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Magnetic susceptibility of g-Mn alloys
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This paper provides theoretical results for the magnetic susceptibility in the single~S!, double~D!, and triple
~T! spin-density wave~SDW! states ofg-Mn alloys. Whereas the S SDW state is collinear, the D and T SDW
states are noncollinear phases which are stabilized at higher impurity concentrations. As expected, the suscep-
tibility along any spin direction is suppressed below the Ne´el temperature. Averaged over all possible domains,
the magnetic susceptibility of each SDW phase approaches the same limit near the Ne´el temperature. At low
temperatures, however, the average susceptibility depends on the relative sizes of the electron and hole Fermi
surfaces. For Fermi surfaces of approximately the same size, the average susceptibility is largest in the S SDW
state and smallest in the T SDW state. But when one Fermi surface is sufficiently larger than the other, the
relative magnitudes of the average susceptibilities are reversed. As a consequence, the transition between
different SDW phases with temperature or doping concentration should be marked by a sudden change in the
magnetic susceptibility.@S0163-1829~99!03213-0#
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I. INTRODUCTION

Although the magnetic susceptibility of rare-earth1 and
transition-metal2–4 antiferromagnets with collinear momen
has been well known for many years, little is known abo
the magnetic susceptibility of transition-metal antiferroma
nets with noncollinear moments. The fcc phase of doped
alloys is believed5 to support three different magnetic phase
two of which are noncollinear. These spin configurations
stable in distinct ranges of doping and temperature.6–9 In this
paper, we provide theoretical results for the susceptibility
each magnetic phase. Even when averaged over all pos
domains, the susceptibilities of the three spin configurati
are found to be different. The predictions of this paper can
tested in ag-Mn alloy which transforms from one phase
another as a function of temperature.

The three magnetic phases ofg-Mn alloys are sketched in
Fig. 1 for a single unit cell of the fcc lattice. Whereas t
magnetic susceptibility of the collinear phase in Fig. 1~a!
may be conjectured to be quite similar to that of a fcc ra
earth antiferromagnet, intuition fails for the two noncolline
phases. We certainly expect the susceptibility to be s
pressed below the Ne´el transition along any spin directio
for each magnetic configuration. But a formal calculation
required to determine the relative magnitudes of the sus
tibilities in the collinear and noncollinear spin states.

All three magnetic phases ofg-Mn are produced by the
Coulomb attraction between electrons and holes on Fe
surfaces centered at theG andX points in reciprocal space
Those Fermi surfaces are roughly nested10 by the three wave
vectors Qx5(2p/a) x̂, Qy5(2p/a) ŷ, and Qz5(2p/a) ẑ.
In the single ~S!, double ~D!, and triple ~T! spin-density
wave~SDW! phases11 sketched in Fig. 1, either one, two, o
all three of the nesting wave vectors modulate the spin or
Formally, the SDW phases may be written as
PRB 590163-1829/99/59~13!/8672~9!/$15.00
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Si5Mẑcos~Qz•Ri ! S SDW, ~1!

Si5
1

A2
M @ x̂cos~Qx•Ri !1 ŷcos~Qy•Ri !# D SDW, ~2!

Si5
1

A3
M @ x̂cos~Qx•Ri !1 ŷcos~Qy•Ri !

1 ẑcos~Qz•Ri !# T SDW. ~3!

These relations are obtained by replacing the sharply pea
Bloch wave functions of thed-band electrons byd functions
in the spin density. In the remainder of this paper,Qg will
refer to the one, two, or three ordering wave vectors of
SDW phases defined above. For the T SDW of Eq.~3!, the
spin points along the (1,1,1), (1,1,1)̄, (1,1̄,1), and (1̄,1,1)
directions. Consequently, a single domain of the T SD
phase does not violate cubic symmetry and is consistent
the cubic phase of FeMn~Refs. 6–8! and MnNi alloys.9

Because the fcc phase of pure Mn is only stable betw
1079 and 1140 K,g-Mn is commonly produced12 by doping
with Fe, Ni, or Cu. For low dopant concentrations,g-Mn

FIG. 1. The single, double, and triple SDW phases which
stabilized in different crystal structures.
8672 ©1999 The American Physical Society
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PRB 59 8673MAGNETIC SUSCEPTIBILITY OFg-Mn ALLOYS
alloys have Ne´el temperatures close to 470 K and magne
moments of about 2.3mB .7 When x,15%, both FexMn12x

~Refs. 6,7! and Mn12xNix alloys9 undergo transitions into a S
SDW state. More heavily doped FexMn12x @x.45% ~Ref.
6!# and Mn12xNix @x.22% ~Ref. 9!# alloys support a T
SDW phase and remain cubic for all temperatures belowTN .
In a narrow impurity range between 18 and 22 %, Mn
alloys are believed5 to support a D SDW phase.

Magnetoelastic energies are crucial to the stability
these different magnetic phases. The formation of the
SDW phase in FeMn and MnNi alloys coincides with a
tragonal lattice distortion7 of between 3 and 5 % withc
,a. In MnNi alloys, the appearance of a D SDW phase
coincides with a tetragonal distortion withc.a.9 By con-
trast, the formation of a T SDW with cubic symmetry result
in a uniform volume contraction withc5a.7,8

For some time, the existence of noncollinear states
questioned13 because multiple S SDW domains have t
same neutron-scattering fingerprint as a single T SD
domain.6 Subsequently, Mo¨ssbauer transmission spectra14

and g-ray emission15 studies have largely confirmed th
presence of a T SDW phase in FeMn and MnNi alloys. Th
predictions of this paper can be used to provide additio
evidence for the existence of noncollinear phases since, e
when averaged over all possible spin domains, the magn
susceptibilities of the S, D, and T SDW phases remain
ferent.

Unlike the magnetic susceptibility of the noncolline
SDW phases ofg-Mn alloys, the susceptibility of the collin
ear, commensurate SDW phase of bcc Cr alloys has b
studied extensively, both experimentally3,4 and
theoretically.2,4 Assuming that the electron and hole Fer
surfaces are the same size, Maki and Sakurai2 concluded that
the susceptibility parallel to the spins vanishes atT50 while
the perpendicular susceptibility is unchanged belowTN , pre-
cisely as expected for a local-moment system. A few ye
latter, Kelly, Moyer, and Arajs4 considered the more gener
case of Fermi surfaces with different sizes and also inclu
the effects of impurity and electron-phonon scattering. Th
results are in good agreement with measurements on C
~Ref. 3! and CrRe~Ref. 4! alloys.

For the sake of simplicity, we ignore impurity an
electron-phonon scattering corrections to the magnetic
ceptibility of g-Mn alloys. But we consider the electron an
hole Fermi surfaces to have different sizes. Linear respo
theory is used to confirm the results obtained by explic
expanding the Green’s functions in a magnetic field. O
final results for the susceptibility are surprisingly simple.
expected, the magnetic susceptibility along any spin dir
tion is suppressed by the antiferromagnetic order. Once
eraged over possible spin domains, the magnetic suscep
ity near the Ne´el temperature is identical in all three possib
magnetic phases. But the relative magnitudes of the ave
susceptibilities at low temperatures depend on the rela
sizes of the electron and hole Fermi surfaces.

To streamline the following discussion, the magnetic s
ceptibility is derived in two appendices: Appendix A expli
itly expands the Green’s functions in powers ofH while
Appendix B develops a linear-response theory. Section
outlines the basic formalism, Sec. III summarizes our pre
ous results16 for the SDW ordering in zero field, Sec. IV
c
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discusses our results for the magnetic susceptibility, and
V contains a conclusion and summary.

II. HAMILTONIAN AND GREEN’S FUNCTIONS

Our starting Hamiltonian contains four terms: the kine
energy of the electrons, the Coulomb attractionU between
electrons and holes, the magnetoelastic interaction17 between
the N spins and the lattice, and the interaction with the e
ternal magnetic field:

H5H01HCoul1Hme1Hext, ~4!

H05(
k,a

$ea~k!aka
† aka1eb~k!bka

† bka%, ~5!

HCoul5
U

V (
q,k,k8,a,b

aka
† bk8b

† bk81qbak2qa , ~6!

Hme5VH 1

2
c11~exx

2 1eyy
2 1ezz

2 !1c12~exxeyy1eyyezz1ezzexx!

1
g1

N(
i

~Six
2 exx1Siy

2 eyy1Siz
2 ezz!

1
g2

N
~exx1eyy1ezz!(

i
~Six

2 1Siy
2 1Siz

2 !J , ~7!

Hext522mBH•(
i

Si , ~8!

whereaka
† andbka

† are the creation operators for quasipar
cles on thea ~electron! andb ~hole! bands. The strain com
ponents are given bye i i , c11, andc12 are the elastic con-
stants, andgi are the magnetoelastic coupling strengths.

With terms up to orderSia
2 , Hme is the most genera

Hamiltonian consistent with the cubic symmetry of the pa
magnetic phase. After minimizingHme with respect to the
strain components, it is easy to obtain the average st
components for each SDW configuration.16 In agreement
with experiments,17 the strain components and tetragonal
~for the S and D SDW states! are proportional toM (T)2.

In Ref. 16, we used mean-field theory to replace the m
netoelastic energyHme with

Hme8 522mB(
i

Bi•Si1const, ~9!

Bia52
V

mBN
$g1eaa1g2~exx1eyy1ezz!%^Sia&. ~10!

Within this approximation, every electron and hole indepe
dently experiences the effective fieldBi exerted by the mag-
netoelastic interaction. The interaction constantk is defined
in terms of c11, c12, and gi through the relation̂ Hme&
52NkM4.

In previous work16 on the spin dynamics ofg-Mn alloys,
we predicted that the gap in the spin-wave spectrum is p
portional toAkTN /rehUM (T)3/2, wherereh is the density-
of-states of the electron and hole Fermi surfaces. Fitting
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8674 PRB 59R. S. FISHMAN AND S. H. LIU
result to the observed spin-wave gap18 of roughly 10 meV,
we found thatk is of order 1 meV.

Despite the small size ofk, the strain field Bi
;kM3/2mB has a magnitude of roughly 200 G. This fie
stabilizes one or the other of the SDW phases. Qualitativ
the magnetoelastic interaction alters the magnetic susc
bility by distorting the crystal along the direction of the e
ternal field. Nevertheless, as shown by the following ar
ment, the magnetoelastic interaction is largely irrelevan
our calculation of the magnetic susceptibility for a giv
SDW phase. In the presence of an applied fieldH in the z
direction, the magnetoelastic energy generates the additi
interaction 8kMz

2DMz( iSiz , where 2mBDMz5xH is the
change in the averagez moment. Hence, the magnetoelas
interaction enhances the external field by the factor
12kxM2/mB

2 . Using the paramagnetic susceptibilityxp

5mB
2Vreh /N as an upper limit onx, we find that

kxM2/mB
2,1026. Therefore, the magnetoelastic interacti

can be safely neglected in the remaining calculations.
Using the standard notation, the imaginary time Gree

functions may be written as

G~k,t!ab,aa52^Ttaka~t!akb
† ~0!&, ~11!

G~k,t!ab,ab
g 52^Ttaka~t!bk1Qgb

† ~0!&, ~12!

G~k,t!ab,ba
g 52^Ttbk1Qga~t!akb

† ~0!&, ~13!

G~k,t!ab,bb
g 52^Ttbk1Qga~t!bk1Qgb

† ~0!&, ~14!

G~k,t!ab,bb8
gg8 52^Ttbk1Qga~t!bk1Qg8b

† ~0!&, gÞg8.

~15!

Note thatG(k,t)ab,bb8
gg8 is only defined for the D or T SDW

states with more than one ordering wave vector. FordÞg
~so thatQd is not an ordering wave vector!, the hole Green’s
function

G~k,t!ab,bb
d 52^Ttbk1Qda~t!bk1Qdb

† ~0!& ~16!

is unaffected by the formation of the SDW.
For future reference, we define the energy-gap tensor

Dab
g 52

U

V(
k

^bk1Qgb
† ~0!aka~0!&

52
U

V
T(

k,l
G~k,in l !ab,ab

g , ~17!

D̄ab
g 52

U

V(
k

^akb
† ~0!bk1Qga~0!&

52
U

V
T(

k,l
G~k,in l !ab,ba

g . ~18!

The above relation also introduces the Fourier-transform
Green’s functions

G~k,in l !ab,i j 5E
0

b

dtein ltG~k,t!ab,i j , ~19!
y,
ti-

-
o

al

1

’s

d

with Matsubara frequencyn l5(2l 11)pT.
In terms of the Fermi operators for the two bands, the s

operator is defined by

Sid5
1

2
~aia

† 1bia
† !sab

d ~aib1bib!, ~20!

where repeated spin indices are summed andsab
d are the

Pauli matrices. If the external field lies in thez direction,
then the induced moment in this direction is

DMz5
1

2N
T(

k,l
sba

z H G~k,in l !ab,aa

1 (
d5x,y,z

G~k,in l !ab,bb
d J . ~21!

Hence, the magnetic susceptibilityx is given by the zero-
field limit of 2mBDMz /H. When the external field is perpin
dicular to all the spins,x5x' . So for the S and D SDW
states of Eqs.~1! and~2!, x' is obtained whenH lies in the
xy plane or along thez axis, respectively. When the field i
parallel to one of the ordering wave vectors,x5x i . For a T
SDW, x5x i regardless of whether the field points along t
x, y, or z axis.

III. SDW ORDERING IN ZERO FIELD

In zero field, the spin symmetry of the Green’s functio
is given by the relationsG(k,t)ab,aa5dabE(k,t)aa ,
G(k,t)ab,ab

g 5sab
g E(k,t)ab , G(k,t)ab,ba

g 5sab
g E(k,t)ba ,

G(k,t)ab,bb
g 5dabE(k,t)bb , and G(k,t)ab,bb8

gg8

5(sg
•sg8)abE(k,t)bb8 . Then E(k,t)ab , E(k,t)ba ,

E(k,t)bb , andE(k,t)bb8 are independent ofg provided that
the hole bandb has cubic symmetry aboutX so thateb(k
1Qg)[eb1(k) does not depend ong. This approximation
would be satisfied by spherical or octagonal Fermi surfac

Using the random-phase approximation~RPA! to solve
the equations-of-motion for the Green’s functions in ze
field, we previously found16 that

E~k,in l !aa5
in l2eb1~k!

D~k,in l !
, ~22!

E~k,in l !ab5E~k,in l !ba5
1

Am

D

D~k,in l !
, ~23!

E~k,in l !bb5
1

m

in l2ea~k!

D~k,in l !
1

m21

m

1

in l2eb1~k!
, ~24!

E~k,in l !bb85
1

m

in l2ea~k!

D~k,in l !
2

1

m

1

in l2eb1~k!
, ~25!

wherem51, 2, or 3 for S, D, and T SDW’s and

D~k,in l !5@ in l2ea~k!#@ in l2eb1~k!#2D2. ~26!

The energy gap

D52Am
U

V
T(

k,l
E~k,in l !ab ~27!



d

er

ld

-

s

es

ti

an
te

a

er

in
m

fa

on

T

e

qs

ms
ed

s.
-
d
ag-
lest
ep-

the
i

re-

the

W

n-

is

ring

ar T
le

ties
r
W

the
im-
hen

us-

PRB 59 8675MAGNETIC SUSCEPTIBILITY OFg-Mn ALLOYS
is obtained from the general spin-dependent gapDab
g

5(D/Am)sab
g . Below the Ne´el temperature, the hybridize

quasiparticle energies are obtained from the zeroes
D(k,e). So a gap of 2D opens between the upper and low
hybridized bands. Band-structure calculations19 suggest that
2D(0) lies between 1.8 and 2.2 eV.

Using Eq.~12!, the sublattice magnetization in zero fie
may be written

M52
2Am

N (
k

E~k,02!ab52
2Am

N
T(

k,l
E~k,in l !ab .

~28!

Comparing Eqs.~28! and~27!, we conclude that the magne
tizationM (T)5(2V/NU)D(T) is proportional to the energy
gap in all three phases.

Physically, Eq.~24! for E(k,i n l)bb implies that only 1/m
of the holes on each of them nested hole Fermi surface
~connected to each electron Fermi surface by them ordering
wave vectorsQg) participates in the SDW and experienc
an energy gap. The remaining fraction 121/m of holes on
these nested Fermi surfaces are unaffected by the forma
of the SDW. Of course, holes on them21 non-nested hole
Fermi surfaces are also unaffected by the SDW. So for
SDW state, two thirds of the holes with density of sta
reh/2 do not contribute to the electron-hole condensate.

Because of the size difference between the electron
hole Fermi surfaces, there is an energy mismatcheb1(k)
2ea(k)5z0/2 at the Fermi momentumkF of the a Fermi
surface. Consequently, we may writeea(k)[z and eb1(k)
[z0/22z. When the electron Fermi surface is larg
~smaller! than the hole Fermi surface,z0 is negative~posi-
tive!. This mismatch is assumed to be the same for all po
on thea Fermi surface. As described in Appendix A, a su
mation overk is evaluated by performing an integral overz
with the linearized energies given above.

Solving Eq. ~27! with z050 as D→0, we find that the
Néel temperature of a perfectly nested alloy is given by

TN
! 5

2g

p
e0e28/Ureh, ~29!

where lng'0.577 is Euler’s constant. Here,e0 is the cutoff
in the quasiparticle energy spectrum. Since the Fermi sur
nesting is imperfect withz0Þ0, the actual Ne´el temperature
TN will be much less thanTN

! . WhenT50, Eq. ~27! yields
the quasiparticle gapD(0)5pTN

! /g, which is identical to
the familiar BCS relation for the energy gap of a superc
ductor. Hence, we estimate thatTN

! '500 meV.

IV. MAGNETIC SUSCEPTIBILITY

Our results for the parallel susceptibilities of S, D, and
SDW’s are summarized in Eqs.~A47!, ~A46!, and ~A48!,
respectively. For S and D SDW’s, the perpendicular susc
tibility is unchanged belowTN with x'5mB

2rehV/N. The
magnetizations of the S, D, and T SDW’s defined by E
~1!–~3! are generally given by

DM5x iẑH• ẑ1x'~ x̂H• x̂1 ŷH• ŷ! S SDW, ~30!
of

on

y
s

nd

ts
-

ce

-

p-

.

DM5x'ẑH• ẑ1x i~ x̂H• x̂1 ŷH• ŷ! D SDW, ~31!

DM5x iH T SDW. ~32!

These results follow from the absence of off-diagonal ter
such as]DMz /]Hx in the linear-response theory develop
in Appendix B.

At T50, the parallel susceptibilities are given by Eq
~A49!–~A51!, which imply that for any Fermi surface mis
match z0 , x i is always largest for the T SDW state an
smallest for the S SDW. This means that the induced m
netization along one of the ordering wave vectors is smal
in the collinear state. Even in this state, however, the susc
tibility does not vanish atT50 as it would for a local-
moment antiferromagnet. This is easy to understand. For
S SDW state ofg-Mn, only one of the three hole Ferm
surfaces~displaced from the electron Fermi surface byQz)
contributes to the condensate of electron-hole pairs. The
maining susceptibilitymB

2rehV/2N at T50 is produced by
the two hole Fermi surfaces which do not participate in
formation of the SDW.

For either noncollinear state, the moments of the SD
can be rotated by an external field even atT50. So the
susceptibility atT50 contains two contributions: one from
the density-of-statesreh/2 of holes not involved in the SDW
and the other from the SDW itself. This latter part is respo
sible for the dependence ofx i on the mismatchz0 between
the electron and hole Fermi surfaces.

As mentioned in the Introduction, neutron scattering
unable to distinguish multiple domains of a S SDW from a T
SDW: both possibilities produce the same neutron-scatte
intensity at everyG in reciprocal space.6 Other probes14,15

have been used to confirm the presence of a noncolline
SDW in FeMn and MnNi alloys. Averaged over all possib
domains, the susceptibilities are given byxav5x i/312x'/3
~S SDW!, 2x i/31x'/3 ~D SDW!, or x i ~T SDW!. As T
→0,

xav→
5

6
mB

2 V

N
reh S SDW, ~33!

xav→mB
2 V

N
rehH 3

4
1

1

48S z0

D D 2J D SDW, ~34!

xav→mB
2 V

N
rehH 13

18
1

1

36S z0

D D 2J T SDW. ~35!

Now the relative magnitudes of the average susceptibili
depend on the size of the Fermi surface mismatch. Foz0
50, the S SDW susceptibility is the largest and the T SD
susceptibility is the smallest. Foruz0u.2D(0)53.53TN

! , the
relative sizes are reversed with the T SDW susceptibility
largest and the S SDW susceptibility the smallest. Most
portantly, the average susceptibilities are different even w
multiple domains are present.

Close to the Ne´el temperature, however, the average s
ceptibilities converge. AsT→TN , the parallel susceptibili-
ties approach the limit

x i→mB
2reh

V

NH 12
1

8mp2S D

TN
D 2

(
n50

`

ReS 1

Xn
3D J , ~36!
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whereXn5n11/21 iz0/8pTN . Therefore, the average su
ceptibilities approach the same limit for all three SDW’s:

xav→mB
2reh

V

NH 12
1

24p2S D

TN
D 2

(
n50

`

ReS 1

Xn
3D J . ~37!

Since D(T)2}12T/TN near TN , these results also imply
that the parallel and average suceptibilities are linear fu
tions of temperature just below the Ne´el transition. But the
condition for the triple pointuz0u'4.29TN

! , above which the
commensurate SDW configurations considered so far
come unstable to an incommensurate SDW atTN , is given
by (n50

` Re(1/Xn
3)50. Therefore, the linear terms in the pa

allel and average susceptibilities dominate in a smaller ra
of temperatures as the mismatch energy increases in ma
tude.

Our numerical results for the parallel and average susc
tibilities are plotted in Figs. 2 and 3 forz050 and 4TN

! ,
respectively. For the larger Fermi surface mismatch, the r
tive magnitudes of the average suceptibilities are rever
compared to Fig. 2, as expected from the above discuss
Unlike the parallel susceptibilties, the average susceptib
ties merge into one curve close to the Ne´el temperature, cor-
responding to the limit of Eq.~37!. As expected, the tem
perature range over which the average susceptibility
approximately linear nearTN is smaller forz054TN

! than for
z050.

V. DISCUSSION AND CONCLUSION

This paper has evaluated the magnetic susceptibility
the collinear and noncollinear SDW states ofg-Mn alloys.
While the susceptibility parallel to any of the ordering wa

FIG. 2. The parallel and average susceptibilities versusT/TN for
a S ~solid!, D ~long dash!, and T~short dash! SDW with z050.
c-

e-

e
ni-

p-

a-
d
n.
i-

is

f

vectors is always smallest in the collinear S SDW state,
relative magnitudes of the susceptibilites averaged over
possible domains depends on the relative sizes of the e
tron and hole Fermi surfaces. For a small mismatch betw
the Fermi surfaces, the average susceptibility is largest in
collinear state of Fig. 1~a!.

Perhaps the most important result of this work is that
average susceptibilities are different in the three poss
SDW states. An experiment which cuts across differ
SDW states by varying temperature or doping should
serve a sudden change in the average susceptibility. For
ample, Mn12xNix alloys with x between 18 and 22 % trans
form from a high-temperature T SDW phase to a lo
temperature D SDW phase.9 According to Figs. 2 and 3, the
average suceptibility can jump by a few percent across s
a transition.

To simplify our calculations, we ignored scattering effec
which were found4 to play important roles in the susceptibi
ity of bcc Cr alloys. Based on linear-response theory, Ke
Moyer, and Arajs4 concluded that impurity and electron
phonon scattering are required to obtain quantitative ag
ment with susceptibility measurements3,4 on CrRe and CrRu
alloys.

Unfortunately, we are aware of only one set of susce
bility measurements ong-Mn alloys. Those early measure
ments were performed by Endoh and Ishikawa7 on a group
of FeMn alloys. Within the T SDW phase, the low
temperature susceptibility is suppressed by about 10% f
its value atTN . For comparison, Fig. 3 suggests that t
susceptibility may be depressed by about 16%. The con
bution of extraneous electron or hole pockets to the ba
ground susceptibility can easily account for this differen
In agreement with our predictions, the susceptibility is line

FIG. 3. The parallel and average susceptibilities versusT/TN for
a S ~solid!, D ~long dash!, and T ~short dash! SDW with z0

54TN
! .
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just below the Ne´el temperature.
The difference between the parallel and perpendicu

susceptibilities can be used to selectively eliminate spin
mains by cooling the sample in a magnetic field. If the a
propriate MnNi alloy is field cooled through the T SDW
phase, then the D SDW domain with ordering wave vect
and spins perpendicular toH will be selected. For a S SDW,
the domain withSiH will be eliminated by field cooling.

Since the internal strain fieldBi responsible for selecting
the SDW phase is only about 200 G, it might be naive
expected that an applied field of more than 200 G can ind
a transformation between SDW phases. However, the
plied field will have a significant effect on the SDW config
ration only when 2mBDMH is of order 2mBMBi . Using the
paramagnetic susceptibility to find an upper bound
2mBDM<xpH, we conclude that a field of at least 30 T
required to eliminate one SDW phase in favor of anothe

Simliar to Cr alloys,g-Mn alloys provide a testing groun
for our ideas about itinerant antiferromagnetism. Beca
they support noncollinear SDW states,g-Mn alloys may al-
low even more stringent tests of theoretical models than
alloys. We hope that the present work motivates experim
talists to revisit this important system and to perform upda
susceptibility measurements on MnNi and FeMn alloys.
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APPENDIX A: RANDOM-PHASE APPROXIMATION

In this appendix, we provide a detailed calculation for t
field-dependence of the Green’s functions. Rather than re
essentially the same steps for all three magnetic phases
shall provide the important details of this calculation for t
D SDW phase only. It is quite straightforward to extend th
calculation to the S and T SDW phases.

The RPA equations for the Green’s functions of the
SDW phase with the fieldH along an arbitrary direction ar
given by

~ in l2ea!Gab,aa2Dan
x Gnb,ba

x 2Dan
y Gnb,ba

y

1mBH•sanGnb,aa5dab , ~A1!

~ in l2eb1!Gab,ba
g 2D̄an

g Gnb,aa1mBH•sanGnb,ba
g 50,

~A2!

~ in l2ea!Gab,ab
x 2Dan

x Gnb,bb
x 2Dan

y Gnb,bb8
yx

1mBH•sanGnb,ab
x 50, ~A3!

~ in l2ea!Gab,ab
y 2Dan

y Gnb,bb
y 2Dan

x Gnb,bb8
xy

1mBH•sanGnb,ab
y 50, ~A4!

~ in l2eb1!Gab,bb
g 2D̄an

g Gnb,ab
g 1mBH•sanGnb,bb

g 5dab ,
~A5!
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~ in l2eb1!Gab,bb8
xy

2D̄an
x Gnb,ab

y 1mBH•sanGnb,bb8
xy

50,
~A6!

~ in l2eb1!Gab,bb8
yx

2D̄an
y Gnb,bb

x 1mBH•sanGnb,bb8
yx

50,
~A7!

where we suppress the (k,in l) dependence of each Green
function and repeated spin indices are summed. Since
SDW has ordering wave vectorsQx andQy , g5x or y.

1. Perpendicular susceptibility

WhenH is along theperpendicularor z axis, the Green’s
functions obey the following spin symmetries:

Gab,aa5dabEaa1sab
z Faa , ~A8!

Gab,ab
x 5sab

x Eab
x 2 isab

y Fab
x , ~A9!

Gab,ab
y 5sab

y Eab
y 2 isab

x Fab
y , ~A10!

Gab,ba
x 5sab

x Eab
x 1 isab

y Fab
x , ~A11!

Gab,ba
y 5sab

y Eab
y 1 isab

x Fab
y , ~A12!

Gab,bb
g 5dabEbb1sab

z Fbb , ~A13!

Gab,bb8
xy

5 isab
z Ebb8

xy
1 idabFbb8

xy , ~A14!

Gab,bb8
yx

52 isab
z Ebb8

xy
2 idabFbb8

xy . ~A15!

As verified in the next section using linear-respon
theory, the change in the energy gapDab

g due to an externa
field is of orderDmBH(NU/V)/eFTN

! . Because this correc

tion is so small,Dab
g 5D̄ab

g 5(D/A2)sab
g is taken to be un-

changed by the external field.
Using the Green’s functions defined above to solve

equations-of-motion, we find

Eaa6Faa5
in l2eb17mBH

D2~7H !
, ~A16!

Eab
x 6Fab

x 5
1

A2

D

D2~6H !
, ~A17!

Eab
y 6Fab

y 5
1

A2

D

D2~7H !
, ~A18!

Ebb6Fbb5
1

2

1

in l2eb16mBH
1

1

2

in l2ea7mBH

D2~6H !
,

~A19!

Ebb8
xy

6Fbb8
xy

52
1

2

1

in l2eb16mBH
1

1

2

in l2ea7mBH

D2~6H !
,

~A20!

where

D2~H !5~ in l2ea2mBH !~ in l2eb11mBH !2D2

~A21!
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generalizes the zero-field denominator of Eq.~26!.
It follows that

DMz5
T

N (
k,l

$F~k,in l !aa1F~k,in l !bb
x 1F~k,in l !bb

y %

1
T

2N(
k,l

H 1

in l2eb11mBH
2

1

in l2eb12mBHJ .

~A22!

For both sets of terms in brackets, the summations oven l
andk do not commute. Based on the definition of the sp
the summation overn l must come first. Once the norma
state contribution is subtracted from the first set of terms,
summations overn l andk can be interchanged:

DMz5
T

N (
l ,k

H F~k,in l !aa1F~k,in l !bb
x 1F~k,in l !bb

y

2
1

2

1

in l2ea1mBH
1

1

2

1

in l2ea2mBH

2
1

in l2eb11mBH
1

1

in l2eb12mBHJ
1

T

2N(
k,l

H 1

in l2ea1mBH
2

1

in l2ea2mBH

1
3

in l2eb11mBH
2

3

in l2eb12mBHJ . ~A23!

The summation overk is made using

1

V(
k

F~k!5
reh

8 E
2e0

e0
dzF~z!, ~A24!

whereea5z andeb15z0/22z are the linearized quasipart
cle energies andreh/8 is the density-of-states for a sing
spin on a single electron or hole Fermi surface. But for
field in the perpendicular direction, each Green’s funct
depends onH only through one of the combinationsz
2mBH or z1mBH. So the integration overz wipes out the
field dependence of the first set of terms. It follows th
DMz5(V/2N)rehmBH and

x'5mB
2 V

N
reh , ~A25!

which is unchanged by the spin ordering. The same re
may be obtained for a S SDW when the field is in thexy
plane.

2. Parallel susceptibility

For the field along thex axis, parallel to the ordering
wave vectorQx and in the plane of the spins of the D SDW
the Green’s functions obey the spin symmetries

Gab,aa5dabEaa1sab
x Faa , ~A26!

Gab,ab
x 5sab

x Eab
x 1dabFab

x , ~A27!
,

e

e
n

t

lt

Gab,ab
y 5sab

y Eab
y 2 isab

z Fab
y , ~A28!

Gab,ba
x 5sab

x Eab
x 1dabFab

x , ~A29!

Gab,ba
y 5sab

y Eab
y 1 isab

z Fab
y , ~A30!

Gab,bb
g 5dabEbb

g 1sab
x Fbb

g , ~A31!

Gab,bb8
xy

5 isab
z Ebb8

xy
1sab

y Fbb8
xy , ~A32!

Gab,bb8
yx

5 isab
z Ebb8

yx
1sab

y Fbb8
yx . ~A33!

Upon solving the equations of motion, we find

Eaa6Faa5
~ in l2eb1!22~mBH !2

D3~7H !
, ~A34!

Eab
x 6Fab

x 5
1

A2

D~ in l2eb17mBH !

D3~7H !
, ~A35!

Eab
y 6Fab

y 5
1

A2

D~ in l2eb17mBH !

D3~6H !
, ~A36!

Ebb
x 6Fbb

x 5
1

2

1

in l2eb16mBH

1
1

2

~ in l2ea6mBH !~ in l2eb17mBH !

D3~7H !

7
mBH

2

D2

~ in l2eb16mBH !D3~7H !
, ~A37!

Ebb
y 6Fbb

y 5
1

2

1

in l2eb16mBH

1
1

2

~ in l2ea7mBH !~ in l2eb17mBH !

D3~6H !

7
mBH

2

D2

~ in l2eb16mBH !D3~6H !
, ~A38!

Ebb8
xy

6Fbb8
xy

5
1

2

D2

D3~7H !
, ~A39!

Ebb8
yx

6Fbb8
yx

52
1

2

D2

D3~6H !
, ~A40!

where

D3~H !5~ in l2ea2mBH !@~ in l2eb1!22~mBH !2#

2D2~ in l2eb1!. ~A41!

It follows that
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DMx5
T

N (
l ,k

H F~k,in l !aa1F~k,in l !bb
x 1F~k,in l !bb

y

2
1

2

1

in l2ea1mBH
1

1

2

1

in l2ea2mBH

2
1

in l2eb11mBH
1

1

in l2eb12mBHJ
1

T

2N(
k,l

H 1

in l2ea1mBH
2

1

in l2ea2mBH

1
3

in l2eb11mBH
2

3

in l2eb12mBHJ . ~A42!

The first summation may be evaluated to linear order in
magnetic field using

D3~H50!5~ in l2eb1!D2~H50!

52~ in l2z0/21z!~z2z1l !~z2z2l !, ~A43!

z1l5
z0

4
1A~ in l2z0/41mBH !22D2, ~A44!

z2l5
z0

4
2A~ in l2z0/41mBH !22D2. ~A45!

The square root is defined so that sgn (Imz1l)5sgn(n l). Af-
ter performing thez integral, we find for a D SDW

x i5mB
2

V

N
rehH 11

p i

8
T(

l
sgn~n l !F D2

~2 ñ l
22D2!3/2

1
4

A2 ñ l
22D2

1
8

D2
~A2 ñ l

22D22 i ñ l !G J , ~A46!

wherei ñ l5 in l2z0/4.
The analogous result for a S SDW is

x i5mB
2 V

N
rehH 11

p i

2
D2T(

l

sgn~n l !

~2 ñ l
22D2!3/2J .

~A47!

By comparison, the parallel susceptibility for a commen
rate, bcc Cr alloy2 is given by the same result without th
factor of 1/2 in front of the Matsubara sum. For a T SDW,
we obtain

x i5mB
2

V

N
rehH 11

p i

18
T(

l
sgn~n l !F D2

~2 ñ l
22D2!3/2

1
8

A2 ñ l
22D2

1
16

D2
~A2 ñ l

22D22 i ñ l !G J . ~A48!

In the limit of zero temperature, the parallel susceptib
ties can be explicitly evaluated:
e

-

-

x i→
1

2
mB

2 V

N
reh S SDW, ~A49!

x i→mB
2 V

N
rehH 5

8
1

1

32S z0

D D 2J D SDW, ~A50!

x i→mB
2 V

N
rehH 13

18
1

1

36S z0

D D 2J T SDW. ~A51!

For commensurate Cr alloys, the absence of the factor of
in Eq. ~A47! implies thatx i→0 asT→0.

APPENDIX B: LINEAR-RESPONSE THEORY

We now confirm the results of the previous appendix
x' andx i of the D SDW state using linear-response theo

1. Perpendicular susceptibility

Starting with the definitionDMz5(1/N)( i^Siz&, we find

x'52mB

]DMz

]Hz
U

H50

5
4mB

2

N E
0

b

dt(
i , j

^TtSiz~t!Sjz~0!&.

~B1!

Employing Eq.~20! for the spin operator, applying Wick’s
theorem, and substituting the spin-dependent Green’s fu
tions, we obtain

x'52
2mB

2

N
T(

k,l
$E~k,in l !aa

2 1E~k,in l !bb
x21E~k,in l !bb

y2

1E~k,in l !bb
z222E~k,in l !ab

x222E~k,in l !ab
y2

22E~k,in l !bb8
xy E~k,in l !bb8

yx %

52
2mB

2

N
T(

k,l
H 1

~ in l2ea!2
1

3

~ in l2eb1!2J
2

2mB
2

N
T(

l ,k
H ~ in l2eb1!2

D2
2

1
1

2S 1

in l2eb1
1

in l2ea

D2
D 2

2
2D2

D2
2

1
D4

2

1

D2
2

1

~ in l2eb1!2
2

1

~ in l2ea!2

2
2

~ in l2eb1!2J , ~B2!

where the order of thek and n l summations has been re
versed in the last set of terms. After performing the comp
integral overz, we find that the last set of terms vanishes a
x'5mB

2rehV/N, as expected.

2. Parallel susceptibility

For the parallel susceptibility, we use

x i52mB

]DMx

]Hx
U

H50

5
4mB

2

N E
0

b

dt(
i , j

^TtSix~t!Sjx~0!&.

~B3!

Applying the same manipulations as above, we find that
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x i52
2mB

2

N
T(

k,l
$E~k,in l !aa

2 1E~k,in l !bb
x21E~k,in l !bb

y2

1E~k,in l !bb
z212E~k,in l !ab

x222E~k,in l !ab
y2

12E~k,in l !bb8
xy E~k,in l !bb8

yx %

52
2mB

2

N
T(

k,l
H 1

~ in l2ea!2
1

3

~ in l2eb1!2J
2

2mB
2

N
T(

l ,k
H ~ in l2eb1!2

D2
2

1
1

2S 1

in l2eb1
1

in l2ea

D2
D 2

2
D4

2

1

D2
2

1

~ in l2eb1!2
2

1

~ in l2ea!2
2

2

~ in l2eb1!2J .

~B4!

After performing the complex integral overz, we obtain pre-
cisely the same result as in Eq.~A46!. Considering the gen
eral susceptibility]DMi /]H j , off-diagonal terms withiÞ j
vanish because Tr(s isks jsk)52d i j (2d jk21).

3. Energy gap

Linear-response theory can also be used to verify that
energy gap is unaffected by the magnetic field. Starting w
the definition of the gap tensor

Dab
g 52

U

V(
k

^bk1Qg ,b
† aka&, ~B5!

we find that

]Dab
g

]Hx
U

H50

52
mBU

V (
k,k8

E
0

b

dt^Tt@ak8d
†

~t!

1bk8d
†

~t!#sdn
x @ak8n~t!

1bk8n~t!#bk1Qg ,b
† ~0!aka~0!&. ~B6!
te
e
h

So for a D SDW,

]Dab
x

]Hx
U

H50

5dab

mBU

V
T(

k,l
$E~k,in l !bbE~k,in l !ab

1E~k,in l !abE~k,in l !aa

2E~k,in l !bb8
xy E~k,in l !ab%, ~B7!

]Dab
y

]Hx
U

H50

5 isab
z mBU

V
T(

k,l
$2E~k,in l !bbE~k,in l !ab

1E~k,in l !abE~k,in l !aa

1E~k,in l !bb8
xy E~k,in l !ab%, ~B8!

whereas ]Dab
z /]HxuH5050. Since both summations ar

well-defined in the limite0→`, both derivatives are of orde
DmBUreh /TN

! ;DmB(NU/V)/eFTN
! . Formally, the e0→`

limit corresponds to theU→0 limit with a fixed TN
! in Eq.

~29!. So the field dependence of the energy-gap tensor ca
ignored.

Surprisingly, a direct application of Eq.~17! for the gap
tensor, together with Eqs.~A27!, ~A28!, ~A35!, and ~A36!
for G(k,in l)ab,ab

g , would lead to an entirely different con
clusion: that an external field changes the gap by a term
orderDmBH/TN

! rather than of orderDmBH(NU/V)/TN
! eF .

This erroneous result comes applying the RPA too so
Within linear-response theory, it would arise from using t
RPA rather than the exact Hamiltonian in the expectat
value ^A&5Tr@Aexp(2bH)#/Tr@exp(2bH)# of Eq. ~B5!
prior to differentiating with respect toH.
le

nd

c.
1See, for example, Kei Yosida,Theory of Magnetism~Springer-
Verlag, Berlin, 1996!.

2K. Maki and M. Sakurai, Prog. Theor. Phys.47, 1110~1972!.
3S. Arajs, C.A. Moyer, J.R. Kelly, and K.V. Rao, Phys. Rev. B12,

2747 ~1975!.
4J.R. Kelly, C.A. Moyer, and S. Arajs, Phys. Rev. B20, 1099

~1979!.
5T. Jo and K. Hirai, J. Phys. Soc. Jpn.55, 2017~1986!.
6J.S. Kouvel and J.S. Kasper, J. Phys. Chem. Solids24, 529

~1963!.
7Y. Endoh and Y. Ishikawa, J. Phys. Soc. Jpn.30, 1614~1971!.
8Y. Endoh, G. Shirane, Y. Ishikawa, and K. Tajima, Solid Sta

Commun.13, 1179~1973!.
9N. Honda, Y. Tanji, and Y. Nakagawa, J. Phys. Soc. Jpn.41,

1931 ~1976!.
10P.A. Fedders and P.C. Martin, Phys. Rev.143, 245 ~1966!.
11These are sometimes refered to as the single, double, and tripQ

states.
12D. Meneghetti and S.S. Sidhu, Phys. Rev.105, 130 ~1957!.
13P. Bisanti, G. Mazzone, and F. Sacchetti, J. Phys. F17, 1425

~1987!.
14S.J. Kennedy and T.J. Hicks, J. Phys. F17, 1599~1987!.
15S. Kawarazaki, K. Fujita, K. Yasuda, Y. Sasaki, T. Mizusaki, a

A. Hirai, Phys. Rev. Lett.61, 471 ~1988!.
16R.S. Fishman and S.H. Liu, Phys. Rev. B58, R5912 ~1998!;

following paper,59, 8681~1999!.
17P. Makhurane and P. Gaunt, J. Phys. C2, 959 ~1969!.
18K. Tajima, Y. Ishikawa, Y. Endoh, and Y. Noda, J. Phys. So

Jpn.41, 1195~1976!.
19S. Asano and J. Yamashita, J. Phys. Soc. Jpn.31, 1000~1971!.


