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Magnetic susceptibility of y-Mn alloys
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This paper provides theoretical results for the magnetic susceptibility in the $8)gouble(D), and triple
(T) spin-density wavéSDW) states ofy-Mn alloys. Whereas the S SDW state is collinear, the D and T SDW
states are noncollinear phases which are stabilized at higher impurity concentrations. As expected, the suscep-
tibility along any spin direction is suppressed below theNemperature. Averaged over all possible domains,
the magnetic susceptibility of each SDW phase approaches the same limit neaetherieerature. At low
temperatures, however, the average susceptibility depends on the relative sizes of the electron and hole Fermi
surfaces. For Fermi surfaces of approximately the same size, the average susceptibility is largest in the S SDW
state and smallest in the T SDW state. But when one Fermi surface is sufficiently larger than the other, the
relative magnitudes of the average susceptibilities are reversed. As a consequence, the transition between
different SDW phases with temperature or doping concentration should be marked by a sudden change in the
magnetic susceptibility.S0163-18209)03213-7

I. INTRODUCTION S= M%COS{QZ' R) SSDW, 1)

Although the magnetic susceptibility of rare-edrénd
transition-met&* antiferromagnets with collinear moments S=
has been well known for many years, little is known about V2
the magnetic susceptibility of transition-metal antiferromag-

i|v|[>“<cos(QX- R))+ycogQ,-Ri)] D SDW, (2)

nets with noncollinear moments. The fcc phase of doped Mn 1 . .

alloys is believetito support three different magnetic phases, S :TM [xcodQy- R;) +ycogQy-R))

two of which are noncollinear. These spin configurations are 3

stable in distinct ranges of doping and temperatarén this +2c04Q,-R)] T SDW. @)

paper, we provide theoretical results for the susceptibility of

each magnetic phase. Even when averaged over all possibldese relations are obtained by replacing the sharply peaked
domains, the susceptibilities of the three spin configuration8loch wave functions of the-band electrons by functions

are found to be different. The predictions of this paper can bé the spin density. In the remainder of this pap@t, will
tested in ay-Mn alloy which transforms from one phase to refer to the one, two, or three ordering wave vectors of the
another as a function of temperature_ SDW phases defined above. For_the T_SDW of @,. the

The three magnetic phasespiMn alloys are sketched in spin points along the (1,1,1), (1,3,1(1,1,1), and (11,1)

Fig. 1 for a single unit cell of the fcc lattice. Whereas thedirections. Consequently, a single domain of the T SDW
magnetic susceptibility of the collinear phase in Figa)l Pphase does not violate cubic symmetry and is consistent with
may be conjectured to be quite similar to that of a fcc rarethe cubic phase of FeM(Refs. 6-8 and MnNi alloys?

earth antiferromagnet, intuition fails for the two noncollinear ~Because the fcc phase of pure Mn is only stable between
phases. We certainly expect the susceptibility to be supl079 and 1140 Ky-Mn is commonly produced by doping
pressed below the ¢ transition along any spin direction With Fe, Ni, or Cu. For low dopant concentrationg,Mn

for each magnetic configuration. But a formal calculation is
required to determine the relative magnitudes of the suscep-
tibilities in the collinear and noncollinear spin states.

All three magnetic phases af-Mn are produced by the
Coulomb attraction between electrons and holes on Fermi
surfaces centered at theand X points in reciprocal space.
Those Fermi surfaces are roughly nestday the three wave
vectors Q= (2m/a)X, Q,=(2w/a)y, and Q,=(2m/a)z.

In the single(S), double (D), and triple (T) spin-density
wave (SDW) phase¥' sketched in Fig. 1, either one, two, or
all three of the nesting wave vectors modulate the spin order. FIG. 1. The single, double, and triple SDW phases which are
Formally, the SDW phases may be written as stabilized in different crystal structures.

c<a c>a c=a

S SDwW D SDw T SDW
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alloys have Nel temperatures close to 470 K and magneticdiscusses our results for the magnetic susceptibility, and Sec.
moments of about 2,3;.” Whenx<15%, both FgMn,_,  V contains a conclusion and summary.

(Refs. 6,7 and Mn, _,Ni, alloys’ undergo transitions into a S

SDW state. More heavily doped fén,_, [x>45% (Ref. Il. HAMILTONIAN AND GREEN’'S FUNCTIONS

6)] and Mn _,Ni, [x>22% (Ref. 9] alloys support a T

SDW phase and remain cubic for all temperatures baiqw Our starting Hamiltonian contains four terms: the kinetic

. . .energy of the electrons, the Coulomb attractldrbetween
0,
In a narrow impurity range between 18 and 22 %, MnN'eIectrons and holes, the magnetoelastic interattioetween

alloys are bellevgrdto sup'pota D SDW phase. o the N spins and the lattice, and the interaction with the ex-
Magnetoelastic energies are crucial to the stability of

these different magnetic phases. The formation of the éernal magnetic field:
SDW phase.in FeMn gr;d MnNi alloys coincides with a te- H=Ho+Hcout Hmet Hoxts (4
tragonal lattice distortion of between 3 and 5% witkc
<a. In MnNi alloys, the appearancef @ D SDW phase
coincides with a tetragonal distortion witt>a.® By con- Ho= >, {ea(k)a],aw.+ en(K)b] byal, (5)
trast, the formationfoa T SDW with cubic symmetry results K.a
in a uniform volume contraction witb=a.”®

For some time, the existence of noncollinear states was H :E E al b’ b . a (6)
questionet because multiple S SDW domains have the CUMTN 7 p Kok apfhmae
same neutron-scattering fingerprint as a single T SDW
domain® Subsequently, Mssbauer transmission speéfra s o
and y-ray emissiol® studies have largely confirmed the Hme=V{5Ci(€nt €)yF €27+ Crol exxeyyt €yy€rzt €226xx)
presence foa T SDW phase in FeMn and MnNi alloys. The
predictions of this paper can be used to provide additional (o} ) ) 5
evidence for the existence of noncollinear phases since, even +ﬁ2 (Sixexxt Siy€yyt Siz€27)
when averaged over all possible spin domains, the magnetic
susceptibilities of the S, D, and T SDW phases remain dif- 0, > o w2
ferent. + W(Gxx+ EyyT Ezz)z (St S|y+ S ()

Unlike the magnetic susceptibility of the noncollinear '
SDW phases ofy-Mn alloys, the susceptibility of the collin-
ear, commensurate SDW phase of bcc Cr alloys has been Hext:_ZMBH'E S, (8)
studied  extensively, both  experimentdify and i
theoretically>* Assuming that the electron and hole Fermi
surfaces are the same size, Maki and Sakweicluded that
the susceptibility parallel to the spins vanishe§ &0 while
the perpendicular susceptibility is unchanged belc re- : .
cise?y ellos expected for aplocal)—/moment sf/]stem. Xy\lfe?/v yeargtam.s’ andj; are the magnetzoelastm _coupllng strengths.
latter, Kelly, Moyer, and Arafsconsidered the more general W.'th tg:rms up to ordg@a, Hme. is the most general
case of Fermi surfaces with different sizes and also includefffamiltonian consistent with the cubic symmetry of the para-
the effects of impurity and electron-phonon scattering. Theif"@gnetic phase. After minimizing e with respect to the

results are in good agreement with measurements on CrRgjf@in components, it is easy to obtain the average strain
(Ref. 3 and CrRe(Ref. 4 alloys. components for each SDW configuratithin agreement

For the sake of simplicity, we ignore impurity and with experimentg! the strain components and tetragonality

electron-phonon scattering corrections to the magnetic susfor the S and D SDW statgare proportional tM(T)2.
ceptibility of y-Mn alloys. But we consider the electron and N Ref. 16, we used mean-field theory to replace the mag-
hole Fermi surfaces to have different sizes. Linear respongaftoelastic energi . with
theory is used to confirm the results obtained by explicitly
expanding the Green’s functions in a magnetic field. Our H/ .= —2ug>, Bi-S+const, (9)
final results for the susceptibility are surprisingly simple. As i
expected, the magnetic susceptibility along any spin direc-
tion is suppressed by the antiferromagnetic order. Once av-
eraged over possible spin domains, the magnetic susceptibil- Bio="— @{glfaﬁ Golexxt €yt €29 }(Sia). (10)
ity near the Nel temperature is identical in all three possible
magnetic phases. But the relative magnitudes of the averag#/ithin this approximation, every electron and hole indepen-
susceptibilities at low temperatures depend on the relativeently experiences the effective fielj exerted by the mag-
sizes of the electron and hole Fermi surfaces. netoelastic interaction. The interaction constaris defined

To streamline the following discussion, the magnetic susin terms of ¢;;, ¢;,, andg; through the relation(H e
ceptibility is derived in two appendices: Appendix A explic- = —N«M*.
ity expands the Green's functions in powers laf while In previous work® on the spin dynamics of-Mn alloys,
Appendix B develops a linear-response theory. Section Iwe predicted that the gap in the spin-wave spectrum is pro-
outlines the basic formalism, Sec. Il summarizes our previportional to«Ty/perlUM(T)%? wherepg, is the density-
ous result¥ for the SDW ordering in zero field, Sec. IV of-states of the electron and hole Fermi surfaces. Fitting this

wherea] , andb|, are the creation operators for quasiparti-
cles on thea (electron andb (hole) bands. The strain com-
ponents are given by;;, c;;, andc, are the elastic con-
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result to the observed spin-wave §&pf roughly 10 meV, with Matsubara frequency,= (2| +1)#T.

we found thatx is of order 1 peV. In terms of the Fermi operators for the two bands, the spin
Despite the small size ofx, the strain field B; operator is defined by

~kM3/2ug has a magnitude of roughly 200 G. This field

stabilizes one or the other of the SDW phases. Qualitatively,

the magnetoelastic interaction alters the magnetic suscepti-

bility by distorting the crystal along the direction of the ex-

ternal field. Nevertheless, as shown by the following arguVhere repeated spin indices are summed afld are the

ment, the magnetoelastic interaction is largely irrelevant td”auli matrices. If the external field lies in tfeedirection,

our calculation of the magnetic susceptibility for a given then the induced moment in this direction is

SDW phase. In the presence of an applied fidldn the z 1

direction, the magnetoelastic energy generates the additional AMZ:_TE Uzﬁa[ G(K,iv)) up.aa

interaction 8MZ2AM,3;S,, where ugAM,=xH is the 2N 4 '

change in the averagemoment. Hence, the magnetoelastic

1
Ss=5 (@l tbl)oog(@istbig), (20

interaction enhances the external field by the factor 1 + E G(k,iv,)fyﬁ,bb]. (21
+2KXM2/,LLB Using the paramagnetic susceptibilify, o=xy.2

MBVPeh/N as an upper limit ony, we find that Hence, the magnetic susceptibilify is given by the zero-
kxM?/u3<10"°. Therefore, the magnetoelastic interactionfield limit of 2 ugAM,/H. When the external field is perpin-

can be safely neglected in the remaining calculations. dicular to all the spinsy=yx, . So for the S and D SDW
Using the standard notation, the imaginary time Green'sstates of Eqs(1) and(2), x, is obtained whem lies in the
functions may be written as xy plane or along the axis, respectively. When the field is
+ parallel to one of the ordering wave vectogss x| . Fora T
G(K,7)op,aa= —(Takal( 7)x4(0)), 1) spw, x= x| regardless of whether the field points along the
X, Y, Or zaxis.
Gk, D lpan= ~(Taka(bi1g 4(0)), (12

K.2)? < b + > 13 I1l. SDW ORDERING IN ZERO FIELD

G(k,7) appa=—(T- «(7)a500)), 13
pi.ba K Qy K In zero field, the spin symmetry of the Green’s functions

G(K. 77 s = —(T.b bl 0)). 14 is given by the relationsG(K,7),gaa= 045E(K,7)aa;

(K1) ap0b= ~(Tbir @ ol Tk 4(0)),  (14) (k7)o O'Z,BE(va)ab- (ko) g O'ZBE(k-T),baa
G(k, T)aﬁ bb ,BE(va)bba and G(k,T)z;,bb/
=(o7- o )apE(K,T)pp - Then  E(K,7)ap, E(K,7)pas
E(k,7)pp, andE(k, 7)p, are independent of provided that
Note thatG(k, 7)) ., is only defined for the D or T SDw  the hole bandb has cubic symmetry abowt so thatep(k
states with more than one ordering wave vector. Bery ~ +Qy) =€b+(K) does not depend op. This approximation

(so thatQ, is not an ordering wave vectotthe hole Green’s would be satisfied by spherical or octagonal Fermi surfaces.
function Using the random-phase approximatiRPA) to solve

the equations-of-motion for the Green’s functions in zero
G(k’T)iﬁ,bb —(T, bk+Q5a(7)bk+Q5B(0)> (16)  field, we previously fountf that

G(k, 7)1 oy =~ (Tbirg,a(Mblig 4(0)),  ¥#7'.
(15

is unaffected by the formation of the SDW. E(k.i = epi(K) (22
For future reference, we define the energy-gap tensors (Kiv1)aa= D(k,iv) )
A== S (bl 402 (0)) A
ap™ =y 4 Prro,p0)ka E(K,iv)ap=E(K,iv)p J_D(k oy @
oY Glkin)? 17
=—— V) Y5 aps , 1iv—e(k) m—=1 1
VvV B.a _=- al
Ekme=m B T m e 22
Al= aj ;(0)by, o (0 1iv—e k) 1 1
E< k6(0)bici g o(0)) PR Lk L 25

m D(kjiv) miv—e.(k)’

=_ %TE G(K,iv) g pa- (18 wherem=1, 2, or 3 for S, D, and T SDW's and
k1 ’

D(K,in)=[iv—ea(K)][iv—ep (K)]—A%  (26)

The above relation also introduces the Fourier-transformed
Green’s functions The energy gap

B U
G(k,iyl)aﬂviffo d7e" "G (K, 7) upij » (19 A=—\/EVT; E(K,iv))ab (27)
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is obtained from the general spin-dependent g&p, AM=yx, ZH-z+ x(XH-X+yH-y) D SDW, (31
=(A/Jﬁ)ogﬁ. Below the Nel temperature, the hybridized
guasiparticle energies are obtained from the zeroes of AM=yH T SDW. (32

D(k,e). So a gap of A opens between the upper and lower
hybridized bands. Band-structure calculatirsuggest that
2A(0) lies between 1.8 and 2.2 eV.

Using Eqg.(12), the sublattice magnetization in zero field
may be written

These results follow from the absence of off-diagonal terms
such assIAM,/dH, in the linear-response theory developed
in Appendix B.

At T=0, the parallel susceptibilities are given by Egs.
(A49)—(A51), which imply that for any Fermi surface mis-

2Jm Jm matchzy, x) is always largest for the T SDW state and
M=———> E(KO0 )ap=— —— T2 E(K,iv)ap. smallest for the S SDW. This means that the induced mag-
N N 4 netization along one of the ordering wave vectors is smallest

(28) in the collinear state. Even in this state, however, the suscep-
tibility does not vanish aff=0 as it would for a local-
moment antiferromagnet. This is easy to understand. For the
S SDW state ofy-Mn, only one of the three hole Fermi
surfaces(displaced from the electron Fermi surface @Qy)
contributes to the condensate of electron-hole pairs. The re-
maining susceptibilityu3pe,V/2N at T=0 is produced by
the two hole Fermi surfaces which do not participate in the

Comparing Eqgs(28) and(27), we conclude that the magne-
tizationM (T) = (2V/NU)A(T) is proportional to the energy
gap in all three phases.

Physically, Eq.(24) for E(k,i )y, implies that only I
of the holes on each of thm nested hole Fermi surfaces
(connected to each electron Fermi surface byntherdering
wave vectorsQ,) participates in the SDW and experiencesforma,[ion of the SDW
'?hnesegenrggtgda%e-rrnr":?sfrgigéngr;riﬁla?fﬁéégg (k));r:f?:ae?o(r)r:atio% For either noncollinear state, the moments of the SDW
of the SDW. Of course, holes on the— 1 non-nested hole can be rotated by an external field evenTat0. So the

. susceptibility atT=0 contains two contributions: one from
Fermi surfaces are also unaffected by the SDW. So for an : . .
SDW state, two thirds of the holes with density of states e density-of-stateg/2 of holes not involved in the SDW

per/2 do Not contribute to the electron-hole condensate. and the other from the SDW itself. This latter part is respon-

Because of the size difference between the electron anS ble for the dependence g on the mismaiciz, between

hole Fermi surfaces, there is an energy mismatgh(k) the electron and hole Fermi surfaces.
— e.(K)=2,/2 at the Fermi momenturky. of the a Fermi As mentioned in the Introduction, neutron scattering is

surface. Consequently, we may writg(k)=2 and ey, (k) unable to distinguish multiple domain®S SDW froma T

— ' ' . b+ SDW: both possibilities produce the same neutron-scattering
=2zy2-z. When the electron Fermi surface is I"’?rgerintensity at event in reciprocal spac.Other probe¥-®
(.smallebl tha_n the holle Fermi surface, is negative(posi- . _have been used to confirm the presence of a noncollinear T
tive). This mismatch is assumed to be the same for all point

. . ; . EDW in FeMn and MnNi alloys. Averaged over all possible
on thea Fermi surface. As described in Appendix A, a SUM- 4o mains. the susceptibilities are given by, x/3+ 2y, /3

mation overk is evaluated by performing an integral over
with the linearized energies given above. (S SDW), 2x)/3+ x,/3 (D SDW), or x| (T SDW). As T

Solving Eq.(27) with z;=0 asA—0, we find that the -0,

Neel temperature of a perfectly nested alloy is given by 5,V
Xav—™ gﬂsﬁpeh S SDW, (33
2y
* _ —8Mpgh
TN T €0e en, (29) 2V 3 1 ZO 2
Xav— B\ Peh Z+ 28 A D SDW, (34)

where Iny=~0.577 is Euler's constant. Hereg is the cutoff
in the quasiparticle energy spectrum. Since the Fermi surface ,V 13 1(z,)\2

nesting is imperfect wittz,# 0, the actual Nel temperature Xav— K Pen 1—8+ 36 A T SDW. (35

Ty will be much less thafy,. WhenT=0, Eq.(27) yields

the quasiparticle gap (0)=#Tyx/7y, which is identical to Now the relative magnitudes of the average susceptibilities

the familiar BCS relation for the energy gap of a supercondepend on the size of the Fermi surface mismatch. Zgor
ductor. Hence, we estimate th—EII~ 500 meV. =0, the S SDW Susceptlblllty is the Iargest and the T SDW

susceptibility is the smallest. F¢zy|>2A(0)=3.53T}, the

relative sizes are reversed with the T SDW susceptibility the

largest and the S SDW susceptibility the smallest. Most im-
Our results for the parallel susceptibilities of S, D, and Tportantly, the average susceptibilities are different even when

SDW's are summarized in Eq$A47), (A46), and (A48),  multiple domains are present.

respectively. For S and D SDW's, the perpendicular suscep- Close to the Nel temperature, however, the average sus-

tibility is unchanged belowrly with XLZMépth/N- The ceptibilities converge. AF — Ty, the parallel susceptibili-

magnetizations of the S, D, and T SDW's defined by Eqsties approach the limit

(1)—(3) are generally given by

= L
a~ A~ A A A A X7 MBPehg) +— = | (s
AM=xzH -z+ x,(xH-x+yH-y) SSDW, (30 *'N 8m=2\ Tn/ =0 X3

IV. MAGNETIC SUSCEPTIBILITY
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XyHEPLVIN
Xif UG P V/N

Xav/MEP,V/N

0 0.2 0.4 0.6 0.8 1

TN
FIG. 2. The parallel and average susceptibilities velsTs, for FIG. 3. The parallel and average susceptibilities velss, for
a S(solid), D (long dash, and T(short dash SDW with z,=0. a S (solid), D (long dash, and T (short dash SDW with z,

=4Ty.
whereX,=n+1/2+iz,/8=7Ty. Therefore, the average sus- ) ) )
ceptibilities approach the same limit for all three SDW's:  Vectors is always smallest in the collinear S SDW state, the
relative magnitudes of the susceptibilites averaged over all
2 possible domains depends on the relative sizes of the elec-
\% 1 /A 1 . -
% —>,U«2 1= —_ E Rd — (37) tron and hole Fermi surfaces. For a small mismatch between
av BPehN 2\ T < 3 . . cperen s .
2477\ IN/ n=0 X5 the Fermi surfaces, the average susceptibility is largest in the
] ) ) collinear state of Fig. ().
Since A(T)“x1—T/Ty near Ty, thes_e _r_e_sults als_0 imply Perhaps the most important result of this work is that the
that the parallel and average suceptibilities are linear funcyyerage susceptibilities are different in the three possible
tions of temperature just below the &ldransition. But the  spyy states. An experiment which cuts across different
condition for the triple poinfzo| ~4.29TY, above which the  Spw states by varying temperature or doping should ob-
commensurate SDW configurations considered so far beserve a sudden change in the average susceptibility. For ex-
come U”Stab|93t0 an incommensurate SDWIgt is given  ample, Mn_,Ni, alloys with x between 18 and 22 % trans-
by =,_oRe(1KX;)=0. Therefore, the linear terms in the par- form from a high-temperature T SDW phase to a low-
allel and average susceptibilities dominate in a smaller ranggeemperature D SDW phasSeAccording to Figs. 2 and 3, the
of temperatures as the mismatch energy increases in magriverage suceptibility can jump by a few percent across such

tude. a transition.
Our numerical results for the parallel and average suscep- To simplify our calculations, we ignored scattering effects
tibilities are plotted in Figs. 2 and 3 far,=0 and 4Ty,  which were founfito play important roles in the susceptibil-

respectively. For the larger Fermi surface mismatch, the relaity of bcc Cr alloys. Based on linear-response theory, Kelly,
tive magnitudes of the average suceptibilities are reverseMoyer, and Arajé concluded that impurity and electron-
compared to Fig. 2, as expected from the above discussiophonon scattering are required to obtain quantitative agree-
Unlike the parallel susceptibilties, the average susceptibiliment with susceptibility measuremetton CrRe and CrRu
ties merge into one curve close to théaNeemperature, cor- alloys.
responding to the limit of Eq(37). As expected, the tem- Unfortunately, we are aware of only one set of suscepti-
perature range over which the average susceptibility ibility measurements ow-Mn alloys. Those early measure-
approximately linear nedFy, is smaller forz,=4Ty, than for  ments were performed by Endoh and IshikAwa a group
z,=0. of FeMn alloys. Within the T SDW phase, the low-
temperature susceptibility is suppressed by about 10% from
its value atTy. For comparison, Fig. 3 suggests that the
susceptibility may be depressed by about 16%. The contri-
This paper has evaluated the magnetic susceptibility obution of extraneous electron or hole pockets to the back-
the collinear and noncollinear SDW statesywMn alloys.  ground susceptibility can easily account for this difference.
While the susceptibility parallel to any of the ordering wave In agreement with our predictions, the susceptibility is linear

V. DISCUSSION AND CONCLUSION
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just below the Nel temperature.

The difference between the parallel and perpendicular
susceptibilities can be used to selectively eliminate spin do-
mains by cooling the sample in a magnetic field. If the ap- . VX _ Ay X yx  _
propriate MnNi alloy is field cooled through the T SDW (1= €01)Gop ooy A)‘;”GVﬂvbbjL’“BH'U“”Gvﬁvbb’_?&7
phase, then the D SDW domain with ordering wave vectors (A7)
and spins perpendicular té will be selected. Foa S SDW, where we suppress thé&,{v,) dependence of each Green’s
the domain with§|H will be eliminated by field cooling. function and repeated spin indices are summed. Since a D

Since the internal strain fielB; responsible for selecting SDW has ordering wave vecto€, andQ,, y=xory.
the SDW phase is only about 200 G, it might be naively
expected that an applied field of more than 200 G can induce
a transformation between SDW phases. However, the ap-
plied field will have a significant effect on the SDW configu-
ration only when ZgAMH is of order 2ugMB; . Using the
paramagnetic susceptibility to find an upper bound on

. X e X
(I V= 6b+)Ga);g,bb’ - A)o(zVGy/B,ab-i_ IU’BH : O-aVG y

»8,bb’ =0,

(A6)

1. Perpendicular susceptibility

WhenH is along theperpendicularor z axis, the Green’s
functions obey the following spin symmetries:

, _ Gup.aa= OupEaat 0%sF aa, A8
2ugAM =<y, H, we conclude that a field of at least 30 T is p.aa~ Capaa™ Tapaa (A8)
required to eliminate one SDW phase in favor of another. X X EX _igY EX (A9)

Simliar to Cr alloys,y-Mn alloys provide a testing ground ap.abTapab THapt ab
for our ideas about itinerant antiferromagnetism. Because X
. GY =¥ EY —i FY,, A10
they support noncollinear SDW statesMn alloys may al- ap.ab™ Tap=ab™ Tapab (A10)
low even more stringent tests of theoretical models than Cr X X =X iy X
alloys. We hope that the present work motivates experimen- Gapba=TapFabt10agFan, (ALD)
talists to revisit this important system and to perform updated VY By L:X Y
susceptibility measurements on MnNi and FeMn alloys. Gapba= TapFant10apFan, (A12)
G2 s.bb=SapEbbt 0osFbb, (A13)
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As verified in the next section using linear-response

theory, the change in the energy gajfj, due to an external

_ _ _ _ _ field is of orderA ugH(NU/V)/eTy,. Because this correc-

_ In_ this appendix, we prowde' a deta_lled calculation for theyion is so Sma||AZB=AZ,;_=(A/\/§)G§ﬁ is taken to be un-
field-dependence of the Green’s functions. Rather than repe@ﬁanged by the external field.

essentially the same steps for all three magnetic phases, we Using the Green's functions defined above to solve the
shall provide the important details of this calculation for theequations-of-motion we find

D SDW phase only. It is quite straightforward to extend this '
calculation to the S and T SDW phases.

APPENDIX A: RANDOM-PHASE APPROXIMATION

v~ €p+ + ugH

The RPA equations for the Green’s functions of the D Eaa* Faa= D,(TH) , (Al6)
SDW phase with the fielth along an arbitrary direction are 2
given by
A
. EX*Fl=— ———, (A17)
(i v= ea)GaB,aa_ A)c(w );ﬁ,ba_A)c/wGi,B,ba ab ab \/E D2( * H)
+ IL’LBH : O'ava,B,aa: 5aﬁ ’ (Al) 1
(iv— Eb+)GzB,ba_ AZ{VG vB,aa+MBH : O'avGZB,ba: 0, \/E Da(= H)
A2
(A2) 1 1 1iv— ey ugH
- Epp = Fpp=75; t5 :
(iv1— €2)Ghpap—A2Chpon~ AivGﬁg,bbr 2in—eptugH 2 Dy(=H) (A19)
+peH- 04,Gp.05=0, (A3) _
Exy/iny/:_l_ 1 +£|VI_EaI:U“BH
(iv— € Gl an— A%GYpbb— A);VG%,bbr b’ bb 2iv—e, TugH 2 Dy(xH) (A,20)
y —
+ poH: 74,6, 05=0, O I

(iv— fb+)GZﬁ,bb_ AZVGZg,ab+ mgH- o-aVGZﬁ,bb: Oup s

Dy(H)=(ivj— €a— pugH)(iv,— €, + ugH) — A?
(A21)
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genefr:llligvt\a; mztzero-field denominator of E2f). GYp.av=0%sELo—10%sF Y, (A28)
T G);B,ba: O'zﬁE;b‘l' 5013F);b’ (A29)
AM = 2 {F (K im)aat F(kim)Bp+F(kiv) ol
+— - — - . <
2N%T (v~ €py tugH iy —€py— pugH Gl s0b= 0apElpt TasF b (A31)
(A22)
For both sets of terms in brackets, the summations aoyer Gaﬂ bb |0'a3Ebbr+0'aﬁbe,, (A32)
andk do not commute. Based on the definition of the spin,
the summation ovew; must come first. Once the normal- GZ:;'W 'ffa/aEbb/JF%Bbe'- (A33)

state contribution is subtracted from the first set of terms, the

summations ovep, andk can be interchanged: Upon solving the equations of motion, we find

T H 2 2
- i + )%+ i)Y iv— € —(pgH
AM, N% (F(k,m)aa F(k,iv) g+ F(K,ivhy £ F, o )~ (ke (A34)
D3(+H)
1 1 +1 1
2ivi—e;tpugH 2iv—e;— ugH ‘. « 1 Aiv—ep+pugH) o
1 1 ab— ab_ﬁ Dy(FH) ’ ( )
— - + -
v~ €ps + ugH |VI_5b+_,UfBH]
1 A(ivy— ey +
Ty 11 Bt FYym e (TH)MB W s
2NiT |ivy—eyg+tugH v —e— ugH ‘/E Ds(=
+ 3 > j (A23) !
N - . X X -
v —epy tugH Ty~ €p—pugH S iv,— €ps + ugH
The summation ovek is made using 1 (ivy— ea* ugH)(iv,— €ps T ugH)
2 Ds(+H
IS Fi pe“f dzF(2), (A24) o
VE i A% (A37)
. . . . 2 (iy— +ugH)D3(FH)’
wheree,=z and e, = 7y/2—z are the linearized quasiparti- (i1~ €p = pugH)D3(H)
cle energies ang./8 is the density-of-states for a single
spin on a single electron or hole Fermi surface. But for the  y . -y 1 1
field in the perpendicular direction, each Green’s function bbb 2y — €py + ugH
depends onH only through one of the combinations i _ i _
—ugH or z+ ugH. So the integration ovezr wipes out the n 1 (in—ea+peH)(in—eps + usH)
field dependence of the first set of terms. It follows that 2 Ds(=H)
,V T2 (in—ep = pgH)Dy(=H)
XJ_:MBNpeh! (A25)
AZ
which is unchanged by the spin ordering. The same result EE{),tF’g{),zz SNETIR (A39)
may be obtained foa S SDW when the field is in they S
plane.
BN +FL, =— 1At (A40)
2. Parallel susceptibility bb/ = bb! 2 D3(*+H)’

For the field along thex axis, parallel to the ordering where
wave vectorQ, and in the plane of the spins of the D SDW,

the Green'’s functions obey the spin symmetries . .
y e spin sy D3(H)=(iv1— ea— paH)[ (17— €p: )2~ (gH)?]

Gapaa= OapEaa™ O'E,BFaav (A26) —A%(iv—e€yy). (A41)

Ghp.ab= T nsEabt 8asF ap, (A27) It follows that
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T . L x Sy
Mx=y o F(K,iv)aatF(Kiv)p,+F(Kiv)p,
1 1 N 1 1
ziv|—ea+,u,BH Eiw—ea—,uBH
1 1
— - +
v — €y +ugH 1y~ ey —upgH
T 1 1
N IRE -
2Nt |ivy—egtpugH  ivy—ey— pgH
3 3 (A42)
v —€pr tugH TV —€p—pugH|’
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1

\%
X|= 5 e Pen S SDW, (A49)

,V (5 1(z)\?

X|I— BB Penl g T 30 A D SDW, (A50)
,V 13 1(z0\?

XI‘HMBNpeh TR UN TSDW. (A51)

For commensurate Cr alloys, the absence of the factor of 1/2

in Eq. (A47) implies thaty,—0 asT—0.

APPENDIX B: LINEAR-RESPONSE THEORY

We now confirm the results of the previous appendix for

The first summation may be evaluated to linear order in they, andy; of the D SDW state using linear-response theory.

magnetic field using

D3(H=0)=(iv— €,,)D2(H=0)

=—(iy—2p/2+2)(z2—21))(2— 2y), (A43)
4

zy="7 +(n—2ofa+ ugH)?=8%  (A44)

Zy=— — (i v,— zpl4+ ugH)?— A2 (A45)

The square root is defined so that sgnZ{jh=sgn(y,). Af-

ter performing thez integral, we find fo a D SDW
\Y i A?
-2 -
x—MBNpeh{ 1+ 3 TEI sgn(v;) TR
+\/7+—(\/—v| 2—im) ] (A46)
- AZ

wherei vy =iv, — zy/4.
The analogous result fa S SDW is

sgn(v;)

( 2 A2)3/2 ’

Vv i
— 2 A2
X| MBNpeh|1+ ZATEI 7

(A4T)

By comparison, the parallel susceptibility for a commensu-

rate, bcc Cr allo§ is given by the same result without the
factor of 1/2 in front of the Matsubara sum. @ T SDW,
we obtain

,V A?
XH:MBNpeh 1+—TEI sgn(vy) 2 a2
+\/7 (\/—yI A%—ip) ] (A48)
- AZ

In the limit of zero temperature, the parallel susceptibili-
ties can be explicitly evaluated:

1. Perpendicular susceptibility
Starting with the definitiom\ M ,= (1/N)=(S;,), we find

JAM,

4,U~B
=285

N

f er (T,S(7)S,(0)).
(B1)

Employing Eq.(20) for the spin operator, applying Wick’s
theorem, and substituting the spin-dependent Green'’s func-
tions, we obtain

H=0

ZMB

XL =— TZ {E(K,iv) 2 +EK,iv)2+EK,iv)2

+E(K,iv)E5— 2E(K,in) 55— 2E(K,iv)%

_2E(k,| V|)bb’E(k IV|)bb’}

2u3 1 3

-S2TY [ - 2}

kI ((iv—€a)”  (iv—€py)

—ZMETZ (iv)— €p4)? 1( 1 iV|_€a)2
N 1,k D22 2 iV|—6b+ D2
2A2+A4 1 1 1
D22 2 D2 (im-eps)? (in—e)?

2 ] (B2)
(iV|_6b+)2 1

where the order of th& and v, summations has been re-
versed in the last set of terms. After performing the complex
integral overz, we find that the last set of terms vanishes and
XL = méperVIN, as expected.

2. Parallel susceptibility
For the parallel susceptibility, we use

JAM

4,U~B
XI= 2K 5

drE (T,Sx(7)Six(0)).
(B3)

Applying the same manipulations as above, we find that
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2pg : : :
X|= - WT% {E(K,iv) 2+ E(kiv)ia+Ekin3

+E(K,iv)E+2E(K,iv)2—2E(k,iv)¥2
+2E(K,iv) e E(K,iv)iE}

2u’ 1 3
=~ T | — 4= -
kI (=€) (v~ €py)
e <iv.—eb+>2+g( 1 iv.—ea)z
N I,k D22 2 iV|_Eb+ D2
A% 1 1 1 2 ]
2 D2 (iv—es)? (iv—€)? (im—eps)?)
(B4)

After performing the complex integral overwe obtain pre-
cisely the same result as in E@46). Considering the gen-
eral susceptibility)AM; /9H;, off-diagonal terms with #
vanish because Tof o*0! %) =25,(25—1).

3. Energy gap

Linear-response theory can also be used to verify that th

energy gap is unaffected by the magnetic field. Starting wit
the definition of the gap tensor

U
_ +
Adp=— v; <bk+Q7,Baka>1 (B5)
we find that
OA” U B
ap _ MB +

IHy H=0_ v k,zk’ 0 AT L3 o(7)

+by 510 [ (1)

+bi (D]l g 4(0)a,(0)).  (B6)
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So for a D SDW,

A% U
_—aB _ o kB _ .
T |y o P v T (BT vay
+E(K,iv) abE(K,i ) 2a
—E(K,iv) g E(K,iv))ap}, (B7)
dAY Cio? ,LLE,U_I_z i)
l9Hx H—0 Uaﬁ \V; T 1V )bb A7) ab

+TEK,iv)apE(K, 7)) aq

+E(k,iV|)E{J,E(k,iV|)ab}, (88)

whereas JA?, 5/ dH,|4—o=0. Since both summations are
ell-defined in the limite;— o0, both derivatives are of order
weUpen/ TN~ Aug(NU/V)/eTy. Formally, the eg—
limit corresponds to th&) —0 limit with a fixed Ty, in Eq.
(29). So the field dependence of the energy-gap tensor can be
ignored.
Surprisingly, a direct application of Eq17) for the gap
tensor, together with Eq§A27), (A28), (A35), and (A36)
for G(k,iv)) 2 a0, Would lead to an entirely different con-
clusion: that an external field changes the gap by a term of
orderA ugH/TY, rather than of ordeA ugH(NU/V)/ Ty €k .
This erroneous result comes applying the RPA too soon.
Within linear-response theory, it would arise from using the
RPA rather than the exact Hamiltonian in the expectation
value (A)=Tr[Aexp(—BH))/Trlexp(=pH)] of Eq. (B5)
prior to differentiating with respect tbl.

1see, for example, Kei Yosid&heory of MagnetisniSpringer-
Verlag, Berlin, 1996

2K. Maki and M. Sakurai, Prog. Theor. Phy&7, 1110(1972.

3s. Arajs, C.A. Moyer, J.R. Kelly, and K.V. Rao, Phys. RevlB
2747 (1975.

4J.R. Kelly, C.A. Moyer, and S. Arajs, Phys. Rev. 2, 1099
(1979.

5T. Jo and K. Hirai, J. Phys. Soc. J@#b, 2017(1986.

63.S. Kouvel and J.S. Kasper, J. Phys. Chem. Sdkds529
(1963.

7Y. Endoh and Y. Ishikawa, J. Phys. Soc. JBf, 1614(1971).

1°p A. Fedders and P.C. Martin, Phys. R&43 245 (1966.

These are sometimes refered to as the single, double, andQriple
states.

12p, Meneghetti and S.S. Sidhu, Phys. R&05 130(1957.

Bp_ Bjsanti, G. Mazzone, and F. Sacchetti, J. Phy4.7F1425
(1987).

145.J. Kennedy and T.J. Hicks, J. PhyslE 1599(1987).

155, Kawarazaki, K. Fujita, K. Yasuda, Y. Sasaki, T. Mizusaki, and
A. Hirai, Phys. Rev. Lett61, 471(1988.

16R.S. Fishman and S.H. Liu, Phys. Rev. 38, R5912 (1998;
following paper,59, 8681(1999.

8Y. Endoh, G. Shirane, Y. Ishikawa, and K. Tajima, Solid State'’P. Makhurane and P. Gaunt, J. Phys2,(59 (1969.

Commun.13, 1179(1973.
°N. Honda, Y. Tanji, and Y. Nakagawa, J. Phys. Soc. }i.
1931(1976.

18K, Tajima, Y. Ishikawa, Y. Endoh, and Y. Noda, J. Phys. Soc.
Jpn.41, 1195(1976.
195, Asano and J. Yamashita, J. Phys. Soc. 3@n1000(1972.



