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From spinons to magnons in explicit and spontaneously dimerized antiferromagnetic chains
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We reconsider the excitation spectra of a dimerized and frustrated antiferromagnetic Heisenberg chain. This
model is taken as the simpler example of competing spontaneous and explicit dimerization relevant for spin-
Peierls compounds. The bosonized theory is a two-frequency sine-Gordon field theory. We analyze the exci-
tation spectrum by semiclassical methods. The elementary triplet excitation corresponds to an extended mag-
non whose radius diverges for vanishing dimerization. The internal oscillations of the magnon give rise to a
series of excited states until another magnon is emitted and a two-magnon continuum is reached. We discuss,
for weak dimerization, the manner in which the magnon forms as a result of a spinon-spinon interaction
potential.[S0163-182899)05213-3

One-dimensional1D) antiferromagnetic systems have at- and this has been in fact the approach used in various theo-
tracted a great deal of interest over the last decades. They aretical studies:® Second, if the adiabatic hypothesis is left
typical examples where the low dimensionality enhancesut, the system turns into a coupled spin-phonon one. Even
quantum fluctuations, producing effects completely differenthough the magnetic interactions have mainly one-
than the ones expected by classical theories of magnetisrgimensional character, they interact with the three-
Interest in one-dimensional magnetic system has recentljfimensional phonons. The excitations of the low-temperature
been strongly renewed in view of the discovery of a newphase are strongly affected by the interchain elastic coupling.
class, in general inorganic compounds, with definite oney, fact; topological solitongkink) which are genuine excita-
d|menS|qnaI character. Detallgd spectral characterlzat!ons ffRns of the isolated chain can no longer exist as free excita-
now available and the theory is pushed to make precise preg, g hecayse they create a zone with an opposite dimeriza-

?r:ztlgne?c?rglrlg\g gflfseéeor}ttm'scgossggr%'C\,'\?;e(;ia;ghznssir;”{:]lfser\:\foergion phase relative to the surrounding chains. A kink and an
P P y ' ntikink are strongly interacting excitations. Their interac-

the case of a gapped antiferromagnetic chain and analyz[Fons were accounted for in previous work by a linear con-
how an explicit dimerization and a frustrated interaction,. P y

. '9 . . . . _
compete between them and how the magnetic spectra evol\];'@ed potential® or as producing a kind of domain configu

with the microscopic parameters. A similar subject has refation where the kink and antikink oscillate around an

cently been analyzed by different numerical technigfes. equilibrium 'distgncéfj As has. been recently remarked the
An analytical approach for the case of the weak dimerizatiornodel Hamiltonian(1) is the smplgst example Wh'ere these
limit has been also proposé@die will discuss the similari- Processes could be studied. In this context the first term of
ties and differences with our results. We take the recentlyEd. (1) accounts for the explicit dimerization imposed by
discovered inorganic material CuGg(Ref. 4 as a refer- neighboring chains and the second term for the tendency to
ence even though our result could be more general. Our stargpontaneous dimerization as we will discuss in the following.
ing model Hamiltonian reads For =0 and strong dimerizationd) the ground state is
a product of the singlet over the strong bonds. The first ex-
H i citations correspond to replacing a singlet for a triplet and
3 Z [1+8(-1)']S-S+1t+aS-S.al, (D) then delocalize it to build states of definite momentum. They
form a band of spin-1 magnon excitations. In the opposite

whereJ is the nearest-neighb@gNN) exchange couplingg  limit ( §=0) translational symmetry is not explicitly broken.
is the frustration parameter, arftimeasures the amount of However, fora greater than a critical valuex(~0.23) the
explicit dimerization. There are two different motivations to system spontaneously dimerizes and a gap in the spectra is
associate this model Hamiltonian with the magnetic spectrapened. At a=1/2 (Majumdar-Ghosh point the exact
of a spin-Peierls compound. First, the temperature deperground state is the double-degenerate product of singlets
dence of the magnetic susceptibility of CuGe€buld only  over the NN bonds. The excitations have been variationally
be accounted for if an important next-nearest neighboevaluated by Shastry and Sutherl&h¢SS. They are mas-
(NNN) is included in the 1D Heisenberg model used to de-sive S=1/2 spinons which correspond to an uncoupled spin
scribe this material® It is therefore natural to include an separating two regions of singlet dimers. The two previously
explicit dimerization on the exchange interaction to describaliscussed cases represent the extreme situation of a correla-
the magnetic excitations in the low-temperature Peierls phas#on length equal to the lattice constant. As we discuss below
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the structure of the lower-energy triplet excitations remaind_orentz invariant, moving solitons are obtained from static
similar for other values of the correlation length in the limits ones by a Lorentz transformation. To look for these static

previoulsy discussed. configurations we write a first integral of E(B):
The main question we address in this work is how the
spectra evolve from one limit to another, i.e., how the mas- (1+B)& ) .
sive spinons bind in a magnon. To address this question we 2 (Ixpo)"— B Singo— ZCOS 2po=cte,  (4)

analyze this system in the limit of smadl and « slightly )
larger than the critical value. In this region the low-energyWhere we have introduced the quantBy=g,/(4g,) as a
spectrum could be studied by bosonization. The bosonizegharacteristic parameter to analyze the evolution of the spec-

Hamiltonian i¢4 trum from one Ilimit to another.é=u/A and A
=B u(g;+44g,) is the mass gap to create a partidiet it
up? , u ) . call a mesojpabove the homogeneous vacuugris the cor-

Hbos:j dx) - 1%+ Z—BZ(ﬁxfﬁ) +9;sing relation length of the theory and measure the width of the

kinks. The boundary conditions for finite energy are
lim,_ +npo=—m/2 (mod 27) and Ilim_ +..d,¢9=0.

+9, cos{2¢)] , (2)  They fix thecte=B+ ;. Equation(4) can now be integrated.
The solution center at the origin is

whereg,~ é andg,~ a— a.. The proportionality constants .
are of the order of unity depending on the short-range cutoff t(x)=sin( o) =1~ 2 cosf{xo/ ¢]secti(x—xo)/¢]
in the bosonization procedurgd= 27 for the isotropic X sechi (x+Xg)/ €], (5)
model, andu is the spin-wave velocity. The spectrum of this
double-frequency sine-GordofDFSG field theory is not ~ With
known in general. We start by analyzing both limits gf
=0 andg,=0 where the theory reduces to a single sine- . —Eln
Gordon model and a lot of information is available. In par- 072
ticular the semiclassical method of Dashen, Hasslasher, and ) ] ) ) -
Neved? (DHN) gives the exact mass spectrum of the par_The quantityx, defines a length scale which can be identified
ticles for this model. as the “radius” of this excitation. In the limit oB<1 we

For g,=0 (we are indeed analyzing the whole zoge have x,>1 and t(x) can be approximated by tanh(
<0 because this marginal interaction renormalizes to zero i *o)tanh&+xg), i.e., a kink-antikink pair of the system with-
this casgthe excitation spectra consist of a kink, an antikink, 0ut explicit dimerization. In the opposite limiy=0 and Eq.
and two breathers. In the original spin language, the kinK5) becomes a kink solution of the static sine-Gordon equa-
excitation carriesS,=1, the antikink S,=—1, and the tion corresponding to the dimerized chain, so ti{a) inter-
breathersS,=0. The lower-energy breather is degeneratePoles between these limiting cases.
with the kink and antikink and these three excitations give ¢o(X)=arcsiit(x)] winds a complete round clockwise
rise to a triplet branch, the correlate of the previously dis-Or counterclockwise. Therefore this excitation carrigs:
cussed magnon band. Fg[:O the On|y one_partide exci- +1. TheSZIO Component of this trlplet excitation could be
tations of the resulting SG theory are a kink and an antikinkiaken into account in our semiclassical approach by includ-
no breather is found. This kink carries spin one-half and ignd the periodic time-dependent solution of the field equation
the analog of the massive spinons of the SS variational wav&hich cannot be obtained by a boosting of the static solution
function. However, note that in this parameter regime wherd(X). After quantization, this solution will give additional
the continuum approximation is reliable the characteristicsinglet states which are not taken into account in the quan-

width of these excitations is large compared with the latticstum states generated by the quantizationt(f). For the
space. single sine-Gordon equation these are the breatherlike solu-

We are now in position to discuss the excitations in thetions. Furthermore, DHN have shown that the first breather is
intermediate zone. We start by implementing a semiclassicdlothing but a renormalized meson. In this context the
calculation of the spectra of the thed). Even though the nN-excited breather state is considered as a bound state of
method is not expected to give exact results for this noninmesons. For our DFSG equation there are no analytic expres-
tegrable model, it gives valuable nonperturbative informatiorsions for these breather solutions. We will consider in the
which will allow us to interpolate between the desired limits. following that a renormalized meson corresponds to $he

The time-independent equation of motion corresponding to=0 component of our triplet excitation. That is to say, for
Eq. (2) is the SU2)-invariant model we should expect that after an
appropriated resummation of the perturbative series the me-

2+B++1+B

5 . (6)

u o, ) son masq will be equal to the soliton mass to be introduced
2—’82(¢9x¢0)+91 COS¢pg— 29, SiN 2¢po=0. 3 pelow.
To discuss the physical content of soluti@) we show in
The lowest-energy(homogeneoys configuration is ¢o= Fig. (1) the unstaggered part of the local magnetization

— /2 (mod 2m) (it is not degenerate witlpy=/2 as it  (SH[(1/2m)d.¢ in the bosonic representatipfor different
would if g;=0). Solitons arex-dependent solutions of the values of the ratio of the parameteéBscorresponding ta
equation of motion with finite energy with respect to this smaller than, equal to, or greater thgp. The correlation
homogeneous solution. Owing to the fact that the system itength (¢) has been fixed to be 10 times the lattice constant
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FIG. 2. (a) The evolution of the nonzero eigenfrequency of the
FIG. 1. Uniform part of the local magnetization carried by the fluctuation operator as obtained by numerical integration of(Eq.
configuration defined by(x) for three values of the parameter (b) The number of magnon branches predicted by the semiclassical
calculation. The inset shows a typical low-energy spectrum.
in this figure. The figure has been obtained by freez{xgy. o ]
This corresponds to the physical situation where two non- The excitation spectra of the theory in the sectorSaf
magnetic impurities cut the chain and fix the dimerization= =1 is spanned by the following states.
phase at the border. This situation has been recently studied (i) The state of the quantum particlef massM) built
by different numerical techniquésNote the similarities of ~aroundt(x). We identify this as belonging to a one-magnon
the behavior shown in Fig. 1 and the one of Figa)®f Ref.  branch with dispersiof(p)=up“+M*-.
1. For the clean translational-invariant system the local mag- (i) The excited states of the magnon of mass =M
netization isx independent as the result of the combination+nw. There are as much as additional triplet branches as
of this pattern center at the different sites of the chain. nw reaches the valuA where the continuum of the Schro
Only for very low B are there two well-separated peaks dinger equation starts. This continuum corresponds§iitp
corresponding to two spin-1/2 excitations at a distance of th@ext.
orderx,y/&. For increasing these two peaks are washed up (i) Labeling byq the continuum of level of Eq.7), they
and a single spin-1 excitation emerges at the chain centeare w(q)=u+g?+ 1/£2. This is just the kinetic energy of a
All the intermediate spins in this configuration are excitedmeson with momenturg. Therefore this state corresponds to
from their value in the ground state. The excitation we arethe scattering of a meson in the presence of a soliton. More-
dealing with is therefore an extended spin-1 magnon whictover, when one of the continuum modes is excited once, we
dissociates into two independent spinons for very wealget a two-particle meson-soliton state. As we have associated
dimerization and collapses in the magnon of the dimerize& meson with the elementa;=0 excitation of the theory
chain in the opposite strong dimerization limit. Note that atthese excitations correspond to t8g=1 component of the
this leading order of our semiclassical expansion this is dwo-magnon continuum of our original spin chain.
rigid configuration which translates as a whole. The semiclassical calculation predicts the appearance of
We now include Gaussian fluctuations around this classiadditional equispaced magnon branches. The number of
cal solution. The eigenvalue problem of the fluctuation op-these additional branches divergesBagoes to zero; this is
erator corresponds to a Schinger-like equation which nothing but the two-spinon continuum of the undimerized
reads as chain. For decreasing dimerization or increasing frustration
the number of excited magnon states decreases until a critical
[— a2+ V(X)|y=Ey, value of B. Beyond this critical value only two magnon
branches are found. In Fig(t® we show the behavior pre-
) viously discussed. The insert gives our prediction for the
V(x)=— m{BH[l_Zt(X) 14 () low-energy spectra foB greater than the critical value. Pre-
vious exact diagonalization studies of the spectra of Hamil-
where we have made the substitution-x/&. The eigenfre-  tonian(1) have shown the appearance of an additional triplet
quencies are given byw=AE. Equation(7) has a zero- brancH? confirming this picture. The increase of the number
energy solution(with eigenfunctiony=d,¢,); this is con-  of the triplet branches witt$ has also recently seen in nu-
nected with the translational mode arising in the broken oimerical studies of this systefn.
translational invariance of(x). We recall that this is the Now, we address the question of the contact of this semi-
only bound state of the fluctuation operator for the case otlassical approach and previous work assuming a linear con-
single sine-Gordon solitons. For the present case we find ifinement potential between the spinons.
addition another bound state which split from this zero mode For B<1 (weak dimerization limit it is customary to
for finite B. For increasingB the energy of this mode in- think the problem as one of two interacting kinks as has been
creases going to the continuum spectr&/(f) for B—o. In recently proposedt! If they are well separated, their interac-
Fig. 2 we show the evolution of this eigenvalue wghThis  tion is given by an attractive linear potential, the one arising
figure has been obtained by numerical integration of(g. in the term proportional t@, in Eq. (2). At low energy the
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120 ; ‘ ‘ % ; ‘ essentially the same result as a potential like the one shown
.| /,/ ey in thg figure. The _sem?classical approaph givgs only poor
J/ guantitative results in this zone because it describes the prob-

// ] lem as the one of harmonic oscillators with a very small

V4 frequency. However, the general qualitative behavior of the

spectra is well reproduced, i.e., the divergence of the number
of excited states in the limit of no dimerization.

For increasingB, a well-defined minimum appears in the
potential energy. Now, at low energy the kink-antikink pair
oscillates around this minimum as bounded by a spring. Our
system behaves as a vibrating molecule made by a kink and
an antikink. The semiclassical approximation previously dis-
cussed precisely describes the quantum state of this har-
120 o0 200 240 monic oscillator.

X/g By further increasind the kinks lose their identityt(x)
becomes almost a kink solution of the SG theory wgth
=0. The semiclassical result represents an internal oscilla-
. . tion mode in which the kink wave form undergoes a har-
spectra of the system correspond to one of two particle in- . . . .
. I . . monically varying shape change localized about the kink
teraqtmg via this _Imear potent|al_. A Iagd.er of bound_ states IS enter.
it becomes favorable to create a new kink-antikink pair thans'%%""r".’ltEd in the .ord_er Qf their width; therefore, we should
associate the excitation in a broad range of the parameters as

to excite one of them. This is essentially the scenario dis- "~ " ' ;
- a uniqgue magnon dispersed over a great number of spins.
cussed in Ref. 3.

Let us define an effective kink-antikink potential by the Finally we an.alyze the experimental situation n CuGeO
i ] : . o Neutron scattering measurements of the magnetic spectra
following procedure: take Eq5) as a suitable kink-antikink ; . S X
. ) ) ) . ; show only one dispersive excitation before the continuum.
form with x, a variable distance; replace this form in Eg) . . :
<o that thex. dependence of the total ener ves our kink The excited states previously discussed have not been found
that thex, dep Nergy gives o in these experiments. Two possible reasons could be given.
antikink interaction energy. The result is shown in Fig. 3 for

; As has recently been shown by numerical diagonalization
two Sm".j” valueg OB where the kinks are expected to be the spectral weight of these states is very small. Moreover, in
well-defined excitations.

Two competing interactions could be clearly identified the original spin-phonon model the inclusion of the inter-
An attractiveplinegr interaction and a repulsive ())/ne actin éghain elastic coupling implies that spins interact with trans-
X L P - 9 & ersal acoustic phonons. Therefore this excited state could
a small distance. The repulsive interaction originates on th

- . . . ? lt?iecay in acoustic phonons, thus broadening the magnon
finite width of th‘? !(lnks. The value ok, given in Ea.(6) eak. More experimental and theoretical work will be needed
represents the minimum of the total potential. For very smal

B the slope of the linear potential is small and this minimum 0 elucidate this point,

is not well defined. The kinks and antikinks will be always = We thank I. Affleck for useful discussions and J. Riera for
far apart and they never “see” the barrier. Therefore thea critical reading of the manuscript. A.D. acknowledges Fun-
linear approximation for the kink-antikink potential will give dacian Antorchas for financial support.

V(x)/A

FIG. 3. Kink-antikink interaction potential as defined in the text.
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