third forbidden band lies
the middle of the gap while the localized modes in the ot
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8718 PRB 59H. AL-WAHSH et al.
two gaps lie closer to the bulk bands. As one can see,
second bulk band is asymmetric due to the proximity of
first localized mode to its left side. The situation is simil
for the third pass band, but the asymmetry is due to
proximity of the localized mode to its right. In the frequen
range displayed in this figure one can see that the pe
corresponding to the localized modes are very narrow.
transmission inside a bulk band can also be significantly
fected by the presence of a defect. For instance, in the
ample shown in Fig. 11,T is significantly depressed in th
second and third bulk bands.

Finally, we end this section with a study of the influen
of N38 on the transmission factor. Figure 12 shows a comp
son of the transmission coefficients for four combs withN38
varying from zero~top panel! to 1, 2, and 4. The results ar
illustrated forN852, N55, d25d1 , andd350.75d1 . One
notices that the transmission factor in the bands is depre
as N38 increases. Figures 12~b!, 12~c!, and 12~d! show one
localized mode in the third and fourth gaps. One can a
observe from Fig. 12 that the localized mode is getting clo
to the middle of the gap whenN38 increases. One notes als
from Fig. 12~b! to Fig. 12~d!, that the localized modes be
come more and more confined, i.e., the quality factor of
corresponding peaks increases, with increasingN38 .

VI. CONCLUSIONS

The purpose of this work was to investigate theoretica
the magnonic band structure of one-dimensional comb st
tures composed of multiple dangling side branchesN8
grafted atN equidistant sites along a backbone. There e
large absolute band gaps in the magnonic band structur
an infinite periodic comb with MDSB. The calculated tran
mission spectrum of spin waves in finite comb structu
parallels the band structure of the infinite periodic com

FIG. 11. Transmission coefficients versus the reduced freque
for two combs with ~b! and without ~a! defect. The results are

illustrated forN85N3854, N55, d25d1 , d351.3d1 , andH̃51. In
the frequency range displayed in this figure one can see tha
peaks falling in the gap are very narrow. Transmission inside a b
band is significantly affected by the presence of a defect.
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The existence of the gaps in the spectrum is attributed to
joint effect of pseudoperiodicity and the resonance state
the grafted dangling side branches. In these systems, the
width is controlled by the numbersN andN8, the geometri-
cal parameters, including the length of the side branches
the periodicity of the comb, as well as the contrast in t
physical properties of side branches material and the ba
bone. Nevertheless, the magnonic band structure exh
relatively wide gaps for chemically homogeneous syste
where the branches and the substrate are constituted o
same material. We have also shown that devices compo
of finite numbers of sites exhibit a behavior similar to that
an infinite periodic comb.

Localized states associated with defects in the comb w
observed. These defect modes appear as narrow pea
strong amplitude in the transmission spectrum. Since m
netic periodic composites have, in general, wide techn
applications, it is anticipated that this new class of materi
which can be referred to as ‘‘magnonic crystals’’, may tu
out to be of significant value for prospective application
Especially, one would expect such applications to be feas
in electronics~spin-wave electronics!, since magnon excita
tion energies also fall in the microwave range. Of spec
interest is the prospect of achieving a complete band g
this defined to be a stop band in which magnons are pro
ited for all values of the wave vector.

At this stage it is worth pointing out again the conditio
of validity of the model. In all our calculations we hav
assumed that the cross section of the waveguide is s
compared to its linear dimension, that is, the waveguide m

FIG. 12. Transmission coefficients,T, versus the reduced fre
quency for four combs with@~b!, ~c!, ~d!# and without~a! defect. In
the panels~b!, ~c!, and~d!, N38 equals 1, 2, and 4 respectively. Th
results are illustrated forN852, N55, d25d1 , d350.75d1 , and

H̃51. With increasingN38 , T is depressed in the bands and t
localized mode is approaching the center of the gap.
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be considered as a one-dimensional medium. Howeve
would be interesting to verify the extension of the band g
in the two-dimensional Brillouin zone of thicker wires. Th
calculation of the band structure in this case will be the s
ject of future work as well as the study of magnonic prop
ties of more complex structures.
it
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