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We study the transmission coefficient of a plane wave through a one-dimensional finite quasiperiodic
system—the Frenkel-Kontorova~FK! model—embedding in an infinite uniform harmonic chain. By varying
the mass of atoms in the infinite uniform chain, we obtain the transmission coefficients forall eigenfrequen-
cies. The phonon localization of the incommensurated FK chain is also studied in terms of the transmission
coefficients and the Thouless exponents. Moreover, the heat conduction of the Rubin-Greer-like model for the
FK chain at low temperature is calculated. It is found that the stationary heat fluxJ(N);Na, anda depends
on the strength of the external potential.@S0163-1829~99!12713-9#
d
at
h

,
te
m

co
st
m

o
e

th
s

m
l p
as
t

1
ly

n

F
ta
ho

i
es

ther
rly-
ffi-
ita-
ted
duc-
gh
ac-
ents
ties
s a
gap
-

qua-
It
uasi-

lized
en-

he

cy
an
the

ns-
to

re-
The
I. INTRODUCTION

In recent years, there has been growing interest in stu
ing incommensurate structures and commensur
incommensurate phase transitions in condensed-matter p
ics and dynamical systems.1–15 On the one hand
incommensurate structures appear in many physical sys
such as quasicrystals, two-dimensional electron syste
magnetic superlattices, charge-density waves, organic
ductors, and various atomic monolayers adsorbed on cry
line substrates. One of the simplest prototypes for inco
mensurate structures is the Frenkel-Kontorova~FK! model1

which describes a one-dimensional~1D! chain of atoms with
an elastic nearest-neighbor interaction, and subjected t
external periodic potential. If the mean distance betwe
consecutive atoms is not in rational ratio to the period of
external potential, the corresponding state is incommen
rate. It has been shown by Aubry3–5 in his pioneering work
that there exists two different configurations for an inco
mensurate state by changing the strength of the externa
tential. These two configurations are called the sliding ph
and pinned phase, and the transformation between these
phases has been called thetransition by breaking of analyt-
icity. On the other hand, the ground-state equation of the
FK model is nothing but the standard map which is wide
studied in the field of nonlinear dynamics.12–14 The two in-
commensurate configurations correspond to the invaria
circle and the Cantorus, respectively.

In the past two decades, most of the works about 1D
model have been focused on the study of the ground s
Little attention has been paid to the linear excitation or p
non modes. As is well known, the excitation of phonons
very important; it determines the fundamental properti
PRB 590163-1829/99/59~13!/8639~7!/$15.00
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such as the wave transmission, heat conduction, and o
low-temperature thermodynamics properties of the unde
ing material. In turn, the study of the transmission coe
cients and energy transport gives us insights of the exc
tion. In this paper we shall study systematically these rela
properties, namely, the wave transmission, the heat con
tion, and the phonon localization in 1D FK model. Throu
this study we shall have a clear picture about how the m
roscopic phenomena such as the transmission coeffici
and heat conduction are related to the localization proper
of the phonon excitation. Moreover, our study suggest
possible way for experimental observation of the phonon
which characterizes thephase transition by breaking analy
ticity.

Recently, Burkovet al.15 have studied the localization
properties of the phonon eigenstates. They solved the e
tion of phonon numerically for a FK chain of finite length.
is found that the phonon eigenstates are extended and q
periodic functions forV,Vc , whereas forV.Vc the eigen-
states at band edges of phonon spectrum are more loca
than that one in the middle of the spectrum, but no expon
tial localization states have been found.15 In their numerical
study, the localization property is inferred by computing t
participation ratio. Ketoja and Satija16 have studied the
eigenfunctions corresponding to the minimum frequen
vmin of the phonon spectra in Cantorus regime by using
exact decimation scheme. The phonon eigenstates of
minimum frequency are found to be critical forV.Vc .

The method used by Burkovet al. is limited to the small
system size. In our calculation we shall study the wave tra
mission by making use of the transfer-matrix method due
the following reason. As is known that there is a nice cor
spondence between the phonon and electron properties.
8639 ©1999 The American Physical Society
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transmission coefficient has been found to be a very us
quantity for the study of localization of electro
eigenstates.17 The transfer-matrix method is a powerf
method to study the systems with much larger size. In
paper, we shall study systematically the properties of
phonon eigenstates by computing the transmission co
cients of a plane wave through a 1D FK chain. By using
transmission coefficient, we are not restricted to only o
frequency, instead we can study the localization proper
for all frequencies. To quantify the localization, we shall a
calculate the Thouless exponents in addition to the conv
tional participation ratio and transmission coefficients.

Another interesting and fundamental property that is
lated to the phonon excitation is the thermal conductiv
Recently, there has been a renaissance interest in heat
duction in a variety of 1D systems,19–25since this problem is
essential for our understanding of the microscopic origin
the macroscopic irreversibility.26 At low temperature, the lin-
ear excitations of the underlying system are most impor
for heat conduction. Rubin and Greer27,28 have established
the relation between the stationary energy flux and the tra
mission coefficients of the phonons. They found that the
tionary energy flux approach to a finite positive value as
number of atoms goes to infinity for uniform periodic ha
monic chains, and the thermal conductivity is proportiona
N. However, for random mass binary harmonic chains,
stationary energy flux is found to be proportional toN21/2 as
the number of atomsN tends to infinity, and the therma
conductivity is thus proportional toN1/2. Therefore how the
stationary energy flux and the thermal conductivity depe
on the particle numberN for an incommensurate system is
great interest. This will be also investigated in the pres
paper.

The paper is organized as follows. In Sec. II, we sh
describe the model and numerical method for calculating
wave transmission coefficient. The phonon localization a
heat conduction problems shall be discussed in Sec. III
Sec. IV, respectively. A brief discussion and conclusion
given in Sec. V.

II. THE MODEL AND NUMERICAL METHOD

The 1D FK model can be described by

H5(
n

F pn
2

2m
1

1

2
~xn112xn2a!22V cos~xn!G , ~1!

wherepn andxn are the momentum and position of thenth
atom, respectively.V is the strength of the external potentia
a is the distance between consecutive atoms without exte
potential. Aubry and Le Dae¨ron5 showed that the minimum
energy configurations are periodic whena/2p is rational
~commensurate model! and quasiperiodic whena/2p is irra-
tional ~incommensurate model!. For an incommensurat
FK model, there are qualitatively different ground-sta
configurations separated bythe transition by breaking
analyticity predicted by Aubry. For each irrationala there
exists a critical valueVc of the external potential. The

Vc50.971 635 4•••
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~Refs. 13 and 14! corresponds to the most irrational numbe
golden mean valuea/2p5(A521)/2. Without loss of gen-
erality, we restrict ourselves to this particular value ofa in
the numerical calculations throughout the paper.

The phonon equation describing the physical stability
the atoms in the FK model at ground state is

cn111cn212@21V cos~xn
0!#cn52v2cn , ~2!

where xn
0 is the equilibrium position of thenth atom in

ground state,cn is displacement of thenth atom from its
equilibrium position, andv is the eigenfrequency.

This equation can be written in the form of transfer mat

S cn11

cn D 5TnS cn

cn21D ~3!

with

Tn5S 2v2121V cos~xn
0! 21

1 0 D . ~4!

Thus

S cN11

cN D 5PNS c1

c0D with PN5TNTN21•••T1 . ~5!

In order to study the transmission of a plane wave throu
the 1D FK system, we first consider a uniform harmon
atom chain with atom massm0 , and the external potentialV
is equal to zero. The eigenstates and eigenfrequencies o
chain are simply

cn5A1eiqna1A2e2 iqna and v25
4

m0
sin2S 1

2
qaD ,

~6!

respectively.
Then we replace the segment betweenn51 andn5N by

a finite incommensurate FK chain. The atom in the FK ch
has massm. Now we consider an incoming plane wave fro

n52` with frequency v5A4/m0sin(1
2qa). Thus in the

range ofn>N11 there is only outgoing wave. That is

cn5Aeiqna1ARe2 iqna for n<0,

cn5Beiqna for n>N11. ~7!

From Eqs.~5! and ~7!, after long calculation, we obtain th
transmission coefficient

t5UBAU
2

5
4 sin2~qa!

u2~PN!11e
2 iqa1~PN!212~PN!121~PN!22e

iqau2
,

~8!

where (PN) i j , i , j 51,2 are the elements of matrixPN in Eq.
~5!.

If we let the atom mass of the uniform harmonic chain
equal to the atom mass in the FK chain, i.e.,m05m, as done
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in the usual study of electron systems,17 then we could not
obtain the transmission coefficients of the phonons with
quency larger than 2/Am. However, forVÞ0, there do exist
phonons whose frequencies are larger than 2/Am. Therefore,
in order to study the transmission coefficients ofall eigen-
frequencies, we should let the massm0 of the uniform har-
monic chain differ from the mass of the FK chain. In Fig
1~a!–~c! we show the transmission coefficients of the fin
FK chains as the functions of frequency for differentV. The
parametera/(2p)5(A521)/2 is approximated by a con
verging series of truncated fraction:Fn /Fn11 (n51,2,. . .),
where$Fn% is the Fibonacci sequence. The results of Fi
1~a!–~c! are obtained forN5F1651597, m050.8, andm
51. In our calculations, we first obtained theN atomic po-
sitions of the equilibrium ground state of the FK chain w
free boundary condition, i.e.,x050 andxN52pNa, by the
gradient method.3–5 Evidently, for the plane wave with fre
quency in the gaps of the phonon spectra, the transmis
coefficients are zero. From Fig. 1 we see that for smalV
there exists a wider frequency range with nonzero transm
sion coefficients than that for largeV. This can be understoo
by the following facts. ForV50, there exists only one fre
quency band fromv50 to 2/Am. WhenVÞ0, the ground-
state positions of atoms deviate from that in the FK ch
without external potential. For smallV (,Vc), the ground-
state positions of atoms are periodic or quasiperiodic. Th
fore, one band splits into several subbands and the band

FIG. 1. The transmission coefficients as functions of freque
v for different values ofV. ~a! V50.4, ~b! V51, and~c! V51.6.
The parameters in the calculations areN51597, m050.8, and
a/2p5(A521)/2. The critical valueVc50.971 654 3. . . .
-

.
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show up. AsV increases, more and more subbands and g
show up. Also, we found that the range of the eigenf
quency becomes smaller asV is increased beyondVc . This
implies that the eigenfrequencies are attracted somehow
V.Vc @see Fig. 1~c!#, which is similar to the band gaps o
the Harper model at the critical point.18 Because the eigen
states of the Harper model at critical point are critical, th
result is one of the signature showing that the eigenstate
an incommensurate FK chain in Cantorus regime are criti

It is well known3 that the phase transition by breaking
analyticity is manifested by the phonon gap forV.Vc . In
fact, from Fig. 1, we have seen that asV increased to 1.6
there is a wide range of frequencies aroundv50, in which
the transmission coefficient is zero. This is the direct con
quence of the appearance of the phonon gap. In order to
this transition of an incommensurate FK model, we calcul
the transmission coefficient of a low-frequency wave at d
ferent values ofV, which are shown in Fig. 2. In this figure
we plot the transmission coefficients of the plane wave w
frequencyv51026 as a function ofV for the FK segments
having different lengths. It is obviously seen that there i
sharp decrease afterV.Vc and the decrease becom
sharper for largerN. The corresponding particle numbers a
1597, 2584, and 4181 for curves 1, 2, and 3, respectiv
This clearly demonstrates the existence of the phonon
for V.Vc . In turn, our results illustrated here suggest th
the transmission coefficient might be a very good quan
for probing the existence of phonon gap in the underly
system. Therefore measuring the transmission coeffic
would enable us to detect thephase transition by breaking
analyticity experimentally.

III. PHONON LOCALIZATION

The above-discussed wave transmission is a macrosc
phenomenon. To some extent, it reflects the microscopic
gin, namely, the phonon excitation in the underlying sy
tems. In this section, we would like to study the phon
localization from different approaches.

Participation ratio. Burkov et al.15 studied this quantity
for the finite FK chain by numerically solving Eq.~2! and
computing the participation ratio~PR!:

y

FIG. 2. The transmission coefficient of low-frequency (v
51026) wave through the FK chain as a function ofV. For all three
curvesm051 anda/2p5(A521)/2. The curves 1, 2, and 3 are fo
N51597, 2548, and 4181, respectively.
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PR5
1

N

S (
n

cn
2D 2

(
n

cn
4

. ~9!

HereN is number of atoms. If the eigenfunction is extende
PR tends to be a finite limit asN→`. If an eigenfunction is
exponentially localized,N3PR will be a finite number as th
length N goes to infinity. Burkovet al. found that for V
,Vc , all eigenfunctions are extended forN up to 987 and
for V.Vc the PR of states near the band edges decrease
increasingN, but the true exponential localization was n
observed. Their method has been limited by compu
memory~RAM!. Therefore, in addition to study the partic
pation ratio, we shall also study other quantities such as
transmission coefficients and the Thouless exponent. Ou
sults given in this section can be regarded as an exten
and supplement to the previous study by others.15,16

Transmission coefficient.The transmission coefficient i
also a very good quantity reflecting the localization prope
of eigenstates of electron, and has been used widely to s
the eigenstates of electron moving in random and quasip
odic fields.17 If the transmission coefficient associated w
the eigenstate tends to be a finite limit asN→`, the eigen-
state is extended. If the eigenstate is exponentially localiz
the transmission coefficient will decrease exponentially aN
increasing. This method has the advantage that it can c
pute transmission coefficients for much larger systems.

Thouless exponent.Another important quantity that de
scribes the localization of eigenstates is the Thouless e
nent. The Thouless exponent for an eigenfunction co
sponding to the eigenfrequencyv i of Eq. ~2! is

g~v i !5
1

N21(j Þ i

N

lnuv j
22v i

2u. ~10!

If g(v i) goes to zero asN→`, then the eigenfunction cor
responding tov i is localized exponentially.

In Figs. 3–5, we show the transmission coefficients,
Thouless exponents, and PR’s for the eigenstates of a fi
FK chain with N5987 for V50.4, 1.0, and 1.6, respec
tively. From the numerical results, we find that the transm
sion coefficients of the phonon eigenstates at the band e
~actually, these are quasiband edges because the ph
spectra are the Cantor-like sets, the quasibands consi
many subbands if we consider a larger FK chain! are smaller
than that in the center of the bands. Because the transmis
coefficient depends onm0 , its absolute value is not mean
ingful for the study of localization of phonon eigenstates.
order to see if these eigenstates at band edges are exp
tially localized. We calculate the transmission coefficie
for several FK chains having different lengths. Figure
shows numerical results for some eigenstates at band ed
We can see that these eigenstates are not exponentiall
calized. This is nicely demonstrated by the Thouless ex
nents shown in Figs. 3~b!, 4~b!, and 5~b!. There the Thouless
exponents are about 0.005;0.02, thus the decay lengthj
51/g;102, which is about the order of the size of the F
chains. We also calculated these quantities for larger syst
~up to 4181, in fact the transfer-matrix method allows us
,
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go to even larger size, e.g., more than 10 946!, but no sig-
nificant difference has been found.

Recently, by using the renormalization-group transform
tion, Ketoja and Satija16 have studied the eigenfunctions o
the minimum frequency forV.Vc . They found that phonon
eigenstates defy localization and remain critical. Furth
more, there exists an infinite sequence of parameter value
the regime ofV.Vc where the renormalization limit cycle
degenerates into a trivial fixed point.16

Here we would like to get a further picture about th
localization for other different scenarios. We shall study n
only the transmission coefficients of the degenerated po
but also those cases corresponding to the nondegene
and pseudodegenerated situation at the regime
V.Vc . The results are shown in Fig. 7. There th
transmission coefficients as functions ofN are
drawn for V51.756 562 083 826 74 . . . , 2.33, and
3.894 742 854 929 86 . . . , respectively. These three value
correspond to degenerated, nondegenerated, and pseu
generated cases, respectively. We find that there are
qualitative differences of transmission coefficients for the
generated parameter values and other values ofV.Vc . The
only minor difference is that the curves for degenerated
pseudodegenerated points are more regular than that for
degenerated. Another thing worthy to be mentioned is t
for N fixed, the transmission coefficients decrease asn22 for
n,N/2 and increase asn2 for n.N/2 @see the insets of Figs

FIG. 3. The transmission coefficients~a!, the Thouless expo-
nentsg ~b!, and the participation ratio~c! for eigenfunctions of the
FK chain atV50.4. The particle number of the FK chain isN
5987, the mass of the atom ism050.8, and the winding number is
a/2p5(A521)/2.
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PRB 59 8643WAVE TRANSMISSION, PHONON LOCALIZATION, AND . . .
7~a!–7~c!#. This can be understood by realizing that for
small part of the finite FK chain the positions of atoms lo
irrelative, but not real random, and the plane wave seem
propagate through a pseudorandom medium. But for a la
part of finite FK chain, there exists a certain correlation b
tween the positions of atoms, and the correlation increase
n→N. The plane wave transports through a correlated m
dia, and the transmission coefficients increase asN increased.

IV. HEAT CONDUCTION

The properties of the phonon excitations will be al
manifested in another macroscopic quantity—the heat c
duction. It is time now to discuss the transport of energy fl
or the heat conduction in the finite FK chains. This is a qu
interesting problem that attracted much attention in rec
years.19–25 In this section, we consider a different model
heat conduction, which was discussed by Rubin and Gre27

originally. In this model, the chain ofN particles ~which
constitute the system! is connected at both ends to sem
infinite chains of identical particles. The left and right en
are put in thermal equilibrium at temperaturesTL and TR ,
respectively. The original Rubin-Greer model was for pe
odic and random mass chains with harmonic near
neighbor interaction. They found that the stationary heat fl
as a function ofN can be expressed in terms of the transm
sion coefficient:

J~N!5
TL2TR

4p E
0

2

tN
2 ~v!dv. ~11!

FIG. 4. Same as Fig. 3, butV51.0.
to
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-
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e-

n-
x
e
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x
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It is shown thatJ(N);N for the uniform and periodic chain
andJ(N);N1/2 for random mass chains. For the FK chai
both TL and TR must be very low so that the formula~11!
can be applied. Figure 8 shows some typical results oj
5J(N)/(TL2TR) for different V. In the calculation of trans-
mission coefficients, we let the mass of atoms in the left- a
right-hand semi-infinite uniform harmonic chains be equa
the mass of atoms in the FK chain. We found that t

FIG. 5. Same as Fig. 3, butV51.6.

FIG. 6. The transmission coefficients of plane waves w
frequencies near the band edges of phonon spectra as functio
N. The solid circles, squares, and diamonds correspond
v50.369 915 599 017 013 597, 0.782 580 479 119 728 611,
0.950 165 600 964 576 584 forV51.0, respectively. The solid
stars, triangles, and crosses correspond tov
50.907 882 097 032 394 975, 1.040 462 163 089 725 28,
2.033 317 415 572 499 79 forV51.6, respectively. In all casesm0

50.8. The lines are drawn for guiding the eye.
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8644 PRB 59PEIQING TONG, BAOWEN LI, AND BAMBI HU
J(N);N for V,Vc and J(N);Na for V.Vc . For V
.Vc , thea depends on theV. But its range is approximately
from 0.83 to 0.87, which is larger than 0.5 for random s
tems. This also implies that the phonon eigenstates of the
chain are extended forV,Vc and critical forV.Vc .

It should be pointed out that to express the heat flux
terms of the transmission coefficients is valid only at ve
low temperature, namely the particles oscillate nearby th
equilibrium positions. In fact, this is a linearization result
the FK model. In real case, the FK model is nonlinear, th
for the general simulation of heat conduction, one sho
take the approach of molecular dynamics simulation.22,23

V. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the transmission coeffic
of a plane wave through the FK chain by making use of

FIG. 7. The transmission coefficient at the minimum frequen
vmin versusN for differentV. ~a! V51.756 562 083 826 74 . . . , ~b!
V52.33, and~c! V53.894 742 854 929 86 . . . . Insets are ln(t)
versus ln(N).
-
K

n

ir

s
d

nt
e

transfer-matrix method. We have been able to calculate
transmission coefficients ofall phonon frequencies. The lo
calization properties of the phonons based on the trans
sion coefficient and the Thouless exponents agree with
by the participation ratio. We also studied the Rubin-Gre
like model for the FK chain and find that the FK chain like
a periodic chain forV,Vc , whereas it looks like a chain
somewhat between random and periodic forV.Vc . Our nu-
merical results confirm that all eigenstates are critical in C
torus regime. This result can be understood as the follow
For V,Vc50.971 635 4. . . , theground-state configuration
of atoms is quasiperiodic. TheV cos(xn

0) in Eq. ~2! is also
quasiperiodic and continuous. It corresponds to the pho
problem of the Harper equation in the extended regimeV
,2). Therefore all phonon eigenstates are extended. FoV
.Vc , the ground-state configuration of atoms is a Cant
like set. TheV cos(xn

0) takes only some finite values. Cons
quently, the exponentially localized state does not exist,
all eigenstates are critical.29
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P.
1Ya. I. Frenkel and T. A. Kontorova, Zh. Eksp. Teor. Fiz.8, 89
~1938!.

2P. Bak, Rep. Prog. Phys.45, 587 ~1982!.
3S. Aubry, Physica D7, 240 ~1983!.
4M. Peyrard and S. Aubry, J. Phys. C16, 1598~1983!.
5S. Aubry and P. Y. Le Dae¨ron, Physica D8, 381 ~1983!.
6S. N. Coppersmith and D. S. Fisher, Phys. Rev. B28, 2566

~1983!.
7W. Chou and R. B. Griffiths, Phys. Rev. B34, 6219~1986!.
8S. Aubry, J.-P. Gosso, G. Abramovici, J.-L. Raimbault, and

Quemerais, Physica D47, 461 ~1991!.
9R. S. MacKay, Physica D50, 71 ~1991!.

10J. Shi and B. Hu, Phys. Rev. A45, 5455~1992!.
11B. Lin and B. Hu, J. Stat. Phys.69, 1047~1992!.
12B. V. Chirikov, Phys. Rep.52, 263 ~1979!.
13J. M. Greene, J. Math. Phys.20, 1183~1979!.



B

l,

-

ev

e

PRB 59 8645WAVE TRANSMISSION, PHONON LOCALIZATION, AND . . .
14S. J. Shenker and L. P. Kadanoff, J. Stat. Phys.27, 631 ~1982!.
15E. Burkov, B. E. C. Koltenbah, and L. W. Bruch, Phys. Rev.

53, 14 179~1996!.
16J. K. Ketoja and I. I. Satija, Physica D104, 239 ~1997!; cond-

mat/9802149~unpublished!.
17Y. Liu and K. A. Chao, Phys. Rev. B34, 5247~1986!.
18See, for example, T. Geisel, R. Ketzmerick, and G. Petsche

Quantum Chaos: Between Order and Disorder, edited by G.
Casati and B. Chirikov~Cambridge University Press, Cam
bridge, England, 1995!.

19G. Casati, J. Ford, F. Vivaldi, and W. M. Visscher, Phys. R
Lett. 52, 1861~1984!.
in

.

20T. Prosen and M. Robnik, J. Phys. A25, 3449~1992!.
21S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett.78, 1896~1997!.
22B. Hu, B. Li, and H. Zhao, Phys. Rev. E57, 2997~1998!.
23A. Fillipov, B. Hu, B. Li, and A. Zeltser, J. Phys. A31, 7719

~1998!.
24H. A. Posch and Wm. G. Hoover, Phys. Rev. E58, 4344~1998!.
25D. Alonso, R. Artuso, G. Casati, and I. Guaneri~unpublished!.
26The talks of J. L. Lebowitz, G. Gallavoti, and D. Ruelle at th

STATPHY20, Paris, 1998.
27R. J. Rubin and W. L. Greer, J. Math. Phys.12, 1686~1971!.
28A. J. O’Connor and J. L. Lebowitz, J. Math. Phys.15, 692~1974!.
29F. Delyon and D. Petritis, Commun. Math. Phys.103, 441~1986!.


