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Large magnonic band gaps and defect modes in one-dimensional comblike structures
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We report the existence of large gaps in the band structure of a comblike structure composed of a one-
dimensional magnonic waveguide along whidh dangling side branches are grafted\aequidistant sites.
These gaps originate not only from the periodicity of the system but also from the resonance states of the
grafted brancheéwhich play the role of resonatgrsThe width of these gaps is sensitive to the length of the
side branches as well as to the numlérandN’. The presence of defect branches in the comblike structure
can give rise to localized states inside the gaps. We show that these states are very sensitive to the length of the
side branches, to the periodicity, kbor/andN’ and to the length of the defect branches. Analytic expressions
are given for the band structure of combs for lakgand for the transmission coefficient for an arbitrary value
of N andN’ with and without defectd.S0163-1829)09313-3

[. INTRODUCTION iting complete or pseudogaps was initiated by the pioneering
experimental work of Yablonovitch on macroscopic photo-
Low-dimensional magnets, materials in which magnetisnmic crystals in 19872

arises from a configuration with a dimensionality less than A search for composite systems that exhibit complete stop
three, have been shown both theoretically and experbands in their excitation spectra is motivated both by practi-
imentally to exhibit fascinating collective behavidf$.Dur-  cal and fundamental reasons. From the practical point of
ing the last decade several studies have addressed the profiew, such systems can be used to design filters that prohibit
lem of magnon band structures in one-dimensional magnetithe corresponding waves at certain frequencies while allow-
composites such as superlattices. Most of these studies focirg free propagation at others. From the fundamental point of
attention on the existence of stop bands in the spin-waveiew, John’s proposal pointing out that the existence of com-
spectra of magnetic superlattices. Albuqueretal® calcu-  plete photonic band gaps could lead to the Anderson local-
lated the dispersion relation for spin waves propagating in @zation of light in disordered photonic crystilsuggests that
general direction of an infinite superlattice made of two al-wave propagation in slightly perturbed periodic composites
ternating ferromagnetic layers. They showed that in a certaigan lead to novel phenomena. It is worth mentioning that the
frequency domain the superlattice dispersion curves exhibitriginal concept of classical wave localization was put for-
broad pass bands and narrow stop bands. Dobrzynskiard in a classic paper by John in 1984A systematic
Djafari-Rouhani, and Puszkarskinvestigated the existence account of the theoretical and experimental work on band-
of surface-localized magnons in the spin-wave spectra ofiap crystals and Anderson localization is compiled in a re-
semi-infinite ferromagnetic superlattices. Bafhamalyzed cent extensive review articlé. Also, the problem of the
theoretically the spin-wave spectra of infinite, semi-infinite,emergence of localized states in the photonic band gaps by
and finite ferromagnetic superlattices in the exchangeitroducing defects in the periodic structure, for instance by
dominated region. Hinchey and Miflhave carried out the removing or adding some inclusidfis'®or by changing the
study of magnetic properties of superlattices constructed bgharacteristic§material or diameterof several inclusions,
alternating films of ferromagnetic and antiferromagnetic lay-has been addressed recerflyThese properties have also
ers. More recently, Vasseet al® calculated the spin-wave started to be investigated in quasi-one-dimensional photonic
spectra of two-dimensional composite materials consisting ofrystalst®?*
periodic square arrays of parallel cylinders made of a ferro- Research in the area of high-temperature superconductors
magnetic material embedded in a ferromagnetic backgroundas spurred renewed interest into the properties of low-
They also demonstrate that the existence of the stop bandémensional magnetic systems constituted of networks of
was related to the physical parameters of the materials inguasi-one-dimensional chains. For instance, one of the most
volved. Owing to the analogy between magnonic excitationgxciting recent developments in this direction has been the
and other excitations, the subject of propagation of elastieliscovery of superconductivity in the dop&# 1/2 ladder
waves® acoustic wave® and electronic wavéSin compos-  system Sy Cay3 dCl,4Ou1 4 Under pressuré. In these mate-
ite and low-dimensional media has received wide attentiontials ladders, located in two-dimensional crystal layers, are
It is worth mentioning that the interest in the systems exhib-composed of parallel one-dimensional chains of copper and

0163-1829/99/5@.3)/870911)/$15.00 PRB 59 8709 ©1999 The American Physical Society



8710 H. AL-WAHSH et al. PRB 59

allows the calculation of the Green’s functiofGF) of a
network structure in terms of the GF of its elementary con-
stituents. In the second part of Sec. Il, we use the IRT and
the semiclassical torque equation for the magnetization to
determine the magnetic GF for an infinite Heisenberg ferro-
magnetic medium. This GF provides a basis for the descrip-
tion of the bulk spin waves. We then give the inverse of the
* surface Green’s function for a semi-infinite medium with a
free end as well as the GF for a finite wire of lengthin
FIG. 1. Schematic of the one-dimensional waveguide studied ir>€C. Ill, we calculate the dispersion relation of a waveguide
the present work. The material media are designated by an index composed olN’ DSB grafted periodically along an infinite
with i equal 1 for the backbongeavy ling and 2 for the dangling wire. In addition to the band structure of the infinite periodic
side branche¢DSB). There areN’(=6) DSB of lengthd, grafted =~ waveguide, we derive an expression for the transmission co-
at equidistant sites separated by a lerdth efficient of a finite comb. This finite comb is constituted
from the samé\N’ DSB arranged oMl equidistant sites along
oxygen atoms linked by “rungs” of additional oxygen at- &" infinite wire. Section 1V is dgvoted to the analysis of the
oms. On the other hand recent improvements in manufactute-ffeCt c_>f geometry and materials on the band gap and the
ing technigues that permit the fabrication of extremely thintransmission coe_fflc_lent of the networks. The appearance O.f
wires of transition metafs~25 (especially grown by decora- localized modes inside the gaps when a defect side branch is

tion of atomic stepsoffer hope for the fabrication of con- inserted in th? waveguide |s.exam|ned in Sec. V. Finally,

tinuous quasi-one-dimensional wires of magnetic materialsSOMe conclusions are drawn in Sec. VI.

Furthermore, advancements in the modern semiconductor

technology that allow for the fabrication of nanostructures Il. THEORETICAL MODEL

with controllable chemical composition and geometry such

as quantum wires, dots, rings, crossbars, 2etsuggest

the possibility in a near future of designing and manufactur- In this paper, we study the propagation of spin waves in

ing networks of one-dimensional magnetic wires. One carcomposite systems composed of one-dimensional segments

notice that these improvements have been used to desigar side branchgsgrafted on a one-dimensional substrate

quasi-one-dimensional photonic band-gap waveguide at theaveguide(or backbong This study is performed with the

submicrometer scaf®?! These recent developments havehelp of the IRT(Ref. 29 of continuous media that permits

encouraged us to undertake a theoretical investigation dhe calculation of the Green'’s function of any composite ma-

magnetic excitations in networks composed of onederial in terms of the GF of its elementary constituents. In the

dimensional continuous magnetic media. The present studipllowing, we present a brief review of the basic concepts

focuses on a simple one-dimensional comblike structure witland the fundamental equations of this theory.

multiple dangling side branchd®DSB) (see Fig. 1L The Let us consider any composite material contained in its

geometry of the side branch attached to a waveguide has tispace of definitiorD and formed out oN different homoge-

peculiar property of giving rise to zeros of transmissionneous pieces situated in their domaiDs. Each piece is

along the waveguid€:?® These zeros of transmission bounded by an interface!;, adjacent in general tp(1<]j

occur at particular frequencies that are related to the lengtksJ) other pieces through subinterface domaMsg . The

and physical characteristics of the side branch. These freensemble of all these interface spadéswill be called the

guencies broaden into gaps when several side branches dntéerface spac® of the composite material.

grafted at equidistant nodes along the waveguide. This work The elements of the Green’s functigDD) of any com-

demonstrates that the widths of the pass bdadd hence of posite material can be obtained frén

the stop bandsin the magnonic band structure can be con-

trolled by appropriate modification of the geometry and theg(DD)=G(DD)—G(DM)G }(MM)G(MD)

chemical nature of the network’s constituents. The properties . _1

of the magnetic networks are calculated within the frame- +G(DM)G (MM)g(MM)G™*(MM)G(MD),

work of the interface response theof§RT) of continuous )

media?® In addition to the excitation spectra of periodic

comb structures, we have also calculated the transmissionhere G(DD) is the Green’s function of a reference con-

spectra of finite combs. Finally, we address the issue of thénuous medium ang(MM), the interface elements of the

existence of localized states in the forbidden bands of th&reen’'s function of the composite system. The inverse

magnonic band structure. Such localized states result frorg"*(MM) of g(MM) are obtained for any point in the space

the presence of a defect side branch inside the comb. Let u the interfacedl ={UM;} as a superposition of the differ-

mention that semiconductoF-shaped structuré® serial  entg (M;,M,),? the inverses of;(M;,M,) for each con-

stub_structure$] as well as one-dimensional wires with stituenti of the composite system. The latter quantities are

DSB®* have also been emphasized to have useful applicagiven by the equation

tions in electronic devices or interesting fundamental prop-

erties. g (M M) =AM M)G (M M), (2
The outline of this paper is as follows. In Sec. Il we

initially review the IRT of continuous media. This theory where

A. Interface response theory of continuous media: Overview
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Ai(M;,M)=1(M;,M,) pressed in terms of the total effective magnetic fidlds
+A(M;,M;), (I is the unit matrix dMm
3) =~ Y(MXH)=T(M—=Moiy), @

and
wherevy is the gyromagnetic ratio arldis a phenomenologi-

A(X, XN =V (X)G(X", X" [ xn—x (4)  cal damping factor(considered to be a positive constant
' The fieldsM andH are given by
where{X,X"} e M; andX' e D;.

In Eq. (4), the cleavage operatts.vr(,ti acts only !n _th_e su_r— M =M i+ m(r,t), (8a)
face domainM; of D; and cuts a finite or semi-infinite size
block out of the infinite homogeneous medidm. A, is
called the surface response operator of block

The new interface states can be calculated ffom

H=Hgi,+he(r,t) + Hexexd j(K.r—ot)]. (8b)

It is understood that; is a unit vector parallel to the static
defg Y(MM)]=0 (5) fields Mo andHy in the_xl_direction _andm(r,t) represents
the instantaneous deviation from its average valligi;.
showing that, if one is interested in calculating the interfaceThe term proportional tdH., in Eq. (8b) represents an ex-
states of a composite, one only needs to know the inverse @érnally applied driving field of wave vectérand frequency
the Green’s function of each individual block in the space of,, Finally the termhg,(r,t) in (8b) is an effective field aris-
their respective surfaces and/or interfaces. ing from the exchange interactions between neighboring

Moreover ifU(D) (Ref. 33 represents an eigenvector of magnetic moments. This exchange fidig(r,t) may be
the reference system, E(l) enables the calculation of the yritten as®*

eigenvectorsi(D) of the composite material

u(D)=U(D)—U(M)G~L{MM)G(MD) hex(r,t)=(y%)225 3o M+ 80, ©
+UM)G Y MM)g(MM)G Y{(MM)G(MD).
(6) WwhereJ, .. ;s is the exchange interaction between magnetic
sites atr andr+ 4. In this paper, we assume thag, . s

In Eq. (6), U(D), U(M), and u(D) are row vectors. couples only nearest neighbors in the simple cubic lattice.
Equation(6) provides a description of all the waves reflectedOn expandingM (r + 8,t) in terms ofM(r,t) and its deriva-
and transmitted by the interfaces, as well as the reflectioives using Taylor series, taking into account that for each
and the transmission coefficients of the composite system. Igiter there are six neighbors coupled by the exchahgee
this caselJ(D) must be replaced by a bulk wave launched inobtain to the lowest order that,
one homogeneous piece of the composite matétial.

2J
B. Inverse surface Green’s functions he(r,1) = WT)Z[6+a2V2]M (r,t). (10
of the elementary constituents

We report here the expression for the Green’s function ofNote that in doing the above expansion we use a continuum
a homogeneous infinite ferromagnetic medium. We give alsesepresentation of the ferromagnet, as was mentioned before,
the inverse of the surface Green'’s function for a semi-infiniteand thus we are restricting ourselves to long-wavelength ex-
medium with a free surface and for a slab of thicknégsr  citations. Inserting Eq98a), (8b), and (10) into the torque

segment of lengtld). Eg. (7), and making the usual linear spin-wave approxima-
tion (i.e., neglecting small terms that are of the second order
1. Green’s function for an infinite ferromagnetic medium in m, since|m|<M, at low temperaturg@swe arrive at the

Here we turn to the calculation of the magnetic GF’s for ©llOWing equation of motion fom,

an infinite ferromagnetic medium. In using the Heisenberg

model of a ferromagnet we are neglecting the effects of dm . . _
dipole-dipole interactions compared with the exchange con- E+Fm_'1x{7MoHeXtexdl(k-f wt)]
tribution to the Hamiltonian. Therefore, in evaluating the -

needed Green’s function, it is convenient to use a continuum —(yHo—=D'V)m}, (11)

approximation. Such an approximation is valid provided that , ) )
the relevant wavelengths are large compared with the lattic@here D’ =(2Ja"Mo/yA%). From the property of transla-
spacing. Therefore, we will deal only with long-wavelength tional invariance of the medium and on assuming a time

excitations. dependence in the form exp{wt), we may write
A medium denoted [ and described in a Cartesian co-
ordinate system@,x;,X,,X3) is assumed to have a simple m(r,t)=m(xz)exd j(k; - 1— ot)], (12

cubic structure with lattice parametar We take the sponta-
neous magnetizatiol 5 to be in thex; direction. The equa- where k;=(k;,k,) and I=(xy,x,) are two-dimensional
tion of motion for the total magnetizatiom can be ex- wave vectors. If we now substitute E.2) into (11), after



8712

some algebraic manipulations we arrive at the following dif-

ferential equation fom* (x3),

D' [ ¢? w+jI'—yHq
A Pl A T LG
= _(H)(;it_’_ ] H Zit)exr(j k3X3), (13)

where m™ (x3) =my(X3) + jmy(x3), andmy(x3)=0. ks is
the x3 component of the propagation vectlr (k;,ks).

H. AL-WAHSH et al.

Now we are in a position to calculate the Green’s function

we need. On using Eq13) the Fourier-transformed Green'’s
function between two points(siteg r(x;,X,,X3) and
r'(xy,X;,x3) of the considered infinite ferromagnetic me-
dium “i” associated with the magnetization® (x3) satisfies
the following equation

Fil & , ,
AT Gi(ky,Xg,X3) = 8(Xg—X3) (14)
and can be expressed®as
e_a’i|x3_xé|
Gi(kuaxayxg):—z—Fi, (15)
where
w ,yIHO 1/2
o= ki — ¥ } (163
and
i (16b)
" yiMg

Let us note that Eq(15) may be generalized to other exci-
tations, such as elastic waves in solids or liquits,
electrons’® and electromagnetic wavésin Eq. (168 and in

what follows, the damping constaft is considered to be
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whereF; has the same meaning as above and
Ci:Ch(aidi), (193)
Si:Sh(a(idi). (19b)

One can see that in the interface domilirtorresponding
to the interfaces;=0 andx;=d,, the surface Green'’s func-
tion is a 2< 2 square matrix. To obtain the Green'’s function
for one-dimensional segments of waveguides, one needs
only to take the limitk,—0 in Eqg. (18). In order to study
elementary spin-wave excitations, we calculate the Green’s
function in the interface space for a one-dimensional infinite
backbone with a periodic array of MDSB.

IIl. BAND STRUCTURES AND TRANSMISSION
COEFFICIENTS

A. One-dimensional infinite backbone with periodic array
of MDSB

Here, we treat the case of a comblike structure composed
of an infinite one-dimensional waveguide or backbome-
dium 1), along whichN’ finite side branche@medium 2 of
lengthd, are grafted periodically with spacing peridg atN
sites,N andN’ being integergsee Fig. 1 Let us first write
the Green’s function of this composite system. The infinite
line can be modeled as an infinite number of finite segments
(i.e., one-dimensional slatof lengthd, in the directionxs,
each one being pasted to two neighbors. The interface do-
main is constituted of all the connection points between finite
segments. Each connection poisite) on the infinite chain
will be defined by the integen such that—c<n<+. On

zero. The Green’s function for a one-dimensional infinite€ach siten, N’ DSB of lengthd, are connected. Here and

waveguide is obtained by setting=0 in Eq.(16), i.e., ¢;

=jV(w—7»H)/D{ =] .

2. Inverse surface Green'’s functions of the semi-infinite medium

One considers a semi-infinite mediuni”“with a “free
surface” located at the positioxg=0 in the directionOx3
of the Cartesian coordinate systef,&,,X,,X3) and infinite
in the other two directions. In this case

g, "(MM)=g; *(00)= —F;. (17)

3. Inverse surface Green’s functions of a slab (or segment)

One considers a slab of widtt bounded by two free
surfaces located at;=0 andx;=d; in the directionOx3 of
the Cartesian coordinates syste@,X;,X»,X3) and infinite
in the two other directions. In this case

afterwards the cross sections of all media are considered to
be much smaller than the considered wavelength, so as to
neglect the quantum-size effe@ir the subband structure
The respective contributions of media 1 and 2 to the inverse
Green'’s function at the interface space of the composite sys-
tem are given by Eq(18). The inverse Green'’s function of
the composite system is then obtained as an infinite banded
matrixg,, *(MM) defined in the interface domain constituted
of all the sitesn.

To find the contribution of medium 1 to the diagonal el-
ements of the matrig,, }(MM) one has to take the element
g, 1(0,0) =g; }(d; ,d;)] of Eq. (18 and multiply it by 2
(because at each site we have two pasted segments belonging
to medium . The contribution of medium 2 to the diagonal
elements is obtained by calculating the inverse of the matrix
given by Eqg. (18), taking the element g,(0,0)
[=0.(d;,d;)], finding its reciprocal and multiplying it by
N’. Therefore, the diagonal elements of the matrix
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of simplicity, the semi-infinite leads and medium 1 are as-
sumed to be constituted of the same material. We calculate
analytically the transmission coefficient of a bulk spin wave
coming fromx;= —o.
- The system of Fig. 2 is constructed from the infinite comb
1 of Fig. 1. In a first step, one suppresses the segments linking
2 sites 0 and 1, and site§ and N+ 1. For this new system
composed of a finite comb and two semi-infinite leads, the
N-1 L inverse Green’s function at the interface spag{e%(M M),
N is an infinite banded matrix defined in the interface domain
of all the sitesn, —co<n<+o. This matrix is similar to the
FIG. 2. Waveguide witiN' =6 DSB of lengthd, grafted at a  one associated with the infinite comb. Only a few matrix
finite number Nof equidistant sites separated by a lendihand  elements differ, namely, those associated with the sites
connected at its extremities to two semi-infinite leading lines. =0,n=1,n=N, andn=N+1.
The cleavage  operator Vg(MM)=g; }(MM)
-9, }(MM),? s the following 4x 4 square matrix defined
in the interface domain constituted of sites ONLN+1

9. (MM) are given by—{2(F,C,/S;)+N’(F,S,/C,)}.
The off-diagonal elements are given By/S; [see Eq(18)].
Taking advantage of the translational periodicity of the

system in the directioms, this matrix can be Fourier trans- A -B 0 0
formed as 0
Vg(MM) = , (253
(0.0 MM)] 1= 22 e cotkdy],  (20) ’ 0 0 A -B
1 0 0 -B A
wherek is the modulus of the one-dimensional reciprocal
vectork, d; stands for the period of the system agdC,  Where
+(N'F,/2F1)(S;S,/Cy).
The dispersion relation of the infinite periodic comblike A= F1Cy and B= E (25b)
waveguide is given by Eq5), that is,[g..(k,MM)] 1=0. S S

This relation takes the simple form o .
P In a second step, two semi-infinite leads constituted of the

N'F, S;S, same material as medium 1 are connected to the extremities

SE. C. (21)  n=1 andn=N of the finite comb. With the help of the IRT,
12 one deduces that the perturbing operatg(M M) allowing

On the other hand, in tHespace, the Green’s function of the the construction of the system of Fig. 2 from the infinite

cogkd;)=C;+

infinite homogenous magnonic waveguide is comb is then defined as thex4t square matri{see Eg.
17]
k,MM)= 2 ! (22
9~ MM = & =20 coakay T A B 0 O
After inverse Fourier transformation, E(@2) yields®® | B A-Fp O
Ve(MM)= 0 0 A-F, -B (26)

S, t|n—n’|+1

) R — 0 0 —-B A
gao(nan ) F]_ t2_1 ’ (23)

Using EQgs.(23) and (26), one obtains the matrix operator
AMM)=I(MM)+V,(MM)g..(MM) in the spaceM of
sitesn,n’=0, 1, N, N+ 1. For the calculation of the trans-
t=eikd1 (24) mission coefficient, we need only the matrix elements

A(1,D, A(1N), A(N,1), andA(N,N), which can be set in
the form of a 2<2 matrix Ag(MM)

where the integera andn’ refer to the sites{~<n,n'<
+00) on the infinite line and the parameteis given by

B. Transmission coefficient of the finite comblike structures

Infinite magnonic comblike structures are not physically 1+ct ct"
realizable but finite comb structures are. Therefore, in this As(MM)= ctN  1+cCt 273
section, we investigate the transmission properties of a finite
comb. This comb, as represented in Fig. 2, is constructed agith
follows: a finite piece containingN equidistant groups of
DSB is cut out of the infinite periodic system illustrated in [t—(C1—9S)]
Fig. 1, and this piece is subsequently connected at its ex- = W (270

tremities to two semi-infinite leading lines. The finite comb

is therefore composed &’ DSB (medium 2 of lengthd,  The surface Green’s functiod,(MM) of the finite comb
grafted periodically with a spacing periat] at N sites on a  with two connected semi-infinite leads in the space of sites 1
finite line (medium 13, N andN’ being integers. For the sake andN is
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S 1 1.0
_ -1 _ 1 |
dS(MM)_gS(MM)AS (MM) Fl t2_1 detAs(MM) -
9
1+ Ct(1—t2N"2) tN-1 } ] ]
X _ o, = ]
N1 1+Ct(1-t2N"?) § 05 -
(28) S
with |
_ 0.0 T T T T T T
S t 1 0 10 20 30 40 50 60 70
gS(MM)_F_lm<tN‘1 1 (29
Reduced Frequency
and

FIG. 3. Transmission coefficient versus reduced frequency for a
detAg(MM) = 14 2Ct+C22(1—t2N-2), (30) waveguide withN=N'=1 in the case of identical media 1 and 2.
For conveniencéd is considered to be 1.
In Eq.(29), gs(M M) is the matrix constituted of elements of
0.(MM) associated with sites 1 ard We now calculate  or symbolically
the transmission coefficient with a bulk spin wave coming
from, x3=—, U(xg)=e “*3. Substituting this incident Qg=Hg+{(m+3)m}?, (35b
wave in Eq.(6) and considering Eqg$15) and (28), we ob-

. ae . _ 2 ’ -
tain the transmitted wave(x}), with x,=Nd;, as wherem is a positive integer{);=w,d5/D, is a reduced

frequency, andH,= yzHodngé. From the above equation

(N e arlxh—(N-1)dy] one can notice that for this composite system there exists an
u(xy)=-2S;- > (31 infinite set of forbidden frequencig3, corresponding to the
t°=1 detA((MM) eigenmodes of the DSB. These DSB work as resonators and,
One deduces that the transmission coefficient is consequently, this composite system filters out the frequen-
cies{)y. One also observes from E(B4) thatT is equal to
2S,(t1?—1) |2 zero whenasd, is an odd multiple ofs/2. T reaches its

T= TN 1-t(Cy— Sy -t t—(C,—-S)T? - (B2 maximum value of 1 whenvjd, is a multiple of 7. This
latter case is illustrated in Fig. 3. In the cdde- 1, the zeros
of the transmission coefficient enlarge into gaps. It is worth
mentioning that the existence of transmission zeros has al-
ready been demonstrated in wave ggidoes with a resonantly
. . —4 41

In this section, we analyze the band structure and th&oupled stub for electrorf€, phonons}* photons?* and
transmission factor of the one-dimensional comblike struc@coustic wave&? This phenomenon is related to the reso-
ture, namely Egs(21) and (32). One can notice from Eq. hances associated with the finite additional path offered to
(21) that the pass bands are obtained when the right-hari@€ wave propagation. .
side takes on values in the rangel, +1]. In the limit N’ We now turn to discussing our numerical results for the
—0, one simply recovers free-wave propagation along th&and structure and transmission coefficient. We limit our-
backbone k=), T=1). On the other hand, increasing the selves to the case dxﬂentjcal media(a1=q§) constituting
numberN’ will prevent the right-hand side of E¢21) from the ba(_:kbone and the; S|,de branches. F!nally, we also con-
becoming smaller than unity and hence, contributes to deSider simple combs witlN"=1 and for which the length of
creasing the widths of the pass ban@s increasing the the distance between DSB amounts to the length of the side
widths of the band gapsHowever, at frequencies satisfying Pranches(i.e., d,=d,). Equation(21) then reduces to a
the conditions:S;=0 or S,=0, the right-hand side of Eq. Seécond-order polynomial equation that can be straightfor-
(21) becomes one, and these frequencies necessarily fail ifyardly solved for the frequency to give
side the pass bands. - )

Equation (32) for the transmission factoF in the case Q=H+{arcco§(1/3)(cogkd,) + ycos(kd;)+3)]} .

N=1 can be written as

IV. LARGE MAGNONIC STOP BANDS AND
TRANSMISSION SPECTRA

2F,C, 2 where Q=wd3/D; is the reduced frequency andf
= ‘,— . (33) =v,Hod3/D;. The plus and minus signs give the two solu-

N'F2S,+2F,C, tions of the second-order polynomial equation. The arccos

It is clear that this coefficient equals zero whep=0, i.e.,  function appearing on the right-hand side of £86) shows
that there are an infinite number of dispersion curves that are

aydy,=(m+3) . (34  repeated periodically. In Fig.(d we only show the first
. . seven dispersion curves in the band structure of the infinite
The corresponding frequency will be comb composite. There is a complete absolute gap below the

2 lowest band due to the presence of the external fi¢jd
(m+%)d1’ (359  There exist other absolute gaps, between the first and the
2

wg=7v,Ho+D, .
second bands, the second and the third bands, the fourth and
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FIG. 4. () The first seven bands, in the magnonic band structure FIG. 5. (a) The first five bands in the band structure of the

of the infinite periodic comb. We have chosdp=d,, D;=D3, infinite periodic comb wittd,=0.4d,, N'=1, andN—o. The two
H=1, N'=1, andN—cw. The plot is given as the reduced fre- media are identical(b) The transmission factof for N=10, N’
quency versus the dimensionless quankity (—7<kd;<+m), =1, andH =1. The other parameters are the same as in Faj. 5

wherek is the modulus of the propagation vector. One observes an

absolute gap below the first band due to the presence of the externegbmpletely formed gaps. This number is of the ordemof
field Hy. (b) Transmission coefficient versus the reduced frequency~6 in Fig. 4b) whered,=d; (similar results are obtained
for a waveguide witiN’=1 andN=10. The other parameters are fgr d,/d;=0.5,1, 1.5, 2, 2.5...), while it becomes of the
the same as in Fig.(&). order ofN>10 in Fig. §b) with d,=0.4d; .

Figure 6 depicts the effect of variation in the numbleof
the fifth bands, and between the fifth and the sixth bandssites on the transmission fact®rfor a finite comb consti-
The second and the fifth bands are flat bands, which corrdtited of two identical media witd; =d,. We show the fre-
spond to localized modes inside each resondteese modes duency dependence of the transmission Kgr=1 and N
do not penetrate into the backbon€he tangential points =2, 5, and 10 in the top, middle, and bottom panels, respec-
between the third and the fourth bands are degenerate points,

they appear atd, = 7 and — . Another degenerate point is - 1.0 7 NJ @
the tangential point between the sixth and the seventh bands 2 ]
that appears akd;=0. One can also notice antisymmetry ‘é’ 05
between the third and fourth bands and between the sixth and a
seventh bands as well. This antisymmetry is clearly visible 2 ] N=2
when plotting the corresponding transmission factor. Figure 0.0 ] ) .
4(b) shows the frequency dependence of the transmission for 1.0 -
d,=d;, N'=1 andN=10. The flat bands in Fig.(d), as- < ;w V
sociated with localized modes inside the resonaloes, § :
C,=0), do not contribute to the transmission. The number of € 05
oscillations in the transmission factor within the pass bands, é’ ]
which corresponds to the third and the fourth or to the sixth (S ]
and seventh bands, has been noted to be unfailinfly 2 0.0 :
—1. This number ifN—1 within the pass band, which cor- 1.0 7 T
responds to the band that has no tangential points with any § ]
other bandgsee also Fig. b 2 ]

Figure 5a) shows the first five bands for the case of two £ 051
identical media withd,=0.4d; andN’ = 1. The third band is g

~

flat. As previously noted, such a band corresponds to local- 00 ] .
ized modes inside the resonators. One can notice that a de- "0 10 20
crease or an increase in the length of the DSB removes the Reduced Frequency

degenerate points. The transmission factor is also influenced
by this change in geometry. This phenomenon is illustrated F|G. 6. Transmission coefficient versus the reduced frequency
in Fig. 5(b) [N andN’ have the same values as in Figb{.  for several values oN(N’=1). Both media are considered to be
Interestingly the width of the pass bantstop bandsde- identical, i=1, andd,;=d,. The top, middle, and bottom panels
creasesincreasepwith this other choice of the lengtl,. A depict the transmission foi=2, 5, and 10, respectively. Note that
comparison between Figs(B} and Jb) indicates that the increasingN results in turning some of the pseudogaps into com-
number of sites in the combl is important in achieving plete gaps, but leaves their widths virtually intact.
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FIG. 7. Same as in Fig. 6, except that ndW is varied (N FIG. 8. Transmission coefficient versus the reduced frequency

=10 is fixed. The top, middle, and bottom panels depict the trans-for the waveguide witll,=0.7d, . The two media are identical and
mission forN’ =2, 4, and 8, respectively. Noteworthy is the shrink- H=1. In the top and middle panelé’=1 andN equals 4 and 12

ing (widening of the pass-band&top bandswith increasingN’.  while in the middle and bottom paneis= 12 andN’ equals 1 and
We call attention to the increasing of the oscillation amplitudes with10. It is noticeable that the width of the pass bafstsp bands
increasingN’. decreasegincreaseswith increasingN’.

tively. It is apparent again that &sincreases the pseudogaps notice that varyingN results in turning the pseudogaps into
in the transmission turn into full gaps. However, one doedull gaps. The convergence to full gaps can be achieved in
not need exceedingly large values Nf at the reasonably general for a reasonably small number of sites. In the middle
small value ofN=5 the gaps are already formed. Moreover,and bottom panell (=12) is kept fixed andN’ takes the
for a given frequency range, there is an optimum valudlof values 1 and 10, respectively. The most interesting feature is
above which any additional incrementhleaves the bands that the width of the pass bandstop bandsdecreasesin-
practically unaffected. creases with increasingN’. On comparing the results of
Next, we discuss the dependence of the transmission fad=igs. 8 and 7, one can notice the same qualitative behavior,
tor on the number of dangling side branches. The results afeut with a more significant widening of the gaps in Fig. 8
illustrated in Fig. 7 for three values &f in the case of two  with increasingN’.
identical media withd;=d,. The top, middle and bottom As is clear from Eq(21), the pass bands described in the
panels display the frequency dependence of the transmissi@ove applications are mainly concentrated around frequen-
for N=10 andN’=2, 4, and 8, respectively. We call atten- cies satisfying eithe,=0 or S,=0. These conditions in-
tion to the fact that the width of the pass barigtop bands  Vvolve the two characteristic lengtilg andd,, which means
decreasegincreasep with increasing number of DSB. We that the bands originate either from the periodicity of the
can also note that an increaseNn results in an increase in system or from the resonance states of each DSB. On the
the amplitude of oscillations of the transmission coefficient.other hand, the narrowness of the bands suggests that the
Let us stress that, unlike in the usual two-dimensionalcondition for constructive interference can only be satisfied
composite system where the contrast in physical propertiey small frequency intervals, in relation with the numbgis
between the constituent materials is a critical parameter i@ndN’. If one first considers the scattering of an incoming
determining the existence of the gdpthe occurrence of wave by the DSB at a single sitee. N=1), Eq.(32) easily
narrow magnonic bandsjoes not require the use of two reveals that the transmission will be suppressed if one in-
different materialsin other words, the magnonic structure is creases the numbed’ of DSB [see EQ.(33)], except at
tailored within a single homogenous medium, although thdrequencies wher&,~0. Now, grafting the DSB’s at two or
boundary conditions impose the restriction that the wavesnore sites on the backboffiee., N=2) opens new channels
only propagate in the interior of the waveguides. for transmission at frequencies in the vicinity of the fre-
Finally, we end this section with an investigation of the quency corresponding to the solutionsSf0. This means
influence of the geometry on the transmission of the combthat the condition for constructive interference is allowed in
like systems. We compute the frequency dependence of ttemall intervals whose frequencies are related to the new
transmission factor fod,=0.7d,. The results are displayed characteristic lengtld,. These pass bands slightly increase
in Fig. 8, in the top and middle panels witi’ (=1) kept  in width upon increasing the numbhIrof sites. At the same
fixed andN taking the values 4 and 12, respectively. One cartime, for a givenN, increasingN’ gives rise to tighter con-
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FIG. 9. Same as in Fig. 2 except that a defect composed of
N;=6 DSB of lengthd; is introduced in the middle of the finite o
comb andN’ =6. For simplicity the total number of sites is consid- 0‘0' o '0‘5‘ o ‘1'0‘ o '1‘5‘ o ‘20

ered to be odd.
dy/d,
dition for constructive interference, thus contributing to a

reduction in width of the pass bands. FIG. 10. Frequencies of the localized modes associatedNyith

defect DSB of lengthd; in an infinite comb. The other parameters
areN’=N;=4,N—w, d,=d, andH=1. The system is assumed
to be composed of identical media.
In this section, we investigate the existence of localized
modes inside the gaps when defect dangling side branches ¢f gives the frequencies of the localized modes as functions
lengthd; are inserted at one site of the waveguidee Fig. ot the ratiod, /d, . The hatched areas correspond to the bulk
9)'.W'th the h_elp of the mterface_ response thédigne €an  hands of the perfect comb. The frequencies of the localized
:trz;lt\(/e es’ iintilgtf:slg’o?taw?n;ic:ilgewég%e{s_)uo:{)fm the localized modes are very sensitive to the lenglh. The localized
' modes emerge from the bulk bands, decrease in frequency
S, F,S, FoSs| t with increasing lengttd;, and finally merge into a lower
1+ = N’ C A . =1 =0. (37) bulk band where they become resonant states. At the same
1 2 s time, new localized modes emerge from the bulk bands. Let

In the preceding relation\; stands for the number of the Us note that for any given reduced frequency in Fig. 10, there

defect DSB and the rest of the symbols have their usuds a periodic repetition of the modes as functionsletd; .
meaning. Under the assumption that the defects are located in the

Next, with the help of Eq(37) we study the effects of middle of a finite comlfor simplicity one can take the num-
variation in the length of the defect branch on the existencder of sites to be odd see Fig), %ve have obtained an ana-
of localized states. We assume that our system is composéygtical expression for the transmission factbrthrough the
of identical media and thai’=N;=1 andd,=d,. Figure  defective comb

V. DEFECT MODES

2F,B3 2
T: 7 2 y (38)
(B1—F)[(B;—F1)(B3g+2B;+2N Fzsz/cz)_252]|

where =
By= — N} 3%
Cs

(41)

Fi[Ci(t—t2N"1+2N—1] . N
== — T ' (399 The transmission coefficient is also'affected ,bY the presence
S1 t((1-t ) of a defect inside the comb. In particuldrexhibits narrow
peaks associated with the localized modes. In Fig. 11, we
compare the transmission coefficients for two combs with
Fp (tN71—NFY and without defects. The results are illustrated Kgr=N}
B2:S_1 t(1—t2N-D) (40 =4,N=5,d,=d,, andd;=1.3d,. Figure 11b) shows one
localized mode in the second, the third, and the fourth gaps.
The localized mode inside the third forbidden band lies in
and the middle of the gap while the localized modes in the other
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illustrated forN’ =N4=4,N=5,d,=d,, d3=1.3d,, andH=1. In

the frequency range displayed in this figure one can see that the
peaks falling in the gap are very narrow. Transmission inside a bulk
band is significantly affected by the presence of a defect.
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FIG. 11. Transmission coefficients versus the reduced frequency § 05 B N'j=
for two combs with(b) and without(a) defect. The results are 2 1
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3
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60 70

FIG. 12. Transmission coefficient$, versus the reduced fre-
quency for four combs with(b), (c), (d)] and without(a) defect. In

. the panelgb), (c), and(d), N5 equals 1, 2, and 4 respectively. The
two gaps lie closer to the bulk bands. As one can see, thgguits are illustrated foN’ =2, N=5, d,=d,, d;=0.75,, and

second bulk band is asymmetric due to the proximity of ther; _ 1 ith increasingN, T is depressed in the bands and the
first localized mode to its left side. The situation is similar |y.alized mode is approaching the center of the gap.

for the third pass band, but the asymmetry is due to the

proximity of the localized mode to its right. In the frequency

range displayed in this figure one can see that the peakpne existence of the gaps in the spectrum is attributed to the
corresponding to the localized modes are very narrow. Theint effect of pseudoperiodicity and the resonance states of
transmission inside a bulk band can also be significantly afg,qo grafted dangling side branches. In these systems, the gap
fected by the presence of a defect. For instance, in the eXgigth is controlled by the numbefs andN’, the geometri-
ample shown in Fig. 11T is significantly depressed in the 5| harameters, including the length of the side branches and
second and third bulk bands. , the periodicity of the comb, as well as the contrast in the
F|,nally, we end this section with a study of the influence yysjcal properties of side branches material and the back-
of N3 on the transmission factor. Figure 12 shows a comparipone. Nevertheless, the magnonic band structure exhibits
son of the transmission coefficients for four combs with relatively wide gaps for chemically homogeneous systems
varying from zero(top panej to 1, 2, and 4. The results are \here the branches and the substrate are constituted of the
illustrated forN’=2, N=5, d=d;, andd;=0.75;. One  same material. We have also shown that devices composed
notices that the transmission factor in the bands is depressefd finite numbers of sites exhibit a behavior similar to that of
as Nj increases. Figures {1, 12(c), and 12d) show one an infinite periodic comb.
localized mode in the third and fourth gaps. One can also Localized states associated with defects in the comb were
observe from Fig. 12 that the localized mode is getting closebbserved. These defect modes appear as narrow peaks of
to the middle of the gap wheN3 increases. One notes also strong amplitude in the transmission spectrum. Since mag-
from Fig. 132b) to Fig. 12d), that the localized modes be- netic periodic composites have, in general, wide technical
come more and more confined, i.e., the quality factor of theapplications, it is anticipated that this new class of materials,

corresponding peaks increases, with increadijg which can be referred to as “magnonic crystals”, may turn
out to be of significant value for prospective applications.
VI. CONCLUSIONS Especially, one would expect such applications to be feasible

in electronics(spin-wave electronigs since magnon excita-

The purpose of this work was to investigate theoreticallytion energies also fall in the microwave range. Of special
the magnonic band structure of one-dimensional comb strudnterest is the prospect of achieving a complete band gap;
tures composed of multiple dangling side branchés this defined to be a stop band in which magnons are prohib-
grafted atN equidistant sites along a backbone. There existted for all values of the wave vector.
large absolute band gaps in the magnonic band structure of At this stage it is worth pointing out again the conditions
an infinite periodic comb with MDSB. The calculated trans- of validity of the model. In all our calculations we have
mission spectrum of spin waves in finite comb structuresassumed that the cross section of the waveguide is small
parallels the band structure of the infinite periodic combscompared to its linear dimension, that is, the waveguide may
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