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Magnetoelastic effects and spin excitations ing-Mn alloys
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A two-band model which includes the magnetoelastic interaction is used to study the magnetization and spin
dynamics ofg-Mn alloys. As previously believed, single~S!, double~D!, and triple~T! spin-density wave
~SDW! states are found in fct (c,a andc.a) and fcc (c5a) lattices, respectively. When the magnetoelastic
coupling constantk exceeds the critical valuekc , both the structural and magnetic phase transitions become
first order. This critical value drops to zero at the triple point, where the commensurate and incommensurate
SDW phase boundaries meet. In agreement with experiments on fct MnNi and fcc FeMn alloys, we find that
the gapDsw(T) in the spin-wave dispersion is proportional to the 3/2 power of the sublattice magnetization
M (T). For the noncollinear D and T SDW magnetic phases observed in MnNi and FeMn alloys, we find an
additional class of collective modes. This class includes a Goldstone mode which is produced by the modified
dispersion of holes not directly involved in the SDW. We also find high-frequency excitations with energies of
orderD, where 2D'2 eV is the energy gap in the quasiparticle spectrum. Although these incoherent exci-
tations have the same frequencies in the D and T SDW phases, their neutron-scattering cross sections should
be 33% larger in the TSDW phase.@S0163-1829~99!05413-2#
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I. INTRODUCTION

Because the fcc phase of pure Mn is only stable betw
1079 K and 1140 K,g-Mn is commonly produced1 by dop-
ing with Fe, Ni, or Cu. The importance of magnetoelas
effects in these alloys is demonstrated by the coincidenc
the fcc to fct (c,a) structural phase transition with the Ne´el
temperature of FexMn12x ~Refs. 2 and 3! and Mn12xNix
alloys4 when x,15%. More heavily doped FexMn12x (x
.45%2! and Mn12xNix (x.22%) ~Ref. 4! alloys remain
cubic for all temperatures belowTN . In a narrow impurity
range between 18% and 22%, MnNi alloys are fct at l
temperatures withc.a. As indicated by the phase diagra
in Fig. 1, an orthorombic phase joins the two tetrago
phases of MnNi alloys. Based on a phenomenological mo
Jo and Hirai5 demonstrated that these three crystal structu
may be identified with the three magnetic phases sketche
Fig. 2. While the single~S! spin-density wave~SDW! phase
is collinear, the noncollinear double~D! and triple~T! SDW
phases are often grouped together as multiple~M! SDW’s.
Band-structure calculations6,7 and experiments8,9 have sup-
ported the presence of MSDW phases in MnNi and Fe
alloys. In this paper, we use a two-band Hamiltonian wh
includes the magnetoelastic interaction to study the spin
namics of all three magnetic phases. For any magnetic ph
the gapDsw(T) in the spin-wave~SW! spectrum is propor-
tional to the 3/2 power of the sublattice magnetizati
M (T). We also report a new class of incoherent spin ex
tations in the MSDW phases.

For low dopant concentrations,g-Mn alloys have Ne´el
temperatures close to 470 K and magnetic moments of a
2.3mB .3 Both the magnetic moment and Ne´el temperature
initially fall with the dopant concentration. At low tempera
tures, the tetragonalityt[12c/a of fct MnNi,4 MnCu,10–12
PRB 590163-1829/99/59~13!/8681~14!/$15.00
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and FeMn~Ref. 3! alloys varies from 3% to 5%. With in-
creasing temperature,t is proportional toM (T)2 in MnCu
alloys. While experiments initially suggested the presence
a pure SSDW in all such systems, Tsunoda and Nakai13 dis-
covered that the spin in MnCu alloys actually inclines abo
5° from the c axis. Recent measurements14 have also re-
vealed that the phase diagram of MnGa alloys is very sim
to the MnNi phase diagram of Fig. 1, with DSDW an
TSDW phases in tetragonal (c.a) and cubic phases. Be
cause multiple domains of a SSDW or DSDW have the sa
neutron-scattering fingerprint as a TSDW,2 Mössbauer trans-
mission spectra8 andg-ray emission9 have been used to de
tect the MSDW phases in FeMn and MnNi alloys.

Low-temperature energy gapsDsw between 7 and 10 meV
have been found in the excitation spectra of both fct~Refs.
15–19! and fcc~Refs. 20 and 21! Mn alloys. Early measure-

FIG. 1. The phase diagram of Mn12xNix alloys taken from
Ref. 4.
8681 ©1999 The American Physical Society
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8682 PRB 59R. S. FISHMAN AND S. H. LIU
ments by Tajimaet al.21 on fcc FeMn alloys reported tha
Dsw(T)}M (T)a with a53/2. However, more recent mea
surements on fct MnNi~Ref. 22! and MnCu~Ref. 23! alloys
have yielded power laws of 1.56 and 1.83, respectively. U
now, this temperature dependence has not been satisfac
explained.

The commensurate SDW structures of Fig. 2 are produ
by the Coulomb attractionU between electrons on the ele
tron Fermi surfacea centered atG and holes on the six
neighboring hole Fermi surfacesb at theX points.24 For a fcc
lattice, three distinctX points correspond to eachG, and so
there are 3 times as many hole as electron Fermi surfaces
contrast, the bcc lattice of Cr alloys supports one hole Fe
surface for every electron Fermi surface. Unlike the Fe
surfaces of Cr alloys,25 the Fermi surfaces ofg-Mn alloys
are so different in shape that only commensurate SDW
dering is possible. Below the Ne´el temperature, the Coulom
interactionU produces electron-hole pairs with hybridize
energies. The model described in the next section treats
magnetoelastic interaction within mean-field~MF! theory.
Consequently, each electron or hole independently exp
ences the effective fieldBi generated by the magnetoelas
interaction.

When the magnetoelastic constantk exceeds the critica
value kc , the structural and magnetic phase transitions
come first order, as observed in mostg-Mn alloys. Such a
martensitic transformation12 may be induced by the softenin
of a lattice phonon and the resulting enhancement ofk. The
critical valuekc falls to zero as the mismatch between t
electron and hole Fermi surfaces increases. At the tr
point, where the commensurate phases of Fig. 2 become
stable to incommensurate phases,kc vanishes and any non
zero magnetoelastic interaction will produce a first-ord
transition.

Our formalism for the spin dynamics combines a MF d
scription of the magnetoelastic interaction together with
itinerant description of thed-band electrons. Close to th
Néel transition, we find thatDsw(T)}AkTNM (T)a with a
53/2. By contrast, a power law ofa52 would be obtained
from a local-moment description ofg-Mn based on a
Heisenberg model with strain components proportional
M (T)2. So the observation of a 3/2 power law implies th
conduction-band electrons are responsible for the spin
namics.

For a MSDW, only a fraction of the holes on each nes
Fermi surface directly participate in the SDW. The energ
of the remaining holes are unaltered by the SDW. A n
class of collective excitations is produced by the Coulo
attraction between these unpaired holes and the paired

FIG. 2. The single, double, and triple SDW phases which
stabilized in different crystal structures.
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trons on thea Fermi surface. These excitations include
Goldstone mode corresponding to the modified energy o
unpaired hole. Other excitations have frequencies of ordeD,
where 2D'2 eV is the energy gap for the hybridized qu
siparticle energies. One such high-frequency mode may h
been observed in the fcc compound USb,26 which is
believed27 to support a TSDW. Jensen and Bak27 previously
used the Heisenberg model to show that high-frequency
citations are permitted by the internal degrees of freedom
the TSDW structure.

We present our results in seven sections. Section II c
tains a discussion of our Hamiltonian and magnetoela
effects. In Sec. III, we derive the Green’s functions. The fr
energy is obtained in Sec. IV, followed by a derivation of t
spin dynamics in Sec. V. Section VI presents our results
Sec. VII a discussion and conclusion. Details of our ma
ematical analysis are left to the three Appendixes. A sh
version of this work appeared in Ref. 28.

II. HAMILTONIAN AND MAGNETOELASTIC ENERGIES

The S, D, and T SDW spin structures29 of a fcc lattice
may be written as

Si5Mẑ cos~Qz•Ri !, ~1a!

Si5
1

A2
M @ x̂ cos~Qx•Ri !1 ŷ cos~Qy•Ri !#, ~1b!

Si5
1

A3
M @ x̂ cos~Qx•Ri !1 ŷ cos~Qy•Ri !1 ẑ cos~Qz•Ri !#,

~1c!

where

Qx52p x̂/a, Qy52p ŷ/a, Qz52p ẑ/c,

and

cos~Qg•Ri !561.

To obtain Eqs.~1a!–~1c!, the sharply peaked Bloch wav
functions of thed-band electrons have been replaced byd
functions in the spin density. For the TSDW of Eq.~1c!, the
spin points along the (1,1,1),(1,1,1̄),(1,1̄,1), and (1̄,1,1)
directions. Consequently, a single domain of the TSD
phase does not violate cubic symmetry and is consistent
the cubic phase of FeMn and MnNi alloys. For a bcc latti
Qx , Qy , andQz would all differ by a reciprocal lattice vec
tor. So Eqs.~1a!–~1c! would reduce to the same collinea
SDW state with different polarization directions.

Our Hamiltonian includes both the Coulomb attractionU
between quasiparticles on thea andb Fermi surfaces and the
magnetoelastic interaction10 between theN spins and the lat-
tice:

H5H01HCoul1Hme, ~2!

H05(
k,a

$ea~k!aka
† aka1eb~k!bka

† bka%, ~3!

e
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HCoul5
U

V (
q,k,k8,a,b

aka
† bk8b

† bk81qbak2qa , ~4!

Hme5VH 1

2
c11~exx

2 1eyy
2 1ezz

2 !1c12~exxeyy1eyyezz1ezzexx!

1
g1

N(
i

~Six
2 exx1Siy

2 eyy1Siz
2 ezz!

1
g2

N
~exx1eyy1ezz!(

i
~Six

2 1Siy
2 1Siz

2 !J , ~5!

whereaka
† andbka

† are the creation operators for electrons
the a ~electron! and b ~hole! bands. The strain componen
are given bye i i , c11 andc12 are the elastic constants, andgi
are the magnetoelastic coupling strengths. With terms u
order Sig

2 , Hme is the most general Hamiltonian consiste
with the cubic symmetry of the paramagnetic phase. T
final term inHme has the expectation valueg2M2DV/V and
produces the lowest-order effect of magnetostriction.

Missing from the Hamiltonian H is the Coulomb
interaction30 between electrons and holes within thea or b
Fermi surfaces. When sufficiently strong, this Coulomb
teraction can generate a first-order transition even in the
sence of magnetoelastic energies. But it is not neede
generate a SW gap.

After minimizing the Hamiltonian with respect to th
strain components, it is easy to show that the average s
components for each SDW configuration are

exx5eyy5M2
g1c122g2~c112c12!

~c112c12!~c1112c12!
,

ezz52M2
g1~c111c12!1g2~c112c12!

~c112c12!~c1112c12!
~SSDW!, ~6a!

exx5eyy52
1

2
M2

g1c1112g2~c112c12!

~c112c12!~c1112c12!
,

ezz5M2
g1c122g2~c112c12!

~c112c12!~c1112c12!
~DSDW!, ~6b!

exx5eyy5ezz52
1

3
M2

g113g2

c1112c12
~TSDW!. ~6c!

So in agreement with experiments,10 the strain component
are proportional toM (T)2. The stability of the cubic crysta
aboveTN requires thatc11.0, c1112c12.0, c112c12.0,
andc111c12.0.

The interaction constantk is defined in terms of
c11, c12, and gi through the relation̂ Hme&52NkM4,
which yields

k5k81
1

2

V

N

g2~3g212g1!

c1112c12
, ~7!

where

k85
1

2

V

N
g1

2 c111c12

~c112c12!~c1112c12!
~SSDW!, ~8a!
to
t
e

-
b-
to

in

k85
1

4

V

N
g1

2 c11

~c112c12!~c1112c12!
~DSDW!, ~8b!

k85
1

6

V

N
g1

2 1

c1112c12
~TSDW!. ~8c!

Hence, the last term inHme with coefficientg2 makes the
same contribution tok for each SDW phase. The SDW con
tributions k8.0 depend only on the coefficientg1 and are
independent ofg2 .

For the S and D SDW’s, the tetragonalityt512c/a
5exx2ezz is given by

t5g1

M2

c112c12
~SSDW!, ~9a!

t52
g1

2

M2

c112c12
~DSDW!, ~9b!

which are independent ofg2 . The volume change belowTN
is the same in all three phases:

DV

V
5exx1eyy1ezz52~g113g2!

M2

c1112c12
, ~10!

which implies that the final term inHme has the same expec
tation value in each magnetic phase. Ifg1.0, thent would
be positive for a SSDW and negative for a DSDW, in agre
ment with the crystal structures identified by Jo and Hirai5 in
Fig. 2. The correspondence between the magnetic and cr
structures does not depend on the sign ofc12, which may be
negative in some MnCu alloys.12 A small value for c11
2c12 would explain the large tetragonal distortion but t
relatively modest volume contraction observed4 in fct MnNi
alloys. Indeed, Lowdeet al.31 have reported the softening o
c112c12 just above the martensitic transformation tempe
ture of a MnNiC alloy.

The connection between the two tetragonal lattices
the magnetic phases sketched in Figs. 2~a! and 2~b! is physi-
cally obvious for a Heisenberg model with nearest-neigh
coupling. Whenc5a, the antiferromagnetic state of a fc
lattice is frustrated since two sets of nearest neighbors in
unit cell must be ferromagnetically aligned. This frustrati
is removed in the contracted lattice of Fig. 2~a!, where near-
est neighbors with opposite moments are separated
Aa21c2/2,a/A2. For the expanded lattice of Fig. 2~b!,
nearest-neighbor sites with opposite moments are sepa
by a/A2,Aa21c2/2.

Applying the MF approximation, we replace the magn
toelastic energyHme by

Hme8 52(
i

Bi•Si1const, ~11!

with effective field components

Big522
V

N
@g1egg1g2~exx1eyy1ezz!#^Sig&. ~12!

For each magnetic phase,Bi is parallel to^Si&. Within this
approximation, every electron and hole independently ex
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8684 PRB 59R. S. FISHMAN AND S. H. LIU
riences the effective fieldBi exerted by the magnetoelast
interaction. The definition ofBi implies that the constan
term in Hme8 is 3NkM4.

III. GREEN’S FUNCTIONS AND MANY-BODY THEORY

Using the standard notation, the imaginary time Gree
functions may be written as

G~k,t!ab,aa52^Ttaka~t!akb
† ~0!&5dabG~k,t!aa ,

~13!

G~k,t!ab,bb
g 52^Ttbk1Qga~t!bk1Qgb

† ~0!&5dabG~k,t!bb ,

~14!

G~k,t!ab,bb8
gg8 52^Ttbk1Qga~t!bk1Qg8b

† ~0!&

5~sg
•sg8!abG~k,t!bb8 gÞg8, ~15!

G~k,t!ab,ab
g 52^Ttaka~t!bk1Qgb

† ~0!&5sab
g G~k,t!ab ,

~16!

G~k,t!ab,ba
g 52^Ttbk1Qga~t!akb

† ~0!&5sab
g G~k,t!ba .

~17!

In Eqs. ~14!–~17!, G(k,t)bb ,G(k,t)bb8 ,G(k,t)ab , and
G(k,t)ba are independent ofg provided that the hole bandb
has cubic symmetry aboutX so that eb(k1Qg)[eb1(k)
does not depend ong. This approximation would be satisfie
by spherical or octagonal Fermi surfaces. Notice that
Green’s function is a four-, six-, or eight-dimensional mat
in band and spin space for the S, D, and T SDW phases

In terms of the Fermi operators for the two bands, the s
operator is defined by

Sig5
1

2
~aia

† 1bia
† !sab

g ~aib1bib!, ~18!

where repeated spin indices are summed andsg are the Pauli
matrices. Then using Eq.~16!, the sublattice magnetizatio
may be written

M52
2Am

N (
k

G~k,02!ab52
2Am

N
T(

k,l
G~k,in l !ab ,

~19!

where m51, 2, or 3 for S, D, and T SDW’s. The abov
relation also introduces the Fourier-transformed Gree
functions

G~k,in l ! i j 5E
0

b

dtein ltG~k,t! i j , ~20!

with Matsubara frequencyn l5(2l 11)pT.
A closed set of equations of motion for the Fourie

transformed Green’s functions is obtained within t
random-phase approximation~RPA!:

@ in l2ea~k!#G~k,in l !aa2mD8G~k,in l !ab51, ~21!

@ in l2eb1~k!#G~k,in l !bb2D8G~k,in l !ab51, ~22!

@ in l2eb1~k!#G~k,in l !bb82D8G~k,in l !ab50, ~23!
’s

e

in

’s

@ in l2ea~k!#G~k,in l !ab2D8G~k,in l !bb

2~m21!D8G~k,in l !bb850, ~24!

@ in l2eb1~k!#G~k,in l !ba2D8G~k,in l !aa50, ~25!

where

D852
U

V
T(

k,l
G~k,in l !ab1

2

Am
kM3. ~26!

Since the reciprocal lattice is bcc,Qx , Qy , andQz are not
related by reciprocal lattice vectors.

With D[AmD8, the above relations are solved by

G~k,in l !aa5
in l2eb1~k!

D~k,in l !
, ~27!

G~k,in l !bb5
1

m

in l2ea~k!

D~k,in l !
1

m21

m

1

in l2eb1~k!
, ~28!

G~k,in l !bb85
1

m

in l2ea~k!

D~k,in l !
2

1

m

1

in l2eb1~k!
, ~29!

G~k,in l !ab5G~k,in l !ba5
1

Am

D

D~k,in l !
, ~30!

where

D~k,in l !5@ in l2ea~k!#@ in l2eb1~k!#2D2. ~31!

Below the Néel temperature, the hybridized quasipartic
energies are obtained from the zeros ofD(k,e). So a gap of
2D opens between the upper and lower hybridized ban
Notice thatD(T) is enhanced by the magnetoelastic intera
tion. The energy gap 2D may be inferred from the activation
of the electrical resistivity or obtained directly from optic
measurements. Unfortunately, neither set of measurem
has been performed forg-Mn alloys.

The physical significance of Eq.~28! for G(k,in l)bb is
clear. For a MSDW, only 1/m of the holes on each of them
nested hole Fermi surfaces~connected to each electron Ferm
surface by them wave vectorsQg) participates in the SDW
and experiences an energy gap. The remaining fractio
21/m of the holes are unaffected by the formation of t
SDW.

In all three magnetic phases, the quasiparticle energy
D is given by

D~T!5
N

2V
UM ~T!12kM ~T!3, ~32!

whereUN/V has units of energy. The magnetization is al
formally identical in all three phases:

M ~T!52
2

N
T(

k,l

D

D~k,in l !
. ~33!

However, recall that Eqs.~8a!–~8c! for k8 in terms of
g1 , c11, andc12 are different in the three magnetic phase

Because of the size difference between the electron
hole Fermi surfaces, there is an energy mismatcheb1(k)
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2ea(k)5z0/2 at the Fermi momentumkF of the a Fermi
surface. Assuming this mismatch to be the same for
points on thea Fermi surface, momentum summations ov
k may be evaluated with the linearized energiesea(k)[z
andeb1(k)[z0/22z.

Using Eq.~33! and the linearized quasiparticle energie
the self-consistent equation for the energy gap may be w
ten as

1

U14kM2V/N
52

1

4
p iTreh(

l

1

xl
sgn~n l !, ~34!

xl5A~z0/222in l !
224D2, ~35!

where reh is the two-spin density of states for the on
electron and three-hole Fermi surfaces. So the density
states for a pair of nested electron and hole Fermi surfac
reh/2.32 The complex function xl is defined so that
sgn@ Im(xl)#52sgn(n l). Because the sum on the right-han
side of Eq.~34! is formally divergent, it must be cut off a
frequenciesn l56e0 . The cutoffe0 has precisely the sam
significance as in BCS theory: quasiparticles are only defi
within the range6e0 of the Fermi energyeF . Although
undetermined within BCS theory and within our model,e0 is
subject to the restrictionsT!e0!eF .

Solving Eq.~34! with z050 as M→0, we find that the
Néel temperature of a perfectly nested alloy is given by

TN
! 5

2g

p
e0e28/Ureh, ~36!

where lng'0.577 is Euler’s constant. Since the nesting b
tween the two Fermi surfaces is imperfect withz0Þ0, the
actual Néel temperatureTN will be much less thanTN

! .
Whenk50 andT50, Eq. ~34! yields the quasiparticle ga
D(0)5pTN

! /g, which is identical to the familiar BCS rela
tion for the energy gap of a superconductor. Whenk.0, the
zero-temperature gap is given by

D~0!5
p

g
TN

! exp@4f~0!2#, ~37!

where

f~T!5A 4kM ~T!2

NU/V14kM ~T!2

2

rehU
'

2M ~T!

U
A2kV

Nreh

~38!

is proportional to M (T)Ak/TN
! . Since f(0)!1, D~0! is

slightly enhanced by the magnetoelastic interaction.
At zero temperature, Eq.~37! must be solved simulta

neously with Eq.~32! for D(0) in terms ofM (0). Physically
reasonable solutions are obtained for small values ofk. Be-
cause Eq.~37! is independent of the energy mismatchz0 and
f(0)!1, 2D(0) should be the same for anyg-Mn alloy.

In the absence of optical measurements, it is difficult
estimate either 2D(0) or TN

! for g-Mn alloys. Based on
band-structure calculations, Asano and Yamashita33 sug-
gested that 2D(0) lies between 1.8 and 2.2 eV, correspon
ing to an ideal Ne´el temperatureTN

! between 500 and 600
meV.34 Then the stability of the commensurate SDW stru
ll
r

,
it-

of
is

d

-

o

-

-

tures sketched in Fig. 2 requires that the energy mismatcz0
be less than 4D(0)'4 eV. All of these parameters are sti
smaller than thed-band width of about 5.5 eV.33

IV. FREE ENERGY AND LANDAU-GINZBURG
EXPANSION

The derivation of the free energy forg-Mn alloys follows
the same steps as for Cr alloys,35 except that we must explic
itly include the magnetoelastic constant term in Eq.~11!. In
terms of the magnetizationM, the free energy difference be
tween the magnetic and paramagnetic phases is given b

DF5
N

VH NU

2V
M213kM42

2T

N (
k,l

lnUD~M ,k,in l !

D~0,k,in l !
UJ ,

~39!

where Eq.~32! is used to replaceD by M in D(k,in l). Mini-
mizing this free energy with respect toM reproduces Eq.
~33!.

To obtain the Landau-Ginzburg expansion of the free
ergy in powers ofM, we perform the momentum summa
tions with the aid of the linearized quasiparticle energies
fined above:

V

N

DF

TN
!

5AM21BM41CM61•••, ~40!

with quadratic and quartic coefficients

A5
NU2

16VTN
!

rehH lnS T

TN
! D 2 (

n50

` FReS 1

Xn
D2

1

n11/2G J ,

~41!

B52
k

TN
!

18A
Vk

NU
1

N3U4

1024p2V3TN
! T2

rehS3 , ~42!

whereXn5n11/21 iz0/8pT and

S3~z0 /T!5 (
n50

`

ReS 1

Xn
3D . ~43!

A first-order phase transition requires thatA.0 and B
,0. So the coupled structural and magnetic phase trans
becomes first order whenk.kc , where

kc5
N3U4

1024p2V3TN
2

rehS3~z0 /TN!. ~44!

The summationS3(z0 /TN) is a monotonically decreasin
function of the energy mismatchz0 . At the triple pointz0

54.2913TN
! , where the commensurate SDW structures

Fig. 2 become unstable to an incommensurate SDW phas
TN , both S3 and kc vanish. So any small magnetoelast
interaction will produce a first-order phase transition at
triple point. Whenk.kc , the first-order Ne´el temperature
TN

(1) is solved from the conditionB224AC50.
For a givenk andz0 , all three magnetic phases have t

same free energy. But for a fixed set of elastic consta
$c11,c12,g1 ,g2%, k is different in the S, D, and T SDW
phases. Then the magnetic phase with the largestk has the
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lowest free energy. The question of which magnetic phas
stable for a given set of material parameters will be brie
addressed in the final section. Until then, we shall separa
examine the spin dynamics of each magnetic phase.

V. SPIN DYNAMICS

Collective spin excitations are obtained from the poles
the spin correlation function

xab~q,v!5E
0

b

dteivnt^TtS~q,t!bS~2q,0!a&u ivn→v1 i«1,

~45!

whereS(q) is the Fourier transform of the spin operator
Eq. ~18!. We also define the specific Matsubara correlat
functions

x1
g1g2~q,ivn!

5
1

V(
k,k8

E
0

b

dteivnt^Ttbk1q1Qg1
,↑

† ~t!

3ak,↑~t!ak8,↑
†

~0!bk81q1Qg2
,↑~0!&, ~46!

x̄1
g1g2~q,ivn!

5
1

V(
k,k8

E
0

b

dteivnt^Ttak1q,↑
† ~t!bk1Qg1

,↑~t!

3bk81Qg2
,↑

†
~0!ak81q,↑~0!&, ~47!

x2
g1g2~q,ivn!

5
1

V(
k,k8

E
0

b

dteivnt^Ttak1q,↑
† ~t!bk1Qg1

,↑~t!

3ak8,↑
†

~0!bk81q1Qg2
,↑~0!&, ~48!

x̄2
g1g2~q,ivn!

5
1

V(
k,k8

E
0

b

dteivnt^Ttbk1q1Qg1
,↑

† ~t!ak,↑~t!

3bk81Qg2
,↑

†
~0!ak81q,↑~0!&, ~49!

where vn52npT. These correlation functions are repr
sented graphically by the circles in Fig. 3.

Transverse and longitudinal spin excitations are n
evaluated about one of the ordering wave vectorsQg . With
respect to the spin quantization axisr̂g , the transverse and
longitudinal susceptibilities are

x t~q,v!52@x1
gg~q,v!1x̄1

gg~q,v!2x2
gg~q,v!

2x̄2
gg~q,v!#, ~50!

x l~q,v!5x1
gg~q,v!1x̄1

gg~q,v!1x2
gg~q,v!1x̄2

gg~q,v!,

~51!
is
y
ly

f

n

where only the band-diagonal correlation functio
x i

gg(q,v)5x i
gg(q,ivn→v1 i«1) appear in order to guaran

tee momentum conservation. Throughout the rest of this s
tion, the wave vector differenceuq2Qgu is assumed to be
much smaller than the Fermi momentumkF .

The RPA for the spin correlation functions is quite simil
in all three SDW phases, except that the correlation functi
with different Qg are coupled to the band-diagonal terms
the MSDW phases. By symmetry considerations,x i(q,v)
[x i

gg(q,v) are independent ofg. Similarly, the off-
diagonal correlation functionsx i8(q,v)5x i

g1g2(q,v) with
g1Þg2 are independent ofg1 and g2 . The resulting RPA
equations for the correlation functions are sketched in Fig
and listed in Appendix A. The Hartree-Fock~HF! correlation
functions x i

(0)(q,v) and x̄ i
(0)(q,v) are evaluated withU

50 and are represented by squares in Fig. 4.
Upon solving the coupled equations, we obtain the tra

verse and longitudinal susceptibilities in terms of the H
correlation functions:

x t5
2

UH 221
m21

m S 1

12Ux4
~0!

1
1

12Ux̄4
~0!D

1
1

mS 1

12U~x3
~0!2mx2

~0!!
1

1

12U~ x̄3
~0!2mx2

~0!!
D J ,

~52!

x l5
1

UH 221
m21

m S 1

12Ux4
~0!

1
1

12Ux̄4
~0!D

1
1

mS 1

12U~x3
~0!1mx2

~0!!
1

1

12U~ x̄3
~0!1mx2

~0!!
D J ,

~53!

wherex3
(0) and x4

(0) are defined by Eqs.~A10! and ~A11!.
The transverse and longitudinal excitations of all thr
phases can be evaluated from the zeros ofF6(q,v)51
2U@x3

(0)(q,v)6mx2
(0)(q,v)#. Using the results in Appen

dix B, it can be shown thatF̄6(q,v)5F6(q,v) so that no

FIG. 3. A graphical representation of the correlation functions
Eqs.~46!–~49!.
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FIG. 4. The RPA equations for the spin correlation functions, withU represented by wiggly lines.
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additional zeros are introduced by the terms with an over
Notice that MSDW’s withm.1 support an additional clas
of collective excitations given by the zeros ofF i(q,v)51
2Ux4

(0)(q,v) and F̄ i(q,v)5F i(q,2v)* .36

It follows from Eqs. ~30! and ~A9! that mx2
(0)(q,v) is

identical in all three magnetic phases. Therefore, the lon
tudinal and transverse mode frequencies, which are obta
by solving the conditionsF6(q,v)50, are the same in the S
D, and T SDW phases.

From Eqs.~A10! and~A11!, we find thatF6(q,v) for the
D and T SDW states involves the linear combinations
operators bk1Qg1

,a1bk1Qg2
,a or bk1Qg1

,a1bk1Qg2
,a

1bk1Qg3
,a , respectively. By contrast,F i(q,v) andF̄ i(q,v)

involve the linear combinations bk1Qg1
,a2bk1Qg2

,a

~DSDW! or 2bk1Qg1
,a2bk1Qg2

,a2bk1Qg3
,a ~TSDW!. Con-

sequently, the quasiparticles on them nested hole Fermi sur
faces contribute incoherently. Like the transverse and lon
tudinal mode frequencies, the incoherent mode frequen
are identical in the D and T SDW states.

The HF susceptibilities defined in Appendix A and su
marized in Appendix B are evaluated by the same techniq
described in our previous work37 on the commensurate spi
dynamics of Cr alloys. However, the HF susceptibilities
g-Mn now include additional contributions whenQg
ÞQg8 . Other new features in the HF susceptibilities can
traced to the modified self-consistent relation forD. In the
next section, we show that thekM2 term in Eq. ~34! is
responsible for the gap in the SW excitation spectrum.

VI. COLLECTIVE MODES

In the next three subsections, we shall separately dis
our results for the SW, amplitude, and incoherent collect
r.

i-
ed

f

i-
es

-
es

f

e

ss
e

modes. The division of these excitations into purely tra
verse or longitudinal modes is somewhat tricky because
spin quantization axis depends on the magnetic satellite.
example, transverse excitations aboutQx involve spin flips
from 1 x̂ to 2 x̂. Such spin flips will couple to both the
transverse and longitudinal excitations aboutQy .

A. Spin-wave modes

The SW excitations are obtained from the zeros
F2(q,v). Because the magnetoelastic interaction viola
rotational symmetry, the SW spectrum contains an ene
gapDsw(T), which is formally the same in all three magnet
phases.

For T50, the SW gap derived in Appendix C may b
written asDsw(0)54D(0)f(0), where f(T) was defined
by Eq. ~38!. Sincef(0)!1, Dsw(0) is much smaller than
the zero-temperature energy gapD(0).

In a SSDW, the SW gap is produced by the lattice co
traction along thec axis. This contraction generates an effe
tive field Bi which violates rotational symmetry. For
DSDW, the expansion along thec axis creates local, effec
tive fieldsBi in the ab plane which once again violate rota
tional symmetry. At first sight, the presence of a SW gap
cubic FeMn alloys is harder to understand, since the TSD
state preserves the cubic symmetry of the lattice withexx
5eyy5ezz,0. But as in the other two SDW phases, the S
gap is produced by the effective fieldBi experienced by the
spin on each lattice site of the strained lattice. Although
maintains the cubic symmetry of the TSDW phase, this
fective field still destroys the rotational invariance of th
Hamiltonian.

For smallf(T), the SW dispersion may be closely a
proximated byvsw(q)5ADsw(T)21(cq)2, where the SW
velocity c is proportional to the Fermi velocity. This form fo
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vsw(q) was found17 to be satisfied by a Mn90Cu10 alloy up to
about 190 meV. The precise value ofc depends on the Ferm
surface topology and on the angle betweenq andQg but is
otherwise independent of the magnetic phase. For octag
or spherical Fermi surfaces withq parallel to Qg ,c
5vF /A3. In fct MnFe,15 MnCu,16–18 and MnGe~Ref. 19!
alloys, the observed SW velocities range from 180 to 2
meV Å . SWvelocities of similar sizes were observed20,21 in
fcc MnFe alloys. Unfortunately, there are no good estima
for the Fermi velocity of anyg-Mn alloy due to the large
effective mass. So we cannot compare the measured valu
c/vF with the predictions of our model.

In Fig. 5, the SW dispersion is plotted for three values
k when T/TN50.1. Bothv and cq are scaled by the Ne´el
temperatureTN

! of a perfectly nested alloy withz050. The
value for the density of states used in this figure follows fro
the band-structure calculations of Asano and Yamashit33

Other parameters were chosen to produce a magnetic
ment of 2.3mB and a critical value ofkc50. The largest
value ofk corresponds to an effective fielduBi u of about 0.32
T while the smallest corresponds to an effective field
times smaller. IfDsw'10 meV andTN

! '0.5 eV, we esti-
mate thatk'0.75 m eV anduBi u'200 G.

Single-particle excitations occupy the shaded portion
Fig. 5 and also lie above the Stoner pair-breaking thresh
at vpb5A4D21(cq)2. So the SW modes are undamp
within the RPA. Experimentally, the SW modes are damp
with a width proportional to the wave vectorq.16,21 This
damping may be produced either by impurity scattering or
the decay of SW’s into single-particle excitations38 of the
nongapped portions of the Fermi surface.

The temperature dependence of the SW gap is plotte
Fig. 6 using the same parameters as in Fig. 5. Over a w
range of temperatures,Dsw(T) is approximately proportiona
to M (T)3/2, as shown in Fig. 7. In both Figs. 6 and 7,TN

(2) is
the second-order Ne´el temperature, which is exceeded wh
k.kc . Only a modest decrease inDsw(T)/M (T)3/2 occurs
close toTN

(1) . The temperature variation inDsw(T)/M (T)3/2

increases ask becomes larger.
For small values ofM (T) close to the Ne´el temperature,

Appendix B shows that

FIG. 5. The SW dispersion withUN/V53.068TN
! , rehVTN

! /N
50.3,z054.29TN

! , and k/TN
! 52.531025 ~solid line!, 1.031025

~long dashed line!, and 1.031026 ~short dashed line! at T/TN

50.1. The shaded region contains single-particle excitations.
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Dsw~T!5
16

Ap
A kTN

rehU
coshS z0

8TN
D M ~T!3/2. ~54!

Consequently, the SW gap is proportional to thea53/2
power of the sublattice magnetization and grows with
mismatchz0 between the Fermi surfaces.

A power law witha52 would be obtained from a local
moment description ofg-Mn based on the Heisenber
model, provided that the strain componentse i i are propor-
tional to M2. By contrast, Sato and Maki39 used a two-band
RPA to predict thata51, which would follow from a
Heisenberg model with temperature-independent strain.40 A
power law ofa53/2 only arises from an approach such
ours, which combines a local treatment of the magnetoela
interaction together with an itinerant description of the ele
tronic response.

While Tajima et al.21 observed a 3/2 power dependen
for three different fcc FeMn alloys, more recent studies of
MnCu ~Ref. 22! and MnNi ~Ref. 23! alloys find power laws
with a51.56 and 1.83, respectively. But the statistics of t
latter study are not convincing.

B. Amplitude modes

Next we turn to the longitudinal excitations, which corr
spond to oscillations in the SDW amplitudeM (T). When

FIG. 6. The normalized SW gapDsw(T)/TN
! vs temperature for

the same parameters as in Fig. 5.

FIG. 7. The dimensionless ratioDsw(T)/TN
! M (T)3/2 vs tempera-

ture for the same parameters as in Fig. 5.
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k50, the zeros of the denominatorF1(q,v) coincide with
the pair-breaking edgevpb5A4D21(cq)2. Recall that
damped excitations decay in time exponentially with a ti
scale inversely proportional to the imaginary part of the
nominator. Although the amplitude modes are undamp
they are not associated with delta functions in 1/F1(q,v)
due to the behavior of the real and imaginary parts
F1(q,v) near its zeros~see the discussion in Ref. 37!.
Therefore, oscillations of the SDW amplitudeM (T) decay in
time according to a power law, just as in commensurate
alloys,37 and the amplitude modes are marginal excitatio
whenk50.

Whenk.0, the real part ofF1(q,v) no longer vanishes
at any frequency or wave vector. Hence, the amplitu
modes are overdamped by the magnetoelastic coup
Since the effective fieldBi directly couples to the SDW am
plitude, this result is not surprising.

C. Incoherent collective modes

The incoherent excitations appear as peaks in 1/F i(q,v)
or 1/F̄ i(q,v)51/F i(q,2v)* where F i(q,v)5F i

(1)(q,v)
1 iF i

(2)(q,v). As seen from Eqs.~52!, ~53!, and ~A11!, in-
coherent modes arise from the Coulomb attraction betw
the fraction 1/m of unpaired holes on them nestedb Fermi
surfaces with the paired electrons on thea Fermi surface. So
these excitations are not related to the magnetoelastic in
actions. Because the unpaired holes do not experienc
energy gap,F i

(2)(q,v) given by Eq.~C2! never vanishes and
the damped, incoherent excitations are fixed by the condi
F i

(1)(q,v)50.
For T50 andq50, the incoherent mode frequencies wi

v.0 are summarized by Eqs.~C4!–~C7!. When z0

50, v i
(1)(q50)5v i

(2)(q50)'2A2f(0)D(0) andv i
(3)(0)

5v i
(4)(0)'A2D(0), which use the fact thatf(0)!1.

Hence, v i
(1)(0)5v i

(2)(0)'Dsw(0)/A2 both lie below the
SW gap. Forz0@8A2D(0)f(0), asexpected for a realistic
alloy, v i

(1)(0)'Dsw(0)2/z0 and v i
(2)(0)'z0/2. Since

v i
(1)(0)/Dsw(0)'Dsw(0)/z0!1 this excitation has a very

low energy of order 1 meV or less. Also forz0.0, the third
and fourth modes split away fromA2D(0).

Unlike the SW gap,v i(T,q50) all fall in temperature
according to an integer power ofM (T). It can be shown
analytically thatv i

(1)(T,0) andv i
(2)(T,0) fall off like M (T)2

while v i
(3)(T,0) andv i

(4)(T,0) decrease likeM (T).
The results of Appendix C were used to plot the disp

sion of the incoherent modes in Figs. 8 and 9. Due to th
high frequencies, the incoherent mode frequencies plotte
Fig. 8 depend very weakly onq. As expected, the low-
frequency, incoherent mode plotted in Fig. 9 lies much
low the SW gap. For smallcq/TN

! and T50 but z0

@8A2D(0)f(0),

v i
~1!~q!'

Dsw~0!2

z0
1

4~cq!2

z0
F122S z0

4D~0! D
2G ~55!

has a quadratic dispersion even whenDsw(0)50. But in the
limit z0→0, v i

(1)(q)'ADsw(0)2/21(cq)2 at T50 so that
v i

(1)(q) has a linear dispersion with the same velocity as
SW modes.
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Also indicated in Fig. 8 are the broad widths of modes
and 4, which are heavily damped. Consequently, th
modes will be difficult to observe using neutrons. By co
trast, modes 1 and 2 have very narrow peaks that sho
appear as sharp features in a neutron-scattering cross se
As T→0, F i

(2)(q50,v5z0/2)→0 and mode 2 becomes un
damped for small enoughcq. The first incoherent mode plot
ted in Fig. 9 also has a very narrow width which vanishes
T→0 for smallcq. But like the SW modes, modes 1 and
may be additionally damped by impurity scattering or
single-particle excitations of the nongapped portions of
Fermi surfaces. Mode 2 may also be broadened by the va
tion in energy mismatchz0 around the hole Fermi surface.

The high-frequency, incoherent modes plotted in Fig
are associated with the internal degrees of freedom of
MSDW state. While a SW mode withq50 corresponds to
the uniform rotation of each spinSi by the same angle, a
high-frequency incoherent mode withq50 corresponds to
the separate rotation of each spin by a different angle. T
out-of-phase motion is achieved by the incoherent oscillat
of the two or three SDW componentsr̂g cos(Qg•Ri) in Eqs.
~1b! and ~1c!. Due to the tilting of the spins away from th
crystal axis, these incoherent excitations possess both tr
verse and longitudinal components.

One such high-frequency, incoherent mode may h
been observed below the Ne´el temperatureTN5240 K of
USb,26 where a TSDW phase was conjectured and mode

FIG. 8. The dispersion of the incoherent, high-frequency coll
tive modes 2, 3, and 4 for the same parameters as in Fig. 5
k/TN

! 52.531025. Also shown are the widths of modes 3 and 4

FIG. 9. The dispersion of the low-frequency incoherent mod
~thin solid! together with the SW mode~thick solid! for the same
parameters as in Fig. 8.
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by Jensen and Bak.27 Starting with an anisotropic Heisenbe
model, Jensen and Bak conclude that a high-frequency
lective mode withv i'30 meV is supported by the interna
degrees of freedom of the TSDW structure. Similar conc
sions were latter reached by Long and Yeung,41 also based
on a Heisenberg model. However, Ha¨lg et al.42 have argued
that multiple domains of an SSDW can explain the appe
ance of high-frequency magnetic excitations in urani
monopnictides such as USb.

The mathematical origin of the Goldstone mo
v i

(1)(q) plotted in Fig. 9 can be traced to Eq.~A11! for
x4(q,v). When f50, the condition 12Ux4(q50,v i

(1)

50)50 is equivalent to the self-consistent relation forD
given by Eq.~26!. Physically, this Goldstone mode corr
sponds to the dispersion of an unpaired hole, suitably m
fied to account for its interaction with the condensed el
trons. Since unpaired holes only exist in a MSDW state,
Goldstone mode does not appear in the SSDW phase.

VII. DISCUSSION AND CONCLUSION

This paper has evaluated the magnetic excitations a
the S, D, and T SDW states which appear in MnNi, MnC
and FeMn alloys. When the magnetoelastic coupling is
sent, the free energy is invariant under the rotation of ev
spinSi by the same angle. Consequently, the SW excitati
are Goldstone modes of the alloy whenk50. But whenk
.0, the magnetoelastic interaction generates an effec
field Bi , which destroys the rotational invariance of th
Hamiltonian and generates a SW gap. A MF description
the magnetoelastic interaction together with an itinerant
scription of the d-band electrons produces the relati
Dsw(T)}M (T)3/2, which becomes exact asM (T)→0. By
contrast, a 3/2 power law cannot be obtained from a loc
moment description ofg-Mn alloys based on a Heisenbe
model.

In addition to SW excitations, the MSDW states supp
an additional class of incoherent collective excitations, th
of which have high frequencies of orderD(0)'1 eV. Un-
fortunately, modes 3 and 4 may be impossible to detect
to their broad widths. Although weakly damped, mode
probably lies at too low a frequency to be easily stud
using neutrons. By contrast, mode 2 has a very sharp l
temperature peak atv'z0/2,2D(0). With increasing tem-
perature,v i

(2)(T,q50) is predicted to decrease likeM (T)2

}12T/TN . So above about 0.75TN'320 K, the frequency
of mode 2 should be in the right range to observe with
modern spallation source. Although the frequency of e
incoherent mode is identical in the D and T SDW phases,
prefactors in Eq.~52! indicate that the incoherent mode in
tensity will be 33% larger in the TSDW phase. Hence,
would be interesting to study the change in intensity of mo
2 as the temperature falls through the fcc~TSDW! to fct
~DSDW! transition4 in Mn12xNix alloys with 0.18,x
,0.22. The observation of this incoherent mode would a
remove the remaining doubt43 that the cubic phase supports
TSDW state.

Compared to the SSDW state, the intensity of the S
modes in the D and T SDW states is 1/2 and 1/3 tim
smaller. But the DSDW phase has twice as many magn
satellites as the SSDW state~the 2N X points obtained by
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-
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translating eachG by Qx and Qy) while the TSDW has 3
times as many satellites~all 3N X points!. Hence, the total
SW intensity at all of the magnetic satellites is unchanged
the three phases. Since the SW gap only depends onk and
M (T), it is not expected to change across a phase trans
between different SDW states.

As the temperature approachesTN , x2→0 andx3→x4
so that F6(q,v)→F i(q,v). Consequently, the incoheren
and coherent scattering become equal atTN . Inspection of
Eqs. ~52! and ~53! then reveals that the inelastic scatteri
about everyX point will be identicalat the Néel temperature
of each SDW phase.

Sandwiched between the S and D SDW phases of M
alloys in Fig. 1 lies an orthorhombic phase4 with c.b.a.
We are aware of no experimental studies on the spin dyn
ics of this phase. Even the static spin configuration is
some doubt. Long and Yeung44 have speculated that th
orthorhombic phase is associated with the spin ordering

Si5M @ ẑ cos~Qz•Ri !cosu1 x̂ cos~Qx•Ri !sinu#, ~56!

which smoothly interpolates between S and D SDW pha
as u varies from 0 top/4. Unfortunately, this SDW phas
cannot be stabilized within our approach because the re
ing effective fieldBi of Eq. ~11! is not parallel toSi . Only
whenu50 or p/4 is the spin configuration stabilized by th
magnetoelastic interaction of Eq.~5!. However, a more com-
plex magnetoelastic interaction with higher-order ter
might be able to stabilize the proposed spin configuration
the orthorombic phase. An alternative SDW configurati
was proposed14 for the orthorhombic phase of MnGa alloy

This work leaves several other important questions un
solved. Jankowska-Kisielinskaet al.23 recently reported tha
the SW velocityc of a fct MnNi alloy is proportional to
M (T) at low temperatures. Closer toTN ,c was observed to
become constant. While a linear dependence ofc}M (T)
was predicted by Sato and Maki,39 our model predicts thatc
is a temperature-independent constant determined by
Fermi surface topology and by the angle betweenq andQg .
Possibly, the observed temperature dependence ofc is
caused by the change in the single-particle backgrou
which grows as the temperature increases.

Throughout this paper, we have assumed that the m
netic momentM on each lattice site is the same. So the s
configurations of the various SDW states average over
Mn and impurity moments. This assumption may be e
pected to fail as the concentration of impurity atoms
creases, especially in MnCu alloys where the Cu atoms
nonmagnetic. The tilting of the Mn moments away from t
c axis in MnCu alloys13 may be due to the absence of C
moments. In FeMn alloys, the Mn moment was believed3 to
exceed the Fe moment in both the SSDW and TSDW pha
But recent first-principles calculations by Schulthesset al.45

indicate that for a cubic Fe0.5Mn0.5 alloy, the TSDW ground
state contains an Fe moment of 2.05mB and a smaller Mn
moment of 1.91mB . As shown below, the differences be
tween the Mn, Ni, and Fe moments may have import
consequences for the martensitic transformation of Mn
and FeMn alloys.

Within our model, the stable magnetic phase posses
the largest value fork. Unfortunately, realistic parameter
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for c11 andc12 imply that the SSDW always has a lower fre
energy than the MSDW phases. For example, the Mn85Ni9C6

alloy studied by Lowdeet al.31 undergoes a martensiti
transformation from fcc to fct phases atTm'174 K, much
below the Ne´el temperature of 546 K. The softening ofc11

2c12 is observed to preceed this transformation. Assum
that the SSDW is somehow eliminated from the competiti
then the fcc to fct transition can be qualitatively explained
our model: whilek}1/(c1112c12) in the high-temperature
TSDW phase,k}1/(c112c12) for a DSDW structure. So the
martensitic transformation occurs whenc112c12 is small
enough thatk(DSDW)5k(TSDW). But the measured val
ues forc11 andc12 imply that the DSDW always has a large
k than the TSDW, even atTN . Moreover, the SSDW has
largerk than either of the MSDW states.

Alloy disorder may explain this behavior. Both Long46

and Henley47 have argued that due to the difference betwe
the Mn and Ni moments, doping with Ni impurities stabiliz
a noncollinear spin configuration, with the TSDW favor
over the DSDW. Henley’s magnetic phase diagram for
XY model with randomly vacated sites bears some res
blance to the MnNi phase diagram of Fig. 1. Although t
TSDW is favored by disorder for high Ni concentrations, t
DSDW may overcome this advantage at low temperature
c112c12 decreases.

On the other hand, Tsunoda and Wakabayashi12 have ar-
gued that the softening ofc1112c12 is responsible for the
magnetic and tetragonal phase transitions atTm5TN in mod-
erately doped MnCu alloys. Despite the negative value
c12, k is still larger for a SSDW than for a DSDW phas
For small impurity concentrations, the DSDW phase may
gain much free energy from random disorder. So our mo
correctly predicts that the softening ofc1112c12 and en-
hancement ofk induce a first-order transition to a tetragon
SSDW phase withc,a.

Besides g-Mn alloys, the other class of prototypica
transition-metal antiferromagnets are Cr alloys. Magne
elastic interactions are found to be much less significan
Cr than ing-Mn. Early measurments by Steinitzet al.48 in-
dicate that the maximum tetragonalityt512c/a of pure Cr
at low temperatures is about 2.531025 or roughly 2000
times smaller than ing-Mn. Due to its small magnitude
other energies may compete with the magnetoelastic inte
tion in Cr alloys. Indeed, recent work by Marcuset al.49

suggests that the latticeexpansionof Cr just belowTN is
required to stabilize the SDW. Hence, the tetragonality
negative at high temperatures and only becomes positive
low 230 K. So unlike ing-Mn, t is not proportional to
M (T)2. It is not known if thechangein t below TN follows
M (T)2.

Despite its tetragonal distortion belowTN , Cr shows no
signs of a SW gap. Neutron scattering measurments50 sug-
gest that the largest possible SW gap in pure Cr is 50meV,
or about 160 times smaller than ing-Mn. As indicated by
Eq. ~54!, the SW gap is proportional toAk. Unfortunately,
the magnetoelastic constantk cannot be simply related to th
tetragonality or volume contraction belowTN . Nonetheless,
a SW gap of 50meV would imply thatk is 25 000 times
smaller in Cr than ing-Mn.
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To summarize, we have studied the spin excitations ab
the three magnetic phases ofg-Mn alloys. While a SW mode
with energy gap proportional toM (T)3/2 is found in all three
magnetic states, high-frequency, incoherent modes with
quenciesv i;D are predicted for the two MSDW states.

ACKNOWLEDGMENTS

This research was supported by Oak Ridge Natio
Laboratory, which is managed by Lockheed Martin Ener
Research Corp. for the U.S. Department of Energy un
Contract No. DE-AC05-96OR22464.

APPENDIX A: SPIN CORRELATION FUNCTIONS

The RPA equations for the spin correlation functions a
given by

x15x1
~0!1x1

~0!Ux11~m21!x1
~0!8Ux181x2

~0!

3U@x21~m21!x28#, ~A1!

x185x1
~0!81x1

~0!Ux181x1
~0!8U~x11dm,3x18!

1x2
~0!U@x21~m21!x28#, ~A2!

x25x2
~0!1x̄1

~0!Ux21~m21!x̄1
~0!8Ux281x2

~0!

3U@x11~m21!x18#, ~A3!

x285x2
~0!1x̄1

~0!Ux281x̄1
~0!8U~x21dm,3x28!

1x2
~0!U@x11~m21!x18#, ~A4!

wherem51, 2, or 3 for the S, D, and T SDW phases. The
linear, coupled equations are sketched in Fig. 4, where
Coulomb interaction is represented by a wiggly line. A sim
lar set of coupled equations connectsx̄1 ,x̄18 ,x̄2 , andx̄28 .

The HF correlation functions

x1
~0!~q,ivn!52

T

V(
l ,k

G~k,in l !aaG~k1q,in l2 ivn!bb ,

~A5!

x1
~0!8~q,ivn!52

T

V(
l ,k

G~k,in l !aaG~k1q,in l2 ivn!bb8 ,

~A6!

x̄1
~0!~q,ivn!52

T

V(
l ,k

G~k,in l !bbG~k1q,in l2 ivn!aa ,

~A7!

x̄1
~0!8~q,ivn!52

T

V(
l ,k

G~k,in l !bb8G~k1q,in l2 ivn!aa ,

~A8!

x2
~0!~q,ivn!52

T

V(
l ,k

G~k,in l !abG~k1q,in l2 ivn!ab

~A9!
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are evaluated withU50. It can be easily shown thatx2
(0)8

5x̄2
(0)85x̄2

(0)5x2
(0) . Notice that x̄ i

(0)(q,ivn)5x i
(0)(2q,

2 ivn). For convenience, we also introduce the HF susc
tibilities

x3
~0!~q,ivn!5x1

~0!~q,v!1~m21!x1
~0!8~q,v!

52
T

V(
l ,k

G~k,in l !aa

i ~n l2vn!2ea~k1q!

D„k1q,i ~n l2vn!…
,

~A10!

x4
~0!~q,ivn!5x1

~0!~q,v!2x1
~0!8~q,v!

52
T

V(
l ,k

G~k,in l !aa

1

i ~n l2vn!2eb1~k1q!
,

~A11!

and the corresponding overbarred quantitiesx̄3
(0)(q,ivn) and

x̄4
(0)(q,ivn).

APPENDIX B: SPIN-WAVE GAP

Recall that the SW excitations are given by the zeros
the functionF2(q,v). To obtain the SW gap atq50, we
separateF6(q,v) into real and imaginary parts:

F6~q,v!5F6
~1!~q,v!1 iF 6

~2!~q,v!. ~B1!

Using the results of Ref. 37 and the modified self-consist
equation forM (T) including magnetoelastic effects, we fin

F6
~1!~q,0!5

1

2
rehUf~T!2

1
p

4
iTrehU~j212D262D2!(

l

sgn~n l !

xl~xl
22j2!

,

~B2!

F6
~2!~q,v!5U

p

32
reh$Q~j22v2!1Q~v224D22j2!%

3S v224D22j2

v22j2 D 61/2

$ f @v~v!1z0/4#2 f @v~v!2v1z0/4#2 f @2v~v!1z0/4#

1 f @2v~v!1v1z0/4#%, ~B3!

where f (x)51/@exp(xb)11# is the Fermi function,Q(x) is
the step function,f(T) is defined by Eq.~38!, xl is defined
by Eq. ~35!, and

v~x!5
x

2
1

j

2
Ax224D22j2

x22j2
. ~B4!

The frequency dependence ofF6
(1)(q,v) is extracted using

the Kramers-Kronig relation
-

f

nt

F6
~1!~q,v!2F6

~1!~q,0!5
v

pE2`

` dv8

v8

1

v82v
F6

~2!~q,v8!.

~B5!

With q measured fromQg , j5cq is simply related to the
SW velocityc. For octagonal Fermi surfaces withq parallel
to Qg or spherical Fermi surfaces with anyq, j5vFq/A3.
But for cubic Fermi surfaces withq parallel to Qg , j
5vFq. So the precise value ofc/vF depends on the Ferm
surface topology and on the angle betweenq andQg .

The solution for the SW gapv5Dsw with j50 is given
by the condition

2
v2

4
I 1~v!5f~T!2, ~B6!

I 1~v!5E
2D

` dx

x22v2

1

Ax224D2

3$ f ~x/21z0/4!2 f ~2x/21z0/4!%. ~B7!

Complex analysis may be used to show that

I 1~v!5
p

2v

1

A4D22v2
$ f ~v/21z0/4!2 f ~2v/21z0/4!%

1
p

2
T(

l 50

`

ReH 1

~n l1 iz0/4!21v2/4

3
1

A~n l1 iz0/4!21D2J . ~B8!

Evaluating this expression for smallv and D with v/D
!1, we obtain Eq.~54! for the SW gap nearTN .

APPENDIX C: INCOHERENT COLLECTIVE MODES

The incoherent collective modes appear only in the D a
T SDW states as the zeros ofF i

(1)(q,v) or F̄ i
(1)(q,v)

5F i
(1)(q,2v), which are the real parts of the function

F i(q,v)5F i
(1)(q,v)1 iF i

(2)(q,v) or F̄ i(q,v)5F i(q,
2v)* . Employing the formalism of Ref. 37, we find

F i
~1!~q,0!5

1

2
rehUf~T!21

p

4
iTrehUj2

3(
l

sgn~n l !

xl@~ in l2xl /22z0/4!22j2#
, ~C1!

F i
~2!~q,v!5U

p

32
reh$ f @r 1~v!1z0/4#2 f @r 1~v!2v1z0/4#

1 f @r 2~v!1z0/4#2 f @r 2~v!2v1z0/4#%,

~C2!

with

r 6~v!5
1

2
~v6j!1

1

2

D2

v6j
. ~C3!
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The frequency dependence ofF i
(1)(q,v) is obtained from a

Kramers-Kronig relation like Eq.~B5!.
At T50, it is easy to show that the incoherent mode f

quencies withj50 andv.0 are given by

v i
~1!~j50!52

z0

4

1
1

2
Az0

2/414D~0!2$12exp@28f~0!2#%,

~C4!

v i
~2!~j50!5

z0

4
1

1

2
Az0

2/414D~0!2$12exp@28f~0!2#%,

~C5!
nd

.

F

da

er

J

,

-
r

te
-

v i
~3!~j50!52

z0

4

1
1

2
Az0

2/414D~0!2$11exp@28f~0!2#%,

~C6!

v i
~4!~j50!5

z0

4
1

1

2
Az0

2/414D~0!2$11exp@28f~0!2#%.

~C7!

Whereas modes 2 and 4 arise from the conditionF i
(1)(q

50,v)50, modes 1 and 3 are determined by the condit
F̄ i

(1)(q50,v)5F i
(1)(q50,2v)50.
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