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A two-band model which includes the magnetoelastic interaction is used to study the magnetization and spin
dynamics ofy-Mn alloys. As previously believed, singl&), double (D), and triple(T) spin-density wave
(SDW) states are found in fcic<a andc>a) and fcc €=a) lattices, respectively. When the magnetoelastic
coupling constanik exceeds the critical value., both the structural and magnetic phase transitions become
first order. This critical value drops to zero at the triple point, where the commensurate and incommensurate
SDW phase boundaries meet. In agreement with experiments on fct MnNi and fcc FeMn alloys, we find that
the gapA4,(T) in the spin-wave dispersion is proportional to the 3/2 power of the sublattice magnetization
M(T). For the noncollinear D and T SDW magnetic phases observed in MnNi and FeMn alloys, we find an
additional class of collective modes. This class includes a Goldstone mode which is produced by the modified
dispersion of holes not directly involved in the SDW. We also find high-frequency excitations with energies of
orderA, where A~2 eV is the energy gap in the quasiparticle spectrum. Although these incoherent exci-
tations have the same frequencies in the D and T SDW phases, their neutron-scattering cross sections should
be 33% larger in the TSDW phadé&0163-182¢09)05413-2

I. INTRODUCTION and FeMn(Ref. 3 alloys varies from 3% to 5%. With in-
creasing temperaturé,is proportional toM(T)? in MnCu
Because the fcc phase of pure Mn is only stable betweealloys. While experiments initially suggested the presence of
1079 K and 1140 Ky-Mn is commonly producéedby dop-  a pure SSDW in all such systems, Tsunoda and Nakiis-
ing with Fe, Ni, or Cu. The importance of magnetoelasticcovered that the spin in MnCu alloys actually inclines about
effects in these alloys is demonstrated by the coincidence d§° from the ¢ axis. Recent measuremetfthiave also re-
the fcc to fct €<<a) structural phase transition with the &le  vealed that the phase diagram of MnGa alloys is very similar
temperature of F#n,_, (Refs. 2 and Band Mn_,Ni, to the MnNi phase diagram of Fig. 1, with DSDW and
alloys' when x<15%. More heavily doped E®n;_, (x = TSDW phases in tetragonat¥a) and cubic phases. Be-
>45%%) and Mn_,Ni, (x>22%) (Ref. 4 alloys remain cause multiple domains of a SSDW or DSDW have the same
cubic for all temperatures beloWy . In a narrow impurity —neutron-scattering fingerprint as a TSCWI|Gssbauer trans-
range between 18% and 22%, MnNi alloys are fct at lowmission spectfhand y-ray emissiof have been used to de-
temperatures witlt>a. As indicated by the phase diagram tect the MSDW phases in FeMn and MnNi alloys.
in Fig. 1, an orthorombic phase joins the two tetragonal Low-temperature energy gaps,, between 7 and 10 meV
phases of MnNi alloys. Based on a phenomenological modehave been found in the excitation spectra of both(Refs.
Jo and Hiral demonstrated that these three crystal structured5—19 and fcc(Refs. 20 and 21Mn alloys. Early measure-
may be identified with the three magnetic phases sketched in
Fig. 2. While the singldS) spin-density wavéSDW) phase
is collinear, the noncollinear doub(®) and triple(T) SDW
phases are often grouped together as multiMe SDW's.
Band-structure calculatiofi$ and experimenfs have sup-
ported the presence of MSDW phases in MnNi and FeMn
alloys. In this paper, we use a two-band Hamiltonian which =
includes the magnetoelastic interaction to study the spin dy- & 3007
namics of all three magnetic phases. For any magnetic phase,
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the gapA.,(T) in the spin-wave(SW) spectrum is propor- 200
tional to the 3/2 power of the sublattice magnetization orthorombic
M(T). We also report a new class of incoherent spin exci- 100+
tations in the MSDW phases.
For low dopant concentrationg-Mn alloys have Nel O10 1!5 2=0 2=5 30
temperatures close to 470 K and magnetic moments of about at % Ni

2.3ug .2 Both the magnetic moment and” &letemperature
initially fall with the dopant concentration. At low tempera-  FIG. 1. The phase diagram of MnNi, alloys taken from
tures, the tetragonality=1—c/a of fct MnNi,* MnCu’~1?  Ref. 4.
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trons on thea Fermi surface. These excitations include a
Goldstone mode corresponding to the modified energy of an
unpaired hole. Other excitations have frequencies of akder
where 2A~2 eV is the energy gap for the hybridized qua-
siparticle energies. One such high-frequency mode may have
been observed in the fcc compound Wbwhich is
believed’ to support a TSDW. Jensen and Bagreviously
used the Heisenberg model to show that high-frequency ex-
citations are permitted by the internal degrees of freedom of
FIG. 2. The single, double, and triple SDW phases which arehe TSDW structure.
stabilized in different crystal structures. We present our results in seven sections. Section Il con-
tains a discussion of our Hamiltonian and magnetoelastic
ments by Tajimaet al?! on fcc FeMn alloys reported that effects. In Sec. lll, we derive the Green'’s functions. The free
Ag(T)=M(T)® with a=3/2. However, more recent mea- €nergy is obtained in Sec. IV, followed by a derivation of the
surements on fct MnNiRef. 22 and MnCu(Ref. 23 alloys ~ Spin dynamics in Sec. V. Section VI presents our results and
have yielded power laws of 1.56 and 1.83, respectively. UntiSec. VIl a discussion and conclusion. Details of our math-
now, this temperature dependence has not been satisfactorfiynatical analysis are left to the three Appendixes. A short
explained. version of this work appeared in Ref. 28.
The commensurate SDW structures of Fig. 2 are produced
by the Coulomb attractiokl between electrons on the elec- || HAMILTONIAN AND MAGNETOELASTIC ENERGIES
tron Fermi surfacea centered afl” and holes on the six ) .
neighboring hole Fermi surfacésat theX points* For a fcc The S, D, and T SDW spin structuféf a fec lattice
lattice, three distincX points correspond to eadh, and so May be written as
there are 3 times as many hole as electron Fermi surfaces. By R
contrast, the bcc lattice of Cr alloys supports one hole Fermi S=MzcogQ, R)), (1a
surface for every electron Fermi surface. Unlike the Fermi
surfaces of Cr alloy&® the Fermi surfaces of-Mn alloys 1 R R
are so different in shape that only commensurate SDW or- S=—=M[xcogQ, Rj)+ycogQy-Rj)], (1b)
dering is possible. Below the etemperature, the Coulomb V2
interactionU produces electron-hole pairs with hybridized
energies. The model described in the next section treats the 1 - N -
magnetoelastic interaction within mean-fielIF) theory. SZﬁM[XcoiQx'Ri)+yC°5{Qy'Ri)+ZC05(Qz’Ri)]’
Consequently, each electron or hole independently experi- (10
ences the effective fiel@; generated by the magnetoelastic
interaction. where
When the magnetoelastic constanexceeds the critical
value ., the structural and magnetic phase transitions be- Qx=2m%la, Qy=2wnyla, Q,=2wZlc,
come first order, as observed in mostMn alloys. Such a
martensitic transformatidAmay be induced by the softening an
of a lattice phonon and the resulting enhancement.ofhe
critical value «, falls to zero as the mismatch between the

electron and hole Fermi surfaces increases. At the triplg-; piain Eqgs.(18—(10), the sharply peaked Bloch wave
point, where the commensurate phases of Fig. 2 become URj tions of thed-band electrons have been replaced dy

stable to incommensurate phaseg,vanishes and any non- functions in the spin density. For the TSDW of Edc), the
zero magnetoelastic interaction will produce a first-order . . i —
transition. spin points along the (1,1),(1,1,1),(1,1,1), and (11,1)

Our formalism for the spin dynamics combines a MF de_directions. Consequently, a single domain of the TSDW

scription of the magnetoelastic interaction together with arfhhaset?oeshnot w?lgteMcublc ds?\/ﬂmm'etrﬁ/ andFls CO”S'St?rg.W'th
itinerant description of thal-band electrons. Close to the € cubic phase of FeVin and Vinii afloys. -or a bece fattice,

. g . - , , andQ, would all differ by a reciprocal lattice vec-
Neel transition, we find that\g,(T) <&k TyM(T)® with « Qu: Qy z .
—3/2. By contrast, a power law af=2 would be obtained tor. So Egs.(1a—(1c) would reduce to the same collinear

i SDW state with different polarization directions.
from a local-moment description of-Mn based on a G
. : ! X Our Hamiltonian includes both the Coulomb attractldn
Heisenberg model with strain components proportional t

Detween guasiparticles on theandb Fermi surfaces and the

2 . . .
M(T)". .SO the observation of a 3/2 power law 'mpl'es.thatmagnetoelastic interactiChbetween theN spins and the lat-
conduction-band electrons are responsible for the spin dyfice'

namics.

For a MSDW, only a fraction of the holes on each nested
Fermi surface directly participate in the SDW. The energies
of the remaining holes are unaltered by the SDW. A new
class Qf collective excitations is produced by the C'oulomb Ho=2 {Ea(k)alaakﬁrEb(k)bfiabka}, 3)
attraction between these unpaired holes and the paired elec- I

c<a c>a c=a

S8DW DSDW TSDW

cogQ, R)==1.

H:HO+HCOU|+HmE! (2)
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1V C11
Heou=w al bl b s a8k qa (4 K'==—g? DSDW), (8b)
Coul Vq,k,kz’,a,,s kaTkrpoK APtk 4 Ngl(011_012)(011+2012) (
1 2, 2 .2 v, 1
Hne=V Ecll( ExxT €5yt €5) T Carol €xxEyy Tt €yt €176xx) K=% Nglm (TSDW). (8¢

Hence, the last term i, with coefficientg, makes the
same contribution ta for each SDW phase. The SDW con-
tributions k' >0 depend only on the coefficiegt, and are
independent of,.

For the S and D SDW's, the tetragonality=1—c/a
=€, €5, 1S given by
wherea] , andb] , are the creation operators for electrons on
the a (electron and b (hole) bands. The strain components

9
2 (Sheuct Syt Sz

g
+ Wz(exx+ EyyT Ezz)Ei (S|2x+ S|2y+ Szz) ) ©)

2

are given bye;; , €11 andcy, are the elastic constants, agd t_glcll— C1io (SSDW, %3
are the magnetoelastic coupling strengths. With terms up to

orderSiZy, H e is the most general Hamiltonian consistent o1 2

with the cubic symmetry of the paramagnetic phase. The t:_f C11—Cip (DSDW), (9b)

final term inH . has the expectation valggM?AV/V and

produces the lowest-order effect of magnetostriction.
Missing from the HamiltonianH is the Coulomb

interactiori® between electrons and holes within theor b

Fermi surfaces. When sufficiently strong, this Coulomb in-
teraction can generate a first-order transition even in the ab- \%

which are independent @f,. The volume change beloWy,
is the same in all three phases:

AV M2
~ = Exx T €yyt €= — (91 + 392)m,

(10

sence of magnetoelastic energies. But it is not needed to

generate a SW gap.

which implies that the final term iHl o has the same expec-

After minimizing the Hamiltonian with respect to the tation value in each magnetic phasegif>0, thent would
strain components, it is easy to show that the average strafff POsitive for a SSDW and negative for a DSDW, in agree-

components for each SDW configuration are

» 91C12—92(C11—C12)
(C11—C1p)(C1+2Cyn)°

Exx— €Eyy—

_ r291(C1itCp) +ga(Cy—Cyp)

a SSDW), (6
= C—c(Cnt2cy  (oSPW. (63
Evy= E,y,= — E 291C11+ 292(011_ C12)
XX Yy 2 (Cll_ 012)(C1]_+ 2C12) ,

5 91C127 92(C11— C1))

= DSDW), 6b
€2z (C11—C12)(C11t2Cy0) ( W) (6
1 .0:+30;
= —e., = — M2 T2
Exx= Eyy= €77 M 2, (TSDW). (60

So in agreement with experimerifsthe strain components
are proportional tdM (T)2. The stability of the cubic crystal
above Ty requires thatc,;>0, c1;+2¢1,>0, ¢q3—C15>0,
andcq,+cq,>0.

The interaction constantk is defined in terms of
C11, C1p, and g; through the relation(Ho=—NxM?*,
which yields

_ } X 92(392+29;)
K=K T 2N cpt2cy,

(7)
where

_ E ng C11tCy
2 N¥L(cyy—cqp)(Cigt2¢Cp)

K!

(SSbw), (83

ment with the crystal structures identified by Jo and Hiiai

Fig. 2. The correspondence between the magnetic and crystal
structures does not depend on the sige@f which may be
negative in some MnCu alloy$. A small value forcy;

—Cqo would explain the large tetragonal distortion but the
relatively modest volume contraction observé@d fct MnNi
alloys. Indeed, Lowdet al3! have reported the softening of
C11—Cy just above the martensitic transformation tempera-
ture of a MnNiC alloy.

The connection between the two tetragonal lattices and
the magnetic phases sketched in Figs) 2nd Zb) is physi-
cally obvious for a Heisenberg model with nearest-neighbor
coupling. Whenc=a, the antiferromagnetic state of a fcc
lattice is frustrated since two sets of nearest neighbors in the
unit cell must be ferromagnetically aligned. This frustration
is removed in the contracted lattice of Figag where near-
est neighbors with opposite moments are separated by
JaZ+c?2<al\2. For the expanded lattice of Fig(i,
nearest-neighbor sites with opposite moments are separated
by a/\2< \a’+c?/2.

Applying the MF approximation, we replace the magne-
toelastic energH . by

Hie=—> B;-S+const, (11)
I
with effective field components
Y
Biy: _Zﬁ[glfyy_" go(€xxt €yyt 622)]<Sy>' (12

For each magnetic phasB; is parallel to(S;). Within this
approximation, every electron and hole independently expe-
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riences the effective fiel®; exerted by the magnetoelastic [1v— €(K)IG(K,iv)ap— A G(K,i v))pp

interaction. The definition oB; implies that the constant

term inH/ . is 3NkM*. ~(M=1)A'G(k,iv)pp =0, (24)
- k)1G(k, —A'G(k, =0, (2
Ill. GREEN'S FUNCTIONS AND MANY-BODY THEORY 1= € (k)]G (K, Tv)pa (K1)aa 9
where
Using the standard notation, the imaginary time Green'’s
functions may be written as
A’ UTZ G(K,iv))qp+ 2 M3 (26)
=37 1| Vl b =K )
G(K,7)ap.aa= (T rkal 1ALL(0)) = 8,G(K, T)aa, VoH T m
(13 Since the reciprocal lattice is bcQ,, Q,, andQ, are not
y
G(k,7) 5 pp=—(T,b a(T)bT (0))=8,5G(K, T)pp. related by reciprocal lattice vectors.
pin= K Qy KHQyp ) b (b1b4) With A=mA’, the above relations are solved by
o ' ok — e (k) ,
G(k'T)aﬂ,bb’__<TTbk+Q7a(T)bk+er,3(0)> (K,iv)aa= W (27)
=(07 0" ) gC(K, Dppr ¥#¥', (15 Skivn 1iv—ey(k) +m—1 1 28
12))pp= : '
Gk, 1) p.a6= ~(T:Aa( b1 4(0)=07G(K, T)ap, m D(kin) © M iv- (k)
Y
(16) SO 4 L L 1 29
|V r= — 7 y
G(K,7) g pa= (T ks a( MaL5(0)) = 0 4G(K, T)pa. 7 m Dk mivi—ep (k)
(17 1 A
In EqS (14)—(17), G(k,T)bb,G(k,T)bb/ ,G(k,T)ab, and G(k,iV|)ab=G(k,iV|)ba=_m, (30)
G(k,7)p5 are independent of provided that the hole baril Vm d
has cubic symmetry at_)oot o) '_[hat _eb(k+Qy)Eeb+(_k)_ where
does not depend op. This approximation would be satisfied
by spherical or octagonal Fermi surfaces. Notice that the D(k,iv)=[in—ea(k)[iv—ep (K)]—A% (3D

Green's function is a four-, six-, or eight-dimensional matrix
in band and spin space for the S, D, and T SDW phases. Below the Nel temperature, the hybridized quasiparticle
In terms of the Fermi operators for the two bands, the spirenergies are obtained from the zeroddk,e). So a gap of

operator is defined by

S,= E(a,a+bT )ols(aigtbig), (18)

where repeated spin indices are summedahdre the Pauli

matrices. Then using Eq16), the sublattice magnetization

may be written

2Jm 2J/m

M= -2 G(k0 )ap= = T2 G(Kim)a,

il
19

2A opens between the upper and lower hybridized bands.
Notice thatA(T) is enhanced by the magnetoelastic interac-
tion. The energy gap& may be inferred from the activation

of the electrical resistivity or obtained directly from optical
measurements. Unfortunately, neither set of measurements
has been performed foy-Mn alloys.

The physical significance of Eq28) for G(k,i )y, is
clear. For a MSDW, only Ih of the holes on each of tha
nested hole Fermi surfacésonnected to each electron Fermi
surface by then wave vector9Q,) participates in the SDW
and experiences an energy gap. The remaining fraction 1
—1/m of the holes are unaffected by the formation of the

wherem=1, 2, or 3 for S, D, and T SDW'’s. The above SDW.

relation also introduces the Fourier-transformed Green’s

functions
B )
G(kviyl)ij:J dTeIVlTG(k,T)iJ‘, (20)
0

with Matsubara frequency,= (21 +1)=«T.

In all three magnetic phases, the quasiparticle energy gap
A is given by

A(T)— N UM(T)+2KM(T)3 (32

whereUN/V has units of energy. The magnetization is also

A closed set of equations of motion for the Fourier- formally identical in all three phases:

transformed Green’s functions
random-phase approximatidRPA):

[iv1—€a(K)JG(K,iv))aa=MA'G(K,iv)qp=1, (21
[iv1—ep+ (K IG(K,i)pp—A'G(K,iv)ap=1, (22
[iv1— ep+ (K)IG(K,iv)pp —A'G(K,iv)gp=0, (23

is obtained within the

M(T)= (33

E D(k iv)’

However, recall that Eqs(8a—(8c) for «’ in terms of

01, Cq11, andcy, are different in the three magnetic phases.
Because of the size difference between the electron and

hole Fermi surfaces, there is an energy mismatgh(k)
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—e,(k)=2,/2 at the Fermi momenturkg of the a Fermi  tures sketched in Fig. 2 requires that the energy misngfch
surface. Assuming this mismatch to be the same for albe less than A(0)~4 eV. All of these parameters are still
points on thea Fermi surface, momentum summations oversmaller than thel-band width of about 5.5 %

k may be evaluated with the linearized energigék)=z

ande,, (k)=zy/2—z. IV. FREE ENERGY AND LANDAU-GINZBURG
Using Eq.(33) and the linearized quasiparticle energies, EXPANSION

the self-consistent equation for the ener ap may be writ- N

ten as q gy gap may The derivation of the free energy fo+Mn alloys follows

the same steps as for Cr alloY’eexcept that we must explic-
1 1 1 itly include the magnetoelastic constant term in Edl). In
— = niTpen, —sgr(v), (34)  terms of the magnetizatiod, the free energy difference be-
U+4xM?V/IN 4 T X tween the magnetic and paramagnetic phases is given by

where p.p, is the two-spin density of states for the one- ]
electron and three-hole Fermi surfaces. So the density of (39
states for a pair of nested electron and hole Fermi surfaces ighere Eq.(32) is used to replacA by M in D(k,i ). Mini-
per/23 The complex functionx, is defined so that mizing this free energy with respect #d reproduces Eq.
sgriIm(x;)]=—sgn(v,). Because the sum on the right-hand (33).
side of Eq.(34) is formally divergent, it must be cut off at To obtain the Landau-Ginzburg expansion of the free en-
frequenciesy,= * €3. The cutoffey has precisely the same ergy in powers ofM, we perform the momentum summa-
significance as in BCS theory: quasiparticles are only definetlons with the aid of the linearized quasiparticle energies de-
within the range=* ¢, of the Fermi energyer. Although fined above:
undetermined within BCS theory and within our mode)|js
subject to the restriction§<ep<er. VAF 4 6

Solving Eg.(34) with z,=0 asM—0, we find that the NF_AM +BMI+CMP+ -, (40)
Neel temperature of a perfectly nested alloy is given by N

xi=(2o/2— 2iv))?— 4A?, (35 _NJNU . 2T
AF—V 2VM +3xkM N & In

D(M,k,iv)
D(OK,i 1)

with quadratic and quartic coefficients

«_2Y  _en
Th=" €8 e, (36 NU2 {In T i Re( 1 1 ]
= peny IN| =] = i
* * = X +1/2
where Iny=~0.577 is Euler’'s constant. Since the nesting be- 16VTy Tn/ n=0 o) Y 41
tween the two Fermi surfaces is imperfect witgw 0, the (42)
actual Nel temperatureTy will be much less tharTy,. Vv N3U4
When k=0 andT=0, Eq.(34) yields the quasiparticle gap B=— £+8A_K+ —paSs (42)
_ * . .. . o * NU 2\ /3T* 2Peh ’
A(0)==Ty/y, which is identical to the familiar BCS rela- TN 10247°V=T\T
tion for the energy gap of a superconductor. Wken0, the whereX, =n+1/2+izy/8=T and
zero-temperature gap is given by
T Ss(z /T)=§ R 1 (43
A(0)=;TR. exd 44(0)%], (37) 0 =\ x8)
n
where A first-order phase transition requires that-0 and B
<0. So the coupled structural and magnetic phase transition
(1) \/ 4kM(T)? 2 2M(T) [2«kV becomes first order whex> k., where
NU/V+4xkM(T)? pend u Npen N3U*
(38) Ke=—————5 PerSa(Zo/Th). (44)
: : S . 10247V°Ty
is proportional toM(T)V«/Ty. Since ¢(0)<1, A(0) is
slightly enhanced by the magnetoelastic interaction. The summationS;(z,/Ty) is a monotonically decreasing

At zero temperature, Eq37) must be solved simulta- function of the energy mismatch,. At the triple pointz,
neously with Eq(32) for A(0) in terms ofM(0). Physically ~ =4.2913},, where the commensurate SDW structures of
reasonable solutions are obtained for small values.dBe-  Fig. 2 become unstable to an incommensurate SDW phase at
cause Eq(37) is independent of the energy mismaighand Ty, both S; and . vanish. So any small magnetoelastic
$(0)<1, 2A(0) should be the same for anyMn alloy. interaction will produce a first-order phase transition at the

In the absence of optical measurements, it is difficult totriple point. Whenx> ., the first-order Nel temperature
estimate either (0) or Ty, for y-Mn alloys. Based on T{! is solved from the conditio®?—4AC=0.
band-structure calculations, Asano and Yamadhisug- For a givenk andz,, all three magnetic phases have the
gested that 2(0) lies between 1.8 and 2.2 eV, correspond-same free energy. But for a fixed set of elastic constants
ing to an ideal Nel temperatureTy, between 500 and 600 {c;;,C1,,01.9,}, « is different in the S, D, and T SDW
meV 34 Then the stability of the commensurate SDW struc-phases. Then the magnetic phase with the largdsas the
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lowest free energy. The question of which magnetic phase is KA k+Qr A K+QyA
stable for a given set of material parameters will be briefly = a bk byt
addressed in the final section. Until then, we shall separately
examine the spin dynamics of each magnetic phase.
V. SPIN DYNAMICS b b a a
) ) o ) k+q+Qy A K+q+Quh  k+qA K+q.A
Collective spin excitations are obtained from the poles of
the spin correlation function k+Qy, A KA kA K+QuA
b a
A iwnT,
Xaﬁ(qiw): Jl) dre'“n <Tfs(qa7-)ﬁs(_qvo)a>|iwn—>w+is+:
(45)
b,
where §(q) is the Fourier transform of the spin operator in quA KA KearQuA KiaA
Eqg. (18). We also define the specific Matsubara correlation ’ '
functions FIG. 3. A graphical representation of the correlation functions in
Eqgs.(46)—(49).
XIlyz(Q:iwn) ) . )
where only the band-diagonal correlation functions
1 B ier + x7(q,0)=x7"(q,io,— w+ie™) appear in order to guaran-
——Z dre'“n(T by, +a, (1) I ! ; ;
Vk’k, 0 A+ Qy tee momentum conservation. Throughout the rest of this sec-
tion, the wave vector differencll—Q,| is assumed to be
t .
Xak,T(T)akf'T(O)bk’+q+Q72,T(O)>1 (46)  much smaller than the Fermi momentuka.
The RPA for the spin correlation functions is quite similar
(qion) in all three SDW phases, except that the correlation functions
XiHQien with differentQ,, are coupled to the band-diagonal terms in
1 s the MSDW phases. By symmetry consideratiogg,q, )
= VE dre““rW(TTan,T(r)bHQ7 (1) =x/7(q,w) are independent ofy. Similarly, the off-
’ 1 . . . .
kk! /0 diagonal correlation functiong (g, )= x/*"%(q,») with
><bl,+Q T(O)ak’+qﬁ(0)>' (47) v1# v, are independent of; and y,. The resulting RPA
72 equations for the correlation functions are sketched in Fig. 4
and listed in Appendix A. The Hartree-Fo@KF) correlation
X2174(q,iw,) i (0) 10 :
2 1 ®n functions x;’(q,w) and x;’(q,w) are evaluated withJ
1 s =0 and are represented by squares in Fig. 4.
= _z dre“”nT<TTan T(T)bk+Q () Upon solving the coupled equations, we obtain the trans-
Vir Jo ' " verse and longitudinal susceptibilities in terms of the HF
correlation functions:
Xy (0B 1qiq, 1(0)), (48)
2l ., m-1/ 1 L1
X370 iwp) XU m | 1-Ux®  1-Uyx?
1 B
= VE, . dTe"“”T<TTbII+q+Q71,T(T)ava(T) + i( (;L 5 + (';L 5 ] ,
kok Ml 1-UE -mx?)  1-U(xE—mxs”)
t
X bk,+Q72'T(0)akr+q'T(o)>, (49) (52)
where w,=2n7T. These correlation functions are repre- 1 m—l/ 1 1
sented graphically by the circles in Fig. 3. xi=g) ~2t o7 =0
? Cir _ o m | 1-Uy®  1-Ux{
Transverse and longitudinal spin excitations are now
evaluated about one of the ordering wave vec@ys With 1 1 1
respect to the spin quantization aXis, the transverse and + —( 5 5o+ =5 5 ]
longitudinal susceptibilities are M 1-U(E +myy)  1-UGE +mxy)
_ (53
x1(G,0)=2[x1"(q, @)+ x{"(q,0) ~ x37(q, @) 0 o _
. Where)((3 ) and Xﬁ’ are defined by Eq9A10) and (Al1).
-x37(q,w)], (50 The transverse and longitudinal excitations of all three
phases can be evaluated from the zerosFof(q,w)=1
X1(0,0) = X7(6,0) +x77(0,0) + X3 (@) +xF(G0), YK (@0)=mE(d.)]. Using the resuls in Appen-

(51) dix B, it can be shown that. (q,w)=F.(q,w) so that no
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FIG. 4. The RPA equations for the spin correlation functions, withepresented by wiggly lines.

additional zeros are introduced by the terms with an overbamodes. The division of these excitations into purely trans-

Notice that MSDW'’s withm>1 support an additional class verse or longitudinal modes is somewhat tricky because the
of collective excitations given by the zeros Bf(q,w)=1  spin quantization axis depends on the magnetic satellite. For
—Ux2(q,0) andF;(q,w)=Fi(q, — w)*.% example, transverse excitations ab@)t involve spin flips

It follows from Egs.(30) and (A9) that my{?(q,w) is  from +x to —x. Such spin flips will couple to both the
identical in all three magnetic phases. Therefore, the longitransverse and longitudinal excitations abQyt
tudinal and transverse mode frequencies, which are obtained
by solving the condition§ .. (q,w) =0, are the same in the S,
D, and T SDW phases.

From Eqs(A10) and(A11), we find that~ . (q, ) for the The SW excitations are obtained from the zeros of

D and T SDW states involves the linear combinations off -(9,»). Because the magnetoelastic interaction violates
operators byq otDiq, « O Dirg, atbiig, . rofational symmetry, the SW spectrum contains an energy

) — gapA4(T), which is formally the same in all three magnetic
+bk+Qy3,a, respectively. By contrask;(q,w) andF;(q, ») phases.
involve ~ the linear  combinations b.q «= b+, ,a .tFtor T=g, thg) S\LllvA?g)p(ﬁt(ig)rive?] in /?brzr%indix COl n]gaydbe
written asAg,(0)= , Where was define
(DSDW) or Zb"*%'“_bk*‘?yz’“_bk*%'”‘ (TSDW). Con- by Eq. (38). Since ¢(0)<1, Ag(0) is much smaller than
sequently, the quasiparticles on timnested hole Fermi sur- the zero-temperature energy gAg0).
faces contribute incoherently. Like the transverse and longi- In a SSDW, the SW gap is produced by the lattice con-
tudinal mode frequencies, the incoherent mode frequencieagaction along the axis. This contraction generates an effec-
are identical in the D and T SDW states. tive field B; which violates rotational symmetry. For a
The HF susceptibilities defined in Appendix A and sum-DSDW, the expansion along theaxis creates local, effec-
marized in Appendix B are evaluated by the same techniquesye fieldsB; in the ab plane which once again violate rota-
described in our previous wotkon the commensurate spin tional symmetry. At first sight, the presence of a SW gap in
dynamics of Cr alloys. However, the HF susceptibilities of cubic FeMn alloys is harder to understand, since the TSDW
y-Mn now include additional contributions whe®,  state preserves the cubic symmetry of the lattice with
#Q, . Other new features in the HF susceptibilities can be= eyy= €,,<0. But as in the other two SDW phases, the SW
traced to the modified self-consistent relation for In the  gap is produced by the effective fieR] experienced by the
next section, we show that theM?® term in Eq.(34) is  spin on each lattice site of the strained lattice. Although it
responsible for the gap in the SW excitation spectrum.  maintains the cubic symmetry of the TSDW phase, this ef-
fective field still destroys the rotational invariance of the
Hamiltonian.
For small ¢(T), the SW dispersion may be closely ap-
In the next three subsections, we shall separately discugsoximated bywe,(0)= VA(T)?+(cq)?, where the SW
our results for the SW, amplitude, and incoherent collectivevelocity ¢ is proportional to the Fermi velocity. This form for

A. Spin-wave modes

VI. COLLECTIVE MODES
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0 0.05 0.1 0.15 0.2

calTy
FIG. 5. The SW dispersion withiN/V/=3.068T%, perVTH/N FIG. 6. The normalized SW gaf,(T)/Ty, vs temperature for

=0.37y=4.29T},, and x/T=2.5x10°5 (solid line, 1.0x10°5  the same parameters as in Fig. 5.
(long dashed ling and 1.0<10 ¢ (short dashed lineat T/Ty

=0.1. The shaded region contains single-particle excitations. 16 KTy 2,
A(T)=— cosl‘( .
\/; pent 8Tn

) M(T)32. (54
ws.(q) was found’ to be satisfied by a MCuyg alloy up to

about 190 meV. The precise valuemflepends on the Fermi Consequently, the SW gap is proportional to the=3/2

surface topology and on the angle betweeandQ, but is power of the sublattice magnetization and grows with the
otherwise independent of the magnetic phase. For OCtagonFHismatchzo between the Fermi surfaces.

or spherical Fermi %Jrfaces 16"Yi1t§q parallel to Q,,c A power law with =2 would be obtained from a local-
=vg/\/3. In fot MnFe;® MnCu, and MnGe(Ref. 19 moment description ofy-Mn based on the Heisenberg

alloys, the observed SW velocities range from 180 to 25Q,5qe| provided that the strain componeafsare propor-
meV A . SWvelocities of similar sizes were obser?®@'in  (ionai 1o M2, By contrast, Sato and Makiused a two-band

fcc MnFe alloys. Unfortunately, there are no good estimateg;pa 1o predict thate=1, which would follow from a

for the Fermi velocity of anyy-Mn alloy due to the large eisenherg model with temperature-independent sffam.
effectlv_e mass. So_w_e cannot compare the measured value Bf)wer law ofa=3/2 only arises from an approach such as
¢/ve with the predictions of our model. ours, which combines a local treatment of the magnetoelastic
In Fig. 5, the SW dispersion is plotted for three values Ofinaraction together with an itinerant description of the elec-
x whenT/Ty=0.1. Bothw andcq are scaled by the ¢ {,5nic response.
temperatureTy, of a perfectly nested alloy witlao=0. The While Tajimaet al?* observed a 3/2 power dependence
value for the density of states used in this figure follows fromor three different fcc FeMn alloys, more recent studies of fct
the band-structure calculations of Asano and Yamashita. mncy (Ref. 22 and MnNi (Ref. 23 alloys find power laws
Other parameters were chosen to produce a magnetic M@ith o= 1.56 and 1.83, respectively. But the statistics of the
ment of 2.3.5 and a critical value ofx;=0. The largest |atter study are not convincing.
value ofk corresponds to an effective figlB;| of about 0.32
T while the smallest corresponds to an effective field 25
times smaller. IfAg,~10 meV andTy~0.5 eV, we esti-
mate thatc~0.75 x eV and|B;|~200 G. Next we turn to the longitudinal excitations, which corre-
Single-particle excitations occupy the shaded portion ofspond to oscillations in the SDW amplitudé(T). When
Fig. 5 and also lie above the Stoner pair-breaking threshold
at wpp=4A%+(cq)?. So the SW modes are undamped Rl S L B
within the RPA. Experimentally, the SW modes are damped
with a width proportional to the wave vectap'®? This
damping may be produced either by impurity scattering or by «
the decay of SW's into single-particle excitatidh®f the S
nongapped portions of the Fermi surface. = 008 b 1
The temperature dependence of the SW gap is plotted ir 3 ]
Fig. 6 using the same parameters as in Fig. 5. Over a wide<’
range of temperatured,,(T) is approximately proportional L ]
to M(T)%? as shown in Fig. 7. In both Figs. 6 andTA?) is Y i it ]
the second-order N temperature, which is exceeded when : ]
k> k.. Only a modest decrease in,(T)/M(T)%? occurs oLt v s
close toT{". The temperature variation ifvg,(T)/M(T)%?
increases ag becomes larger.
For small values oM (T) close to the Nel temperature, FIG. 7. The dimensionless ratib,(T)/TAM (T)¥? vs tempera-
Appendix B shows that ture for the same parameters as in Fig. 5.

B. Amplitude modes

0.05 | .

0.04 F ]

0.02f 3
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«=0, the zeros of the denominatbr, (q,w) coincide with b T T
the pair-breaking edgew,,= J4AZ+(cq)?. Recall that 5

damped excitations decay in time exponentially with a time -
scale inversely proportional to the imaginary part of the de- ——— — _——

*

IIIIII|IL

nominator. Although the amplitude modes are undamped, 1:2 3:

they are not associated with delta functions ik 1(q, ) 8 | K

due to the behavior of the real and imaginary parts of S R
F_.(9,w) near its zeros(see the discussion in Ref. 87 1: 3 i ]
Therefore, oscillations of the SDW amplitutiy(T) decay in L i
time according to a power law, just as in commensurate Cr o
alloys?®’ and the amplitude modes are marginal excitations 0 0.0 °-/I|_* 0.1 0.2
when k=0. CAiN

When«>0, the real part of . (q,) no longer vanishes FIG. 8. The dispersion of the incoherent, high-frequency collec-
at any frequency or wave vector. Hence, the amplitudgjye modes 2, 3, and 4 for the same parameters as in Fig. 5 with

modes are overdamped by the magnetoelastic couplingyTz=2.5x105. Also shown are the widths of modes 3 and 4.
Since the effective field; directly couples to the SDW am-

plitude, this result is not surprising. Also indicated in Fig. 8 are the broad widths of modes 3

_ and 4, which are heavily damped. Consequently, these
C. Incoherent collective modes modes will be difficult to observe using neutrons. By con-

The incoherent excitations appear as peaks f)(fjjw)  (rast. modes 1 and 2 have very narrow peaks that should
or 1/E(q ©)=1F(q,—»)* where Fi(q,0)=FY(q,0) appear as sharp features in a neutron-scattering cross section.
I 1 I ! I 1 i l

@) (q=0.0= -
+iFi(2)(q,w). As seen from Eqs(52), (53), and (A11), in- As T—0, F;¥(q=0,0=2,/2)—0 and mode 2 becomes un

coherent modes arise from the Coulomb attraction betweeﬁam.ped. for small enougby. The first m_coherent modg plot-
X . : ed in Fig. 9 also has a very narrow width which vanishes as
the fraction L of unpaired holes on thm nestedb Fermi

surfaces with the paired electrons on thEermi surface. So ;:Og‘grjgailil(;:nqé”Bu;alllge ék(;e bSV\i/mm?J?ifs’ srggt?grsinl aonrde
these excitations are not related to the magnetoelastic inter- Y y P y impunty g y

; : : single-particle excitations of the nongapped portions of the
actions. Because the unpaired holes do not experience Ehrmi .
) . ; ermi surfaces. Mode 2 may also be broadened by the varia-
;ahne;lgy gadei_ (q’h“’) gl;/en b{ Eq.(CZ) n]?ve(rj\l/)angﬁhes a(rjl_c:_ tion in energy mismatclz, around the hole Fermi surface.

(?) ampe_ » Inconerent excitations are fixed by the condition 1o high-frequency, incoherent modes plotted in Fig. 8
Fi”(q,0)=0. ) ) _are associated with the internal degrees of freedom of the
ForT=0 andq:O', the incoherent mode frequencies with \spw state. While a SW mode with=0 corresponds to

w>0 are summa}rzl)zed by Eqs(C4)—(C7). Wh%‘) Zy  the uniform rotation of each spiB by the same angle, a
=0,4wi (9=0)=w; (q_=0)w2\/§¢(0)A(0) andw;i”(0)  high-frequency incoherent mode with=0 corresponds to

= w{*(0)~2A(0), which use the fact thaip(0)<1. the separate rotation of each spin by a different angle. This
Hence, 0V(0)= 0?(0)~A4(0)/y2 both lie below the out-of-phase motion is achieved by the incoherent oscillation
SW gap. Forzy>812A(0)¢(0), asexpected for a realistic  of the two or three SDW componentscosQ, - R;) in Egs.
alloy, o{M(0)~Ag(0)%/z, and w®(0)~zy/2. Since (1b) and(1c). Due to the tilting of the spins away from the
wM(0)/Ag(0)~Ag(0)/zo<1 this excitation has a very crystal axis, these incoherent excitations possess both trans-
low energy of order 1 meV or less. Also fag>0, the third  verse and longitudinal components.

and fourth modes split away fronﬁA(o)_ One such high—frequenpy, incoherent mode may have

Unlike the SW gapw;(T,q=0) all fall in temperature been observed below the dletemperaturely=240 K of
according to an integer power & (T). It can be shown USb?® where a TSDW phase was conjectured and modeled
analytically thatw()(T,0) andw(®(T,0) fall off like M(T)?
while ©{®(T,0) andw(Y(T,0) decrease lik&/(T).

The results of Appendix C were used to plot the disper-
sion of the incoherent modes in Figs. 8 and 9. Due to their
high frequencies, the incoherent mode frequencies plotted in
Fig. 8 depend very weakly om. As expected, the low-
frequency, incoherent mode plotted in Fig. 9 lies much be-
low the SW gap. For smalicg/Ty, and T=0 but z,

>812A(0)¢(0),

Ag(0)?2  4(cq)? zo \? . . L —
wP(g)~— + {1_2 A (55 % 0.05 0.1 0.15 0.2
z z, | 4A(0) T
has a quadratic dispersion even whieg(0)=0. But in the
limit 2,—0, w{"(a)~As(0)%/2+(c)? at T=0 so that FIG. 9. The dispersion of the low-frequency incoherent mode 1

w{M(q) has a linear dispersion with the same velocity as thethin solid) together with the SW modéhick solid) for the same
SW modes. parameters as in Fig. 8.
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by Jensen and BaK.Starting with an anisotropic Heisenberg translating eac” by Q, and Q) while the TSDW has 3
model, Jensen and Bak conclude that a high-frequency Colimes as many satellite@ll 3N X points. Hence, the total
lective mode withw;~30 meV is supported by the internal gy intensity at all of the magnetic satellites is unchanged in
d_egrees of freedom of the TSDW structure. Similar conclupe three phases. Since the SW gap only depends and
sions were latter reached by Long and Yfzdhgjso based \j(T), it is not expected to change across a phase transition
on a Heisenberg model. However, gt al."* have argued petween different SDW states.
that multiple domains of an SSDW can explain the appear- ag the temperature approach®g, y,—0 and xs— x4
ance of_ h_igh—frequency magnetic excitations in uraniumg, thatF . (q,0)—F;(q,w). Consequently, the incoherent
monopnictides such as USb. and coherent scattering become equal gt Inspection of
(l-ghe mathematical origin of the Goldstone modegqs (52) and (53) then reveals that the inelastic scattering
;(q) plotted in Fig. 9 can be traced to EGALL) for  apout everyX point will be identicalat the Nel temperature
Xa(d,0). When ¢=0, the condition FUx,(q=00"  of each SDW phase.
=0)=0 is equivalent to the self-consistent relation for Sandwiched between the S and D SDW phases of MnNi
given by Eq.(26). Physically, this Goldstone mode corre- alloys in Fig. 1 lies an orthorhombic ph&seith c>b>a.
sponds to the dispersion of an unpaired hole, suitably modiwe are aware of no experimental studies on the spin dynam-
fied to account for its interaction with the condensed elecics of this phase. Even the static spin configuration is in
trons. Since unpaired holes only exist in a MSDW state, thome doubt. Long and Yeuffghave speculated that the
Goldstone mode does not appear in the SSDW phase.  orthorhombic phase is associated with the spin ordering

VII. DISCUSSION AND CONCLUSION S=M[zcogQ,-R;)coss+Xx cogQ,-R;)sind], (56)

This paper has evaluated the magnetic excitations abowhich smoothly interpolates between S and D SDW phases
the S, D, and T SDW states which appear in MnNi, MnCu,as ¢ varies from 0 tow/4. Unfortunately, this SDW phase
and FeMn alloys. When the magnetoelastic coupling is abcannot be stabilized within our approach because the result-
sent, the free energy is invariant under the rotation of everyng effective fieldB; of Eq. (11) is not parallel toS;. Only
spinS by the same angle. Consequently, the SW excitationgshen =0 or /4 is the spin configuration stabilized by the
are Goldstone modes of the alloy wher-0. But whenx  magnetoelastic interaction of E¢s). However, a more com-
>0, the magnetoelastic interaction generates an effectivplex magnetoelastic interaction with higher-order terms
field B;, which destroys the rotational invariance of the might be able to stabilize the proposed spin configuration of
Hamiltonian and generates a SW gap. A MF description othe orthorombic phase. An alternative SDW configuration
the magnetoelastic interaction together with an itinerant dewas proposett for the orthorhombic phase of MnGa alloys.
scription of the d-band electrons produces the relation This work leaves several other important questions unre-
Ag(T)=M(T)*2 which becomes exact ad(T)—0. By  solved. Jankowska-Kisielinsket al2 recently reported that
contrast, a 3/2 power law cannot be obtained from a localthe SW velocityc of a fct MnNi alloy is proportional to
moment description of-Mn alloys based on a Heisenberg M(T) at low temperatures. Closer &, ,c was observed to
model. become constant. While a linear dependencec®M (T)

In addition to SW excitations, the MSDW states supportwas predicted by Sato and MaKipur model predicts that
an additional class of incoherent collective excitations, threg¢s a temperature-independent constant determined by the
of which have high frequencies of orda(0)~1 eV. Un-  Fermi surface topology and by the angle betwgemndQ, .
fortunately, modes 3 and 4 may be impossible to detect dupossibly, the observed temperature dependence @
to their broad widths. Although weakly damped, mode lcaused by the change in the single-particle background,
probably lies at too low a frequency to be easily studiedwhich grows as the temperature increases.
using neutrons. By contrast, mode 2 has a very sharp low- Throughout this paper, we have assumed that the mag-
temperature peak ai~z,/2<2A(0). With increasing tem- netic momenM on each lattice site is the same. So the spin
perature,wi(z’(T,qZO) is predicted to decrease likd(T)?>  configurations of the various SDW states average over the
«1—T/Ty. So above about 0.TR~320 K, the frequency Mn and impurity moments. This assumption may be ex-
of mode 2 should be in the right range to observe with goected to fail as the concentration of impurity atoms in-
modern spallation source. Although the frequency of eaclereases, especially in MnCu alloys where the Cu atoms are
incoherent mode is identical in the D and T SDW phases, theonmagnetic. The tilting of the Mn moments away from the
prefactors in Eq(52) indicate that the incoherent mode in- ¢ axis in MnCu alloy$® may be due to the absence of Cu
tensity will be 33% larger in the TSDW phase. Hence, itmoments. In FeMn alloys, the Mn moment was beliévied
would be interesting to study the change in intensity of modeexceed the Fe moment in both the SSDW and TSDW phases.
2 as the temperature falls through the f&SDW) to fct  But recent first-principles calculations by Schulthessl*®
(DSDW) transitiof in Mn;_,Ni, alloys with 0.18x indicate that for a cubic BKgMn, s alloy, the TSDW ground
<0.22. The observation of this incoherent mode would alsstate contains an Fe moment of 2.3band a smaller Mn
remove the remaining doudBitthat the cubic phase supports a moment of 1.9%Lg. As shown below, the differences be-
TSDW state. tween the Mn, Ni, and Fe moments may have important

Compared to the SSDW state, the intensity of the SWconsequences for the martensitic transformation of MnNi
modes in the D and T SDW states is 1/2 and 1/3 timesand FeMn alloys.
smaller. But the DSDW phase has twice as many magnetic Within our model, the stable magnetic phase possesses
satellites as the SSDW stafthe 2N X points obtained by the largest value fok. Unfortunately, realistic parameters
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for ¢, andcq, imply that the SSDW always has a lower free  To summarize, we have studied the spin excitations about
energy than the MSDW phases. For example, thgsMigC;  the three magnetic phasespMn alloys. While a SW mode
alloy studied by Lowdeet al3! undergoes a martensitic with energy gap proportional tl(T)%?is found in all three
transformation from fcc to fct phases B,~174 K, much magnetic states, high-frequency, incoherent modes with fre-
below the Nel temperature of 546 K. The softening of,  duenciesw;~A are predicted for the two MSDW states.
—C4, is Observed to preceed this transformation. Assuming

that the SSDW is somehow eliminated from the competition, ACKNOWLEDGMENTS

then the fcc to fct transition can be qualitatively explained by

our model: whilexoc1/(ci1+2C15) in the high-temperature S i
o Laboratory, which is managed by Lockheed Martin Energy
TSDW phasee: 1/(C11~Cy7) for a DSDW structure. So the Research Corp. for the U.S. Department of Energy under

martensitic transformation occurs when;—c;, is small Contract No. DE-AC05-960R22464
enough that(DSDW)= «x(TSDW). But the measured val- ' '

ues forc,; andc,, imply that the DSDW always has a larger

x than the TSDW, even &y . Moreover, the SSDW has a

larger k than either of the MSDW states. The RPA equations for the spin correlation functions are
Alloy disorder may explain this behavior. Both Ldlig given by

and Henle§’ have argued that due to the difference between

This research was supported by Oak Ridge National

APPENDIX A: SPIN CORRELATION FUNCTIONS

the Mn and Ni moments, doping with Ni impurities stabilizes x1=x20+ xPUx+ (m—1) ! UX +x
a noncollinear spin configuration, with the TSDW favored
over the DSDW. Henley's magnetic phase diagram for an XU[x2+(m—1)x2], (A1)
XY model with randomly vacated sites bears some resem-
blance to the MnNi phase diagram of Fig. 1. Although the xi=x2 + xPUx+x 2 U(x1+ Smax?)
TSDW is favored by disorder for high Ni concentrations, the
DSDW may overcome this advantage at low temperatures as +x3 Ul x2+(m=1)x5], (A2)
C11— Cq, decreases.
On the other hand, Tsunoda and Wakabayastave ar- xX2=xY 7O)UX2+(m 1) UX +x
gued that the softening af;;+2c4, is responsible for the
magnetic and tetragonal phase transition&gt Ty in mod- XU[x1+(m—=1)x1], (A3)
erately doped MnCu alloys. Despite the negative value for
C12, « is still larger for a SSDW than for a DSDW phase. X=X+ X OU x5+ 12 U (xot Smaxs)
For small impurity concentrations, the DSDW phase may not
gain much free energy from random disorder. So our model +x5 U x1+(m=1)x1], (Ad)
correctly predicts that the softening ef;+2c;, and en- wherem=1, 2, or 3 for the S, D, and T SDW phases. These

hancement ok induce a first-order transition to a tetragonal linear, coupled equations are sketched in Fig. 4, where the

SSDW phase witlt<a. ~ Coulomb interaction is represented by a wiggly line. A simi-
Besides y-Mn alloys, the other class of prototypical lar set of coupled equations conneﬁls,; ; andX

transition-metal antiferromagnets are Cr alloys. Magneto- The HE correlation functions A2 2

elastic interactions are found to be much less significant in

Cr than iny-Mn. Early measurments by Steiniet al*® in- T

dicate that the maximum tetragonality: 1—c/a of pure Cr X(qiwn)=— > G(K,iv)aaG(k+qiv—iwn)pp,

at low temperatures is about X80 ° or roughly 2000 Vik

times smaller than iny-Mn. Due to its small magnitude, (A5)

other energies may compete with the magnetoelastic Tgterac— T

tion in Cr alloys. Indeed, recent work by Marces al: O (yi )= — — i -

suggests that ¥he |atticexpansionof Cr juZt below Ty is X (@len) V% GlkIm)aaGlkt ain=Ton)oy

required to stabilize the SDW. Hence, the tetragonality is (A6)

negative at high temperatures and only becomes positive be-

low 230 K. So unlike iny-Mn, t is not proportional to —0), - T ) ) )
M(T)2. It is not known if thechangein t below Ty, follows X1 (diog)=— V% G(k,iv)ppG(k+0,ivi—iwp)aa,
M(T)2. ' (A7)

Despite its tetragonal distortion belovy, Cr shows no
signs of a SW gap. Neutron scattering measurmesisg- T
gest that the largest possible SW gap in pure Cr isu&/, X (Giwn)=— o> G(K,iv)py G(K+0,i v —iwp)aa
or about 160 times smaller than inMn. As indicated by Vik
Eq. (54), the SW gap is proportional tgx. Unfortunately, (A8)
the magnetoelastic constaticannot be simply related to the -
tetragonality or volume contraction beloly,. Nonetheless, (0)/ __ . Lo
a SW gap of 50ueV would imply thatx is 25000 times Xz (Qion) V% Gk 1) anGk+ai v =Tn)ap
smaller in Cr than iny-Mn. (A9)
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are evaluated wittU=0. It can be easily shown that®’
=0 == Notice that x!(q,iwy)=x"(~aq,

—iw,). For convenience, we also introduce the HF suscep-

tibilities

xD(qi0n)=x2(q,0)+(M=1) 2" (q,w)

i(1—wn) — €a(k+Q)
D(k+a,i(»—wn) ’

T .
=~y Ckiva

(A10)
X 2(qion)=x2(q,0)— x{ (g, o)
T ) 1
==y Ckimaa, — gy
(A1)

and the corresponding overbarred quanti}?’é@(q,i w,) and
3O (q i
X4 (q!l wn) .

APPENDIX B: SPIN-WAVE GAP

Recall that the SW excitations are given by the zeros of |(w)=

the functionF _(q,w). To obtain the SW gap aj=0, we

R. S. FISHMAN AND S. H. LIU
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F&”(q,w)—F@(q,OFgf — ———F?(q,0").
—° W w —w
(B5)

With g measured fronQ,,, £=cq is simply related to the
SW velocityc. For octagonal Fermi surfaces withparallel
to Q, or spherical Fermi surfaces with ay £=veq/y3.
But for cubic Fermi surfaces witlg parallel to Q,, ¢
=vg(. So the precise value @f/vy depends on the Fermi
surface topology and on the angle betweeandQ,, .

The solution for the SW gap=Ag, with £=0 is given
by the condition

2

w
— (@) =¢(T)?, (B6)
| _fw dx 1
(@)= 28 X2— w2 X2—4A2
X{f(XI12+ zgl4) — f(—xI2+ z5/4)}.  (B7)

Complex analysis may be used to show that

{F(wl2+2/4) — T(— wl2+25/4)}

T 1
20 VAAZ— 2

separaté- .. (g,w) into real and imaginary parts: . 1
+=T> Re| ————
F.(g,0)=F(q,0)+iF?(q,0). (BD) 2 =0 | (m+izoh)?+ 0’/
Using the results of Ref. 37 and the modified self-consistent 1
equation forM (T) including magnetoelastic effects, we find X (1, +i24/8)2+ A2 : (B8)

1
F(0.0)= 5 penl &(T)?

v

4

sgn(v;)
xi(xf— &%)

(B2)

+ —iTpepU(£2+ 242+ 2A2) >
|

v
FP(0,0)=U 55pe{O(£2— 0°) + O (0~ 44%— £)}
w2—4A2—§2 +1/2

(1)2_52

{f[v(w)+2zy/4]—f[v(w) — 0+ 2Zp/4]— [ —v(w) +Zp/4]
+f[—v(w)+ o+2zH/4]}, (B3)

where f(x) = 1[expiB)+1] is the Fermi function®(x) is
the step functiong(T) is defined by Eq(38), x, is defined
by Eq.(35), and

X & [X*—4A*-¢2
U(X):§+§ ?52

The frequency dependence Bf*)(q, ) is extracted using
the Kramers-Kronig relation

(B4)

Evaluating this expression for small and A with w/A
<1, we obtain Eq(54) for the SW gap neaf .

APPENDIX C: INCOHERENT COLLECTIVE MODES

The incoherent collective modes appear only in the D and
T SDW states as the zeros & Y(q,0) or F{N(q,w)
=Fi(1)(q,—w), which are the real parts of the functions
Fi(d,0)=F{(q,0) +iF{?(qw) or Fi(qe)=F(q,
—w)*. Employing the formalism of Ref. 37, we find

(1) 1 2, 7. 2
Fi (q,0)=§Pth¢(T) +Z|TPth§

% sgn(vy)
T xi[(iv—x/2—z4/4)%— £2]’

(CD

FI2(0,0) =U 2open {1+ (@) + 241 [, ()~ w+ 20/4]

+[r_(w)+zy/4]—f[r _ (@) — o+ zx/4]},
(C2
with
1 A2
2 w*r &’

1
re(w)=5(0x8)+ (C3
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The frequency dependence Bf"(q, ) is obtained from a . 2o
Kramers-Kronig relation like Eq(B5). wP(E=0)=~ 2

At T=0, it is easy to show that the incoherent mode fre-
guencies with{=0 andw>0 are given by

+ %Jz§/4+ 4A(0)!{1+exd —8¢(0)2]},
Zy

0(E=0)=-, (o)
1 = 2 2 z 1
+ 5VZ5/4+48(0)*{1-exit —8¢(0)°]}, w(£=0)= 7+ 5\Z5/A+ 4A(0) {1+ exd —8¢(0)T},
(CH (C7)
2. 20 1 5 5 Whereas modes 2 and 4 arise from the condititf?(q
w7 (£=0)=+ 5\/20/4+4A(0) {1-exd—84(0)°]},  —0,w)=0, modes 1 and 3 are determined by the condition
€5  FP(g=00)=F{"(q=0-w)=0.
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