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Energy transport in glasses due to phonon hopping: Lifetime and ac behavior
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Anharmonic interactions between localized vibrational states and extended low-energy phonons can lead to
thermally activated hopping of the localized states. Such a mechanism has been proposed to explain the
thermal conductivity behavior of dielectric glasses and amorphous films above the so-called ‘‘plateau tempera-
ture,’’ i.e., in the high temperature regime. To investigate this transport scenario we derive rate equations for
the occupation numbers of the localized states. Extending our previous model, we calculate the lifetimes of
localized states and find them to increase with the energy of the state, in accordance with recent experiments
as well as with the fracton hopping model~the functional form differs though!. This is in contrast to another
model for explaining the high temperature behavior of glasses, namely the model of diffusive transport by
nonpropagating modes. Furthermore, the latter model predicts a decrease of the conductivity with increasing
frequency of an ac temperature gradient. In our hopping model, on the other hand, the conductivity is fre-
quency independent or might even increase. This could provide an additional approach in order to experimen-
tally distinguish between these two models. Moreover, essential differences to electron hopping are discussed,
including particle number and energy nonconservation, which would correspond to charge nonconservation in
the electron case. These lead to some intricacies which have to be considered in deriving the current theory.
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I. INTRODUCTION

Recently, the existing theoretical frameworks to expla
the high temperature behavior of heat conductivity in glas
have been reconsidered,1,2 specifically the fracton hopping
model by Orbachet al.3–7 and the model of diffusive trans
port of nonpropagating modes by Allen and Feldman.8,9 The
debate between these two models centers around the life
of high-energy vibrational modes in dependence on the m
frequency. The diffusive transport model predicts a decre
of the lifetime with increasing mode frequency and the ho
ping model asserts an increasing lifetime. While the diffus
model is supported by simulations on structurala-Si models
~of up to 4000 atoms to date10!, as well as large 1D simula
tions, the hopping model behavior is supported by exp
mental evidence.11–14

To further elaborate on the differences between the h
ping and the diffusive model we present calculations ba
on our hopping model,15,16 which is — on the one hand —
less specific than Orbach’s model, in that it considers m
or less unspecified localized modes, rather than fractons
— on the other hand — goes beyond the fracton hopp
model, in that it can explain the saturation tendency of
heat conductivity at high temperatures.15

We study a system of localized vibrational modes, wh
anharmonically interact with extended phonons and focus
the localized mode contribution to energy transport due
thermally excited hopping. This transport mechanism is
sumed to determine the high temperature~i.e., above the pla-
teau temperature! heat conductivity behavior. In Sec. II th
model system is introduced, which differs from the form
model of Refs. 15 and 16 in that it allows to incorporate
PRB 590163-1829/99/59~13!/8626~13!/$15.00
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physically sound decay term, but, since multiphonon p
cesses are neglected, the saturation tendency is absent
tion III briefly explains the nonequilibrium treatment of th
extended modes. The rate equations for the occupation n
bers of the localized modes are derived in Sec. IV. Sectio
shows the obtained results concerning the lifetime of
localized modes and the ac behavior of heat conductiv
The parameters are chosen witha-Si in mind. We find, as
expected, an increase of the lifetime with the localized mo
frequency. Another result is the increase of heat conducti
in an ac temperature gradient in the hopping system. T
could provide a way to experimentally distinguish betwe
hopping heat transport and the diffusive mechanism p
posed by Allen and Feldman.8,9 Finally, in Sec. VI the es-
sential differences between electron and phonon hopping
discussed.

II. THE MODEL SYSTEM

A. Hamiltonian

We study the behavior of localized vibrational mod
~which will be called ‘‘optical phonons,’’ irrespective o
their origin!, which interact anharmonically with extende
phonons~which will here be called ‘‘acoustic phonons’’! and
are subjected to a temperature gradient. The mechan
proper which leads to phonon localization is not explici
considered. It is assumed that there is a mobility edgevc
separating the spectrum of extended modes~satisfying vq
,vc , characterized by the indexq and the wave vectorq)
from the localized modes (vm.vc , characterized by the
‘‘site’’ index m and the localization centerRm). The highest
frequency of the extended phonons is in the following d
8626 ©1999 The American Physical Society
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PRB 59 8627ENERGY TRANSPORT IN GLASSES DUE TO PHONON . . .
noted as Debye frequencyvD8 . There may or may not be
gap between the frequencies of extended and local
phonons.

The model Hamiltonian

H5H01H11H21Ha , ~1!

is decomposed into the harmonic contribution

H05(
q

\vqbq
†bq1(

m
\vmcm

† cm ~2!

and the anharmonic terms of third order in the displaceme

H15 (
mqq8

fm
qq8~bq

†1b2q!~bq8
†

1b2q8!~cm
† 1cm!, ~3!

H25 (
mm8q

fmm8
q

~bq
†1b2q!~cm

† 1cm!~cm8
†

1cm8!, ~4!

Ha5 (
qq8q9

fqq8q9~bq
†1b2q!~bq8

†
1b2q8!~bq9

†
1b2q9!.

~5!

Here,bq
† and bq represent the creation and annihilation o

erators of extended phonons, whereascm
† and cm denote

those of localized phonons.
H1 describes the interaction between two extended mo

and one localized mode,H2 the interaction between one ex
tended mode and two localized modes, andHa between three
extended modes. The corresponding term with three lo
ized phonons is omitted since the expected smallness o
interaction coefficients. The anharmonic coefficien

fqq8q9, fm
qq8 , andfmm8

q are assumed to be small and sub
quently used as expansion parameters for a perturbation
oretical treatment.

The nonequilibrium situation is dealt with in accordan
with our earlier study of phonon hopping,15,16 i.e., the tem-
perature gradient is treated as an external field. The obta
results are then correct up to first order in the tempera
gradient. The external field yields the additional termHb

t in
the Hamiltonian satisfying the condition~see Appendix A!

i

\
@Hb

t ,H#5
“b~ t !

b
•S, ~6!

where S is the energy current operator andb51/kBT the
inverse temperature. The upper indext at Hb

t indicates the
parametric time dependence, due to the time-dependent
perature gradient“b(t). This time dependence has to b
weaker~i.e., the external frequencyv has to be smaller! than
the inverse of the time for the system to reach the station
state, in order for the above approach~treatment of nonequi-
librium by external field term! to be applicable.

The energy current operators for localized~index O for
optical phonons! and extended~index A for acoustic
phonons! modes and the corresponding external field ter
read

SO5(
m

\vmRm

d

dt
~cm

† cm!, ~7!
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Hb
O52

“b

b (
m

\vmRmcm
† cm , ~8!

SA5(
q

\vq

]vq

]q
bq

†bq , ~9!

Hb
A52 i

“b

b (
q

]

]k
~bq2k/2

† bq1k/2!k50 . ~10!

Possible anharmonic contributions have been omitted.

B. Anharmonic coefficients

Estimates of the anharmonic coefficients will be deriv
in this subsection, mainly in order to obtain their depende
on the parameters. Assuming a purely pairwise interac
potential between the atoms, i.e., a potential energy of
form

V5
1

2(
lÞ l 8

V~ ur l2r l 8u!, ~11!

the expansion into third order in the atomic displacem
ul5r l2Rl yields an interaction tensor of third order of th
form

Vl l 8 l 9
abc

5 (
l-~Þ l !

All 9
abc

~d l l 82d l- l 8!~d l l 92d l- l 9!. ~12!

Here,r l is the position of atoml, Rl its rest position, and the
third order potential energy term read
(1/3!)( l l 8 l 9(abcVl l 8 l 9

abc ul
aul 8

b ul 9
c . The tensorA is antisymmet-

ric in the atomic site indices and fully symmetric under pe
mutations of the Cartesian coordinatesa, b, andc.

The displacements are now expressed by the normal m
coordinates

ul5(
j

el j U j , ~13!

wherej runs over both,q andm, theel j are the eigenvectors
in site representation and

U j5H bq
†1b2q if j 5q

cm
† 1cm if j 5m.

~14!

The eigenvectors of the localized states are taken to b

elm5A \

2Mvm
d lmem ~15!

and of the extended states

elq5A \

2MvqN
eiq•Rleq , ~16!

whereem and eq are unit vectors. The atomic massM has
been assumed to be site independent.N denotes the numbe
of atoms.

Using the fact, that the acoustic phonons have a very l
wavelength,uqu!1/a ~with a a typical atomic distance!, one
obtains after some algebra
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fm
qq85

g

3!AVS \

2r D 3/2exp„i ~q1q8!•Rm…

ac2AN
Avqvq8

vm
.

~17!

Here,a is the mean atomic distance~the ‘‘lattice constant’’!,
V5Na3 the total volume of the system,r the mass density
c the sound velocity andg an effective anharmonicity pa
rameter~essentially the configurational average of the sca
product of the tensorA with the mode eigenvectorsem and
eq).

Analogously, one obtains

fmm8
q

5
g

3!AVS \

2r D 3/2exp„i q•~Rm1Rm8!/2…

a2c

3A vq

vmvm8

exp~2auRm2Rm8u!, ~18!

where it is assumed that them5m8 term is determined by
the same effective parameterg. Furthermore, themÞm8
terms are assumed to fall off exponentially with a parame
a as an inverse localization length. Thed-function expres-
sion ~15! for the localized modes would yield a strong d
pendence offmm8

q on the mode indicesm andm8, which it
would be questionable to average over to get rid of this
pendence@as has been done to obtain Eq.~18!#. However,
the localized modes do not truly live on a single atom. T
resulting summation over the atomic sites participating i
localized mode can be seen as an averaging, which m
the above assumptions reasonable.

Comparing the analogously obtained expression for
interaction coefficient of three extended phonons

fqq8q95
g

3!AVS \

2r D 3/2Avqvq8vq9

2c3
d~q1q81q9! ~19!

with the corresponding expressions of other authors~for
acoustic phonons in crystals! one obtains the estimates

g'rc2 ~20!

according to Gurevich17 or

g'2ugGurc2 ~21!

according to Srivastava.18 The first of these estimates is re
markable, since it is an order of magnitude estimation for
anharmonic parameter, which rests solely on harmonic qu
tities. The symbolgG denotes the mode averaged Gru¨neisen
constant.

Since there are as yet no reliable data on anharmonic
efficients of amorphous solids, the relation~20! will be used
throughout this work. Furthermore, the numerical parame
in this paper are chosen witha-Si in mind, and incidentally,
gG of silicon is about 0.5 at room temperature.18 @The Grün-
eisen constant is strongly temperature dependent, and
changes sign below 100 K for Si. However, the relation~21!
is not intended to predict a temperature dependence of
effective anharmonic coupling constantg, but merely to give
an order of magnitude estimate of the energetic scale of t
order interactions.#
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III. THE EXTENDED MODES IN NONEQUILIBRIUM

In order to determine the nonequilibrium state of the e
tended phonons the expectation value~statistical mechanica
average in the nonequilibrium situation!

nqk5^bq2k/2
† bq1k/2& ~22!

will be calculated. The nonequilibrium state of the acous
phonons is taken into account by treating Eq.~10! as an
external field term. This means we have to obtain

nqk~ t !5
1

Z
Tr„e2b~H01Ha!U†~ t !bq2k/2

† bq1k/2U~ t !…

~23!

in the limit t→`. Here,Z is the partition function and the
time evolution operator reads

U~ t !5exp„2 i ~H01Ha1Hb
A!t/\…. ~24!

Here, it has been assumed, that the acoustic phonon
system is unaffected by the state of the optical phonon s
system.

Now, we obtain in Heisenberg representation

d

dt
~bq2k/2

† bq1k/2!5
i

\
@H01Ha1Hb

A ,bq2k/2
† bq1k/2#.

~25!

This yields a differential equation fornqk . The calculation of
this commutator yields two operator terms of the formb†b
as well as terms containing three operators, stemming f
the commutator withHa . The time derivative of these thre
operator terms is subsequently calculated too, leading to
operator terms in addition to the three operator terms. Th
four operator terms are already second order in the anhar
nicity ~throughHa) and their expectation value can be ca
culated withH0 , i.e., the Wick theorem can be applied an
the four operator terms are reduced to the~sum of! products
of two operator terms. The differential equations thus o
tained are then expanded into zeroth and first order in
temperature gradient, all higher order terms being omitt
The equilibrium distributionNq[@exp(b\vq)21#21 is taken
as initial condition att50 and the solution att→` ~the
stationary state! is determined.

This approach finally yields after a lengthy calculation

nqk5Nqd~k!1 i ~]Nq /]b!“b•d8~k!1nq
ASd~k!. ~26!

Here,d8(k) is the derivative of thed-function with respect
to its argument.nq

AS is antisymmetric inq:n2q
AS 52nq

AS. The
kinetic equations fornq

AS, which we obtain, are equivalent t
those given, e.g., by Ref. 19. The first term on the right ha
side corresponds to the equilibrium distribution and the s
ond term to the deviation from equilibrium in the sense
local equilibrium. Note that both of these terms are indep
dent on the details of interaction~they do not contain af
parameter, for instance!, whereas the third term is dete
mined by the actual scattering mechanisms present
moreover, governs the energy transport within the exten
phonon subsystem, as can be seen, if one considers th
pression determining the heat conductivity within the e
tended phonon subsystem18
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k5
1

Vu“Tu2
(

q
\vqnq

AS]vq

]q
•“T. ~27!

In order to really exploit the termnq
AS, scattering on inho-

mogeneities or the interaction with soft modes and two le
systems should certainly have been taken into considera
apart from the three phonon scattering. But since all exp
sions describing hopping transport are symmetric sumsq
~as will be seen below!, the discussed term is irrelevant fo
the purposes of this work.

IV. THE RATE EQUATIONS FOR THE LOCALIZED
MODES

The external field term~8! can easily be incorporated int
H0 through the substitution

vm→vm~12Rm•“b/b!. ~28!

This substitution will be applied immediately before the li
earization in the temperature gradient. The formalism
therefore proceed as for a system in equilibrium~as far as the
localized modes are concerned!.

The nonequilibrium distribution of the extended phono
can also be taken into consideration by inserting certain s
stitutions in the final phases of the calculation only. T
distribution functionnqk of the acoustic phonons is nond
agonal due to thed8 term in Eq. ~26!, which nevertheless
only has support on a single point, namelyk50. This d8
term leads finally to a derivative of the anharmonic consta
f with respect to their wave-vector arguments, which has
be taken atk50, i.e., the finally occurring expectation va
uesnqk are diagonal~and are simply denoted asnq). A care-
ful analysis yields the substitutions

ufm
qq8u2nq→ufm

qq8u2Nq„12\vq~11Nq!Rm•“b… ~29!

ufmm8
q u2nq→ufmm8

q u2Nq„12\vq~11Nq!

3~Rm1Rm8!•“b/2…, ~30!

which are to be applied at the end of the calculations in or
to introduce the temperature gradient. The acoustic pho
subsystem will therefore be considered to be in equilibri
for now.

Rate equations for the distribution functionnm of the op-
tical phonons will be calculated using the Konstantinov-Pe
diagram technique.20,21 All diagrams up to second order i
the interactionsH1 andH2 are taken into consideration. Fu
thermore, the Markovian limit is already taken in the expr
sions below.

The diagrams which contain two interaction points cor
sponding toH1 describe the decay of an optical phonon in
two acoustic phonons and yield the expression

d

dt
nmU

decay

5
2p

\2 (
qq8

ufm
qq8u2d~vm2vq2vq8!

3@nqnq8~11nm!2~11nq!~11nq8!nm#.

~31!
l
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The hopping contribution, arising from diagrams with tw
H2 interaction points, reads

d

dt
nmU

hopping

5
4p

\2 (
qm8

ufmm8
q u2$d~vm2vm82vq!

3@~11nm!nm8nq2nm~11nm8!~11nq!#

1d~vm2vm81vq!

3@~11nm!nm8~11nq!2nm~11nm8!nq#%.

~32!

There are no diagrams with both aH1 and aH2 interac-
tion point, since this would yield expectation values of o
numbers of creation and annihilation operators.

The nonequilibrium situation is now taken into conside
ation by the substitutions~28!, ~29!, and~30!. The resulting
equations are subsequently linearized with respect to“b.
An upper index (0) or (1) will denote the correspondin
quantities of zeroth or first order in“b, respectively. The
acoustic phonons obey

nq
~0!5Nq[$exp~b\vq!21%21. ~33!

The sum of Eqs.~31! and~32! yield the searched for rate
equations and read in zeroth order

d

dt
nm

~0!5Wm
~0!
„e2b\vm/2~11nm

~0!!2eb\vm/2nm
~0!
… ~34!

1(
m8

„Wm8m
~0!

~11nm
~0!!nm8

~0!
2Wmm8

~0! nm
~0!~11nm8

~0!
!…, ~35!

with

Wm8m
~0!

5
2p

\2

eb\~vm82vm!/2

sinh~b\uvm2vm8u/2!

3(
q

ufmm8
q u2d~vq2uvm2vm8u! ~36!

and

Wm
~0!5

p

2\2(
qq8

ufm
qq8u2

d~vm2vq2vq8!

sinh~b\vq/2!sinh~b\vq8/2!
.

~37!

Equation~35! is solved by

nm
~0!5Nm[$exp~b\vm!21%21. ~38!

To first order in“b the substitutions~29! and ~30! ~i.e.,
the nonequilibrium distribution of the acoustic phonons! give
rise to the terms

2
\vmRm•“b

tm
1(

m8
Gm8m\~vm82vm!

Rm1Rm8
2

•“b

~39!

in the rate equations. The substitution~28! contributes the
first order terms
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1
\vmRm•“b

tm
1(

m8
Gm8m\~Rmvm2Rm8vm8!•“b.

~40!

Here, the inverse~direct decay! lifetime is

1

tm
5

p

4\2sinh~b\vm/2!

3(
qq8

ufm
qq8u2

d~vm2vq2vq8!

sinh~b\vq/2!sinh~b\vq8/2!
~41!

and the symmetrized hopping rate

Gm8m5
p

2\2sinh~b\vm/2!sinh~b\vm8/2!

3(
q

ufmm8
q u2

d~vq2uvm2vm8u!
sinh~b\vq/2!

. ~42!

The first order rate equations thus altogether read

d

dt
nm

~1!52
nm

~1!

tmNm~11Nm!

1(
m8

Gm8mS nm8
~1!

Nm8~11Nm8!
2

nm
~1!

Nm~11Nm!D
1(

m8
Gm8m\

vm81vm

2
~Rm2Rm8!•“b. ~43!

Note that this system of equations is translationally invaria
whereas the corresponding system without the nonequ
rium acoustic phonons would not be translation invaria
Somewhat surprisingly, forGm8m[0 ~without hopping! the
asymptotic distribution isnm

(1)50 even with an applied tem
perature gradient. This is easily explained, though, since
external field treatment of the nonequilibrium state igno
the difference between local and total equilibrium, as
shown above. To account for this difference, one c
either interpretnm

(1) as the deviation from local equili
brium, or, add the missing terms@i.e., nm

(1)→nm
(1)1Nm(1

1Nm)\vmRm•“b#.
The thermal current~7! is unaffected by this difference

and the quantitiesnm
(1) could be seen as artificially arising i

the formalism without their having any specific physic
meaning. However, in order to numerically simulate the s
tem of rate equations for a~necessarily! finite system, bound-
ary conditions have to be specified, which necessitate
more detailed knowledge.

Introducing the generalized chemical potentialdmm

nm
~1!5Nm~11Nm!eivtdmm ~44!

the rate equations~43! become
t,
b-
t.

e
s
s
n

l
-

a

„ivNm~11Nm!11/tm…dmm

5(
m8

Gm8m~dmm82dmm!

1(
m8

Gm8m\
vm1vm8

2
~Rm2Rm8!•“b. ~45!

Herev is the frequency of the externally applied temperatu
gradient. The energy current~7! can now be split into an
‘‘Ohmic’’ part

Sohm5
1

2(
mm8

Gm8m\
vm1vm8

2
~Rmvm2Rm8vm8!

+~Rm2Rm8!•“b, ~46!

and a diffusive part

Sdiff5
1

2(
mm8

Gm8m\~Rmvm2Rm8vm8!~dmm82dmm!,

~47!

where+ denotes the dyadic product.
We are now in a position to compare the obtained r

equations with the analogous expressions valid for elec
hopping ~see, e.g., Ref. 21!. Figure 1~a! shows the usua
Abrahams-Miller network used in the theory of electron ho

FIG. 1. The equivalent electrical scheme for~a! electron hop-
ping and~b! and ~c! phonon hopping. Note the occurrence of cu
rent sources and grounding resistances in the phonon case. Fo
tails see the text.
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ping ~see, e.g., Ref. 21 and references therein!. The fat dots
correspond to the localization sites. The rate equation~45!
corresponds to Fig. 1~b!. The resistances between the sit
are 1/Gm8m and the capacitances areNm(11Nm). These are
fully analogous to the electron case~except for the now non-
electrical units, of course!. The last term of Eq.~45! gives
rise to the current sources between the sites, which cann
transformed into resistances, since the resulting current is
proportional to the ‘‘voltage’’ differencedmm82dmm . Fi-
nally, the decay term gives rise to the grounding resistan
equal totm . These differences are discussed in Sec. VI.

Figure 1~c! shows a transformed version of 1~b!. It arises,
if the nm

(1) ~and thus thedmm) are not interpreted as devia
tions from local equilibrium, but as the true occupation nu
bers. The local equilibrium expectation values give rise
the voltage sources. Note, that the current sources are t
formed in this case. They now correspond to the last term
Eq. ~39!. Furthermore, the sites inside a heat bath are no
linked to the same voltage source~electrode! as is the case
for electron hopping, because the equilibrium occupat
number does depend on the individual site energies.

V. LIFETIME AND AC BEHAVIOR

All numerical values in this paper are chosen witha-Si in
mind. This is because, even thougha-Si is possibly some-
what exceptional, it is the only amorphous material
which there are lifetime measurements of high-energy vib
tional modes available, of which the authors are aware.

The density of states of the extended phonons is take
follow the three dimensional Debye model

g~v!53Nv2/vD8
3 . ~48!

Here,N is the number of extended modes.
The considered high temperature case correspond

b\vD8!1. The sinh functions containing acoustic phon
frequencies can therefore be approximated by their argum
~the first term of their Taylor series!. One finally obtains

1

tm
5ASNN D 2 1

10

3
122~vm /vD8!

5120~vm /vD8!
2230~vm /vD8!

b2\2vD8vmsinh~b\vm/2!

~49!

for vm,2vD8 (1/tm50 otherwise! and

Gm8m5AS c

a vD8
D 2SNN D

3
~vm2vm8!

2e22auRm2Rm8u

b\vD8vmvm8sinh~b\vm/2!sinh~b\vm8/2!

~50!

for uvm2vm8u,vD8 (Gm8m50 otherwise!, where the quan-
tity
s

be
ot

es

-
o
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r
-
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nt

A5
p\g2

96r3a5c4
~51!

has been introduced.
Assuming that (2p)3/V is the volume per extended mod

in wave vector space, the maximal wave vector isqD

5A3 2p2N/V. UsingvD85cqD one obtains

N
N

5
1

2p2S avD8
c D 3

~52!

as an approximation for the relationN/N.
The numerical values will now be estimated for amo

phous silicon (a-Si). Scholten and Dijkhuis14 use c
55000 m/s and a localization frequency of 2p
31.95 THz ~corresponding to 65 cm21). The spectrum of
states ina-Si reaches up to 70 meV (570 cm21, cf. Ref. 8!.
We choosevD8,vm,8vD8 . The atomic mass isra35M
528 u ~u denotes the atomic mass unit!. The anharmonicity
constantg is estimated asrc2. The atomic distance isa
52.75 Å.22

These values yield A59.33108 Hz57.731025

vD8 , c/(avD8)51.5,N/N50.015, and kBvD8 /a
50.6 W/(m K) ~the unit of heat conductivity in the numer
cal calculations!.

The total number of localized modes is three times
large as the number of atoms in the considered case~only a
few percent of the modes are extended!. Since the localized
modes will have significant amplitude even several atom
distances from the localization center, the localization ex
nenta can be assumed to be small in relation to the inve
atomic distance 1/a. Appendix B elaborates upon expre
sions for the lifetime of localized modes and the therm
conductivity in systems withaa!1.

To assess the quality of the estimates obtained in App
dix B, Fig. 2 shows some calculations ofk using the param-
eters fora-Si as cited above. The relation~B7! yields a rea-

FIG. 2. The heat conductivity for different localization param
etersaa. The temperature is chosen as 4\vD8 /kB ; all other pa-
rameters are as given in the text. The solid line shows the appr
mation ~B7!. The first data set is the total conductivity; all othe
only show the Ohmic conductivity. The numbers given in the le
end mean@number of optical oscillators#3 @number of systems in
the configuration average#.
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sonable estimate of the Ohmic current even for largeaa.
But, the magnitude of the diffusive current increases withaa
and renders the estimate invalid for large values ofaa. For
sufficiently largeaa the total current should decrease exp
nentially as in percolation theory.

The numerical data points, here and in the following,
obtained as follows. A three dimensional box is filled wi
localization sites of random energy and location. The s
within a 10% slice on two opposing faces of the box a
taken to constitute the heat baths, i.e., theirdmm are fixed.
The system of rate equations~45! is then solved and the
energy current~7! ~denoted as total current! is calculated,
along with its components@Eqs. ~46! and ~47!#. Actually,
there is a third component to the total current, arising due
the decay terms. This is discussed in Sec. VI. The numer
calculations showed, however, that it is negligible (,10% of
SO) for the parameter values used here. The next step
carry out a configurational average.

As expected, the temperature dependence ofk is practi-
cally linear as shown in Fig. 3. There is no saturation beh
ior in this model, since multiphonon processes are negle
in contrast to our former model.15,16

Very small aa would imply the numerical solution o
very large systems to obtain meaningful results, because
interaction range between the oscillators is large. The follo
ing calculations rest therefore on the approximate soluti
derived in Appendix B.

Exploiting Eqs.~B5! and~B8!, the parameter (aa) is cal-
culated fora-Si. The value13 k/T5631023 W/m K2 leads
to (aa)'1/13. The measurements of Scholten14 yield life-
times between 1 and.70 ns for the states betwee
150 cm21 and 480 cm21. The values lead to (aa)'1/3
~cf. Table I!, where this quantity somewhat increases w
increasing energy of the state~except for the value a
300 cm21).

These two values are of the same order of magnitude,
show a significant difference nevertheless. Above all,
note, that localization lengths of the order of 3 to 13 atom

FIG. 3. The heat conductivity in dependence on temperat
The parameteraa is chosen as 4, all other parameters are as gi
in the text. The solid line shows the approximation~B7!. The dia-
monds show the total conductivity, numerically obtained by av
aging over 100 systems of 2000 oscillators each. The squares
the corresponding Ohmic conductivity.
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distances appear realistic. It is furthermore noteworthy, t
all parameters have been used as given, without choo
special values~fitting!. Especially, only rough estimates hav
been used for the anharmonicity parameterg, the localiza-
tion edgevD8 , and the fraction of extended modesN/3N.
Varying these parameters, the lifetime and heat conducti
results can be brought into better agreement. For insta
the ~probably unrealistic! decrease ofg by three orders of
magnitude yields coinciding values for (aa) ~then about
1/130). However, a systematic adaptation of the parame
to the experimental values is certainly premature, since o
few measurements of the lifetime are available, and w
uncertain error bars at that. The lifetime of the localiz
states ina-Si has been measured by Scholten at five frequ
cies, where there are given very large error bars for the h
est frequency states, essentially indicating, that the va
give only the order of magnitude. We are not aware of f
ther such measurements.

The density of statesg(v) usually depends on energyv.
The inverse localization lengtha will similarly be a function
of v. Both these dependencies have been neglected h
since the amount of available data is insufficient to make
sophistication reasonable. This is especially clear, if one c
siders the uncertainty in the ‘‘basic’’ model paramete
g, vD8 andN/N.

The above stated increase ofa for increasing energy of
the state, as obtained from the lifetime measurements, i
cates a stronger localization for higher energy states, wh
would be expected. The small value ofa, as obtained from
the heat conductivity, can be seen as an indication that
main contribution to energy transport stems from energ
cally low lying localized modes. This behavior would corr
spond to the fracton model results.

To determine the ac behavior of the heat conductivity,
system of rate equations was solved for the above given
rameters together withaa54. Figure 4 shows the obtaine
frequency dependence of the real part ofk. As can be seen
the heat conductivity increases with the external frequen
as is the case for the electrical conductivity in the case
electron hopping. However, in calculating the frequency
pendence of heat conductivity one has to note the fundam
tal difference of it from the frequency dependence of t
electrical conductivity of a system of charged particle
There is a problem in that the temperature gradient inside
probe is delayed relative to a changing temperature at
contacts. To describe such a~time-dependent! process by a
quantityk(v) only makes sense if the retardation is small,
if the temperature change somehow directly effects the in

e.
n

-
ow

TABLE I. The values for the localization parameteraa of a-Si
as obtained by Eq.~B5! using the lifetime values of Scholten. Th
values oft are obtained from Fig. 2 of Ref. 14.

v t 1/(aa)
cm21 ns

150 2 4.0
200 5 3.6
300 5 4.7
400 40 2.8
480 70 2.6
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rior of the sample, and not only the surface. Thus, the re
tion k(v) makes sense only for sufficiently small freque
cies.

The calculations are therefore only valid for thin sampl
As a first approximation one can assume, that the ene
travels 3 atomic distances — according to the above gi
extension of the states — within the lifetime of order 70 n
this gives a lower limit for the velocity of energy transpo
Assuming that this velocity~about 0.1 Å/ns) controls the
‘‘propagation’’ of the temperature gradient, the maximal e
ternal frequency would be 105 Hz for a sample of 1000 Å
thickness.

However, the proposed smallness ofaa for a-Si and other
dense glasses leads to a very small diffusive current.
ohmic current is frequency independent and the incre
with frequency can therefore probably not be seen in th
glasses. But the current should at least stay constant
increasing frequency, in contrast to the diffusive model
Allen and Feldman. This could provide an additional way
experimentally distinguish between these models — a
from the lifetime behavior.

VI. COMPARISON BETWEEN ELECTRON AND PHONON
HOPPING

There are three basic problems relating to the derived
equations and the considered hopping current: particle n
ber nonconservation, energy nonconservation, and nonin
ance of the hopping current with respect to coordinate tra
lations. These are discussed in the following paragraphs

~i! In contrast to electron transport~which conserves the
electron number!, Eq. ~43! does not conserve the total num
ber of optical phonons

d

dt(m nm
~1!~ t !52(

m

nm
~1!~ t !

tmNm~11Nm!
. ~53!

FIG. 4. The heat conductivity in dependence on external
quency of the temperature gradient. The mean temperature is
sen as 4\vD8 /kB and the localization parameter asaa54. All
other parameters are as given in the text. The calculation used
tems of 1000 optical oscillators and averaged over 100 diso
configurations.
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The particle number nonconservation is due to the deca
optical phonons into acoustic ones. In a disordered sys
the effective relaxation timetmNm(11Nm) is a random
quantity and depends onm. Thus, the decay of optica
phonons does not have an exponential character. Howe
for weak disorder, when the inverse relaxation time may
replaced by an average quantityt̄21, the decay become
exponential

N~ t !5N0 exp~2t/ t̄ !, ~54!

1

t̄
5 K 1

tmNm~11Nm!L , ~55!

N~ t !5(
m

nm
~1!~ t !. ~56!

The angle brackets indicate the configuration average.
concrete expression~41! for tm describes the decay proce
of an optical phonon into two acoustic phonons and is ap
cable only in the case of a sufficiently small gap between
frequencies of optical and acoustic modesvm,2vD8 . For a
large gapvm@vD8 an optical phonon has to decay into se
eral acoustic phonons. In this case for weak anharmoni
the lifetimetm will be sharply increased and one can expe
that tm}exp(vm

2 /v0
2), where the characteristic frequencyv0

is proportional to the anharmonic constantfm
qq8 , which gov-

erns the interaction between optical and acoustic vibratio
The presence of optical phonon decay strongly influen

the hopping transport, especially in large systems and
large times. The problem is that the subsystem of opt
phonons is not closed, but loses particles to the acoustic
system. Therefore, equations of the form~43! or ~45! do not
describe the stationary state at large times and for large
tems, andnm

(1)(t)→0 for t→`. The stationary state can onl
be obtained by taking the transitions from the acoustic i
the optical subsystem into account. The characteristic tim
these reverse transitionstm8 is large and satisfiestmNm(1
1Nm)5tm8 (11Nm)2. Thus, the transport equation in th
form ~43! describes the heat conduction of a system, if
traveling time of the particle~optical phonon! through the
sampleDt is smaller thantm8 . If tm,Dt,tm8 , the heat con-
ductivity calculated by Eq.~43! starts to decrease with in
creasing dimension of the sample.

The term withtm
21 in Eq. ~43! actually has an analog in

electron transport in disordered systems. The correspon
contribution to the electronic transport equation occurs
hopping transport in the presence of trapping. In this case
electrons are gradually captured in trapping centers and c
to contribute to the current. The stationary current in su
systems with large sample dimensions~sample thickness is
larger than the distance covered until trapped! is controlled
by thermal ionization of the trapping centers.

Equation~43! also describes the process of transition
equilibrium of the subsystem of optical phonons, excite
e.g., by infrared irradiation~then the term“b has to be
omitted, of course!. Strictly speaking, Eq.~43! is applicable
to those cases of optical excitation only, where the phon
system affected by irradiation only slightly deviates fro
thermodynamic equilibrium. For large deviation nonlinea
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8634 PRB 59T. DAMKER, H. BÖTTGER, AND V. V. BRYKSIN
ized equations had to be used. There are two energy dis
tion channels driving the system to thermodynamic equi
rium. The first is connected with the direct decay of optic
phonons into acoustic ones~i.e., the termtm

21). The second
channel is caused by hopping of optical phonons betw
sites with a gradual loss of energy up to the minimal va
vmin , followed by the direct decay of optical phonons wi
vmin into acoustic phonons. The relation between these
channels is governed by the ratiotm /Gm8m

21 , i.e., the ratio
between the time of direct recombination and the time
hopping events. If this ratio is small, then direct transitio
prevail. Then, if the sample has been excited by monoch
matic light with the frequencyv, the relaxation has expo
nential character exp(2t/t), and the relaxation time equa
tm(vm5v), i.e., is proportional to exp(v2/v0

2). If, on the
other hand,tm /Gm8m

21 is large, the relaxation proceeds in tw
stages. At first, the energy relaxation takes place by hopp
inside the subsystem of optical phonons from sites with p
non energy\v to finally sites with\vmin . In this stage the
relaxation in a strongly disordered system has a marked n
exponential character due to the large spread of hopp
times ~continuous-time random-walk theory!. The duration
and character of the relaxation in this stage depends on
exciting light frequencyv. The second stage of the rela
ation consists of direct transitions fromvmin in the optical
subsystem into acoustic phonons. It has exponential cha
ter and does not depend on the light frequency.

~ii ! The second fundamental difference of phonon tra
port as compared to electron transport consists in the f
that in studying heat conductivity the relevant quantity
the energy current, whereas for electron transport it is
particle current. However, Eq.~43! does not conserve
the total energy of the optical phonon subsystem@(d/
dt)(m\vmnm

(1)(t)Þ0# even if the direct decay of optica
phonons is neglected (tm→`). The cause of this nonconse
vation is the inelastic nature of the elementary hopping p
cesses, which are accompanied by absorption or emissio
acoustic phonons@cf. Eq. ~42!#. The processes with emissio
of an acoustic phonon are more probable, than those
absorption. Therefore, successive hops of an optical pho
lead to a decrease of its energy, the loss being transferre
the thermostat~the subsystem of acoustic phonons!. This dis-
sipation lasts until the energy of the optical phonon reac
the lower limit of the spectrumvmin . Here, a balance be
tween hops with absorption and emission of acou
phonons is attained and no energy is dissipated, provide
course, that there are no decay processes of optical
acoustic phonons (tm→`). In this sense, the lower spectr
limit of optical phonons plays a role similar to the value
the chemical potential in electron transport. In this final
gime all hopping events take place between sites, which h
an energy in the interval betweenvmin and vmin1Dv. For
large temperatures the Debye frequencyvD8 characterizes
the inelastic energy of a hop in which one acoustic phon
takes part and accordinglyDv'vD8 . For low temperatures
kT,\vD8 the width of the energy bandDv carrying the
current depends on the temperature and, especially,Dv→0
for T→0, because the characteristic energy for the hopp
transitions is of the orderkT.
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To describe the dependence of the heat conductivity
the concentration of localization centersn one may make use
of percolation theory. The corresponding basic relation
the heat conductivity isk}exp(22aRc), wherea21 denotes
the radius of the localized state andRc is the typical hopping
distance. This distance is — apart from a numerical factoh
— equal to the mean distance between sites lying in
energy interval betweenvmin andvmin1Dv. If the density of
states of optical phonons is a constant in the interval fr
vmin to vmin1Vmax, thenRc5h(nVmax/Dv)1/d, whered de-
notes the spatial dimension. At low temperatureskT
,\vD8 , the characteristic hopping distance depends
temperature~cf. the Mott law for low-temperature electroni
hopping conductivity!.

~iii ! The presence of energy dissipatio
@(m\vm(dnm

(1)/dt)Þ0# for hopping transitions of optica
phonons leads to the third serious difference for the calc
tion of heat conductivity in contrast to the electronic elect
cal conductivity. The problem is that the expression~7! for
the heat current density

s5
1

V(m Rm\vm

dnm
~1!~ t !

dt
~57!

is not invariant with respect to a change of the origin of t
coordinate systemRm→Rm1R0 , whereR0 denotes an arbi-
trary radius vector. Under these circumstances the rela
~57! requires to be stated differently:

s5
1

V(m Rm\H vm

dnm
~1!~ t !

dt
2

1

N(
m8

vm8

dnm8
~1!

~ t !

dt J ,

~58!

whereN now denotes the number of localization centers. T
relation ~58! is invariant with respect to translationsRm
→Rm1R0 . We note that we already had to establish t
invariance of the transport equations~43! with respect to
translations. However, in the static limit, it does not descr
the transport in terms of the combinationdmm
2\vmRm“b, the analogous notion in electron transport b
ing the electrochemical potential in the case of a small
viation from the thermodynamic equilibrium. Accordingly
even if tm→`, Eq. ~43! does not fulfill Kirchhoff’s law in
the random network of resistorsGm8m

21 , as it is the case for
electron hopping. One has to additionally include electrom
tive forces between all pairs of sites in the equivalent el
trical scheme@see Fig. 1~b!#.

These difficulties with the invariance relative to a trans
tion of the coordinate system for the calculation of heat c
ductivity in a system of localized phonons are a matter
principle. The nature of the problem lies in the choice of t
interaction Hamiltonian with the ‘‘external field’’“b,Hb

O .
For a translation of the origin of the coordinate system t
Hamiltonian term changes according to

Hb
O→Hb

O1
R0“b

b (
m

\vmcm
† cm . ~59!

This noninvariance is closely connected with the circu
stance, that it is very difficult to separate the notion of t
‘‘force’’ “b — the temperature gradient — from the c
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ordinate dependence of the temperature itself. As a result
a translation Rm→Rm1R0 the energy of the phonon
(m\vmcm

† cm obtains the additional factor (11R0“b/b).
This change describes the displacement of the sample
whole by the vectorR0 in an inhomogeneous temperatu
field. For a position dependent temperature by-effects oc
such as, e.g., a spatial variation of the heat capacity~through
the temperature variation!. In a phenomenological derivatio
of the equations for the heat conductivity, these effects
neglected.24 In the kinetics of electrons the right limiting
procedure is to first let the volume of the system go to infi
ity, and only thereafter the time~measured relative to th
moment the electric field is turned on!. If, on the other hand,
a thermal deviation from the state of thermal equilibrium
considered, one has to be very cautious in the transition t
infinitely large system, because the linear approximation
the ‘‘force’’ “b has to assume, that the dimensionless
rameterL“b/b remains small (L denotes the linear dimen
sion of the system!.

VII. CONCLUSIONS

We investigated the behavior of localized vibration
states which anharmonically interact with extended sta
~acoustic phonons! under the assumption, that the anharm
nicity is weak and can be treated perturbatively. Furth
more, we assume, that system is exposed to a temper
gradient and derive rate equations for the occupation n
bers of the localized states in the Markov limit and in line
order in “b. Our model is rather generic, in that it ca
accommodate quite arbitrary dependencies of the an
monic ‘‘constants’’f on their indices~except for some re-
quirements having to do with the assumed translation inv
ance of certain terms!. They can be arbitrary functions of th
frequencies of the interacting modes. A restriction of t
model is its applicability to the high temperature regim
only, i.e., temperatures above the plateau region, since
level systems have been neglected.

For a certain — rather simple — choice of the anh
monic coefficients, we try to catch the generic behavior
glassy systems. We solved the rate equations numeric
and obtained analytic expressions for a limiting ca
~‘‘dense’’ systems!, which compare very good with the nu
merical results. The lifetime of localized modes increa
with the mode frequency in accordance with the fracton h
ping model~but following a different functional dependenc!
but in contrast to the diffusive model of Allen and Feldma
The increase of the heat conductivity with temperature
reproduced as well.

Another result is the ac behavior of heat conductivity. It
shown thatk slightly increases with the external frequenc
and in practice will probably be seen as constant. This is
contrast to the model of Allen and Feldman, which predic
decrease ofk with frequency. However, the situation here
not fully clear yet. It is not certain how the calculatedk(v)
of Refs. 8 and 22 are to be interpreted, since the authors
omitted some terms, which do not contribute in the limitv
50. But, a molecular dynamics simulation23 of a similara-Si
model also shows a decrease ofk with frequency. This de-
crease is therefore perhaps an artifact of the specific m
structure and not a generic property of the model of diffus
or
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transport of nonpropagating modes. The hopping beha
predicted in this paper is possibly not seen in the simulati
because a localization radius of 3 atomic distances~see Sec.
V! would be of the order of the sample size. These proble
need further attention and careful scrutinization.

Finally, the phonon hopping is formally compared to t
known electron hopping and the essential differences are
cussed. These are mainly particle number nonconserva
energy nonconservation, and difficulties regarding the ex
nal field treatment of nonequilibrium.

The particle number nonconservation would require o
to consider a production term in addition to the decay term
optical phonons in order to describe the hopping heat c
ductivity of very thick samples. The thickness here is det
mined by the ratio of the travelling time of an optical phon
through the sample to the decay or production rate. To
low this program, one had to take into consideration the
ergy transport within the extended phonon subsystem. Mo
over, the relaxation behavior differs strongly depending
the ratio between decay and hopping rate.

Due to the energy nonconservation of hopping eve
~from the perspective of the localized phonon subsystem! the
energy transport through hopping takes place within an
ergy band near the lowest localized mode frequency i
sufficiently large system. The width of this band becom
temperature dependent for sufficiently low temperatures.

The difficulty to separate the temperature gradient, wh
acts as an external ‘‘force’’ driving the current, from th
coordinate dependence of the temperature itself leads to
noninvariance under translations of the expressions for
hopping current.

APPENDIX A: NONEQUILIBRIUM AS AN EXTERNAL
FIELD

The studied nonequilibrium system is considered to
thermodynamically described by a~given! temperature field

b~x,t !5b1eivt
“b•x. ~A1!

Note that the same symbolb is used for several quantitie
~e.g., mean inverse temperature, time- and positi
dependent inverse temperature!. The correct meaning in eac
case is indicated by the arguments and is as well clear f
context.

The statistical operator of such a system only contains
energy densityh(x) and the energy current densitys(x).
These quantities satisfy the local energy conservation r
tion

]h~x!

]t
1div s~x!50. ~A2!

The Hamiltonian and the operator of the total energy curr
are the volume integrals of these operator densities.

According to Zubarev,25 such a system can be describ
by the nonequilibrium statistical operator

r̂~ t !5
1

Q
expH 2eE

2`

0

dt8 eet8E d3xb~x,t1t8!h~x,t8!J .

~A3!
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Time arguments of operators in round brackets denote
~at h) and in the following the Heisenberg representatio
The limit of e→10 has to be taken after the thermodynam
limit and will not be explicitly stated in the following.Q is
the normalization factor, i.e., a~generalized! partition func-
tion.

Integration by parts and making use of Eq.~A2! yields

r̂~ t !5Q21expH 2E d3xb~x,t !h~x!

1E
2`

0

dt8 eet8E d3x“b~x,t1t8!•s~x,t8!J ,

~A4!

where the time derivative of the temperature has been
glected, as well as any boundary terms.

Insertion of Eq.~A1! leads to the expression

r̂~ t !5Q21expH 2bH1E
2`

0

dt8 eet8Ŝ~ t8!•“b~ t1t8!

2E d3xh~x! x•“b~ t !J . ~A5!

Up to linear order in the temperature gradient, this yields

r̂~ t !'
exp~2bH !

Q

3H 11
1

bE2`

0

dt8E
0

b

dl eet8Ŝ~ t82 i\l!•“b~ t1t8!

2
1

bE0

b

dlE d3xh~x,2 i\l! x•“b~ t !J . ~A6!

The expectation value of an~arbitrary! operatorÂ with
the statistical operator~A6!

^Â& t5Tr$r̂~ t !Â% ~A7!

is ~omitting the last term!

^Â& t5^Â&eq

1E
2`

0

dt8E
0

b

dl eet8
“b~ t1t8!

b
•^Ŝ~ t82 i\l!Â&eq.

~A8!

The symbol^•••&eq denotes the expectation value with th
equilibrium statistical operator

r̂eq5
1

Qeq
e2bH. ~A9!

The term omitted in Eq.~A8! corresponds to the differ
ence between the statistical operator of local equilibrium
those of equilibrium~in linear approximation in the tempera
ture gradient, of course!

^Â& loc2^Â&eq, ~A10!
re
.

e-

d

where

r loc5
1

Qloc
e2*d3xb~x!h~x!. ~A11!

The equilibrium expectation value of the current operato
zero as well as the expectation value in local equilibriu
This term is therefore neglected in this work and only brie
considered in the paragraph after Eq.~43!.

Applying Eq. ~A8! on S one obtains the known therma
Kubo formula

k5
1

TVE2`

0

dtE
0

b

dle~e1 iv!t^Ŝ~ t2 i\l!Ŝ&eq. ~A12!

The nonequilibrium state of the system will now be tak
into consideration in the dynamics of the system instead o
the statistical operator. To this end, the system Hamilton
H is supplemented by a fictitious external field termHb

t . The
upper indext denotes a possibly explicit time dependence~in
this case of the temperature gradient!. Now, the sumH
1Hb

t determines the dynamics, i.e., the time evolution o
eratorU reads

U~ t,t0!5T expH 2
i

\Et0

t

dt8 ~H1Hb
t8!J , ~A13!

(T denotes the time ordering super operator!, whereas the
statistical operator only containsH ~and is those of equilib-
rium!.

The expectation values obtained in this way will~for
now! be written with an overbar, to distinguish them fro
Eq. ~A8!

Āt5^U†~ t,t0!ÂU~ t,t0!&eq. ~A14!

The first terms of the Dyson expansion ofU with respect
to Hb are

U~ t,t0!'e2~ i /\!H~ t2t0!S 12
i

\Et0

t

dt8 Hb
t8~ t82t0! D .

~A15!

The time argument in round brackets again denotes
Heisenberg representation~with respect toH)

Hb
t8~ t !5e~ i /\!HtHb

t8e2~ i /\!Ht. ~A16!

The expectation value~A14! up to first order inHb reads

Āt5^Â&eq1
i

\Et0

t

dt8 ^@Hb
t8~ t82t0!,Â~ t2t0!#&eq

~A17!

and using the Kubo identity becomes

Āt5^Â&eq1
i

\Et02t

0

dt8E
0

b

dl ^@Hb
t81t~ t82 i\l!,H#Â&eq.

~A18!

The artificial dynamics due toHb is only relevant in the
limit t2t0→`. It holds ~if any of the limits exist!
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lim
t2t0→`

Āt5 lim
s→0

sE
0

`

d~ t2t0! e2s~ t2t0!Āt . ~A19!

Inserting Eq.~A18! and integration by parts yields

lim
t2t0→`

Āt5^Â&eq1 lim
s→0

i

\E2`

0

dt8 est8

3E
0

b

dl^@Hb
t1t8~ t82 i\l!,H#Â&eq.

~A20!

The comparison with Eq.~A8! shows that the nonequilib
rium state can be represented by an external field term~in
linear order in the temperature gradient!, if it satisfies the
condition ~6!.

The time dependence of the temperature gradient~e.g.,
the frequencyv) has to be weaker~smaller! than the inverse
relaxation time in order for the above equivalence to hol

APPENDIX B: DENSE SYSTEMS

A system of localized states where not only the next ne
est neighbors interact but a large quantity of them is
‘‘dense system’’ in the sense of this work. Specifically, t
following shall be the conditions satisfied by a dense syst

~i! There are only a few extended modes:N/N!1.
~ii ! The extended modes lie very low energetically:vD8

!vmax.
~iii ! The interaction range of the localized modes sp

many atomic distances:aa!1.
e

r

r-
a

.

s

Because of condition~i!, there are about three localize
modes per atom. According to condition~ii ! the decay into
two extended phonons is for most of the localized mod
energetically forbidden and the decay current will be om
ted. Condition~iii ! implies, that very many states intera
with any single given state. The diffusive current Eq.~47! is
therefore small and can be neglected. This fully correspo
to the equivalent finding in the electron hopping theory~see,
e.g., Ref. 21! and can be qualitatively understood as follow
The large number of interacting sites leads to an averagin
their mutual influence, such that thedmm become small. The
data shown in Fig. 2 verifies this argument. Furthermore,
averages over the energetic and the spatial disorder wil
taken independently.

Let us first consider the case of low temperatures (kBT
!\vD8) without a temperature gradient. We assume t
only one mode is excited beyond its equilibrium occupatio
The relevant rate equation now reads

d

dt
nm

~1!52
nm

~1!

Nm~11Nm!(m8
Gm8m ~B1!

and the inverse lifetime of modem equals

~tm
h !2154 sinh2~b\vm/2!(

m
Gm8m . ~B2!

The upper indexh indicates, that this lifetime is solely base
on hopping processes~i.e., decay processes have been n
glected!.

Using
Gm8m5AS c

avD8
D 2SNN D uvm2vm8u

3

2vD8vmvm8

exp~22auRm2Rm8u!

sinh~b\vm/2!sinh~b\vm8/2!sinh~b\uvm2vm8u/2!
~B3!
uch

and substituting the sum overm8 by an independent averag
over spatial and energetic disorder

(
m8
→

3N

V~vmax2vD8!
E d3Rm8E

vD8

vmax
dvm8 ~B4!

we obtain in the low temperature approximation

th~v!5S v

vD8
D 2FAS c

avD8
D 2SNN D G21

~aa!3

3p

vmax2vD8

vD8

,

~B5!

wherevm has been replaced by the generic argumentv.
The heat conductivity can be analogously derived fo

dense system. The current density reduces to

s5
1

2V(mm8
Gmm8\~vmRm2vm8Rm8!\

vm1vm8
2

3~Rm2Rm8!•“b. ~B6!
a

In the limit of high temperatures (b\vD8!1) we obtain~if
there is no gap between acoustic and optical phonons, s
that vD85vmin)

k5
kB

a
AS c

avD8
D 2SNN D 6p

~aa!5S vD8

vmax2vD8
D 2

3FcothS \vD8
2kBT D2cothS \vmax

2kBT D G , ~B7!

which is approximately

k'AS c

avD8
D 2SNN D 6p

~aa!5S vD8

vmax2vD8
D 2

2kB
2T

\vD8a
.

~B8!
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