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We study the transmission coefficient of a plane wave through a one-dimensional finite quasiperiodic
system—the Frenkel-Kontorow&K) model—embedding in an infinite uniform harmonic chain. By varying
the mass of atoms in the infinite uniform chain, we obtain the transmission coefficieratt &genfrequen-
cies. The phonon localization of the incommensurated FK chain is also studied in terms of the transmission
coefficients and the Thouless exponents. Moreover, the heat conduction of the Rubin-Greer-like model for the
FK chain at low temperature is calculated. It is found that the stationary heal(fijx-N“, anda depends
on the strength of the external potentig0163-182@9)12713-9

[. INTRODUCTION such as the wave transmission, heat conduction, and other
low-temperature thermodynamics properties of the underly-

In recent years, there has been growing interest in studying material. In turn, the study of the transmission coeffi-
ing incommensurate structures and commensuratesients and energy transport gives us insights of the excita-
incommensurate phase transitions in condensed-matter phyten. In this paper we shall study systematically these related
ics and dynamical systems!® On the one hand, properties, namely, the wave transmission, the heat conduc-
incommensurate structures appear in many physical systention, and the phonon localization in 1D FK model. Through
such as quasicrystals, two-dimensional electron system#his study we shall have a clear picture about how the mac-
magnetic superlattices, charge-density waves, organic comescopic phenomena such as the transmission coefficients
ductors, and various atomic monolayers adsorbed on crysta#nd heat conduction are related to the localization properties
line substrates. One of the simplest prototypes for incomef the phonon excitation. Moreover, our study suggests a
mensurate structures is the Frenkel-KontoréWi) modef  possible way for experimental observation of the phonon gap
which describes a one-dimensioriaD) chain of atoms with  which characterizes thghase transition by breaking analy-
an elastic nearest-neighbor interaction, and subjected to ditity.
external periodic potential. If the mean distance between Recently, Burkovet al!® have studied the localization
consecutive atoms is not in rational ratio to the period of theproperties of the phonon eigenstates. They solved the equa-
external potential, the corresponding state is incommensuion of phonon numerically for a FK chain of finite length. It
rate. It has been shown by AuBfy in his pioneering work is found that the phonon eigenstates are extended and quasi-
that there exists two different configurations for an incom-periodic functions foV<V,., whereas foV>V the eigen-
mensurate state by changing the strength of the external pstates at band edges of phonon spectrum are more localized
tential. These two configurations are called the sliding phaséhan that one in the middle of the spectrum, but no exponen-
and pinned phase, and the transformation between these tvial localization states have been foulidn their numerical
phases has been called tihansition by breaking of analyt- study, the localization property is inferred by computing the
icity. On the other hand, the ground-state equation of the 1[participation ratio. Ketoja and Satlfa have studied the
FK model is nothing but the standard map which is widelyeigenfunctions corresponding to the minimum frequency
studied in the field of nonlinear dynamits.* The two in-  wp,, Of the phonon spectra in Cantorus regime by using an
commensurate configurations correspond to the invariancexact decimation scheme. The phonon eigenstates of the
circle and the Cantorus, respectively. minimum frequency are found to be critical fot>V..

In the past two decades, most of the works about 1D FK The method used by Burkost al. is limited to the small
model have been focused on the study of the ground stateystem size. In our calculation we shall study the wave trans-
Little attention has been paid to the linear excitation or phoimission by making use of the transfer-matrix method due to
non modes. As is well known, the excitation of phonons isthe following reason. As is known that there is a nice corre-
very important; it determines the fundamental propertiesspondence between the phonon and electron properties. The
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transmission coefficient has been found to be a very usefyRefs. 13 and 14corresponds to the most irrational number,
quantity for the study of localization of electron golden mean valua/27=(\/5—1)/2. Without loss of gen-
eigenstate$’ The transfer-matrix method is a powerful erality, we restrict ourselves to this particular valueaoih
method to study the systems with much larger size. In thishe numerical calculations throughout the paper.
paper, we shall study systematically the properties of the The phonon equation describing the physical stability of
phonon eigenstates by computing the transmission coeffthe atoms in the FK model at ground state is
cients of a plane wave through a 1D FK chain. By using the
transmissio_n coefficient, we are not restripted_ to only one Yne1t Un_1—[2+V cogx0) 1¢n=— 0’ , 2)
frequency, instead we can study the localization properties o . o N _
for all frequencies. To quantify the localization, we shall alsowhere x;, is the equilibrium position of thenth atom in
calculate the Thouless exponents in addition to the converground statey, is displacement of thaeth atom from its
tional participation ratio and transmission coefficients. equilibrium position, ando is the eigenfrequency.

Another interesting and fundamental property that is re- This equation can be written in the form of transfer matrix
lated to the phonon excitation is the thermal conductivity.
Recently, there has been a renaissance interest in heat con- Uni1 Un
duction in a variety of 1D systentS;?®since this problem is ( v ) :Tn< v )
essential for our understanding of the microscopic origin of A n-1
the macroscopic irreversibili§ At low temperature, the lin- .
ear excitations of the underlying system are most importan\f\”th
for heat conduction. Rubin and Grééf® have established ) 0
the relation between the stationary energy flux and the trans- . ( —w™+2+Veodx,) - 1)

n

3

mission coefficients of the phonons. They found that the sta- 1 0 4
tionary energy flux approach to a finite positive value as the
number of atoms goes to infinity for uniform periodic har- Thys
monic chains, and the thermal conductivity is proportional to

N. However, for random mass binary harmonic chains, the
stationary energy flux is found to be proportionaNo? as

the number of atom# tends to infinity, and the thermal

conductivity is thus proportional tbl*2. Therefore how the
stationary energy flux and the thermal conductivity depends |n order to study the transmission of a plane wave through
on the particle numbeX for an incommensurate system is of the 1D FK system, we first consider a uniform harmonic
great interest. This will be also investigated in the presenitom chain with atom mass,, and the external potenti

paper. is equal to zero. The eigenstates and eigenfrequencies of this
The paper is organized as follows. In Sec. Il, we shallchain are simply

describe the model and numerical method for calculating the

wave transmission coefficient. The phonon localization and _ _ 4
heat conduction problems shall be discussed in Sec. lll and ¢,=A,€e9"+A_e 9" and w?=—sir?
Sec. IV, respectively. A brief discussion and conclusion is Mo
given in Sec. V.

N+ 2]
lr//N =PN l//o W|th PNZTNTN_]_" 'Tl' (5)

1
293

(6)
respectively.
Then we replace the segment betweenl andn=N by
a finite incommensurate FK chain. The atom in the FK chain
The 1D FK model can be described by has massn. Now we consider an incoming plane wave from
n=—o with frequency o= \4/mysin(3qa). Thus in the
range ofn=N+ 1 there is only outgoing wave. That is

Il. THE MODEL AND NUMERICAL METHOD

. (@

2
p 1
H=2 |50+ 5 (X=X~ )2~V cogxy) | |
n [2m 2 Yn=Ae"+ Ae~iNa  for n<Q,

wherep, andx, are the momentum and position of thth .

atom, respectivelyV is the strength of the external potential. Yn=Be9" for n=N+1. @)
ais the distance between consecutive atoms without externgom Egs.(5) and(7), after long calculation, we obtain the
potential. Aubry and Le Daer® showed that the minimum-  ransmission coefficient

energy configurations are periodic whe2# is rational

(commensurate modeand quasiperiodic whea/27 is irra- B2 4 sir?

tional (incommensurate model For an incommensurate —|—| — : sirt(qa) —
FK model, there are qualitatively different ground-state  |A| | —(Py) 1€ 9%+ (Py) 21— (Pr) 12+ (P) 202932
configurations separated bthe transition by breaking (8)
analyticity predicted by Aubry. For each irrational there where Py);j, i,j=1.2 are the elements of mati, in Eq.

exists a critical valud/, of the external potential. The

If we let the atom mass of the uniform harmonic chain be
V.=0.9716354 .- equal to the atom mass in the FK chain, irag=m, as done
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FIG. 2. The transmission coefficient of low-frequency (
=10"®) wave through the FK chain as a function\afFor all three
curvesmy=1 anda/27=(\5—1)/2. The curves 1, 2, and 3 are for
N=1597, 2548, and 4181, respectively.

0.0 M
] © show up. AsV increases, more and more subbands and gaps
0.8 - show up. Also, we found that the range of the eigenfre-
0o 05 10 1

0.4

guency becomes smaller &sis increased beyond.. This
implies that the eigenfrequencies are attracted somehow for
V>V, [see Fig. 1c)], which is similar to the band gaps of
the Harper model at the critical poittt.Because the eigen-
states of the Harper model at critical point are critical, this
result is one of the signature showing that the eigenstates of
5 20 25 an incommensurate FK chain in Cantorus regime are critical.
It is well knowr? that the phase transition by breaking of
analyticity is manifested by the phonon gap #r V.. In
FIG. 1. The transmission coefficients as functions of frequencyfact, from Fig. 1, we have seen that ¥sincreased to 1.6
o for different values ol. (a) V=04, (b) V=1, and(c) V=1.6.  there is a wide range of frequencies around 0, in which
The parameters in the calculations a¥e=1597, my=0.8, and  the transmission coefficient is zero. This is the direct conse-
a/2m=(5—1)/2. The critical value/;=0.9716543 . .. quence of the appearance of the phonon gap. In order to see

in th | study of elect tefigh Id not this transition of an incommensurate FK model, we calculate
In the usual study ot electron syste en we could NOt  yq transmission coefficient of a low-frequency wave at dif-
obtain the transmission coefficients of the phonons with fre

quency larger than 2. However, forv+0, there do exist ferent values ol/, which are shown in Fig. 2. In this figure

h h ¢ . | thafme/ Theref we plot the transmission coefficients of the plane wave with
phonons whose Irequencies are farger tha erefore, frequencyw=10"© as a function o for the FK segments
in order to study the transmission coefficientsatif eigen-

frequencies, we should let the masg of the uniform har- having different lengths. It is obviously seen that there is a

: o . . sharp decrease afte¥>V_. and the decrease becomes
monic chain differ from the mass of the FK chain. In Figs. sharper for largeN. The corresponding particle numbers are

1(a)—(c) we show the transmission coefficients of the finite 1597 2584 .
. ! . , , and 4181 for curves 1, 2, and 3, respectively.
FK chains as the functions of frequency for differ&tThe This clearly demonstrates the existence of the phonon gap

parametera/(2m) =(5—1)/2 is approximated by a con- ¢, V>V,.. In turn, our results illustrated here suggest that
verging series of truncated fractioRy,/Fn.1 (n=1,2,...),  the transmission coefficient might be a very good quantity
where{F,} is the Fibonacci sequence. The results of Figs¢q, probing the existence of phonon gap in the underlying
1(@—(c) are obtained foN=F4=1597, my=0.8, andm g qtem. Therefore measuring the transmission coefficient

=1. In our calculations, we first obtained theatomic po-  \yoyld enable us to detect thEhase transition by breaking
sitions of the equilibrium ground state of the FK chain with analyticity experimentally.

free boundary condition, i.exo=0 andxy=2wNa, by the
gradient method=® Evidently, for the plane wave with fre-
guency in the gaps of the phonon spectra, the transmission
coefficients are zero. From Fig. 1 we see that for srvall
there exists a wider frequency range with nonzero transmis- The above-discussed wave transmission is a macroscopic
sion coefficients than that for largé This can be understood phenomenon. To some extent, it reflects the microscopic ori-
by the following facts. FoV=0, there exists only one fre- gin, namely, the phonon excitation in the underlying sys-
quency band fromw=0 to 2A\/m. WhenV#0, the ground- tems. In this section, we would like to study the phonon
state positions of atoms deviate from that in the FK chairlocalization from different approaches.

without external potential. For small (<V,), the ground- Participation ratio. Burkov et al® studied this quantity
state positions of atoms are periodic or quasiperiodic. Therdor the finite FK chain by numerically solving Eq2) and

fore, one band splits into several subbands and the bandgapsmputing the participation ratiPR):

0.4

0.0
0.

(Y

[ll. PHONON LOCALIZATION
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(2 wﬁ)z ”° ﬁ T @
n . (9) —2.0*xx

PR= !
N > -4.0
= 7n In(t) :
. - . . _6-0 1
HereN is number of atoms. If the eigenfunction is extended,
PR tends to be a finite limit ad—oo. If an eigenfunction is -8.0 1
exponentially localized\ X PR will be a finite number as the )
length N goes to infinity. Burkovet al. found that forV 100 ®)

<V, all eigenfunctions are extended fidrup to 987 and
for V>V, the PR of states near the band edges decrease with
increasingN, but the true exponential localization was not
observed. Their method has been limited by computer i
memory(RAM). Therefore, in addition to study the partici-
pation ratio, we shall also study other quantities such as the
transmission coefficients and the Thouless exponent. Our re-
sults given in this section can be regarded as an extension 0.005
and supplement to the previous study by otHers.

Transmission coefficienThe transmission coefficient is

0.015 -

©)

also a very good quantity reflecting the localization property 0.80 -
of eigenstates of electron, and has been used widely to study PR

the eigenstates of electron moving in random and quasiperi-

odic fields!’ If the transmission coefficient associated with 050 7

the eigenstate tends to be a finite limitMds-oo, the eigen-
state is extended. If the eigenstate is exponentially localized,

o o ; . 0.40
the transmission coefficient will decrease exponentiallijNas 0.0
increasing. This method has the advantage that it can com-
pute transmission coefficients for much larger systems.

Thouless exponenfAnother important quantity that de- FIG. 3. The transmission coefficienta), the Thouless expo-
scribes the localization of eigenstates is the Thouless expamentsy (b), and the participation ratitc) for eigenfunctions of the
nent. The Thouless exponent for an eigenfunction correFK chain atV=0.4. The particle number of the FK chain
sponding to the eigenfrequenay of Eq. (2) is =987, the mass of the atomigy= 0.8, and the winding number is

al2m=(\5-1)/2.

N go to even larger size, e.g., more than 10)94ft no sig-

Ywi)= m;l |”|“’12_‘”i2 . (100 nificant difference has been found.
Recently, by using the renormalization-group transforma-

If y(w;) goes to zero abl— o, then the eigenfunction cor- tion, Ketoja and Satif& have studied the eigenfunctions of
responding taw; is localized exponentially. the minimum frequency fov>V,. They found that phonon

In Figs. 3-5, we show the transmission coefficients, theeigenstates defy localization and remain critical. Further-
Thouless exponents, and PR’s for the eigenstates of a finit@ore, there exists an infinite sequence of parameter values in
FK chain with N=987 for V=0.4, 1.0, and 1.6, respec- the regime ofV>V, where the renormalization limit cycle
tively. From the numerical results, we find that the transmis-degenerates into a trivial fixed poitft.
sion coefficients of the phonon eigenstates at the band edges Here we would like to get a further picture about the
(actually, these are quasiband edges because the phonlmealization for other different scenarios. We shall study not
spectra are the Cantor-like sets, the quasibands consist ofly the transmission coefficients of the degenerated point,
many subbands if we consider a larger FK chaire smaller but also those cases corresponding to the nondegenerated
than that in the center of the bands. Because the transmissiamd pseudodegenerated situation at the regime of
coefficient depends omy, its absolute value is not mean- V>V,.. The results are shown in Fig. 7. There the
ingful for the study of localization of phonon eigenstates. Intransmission coefficients as functions ofN are
order to see if these eigenstates at band edges are expondnawn for V=1.7565620838264..., 2.33, and
tially localized. We calculate the transmission coefficients3.894 742 854 929@. . ., respectively. These three values
for several FK chains having different lengths. Figure 6correspond to degenerated, nondegenerated, and pseudode-
shows numerical results for some eigenstates at band edgegnerated cases, respectively. We find that there are not
We can see that these eigenstates are not exponentially lqualitative differences of transmission coefficients for the de-
calized. This is nicely demonstrated by the Thouless expogenerated parameter values and other valués>Y .. The
nents shown in Figs.(B), 4(b), and 8b). There the Thouless only minor difference is that the curves for degenerated and
exponents are about 0.089.02, thus the decay length  pseudodegenerated points are more regular than that for non-
=1/y~10?, which is about the order of the size of the FK degenerated. Another thing worthy to be mentioned is that
chains. We also calculated these quantities for larger systenfisr N fixed, the transmission coefficients decreasa asfor
(up to 4181, in fact the transfer-matrix method allows us ton<N/2 and increase a¥ for n>>N/2 [see the insets of Figs.
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FIG. 4. Same as Fig. 3, b=1.0.

7(@=7(c)]. This can be understood by realizing that for a
small part of the finite FK chain the positions of atoms look
irrelative, but not real random, and the plane wave seems
propagate through a pseudorandom medium. But for a lar
part of finite FK chain, there exists a certain correlation be-
tween the positions of atoms, and the correlation increases as.
n—N. The plane wave transports through a correlated me-
dia, and the transmission coefficients increas agreased.

IV. HEAT CONDUCTION

The properties of the phonon excitations will be also
manifested in another macroscopic quantity—the heat con-
duction. It is time now to discuss the transport of energy flux
or the heat conduction in the finite FK chains. This is a quite
interesting problem that attracted much attention in recent
years'®~2°|n this section, we consider a different model of
heat conduction, which was discussed by Rubin and &reer
originally. In this model, the chain oN particles (which
constitute the systemis connected at both ends to semi-
infinite chains of identical particles. The left and right ends
are put in thermal equilibrium at temperaturgs and Tg,

FIG. 5. Same as Fig. 3, bt=1.6.

It is shown thatl(N) ~N for the uniform and periodic chains
tandJ(N)~N1’2 for random mass chains. For the FK chains
Both T, and T must be very low so that the formuldl)
Y%an be applied. Figure 8 shows some typical resultg of
=J(N)/(T_—Tg) for different V. In the calculation of trans-
mission coefficients, we let the mass of atoms in the left- and
right-hand semi-infinite uniform harmonic chains be equal to
the mass of atoms in the FK chain. We found that the

0.0

-5.0 -
In(t)

-10.0 A

-15.0
0.0

In(N)

respectively. The original Rubin-Greer model was for peri- FIG. 6. The transmission coefficients of plane waves with
odic and random mass chains with harmonic nearestfrequencies near the band edges of phonon spectra as functions of
neighbor interaction. They found that the stationary heat fludN. The solid circles, squares, and diamonds correspond to
as a function oN can be expressed in terms of the transmis-»=0.369 915599017 013597, 0.782580479119728611, and
sion coefficient: 0.950 165600 964 576 584 fow=1.0, respectively. The solid
stars, triangles, and crosses correspond taw
=0.907 882097032394 975, 1.040462 163 089 725 28, and
2.033317 415572499 79 faf=1.6, respectively. In all casegn,

=0.8. The lines are drawn for guiding the eye.

T —-Tr(2,
= JOtN(w)dw.

J(N)= (11
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FIG. 7. The transmission coefficient at the minimum frequency
®min versusN for differentV. (a) V=1.756 562 083 8264. . . , (b)
V=2.33, and(c) V=3.894742854929@... . Insets are Irj
versus InN).

J(N)~N for V<V, and J(N)~N¢“ for V>V.. For V
>V, thea depends on th¥. But its range is approximately
from 0.83 to 0.87, which is larger than 0.5 for random sys
tems. This also implies that the phonon eigenstates of the F
chain are extended for <V, and critical forv>V..

g

FIG. 8. The ratid j=J(N)/(Tr—T_)] of the stationary energy
flux to temperature difference for the FK chain as a functiomMNof
for different values olV. The solid circles, squares, diamonds, and
triangles are for different values &f=0.4, 1.6, 3.0, and 5.0, re-
spectively. The lines are drawn for guiding the eye.

transfer-matrix method. We have been able to calculate the
transmission coefficients @ll phonon frequencies. The lo-
calization properties of the phonons based on the transmis-
sion coefficient and the Thouless exponents agree with that
by the participation ratio. We also studied the Rubin-Greer-
like model for the FK chain and find that the FK chain likes
a periodic chain foV<V,, whereas it looks like a chain
somewhat between random and periodic\os V. Our nu-
merical results confirm that all eigenstates are critical in Can-
torus regime. This result can be understood as the following.
ForV<V.=0.9716354. .., theground-state configuration

of atoms is quasiperiodic. Thé cos¢’) in Eq. (2) is also
quasiperiodic and continuous. It corresponds to the phonon
problem of the Harper equation in the extended regivie (
<2). Therefore all phonon eigenstates are extendedVFor
>V,., the ground-state configuration of atoms is a Cantor-
like set. TheV cos&ﬂ) takes only some finite values. Conse-
uently, the exponentially localized state does not exist, and
Il eigenstates are critical.

It should be pointed out that to express the heat flux in

terms of the transmission coefficients is valid only at very
low temperature, namely the particles oscillate nearby thei
equilibrium positions. In fact, this is a linearization result of
the FK model. In real case, the FK model is nonlinear, thu
for the general simulation of heat conduction, one shoul
take the approach of molecular dynamics simulaffof?.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the transmission coefficien

ACKNOWLEDGMENTS

" We would like to thank Professor Gang Hu and the mem-

bers at Center for Nonlinear Studies of Hong Kong Baptist
niversity for valuable discussions. This work was sup-
orted in part by the grants from the Hong Kong Research
Grants CouncilRGO and the Hong Kong Baptist Univer-
sity Faculty Research GraiffFRG). Tong’s work was also
supported in part by Natural Science Foundation of Jiangsu
iProvince and Natural Science Foundation of Jiangsu Educa-

of a plane wave through the FK chain by making use of theion Committee, Peoples Republic of China.

1ya. I. Frenkel and T. A. Kontorova, Zh. Eksp. Teor. F&.89
(1938.

2p. Bak, Rep. Prog. Phyd5, 587 (1982.

3s. Aubry, Physica ¥, 240 (1983.

4M. Peyrard and S. Aubry, J. Phys. 16, 1598(1983.

5S. Aubry and P. Y. Le Daen, Physica D8, 381 (1983.

6S. N. Coppersmith and D. S. Fisher, Phys. Rev2® 2566
(1983.

"W. Chou and R. B. Griffiths, Phys. Rev. 81, 6219(1986.

8S. Aubry, J.-P. Gosso, G. Abramovici, J.-L. Raimbault, and P.
Quemerais, Physica B7, 461 (1991).

°R. S. MacKay, Physica 30, 71 (1991).

103, shi and B. Hu, Phys. Rev. 45, 5455(1992.
11B. Lin and B. Hu, J. Stat. Phy$9, 1047(1992.
12B. v. Chirikov, Phys. Rep52, 263(1979.

133. M. Greene, J. Math. Phy20, 1183(1979.



PRB 59 WAVE TRANSMISSION, PHONON LOCALIZATION, AND . . . 8645

145, J. Shenker and L. P. Kadanoff, J. Stat. PI#fs.631(1982. 207 Prosen and M. Robnik, J. Phys. 25, 3449(1992.
15E. Burkov, B. E. C. Koltenbah, and L. W. Bruch, Phys. Rev. B 2%S. Lepri, R. Livi, and A. Politi, Phys. Rev. Letf8, 1896(1997.

53, 14 179(1996. 22B. Hu, B. Li, and H. Zhao, Phys. Rev. &7, 2997(1998.

163, K. Ketoja and I. I. Satija, Physica D04, 239 (1997; cond-  22A. Fillipov, B. Hu, B. Li, and A. Zeltser, J. Phys. &1, 7719
mat/9802149unpublished (1998.

17y, Liu and K. A. Chao, Phys. Rev. B4, 5247(1986. 24H. A. Posch and Wm. G. Hoover, Phys. Rev5& 4344(1998.

8gee, for example, T. Geisel, R. Ketzmerick, and G. Petschel, if°D. Alonso, R. Artuso, G. Casati, and |. Guan@rnpublishedl
Quantum Chaos: Between Order and Disordedited by G.  ?5The talks of J. L. Lebowitz, G. Gallavoti, and D. Ruelle at the
Casati and B. Chirikov(Cambridge University Press, Cam- STATPHY20, Paris, 1998.
bridge, England, 1995 27R. J. Rubin and W. L. Greer, J. Math. Phyi®, 1686 (1971).

19G. Casati, J. Ford, F. Vivaldi, and W. M. Visscher, Phys. Rev.?8A. J. O'Connor and J. L. Lebowitz, J. Math. Phys, 692(1974.
Lett. 52, 1861(1984. 29k, Delyon and D. Petritis, Commun. Math. Phg63 441(1986.



