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From spinons to magnons in explicit and spontaneously dimerized antiferromagnetic chains
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We reconsider the excitation spectra of a dimerized and frustrated antiferromagnetic Heisenberg chain. This
model is taken as the simpler example of competing spontaneous and explicit dimerization relevant for spin-
Peierls compounds. The bosonized theory is a two-frequency sine-Gordon field theory. We analyze the exci-
tation spectrum by semiclassical methods. The elementary triplet excitation corresponds to an extended mag-
non whose radius diverges for vanishing dimerization. The internal oscillations of the magnon give rise to a
series of excited states until another magnon is emitted and a two-magnon continuum is reached. We discuss,
for weak dimerization, the manner in which the magnon forms as a result of a spinon-spinon interaction
potential.@S0163-1829~99!05213-3#
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One-dimensional~1D! antiferromagnetic systems have a
tracted a great deal of interest over the last decades. The
typical examples where the low dimensionality enhan
quantum fluctuations, producing effects completely differ
than the ones expected by classical theories of magnet
Interest in one-dimensional magnetic system has rece
been strongly renewed in view of the discovery of a n
class, in general inorganic compounds, with definite o
dimensional character. Detailed spectral characterizations
now available and the theory is pushed to make precise
dictions on how different microscopic interactions influen
the spectral response of this system. We discuss in this w
the case of a gapped antiferromagnetic chain and ana
how an explicit dimerization and a frustrated interacti
compete between them and how the magnetic spectra ev
with the microscopic parameters. A similar subject has
cently been analyzed by different numerical techniques1,2

An analytical approach for the case of the weak dimerizat
limit has been also proposed.3 We will discuss the similari-
ties and differences with our results. We take the rece
discovered inorganic material CuGeO3 ~Ref. 4! as a refer-
ence even though our result could be more general. Our s
ing model Hamiltonian reads

H

J
5(

i
$@11d~21! i #Si•Si 111aSi•Si 12%, ~1!

whereJ is the nearest-neighbor~NN! exchange coupling,a
is the frustration parameter, andd measures the amount o
explicit dimerization. There are two different motivations
associate this model Hamiltonian with the magnetic spe
of a spin-Peierls compound. First, the temperature dep
dence of the magnetic susceptibility of CuGeO3 could only
be accounted for if an important next-nearest neigh
~NNN! is included in the 1D Heisenberg model used to d
scribe this material.5,6 It is therefore natural to include a
explicit dimerization on the exchange interaction to descr
the magnetic excitations in the low-temperature Peierls ph
PRB 590163-1829/99/59~13!/8660~4!/$15.00
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and this has been in fact the approach used in various t
retical studies.7,8 Second, if the adiabatic hypothesis is le
out, the system turns into a coupled spin-phonon one. E
though the magnetic interactions have mainly on
dimensional character, they interact with the thre
dimensional phonons. The excitations of the low-temperat
phase are strongly affected by the interchain elastic coupl
In fact, topological solitons~kink! which are genuine excita
tions of the isolated chain can no longer exist as free exc
tions because they create a zone with an opposite dime
tion phase relative to the surrounding chains. A kink and
antikink are strongly interacting excitations. Their intera
tions were accounted for in previous work by a linear co
fined potential3,9 or as producing a kind of domain configu
ration where the kink and antikink oscillate around
equilibrium distance.10 As has been recently remarked th
model Hamiltonian~1! is the simplest example where the
processes could be studied. In this context the first term
Eq. ~1! accounts for the explicit dimerization imposed b
neighboring chains and the second term for the tendenc
spontaneous dimerization as we will discuss in the followin

For a50 and strong dimerization (d) the ground state is
a product of the singlet over the strong bonds. The first
citations correspond to replacing a singlet for a triplet a
then delocalize it to build states of definite momentum. Th
form a band of spin-1 magnon excitations. In the oppos
limit ( d50) translational symmetry is not explicitly broken
However, fora greater than a critical value (ac;0.23) the
system spontaneously dimerizes and a gap in the spect
opened. At a51/2 ~Majumdar-Ghosh point! the exact
ground state is the double-degenerate product of sing
over the NN bonds. The excitations have been variation
evaluated by Shastry and Sutherland11 ~SS!. They are mas-
sive S51/2 spinons which correspond to an uncoupled s
separating two regions of singlet dimers. The two previou
discussed cases represent the extreme situation of a co
tion length equal to the lattice constant. As we discuss be
8660 ©1999 The American Physical Society
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PRB 59 8661FROM SPINONS TO MAGNONS IN EXPLICIT AND . . .
the structure of the lower-energy triplet excitations rema
similar for other values of the correlation length in the lim
previoulsy discussed.

The main question we address in this work is how
spectra evolve from one limit to another, i.e., how the m
sive spinons bind in a magnon. To address this question
analyze this system in the limit of smalld and a slightly
larger than the critical value. In this region the low-ener
spectrum could be studied by bosonization. The boson
Hamiltonian is14

Hbos5E dxH ub2

2
P21

u

2b2
~]xf!21g1 sinf

1g2 cos~2f!J , ~2!

whereg1;d andg2;a2ac . The proportionality constant
are of the order of unity depending on the short-range cu
in the bosonization procedure.b5A2p for the isotropic
model, andu is the spin-wave velocity. The spectrum of th
double-frequency sine-Gordon~DFSG! field theory is not
known in general. We start by analyzing both limits ofg1
50 and g250 where the theory reduces to a single sin
Gordon model and a lot of information is available. In pa
ticular the semiclassical method of Dashen, Hasslasher,
Neveu12 ~DHN! gives the exact mass spectrum of the p
ticles for this model.

For g250 ~we are indeed analyzing the whole zoneg2
,0 because this marginal interaction renormalizes to zer
this case! the excitation spectra consist of a kink, an antikin
and two breathers. In the original spin language, the k
excitation carriesSz51, the antikink Sz521, and the
breathersSz50. The lower-energy breather is degener
with the kink and antikink and these three excitations g
rise to a triplet branch, the correlate of the previously d
cussed magnon band. Forg150 the only one-particle exci
tations of the resulting SG theory are a kink and an antiki
no breather is found. This kink carries spin one-half and
the analog of the massive spinons of the SS variational w
function. However, note that in this parameter regime wh
the continuum approximation is reliable the characteris
width of these excitations is large compared with the latt
space.

We are now in position to discuss the excitations in
intermediate zone. We start by implementing a semiclass
calculation of the spectra of the theory~2!. Even though the
method is not expected to give exact results for this non
tegrable model, it gives valuable nonperturbative informat
which will allow us to interpolate between the desired limi
The time-independent equation of motion corresponding
Eq. ~2! is

u

2b2
~]x

2f0!1g1 cosf022g2 sin 2f050. ~3!

The lowest-energy~homogeneous! configuration is f05
2p/2 (mod 2p) ~it is not degenerate withf05p/2 as it
would if g150). Solitons arex-dependent solutions of th
equation of motion with finite energy with respect to th
homogeneous solution. Owing to the fact that the system
s
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Lorentz invariant, moving solitons are obtained from sta
ones by a Lorentz transformation. To look for these sta
configurations we write a first integral of Eq.~3!:

~11B!j2

2
~]xf0!22B sinf02

1

4
cos 2f05cte, ~4!

where we have introduced the quantityB5g1 /(4g2) as a
characteristic parameter to analyze the evolution of the sp
trum from one limit to another. j5u/D and D
5bAu(g114g2) is the mass gap to create a particle~let it
call a meson! above the homogeneous vacuum.j is the cor-
relation length of the theory and measure the width of
kinks. The boundary conditions for finite energy a
limx→6`f052p/2 (mod 2p) and limx→6`]xf050.
They fix thecte5B1 1

4 . Equation~4! can now be integrated
The solution center at the origin is

t~x![sin~f0!5122 cosh2@x0 /j#sech@~x2x0!/j#

3sech@~x1x0!/j#, ~5!

with

x05
1

2
lnF21B1A11B

B G . ~6!

The quantityx0 defines a length scale which can be identifi
as the ‘‘radius’’ of this excitation. In the limit ofB!1 we
have x0@1 and t(x) can be approximated by tanh(x
2x0)tanh(x1x0), i.e., a kink-antikink pair of the system with
out explicit dimerization. In the opposite limitx050 and Eq.
~5! becomes a kink solution of the static sine-Gordon eq
tion corresponding to the dimerized chain, so thatt(x) inter-
poles between these limiting cases.

f0(x)5arcsin@ t(x)# winds a complete round clockwis
or counterclockwise. Therefore this excitation carriesSz5
61. TheSz50 component of this triplet excitation could b
taken into account in our semiclassical approach by incl
ing the periodic time-dependent solution of the field equat
which cannot be obtained by a boosting of the static solut
t(x). After quantization, this solution will give additiona
singlet states which are not taken into account in the qu
tum states generated by the quantization oft(x). For the
single sine-Gordon equation these are the breatherlike s
tions. Furthermore, DHN have shown that the first breathe
nothing but a renormalized meson. In this context t
n-excited breather state is considered as a bound staten
mesons. For our DFSG equation there are no analytic exp
sions for these breather solutions. We will consider in
following that a renormalized meson corresponds to theSz
50 component of our triplet excitation. That is to say, f
the SU~2!-invariant model we should expect that after
appropriated resummation of the perturbative series the
son massD will be equal to the soliton mass to be introduc
below.

To discuss the physical content of solution~5! we show in
Fig. ~1! the unstaggered part of the local magnetizat
^Si

z&@(1/2p)]xf in the bosonic representation# for different
values of the ratio of the parametersB corresponding tog1
smaller than, equal to, or greater thang2 . The correlation
length (j) has been fixed to be 10 times the lattice const
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8662 PRB 59ARIEL DOBRY AND DAVID IBACETA
in this figure. The figure has been obtained by freezingt(x).
This corresponds to the physical situation where two n
magnetic impurities cut the chain and fix the dimerizati
phase at the border. This situation has been recently stu
by different numerical techniques.1 Note the similarities of
the behavior shown in Fig. 1 and the one of Fig. 3~a! of Ref.
1. For the clean translational-invariant system the local m
netization isx independent as the result of the combinati
of this pattern center at the different sites of the chain.

Only for very low B are there two well-separated pea
corresponding to two spin-1/2 excitations at a distance of
orderx0 /j. For increasingB these two peaks are washed
and a single spin-1 excitation emerges at the chain cen
All the intermediate spins in this configuration are excit
from their value in the ground state. The excitation we
dealing with is therefore an extended spin-1 magnon wh
dissociates into two independent spinons for very we
dimerization and collapses in the magnon of the dimeri
chain in the opposite strong dimerization limit. Note that
this leading order of our semiclassical expansion this i
rigid configuration which translates as a whole.

We now include Gaussian fluctuations around this cla
cal solution. The eigenvalue problem of the fluctuation o
erator corresponds to a Schro¨dinger-like equation which
reads as

@2]x
21V~x!#c5Ec,

V~x!52
1

11B
$Bt1@122t~x!2#%, ~7!

where we have made the substitutionx→x/j. The eigenfre-
quencies are given byv5DAE. Equation~7! has a zero-
energy solution~with eigenfunctionc5]xf0); this is con-
nected with the translational mode arising in the broken
translational invariance oft(x). We recall that this is the
only bound state of the fluctuation operator for the case
single sine-Gordon solitons. For the present case we fin
addition another bound state which split from this zero mo
for finite B. For increasingB the energy of this mode in
creases going to the continuum spectra ofV(x) for B→`. In
Fig. 2 we show the evolution of this eigenvalue withB. This
figure has been obtained by numerical integration of Eq.~7!.

FIG. 1. Uniform part of the local magnetization carried by t
configuration defined byt(x) for three values of the parameterB.
-

ied

g-

e

er.

e
h
k
d
t
a

i-
-

f

f
in
e

The excitation spectra of the theory in the sector ofSz
561 is spanned by the following states.

~i! The state of the quantum particle~of massM ) built
aroundt(x). We identify this as belonging to a one-magno
branch with dispersionE(p)5uAp21M2.

~ii ! The excited states of the magnon of massM* 5M
1nv. There are as much as additional triplet branches
nv reaches the valueD where the continuum of the Schro¨-
dinger equation starts. This continuum corresponds to~iii !,
next.

~iii ! Labeling byq the continuum of level of Eq.~7!, they
are v(q)5uAq211/j2. This is just the kinetic energy of a
meson with momentumq. Therefore this state corresponds
the scattering of a meson in the presence of a soliton. Mo
over, when one of the continuum modes is excited once,
get a two-particle meson-soliton state. As we have associ
a meson with the elementarySz50 excitation of the theory
these excitations correspond to theSz51 component of the
two-magnon continuum of our original spin chain.

The semiclassical calculation predicts the appearanc
additional equispaced magnon branches. The numbe
these additional branches diverges asB goes to zero; this is
nothing but the two-spinon continuum of the undimeriz
chain. For decreasing dimerization or increasing frustrat
the number of excited magnon states decreases until a cr
value of B. Beyond this critical value only two magno
branches are found. In Fig. 2~b! we show the behavior pre
viously discussed. The insert gives our prediction for t
low-energy spectra forB greater than the critical value. Pre
vious exact diagonalization studies of the spectra of Ham
tonian~1! have shown the appearance of an additional trip
branch7,2 confirming this picture. The increase of the numb
of the triplet branches withd has also recently seen in nu
merical studies of this system.1

Now, we address the question of the contact of this se
classical approach and previous work assuming a linear c
finement potential between the spinons.

For B!1 ~weak dimerization limit! it is customary to
think the problem as one of two interacting kinks as has b
recently proposed.3,1 If they are well separated, their interac
tion is given by an attractive linear potential, the one aris
in the term proportional tog1 in Eq. ~2!. At low energy the

FIG. 2. ~a! The evolution of the nonzero eigenfrequency of t
fluctuation operator as obtained by numerical integration of Eq.~7!.
~b! The number of magnon branches predicted by the semiclas
calculation. The inset shows a typical low-energy spectrum.
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PRB 59 8663FROM SPINONS TO MAGNONS IN EXPLICIT AND . . .
spectra of the system correspond to one of two particle
teracting via this linear potential. A ladder of bound states
obtained by solution of an effective Schro¨dinger equation. At
high enough energy these bound states are truncated be
it becomes favorable to create a new kink-antikink pair th
to excite one of them. This is essentially the scenario d
cussed in Ref. 3.

Let us define an effective kink-antikink potential by th
following procedure: take Eq.~5! as a suitable kink-antikink
form with x0 a variable distance; replace this form in Eq.~2!
so that thex0 dependence of the total energy gives our kin
antikink interaction energy. The result is shown in Fig. 3
two small values ofB where the kinks are expected to b
well-defined excitations.

Two competing interactions could be clearly identifie
An attractive linear interaction and a repulsive one acting
a small distance. The repulsive interaction originates on
finite width of the kinks. The value ofx0 given in Eq.~6!
represents the minimum of the total potential. For very sm
B the slope of the linear potential is small and this minimu
is not well defined. The kinks and antikinks will be alwa
far apart and they never ‘‘see’’ the barrier. Therefore t
linear approximation for the kink-antikink potential will giv

FIG. 3. Kink-antikink interaction potential as defined in the tex
ev
n
E

ic
es
-

-
s

use
n
-

-
r

.
t
e

ll

e

essentially the same result as a potential like the one sh
in the figure. The semiclassical approach gives only p
quantitative results in this zone because it describes the p
lem as the one of harmonic oscillators with a very sm
frequency. However, the general qualitative behavior of
spectra is well reproduced, i.e., the divergence of the num
of excited states in the limit of no dimerization.

For increasingB, a well-defined minimum appears in th
potential energy. Now, at low energy the kink-antikink pa
oscillates around this minimum as bounded by a spring. O
system behaves as a vibrating molecule made by a kink
an antikink. The semiclassical approximation previously d
cussed precisely describes the quantum state of this
monic oscillator.

By further increasingB the kinks lose their identity;t(x)
becomes almost a kink solution of the SG theory withg2

50. The semiclassical result represents an internal osc
tion mode in which the kink wave form undergoes a h
monically varying shape change localized about the k
center.

Note that even for very smallB the kinks are not well
separated in the order of their width; therefore, we sho
associate the excitation in a broad range of the paramete
a unique magnon dispersed over a great number of spin

Finally we analyze the experimental situation in CuGeO3.
Neutron scattering measurements of the magnetic spect13

show only one dispersive excitation before the continuu
The excited states previously discussed have not been fo
in these experiments. Two possible reasons could be gi
As has recently been shown by numerical diagonalizati1

the spectral weight of these states is very small. Moreove
the original spin-phonon model the inclusion of the inte
chain elastic coupling10 implies that spins interact with trans
versal acoustic phonons. Therefore this excited state co
decay in acoustic phonons, thus broadening the mag
peak. More experimental and theoretical work will be need
to elucidate this point.

We thank I. Affleck for useful discussions and J. Riera
a critical reading of the manuscript. A.D. acknowledges Fu
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