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Energy transport in glasses due to phonon hopping: Lifetime and ac behavior
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Anharmonic interactions between localized vibrational states and extended low-energy phonons can lead to
thermally activated hopping of the localized states. Such a mechanism has been proposed to explain the
thermal conductivity behavior of dielectric glasses and amorphous films above the so-called “plateau tempera-
ture,” i.e., in the high temperature regime. To investigate this transport scenario we derive rate equations for
the occupation numbers of the localized states. Extending our previous model, we calculate the lifetimes of
localized states and find them to increase with the energy of the state, in accordance with recent experiments
as well as with the fracton hopping modghe functional form differs though This is in contrast to another
model for explaining the high temperature behavior of glasses, namely the model of diffusive transport by
nonpropagating modes. Furthermore, the latter model predicts a decrease of the conductivity with increasing
frequency of an ac temperature gradient. In our hopping model, on the other hand, the conductivity is fre-
guency independent or might even increase. This could provide an additional approach in order to experimen-
tally distinguish between these two models. Moreover, essential differences to electron hopping are discussed,
including particle number and energy nonconservation, which would correspond to charge nonconservation in
the electron case. These lead to some intricacies which have to be considered in deriving the current theory.
[S0163-18299)01213-9

[. INTRODUCTION physically sound decay term, but, since multiphonon pro-
cesses are neglected, the saturation tendency is absent. Sec-
Recently, the existing theoretical frameworks to explaintion Il briefly explains the nonequilibrium treatment of the
the high temperature behavior of heat conductivity in glassegxtended modes. The rate equations for the occupation num-
have been reconsideréd,specifically the fracton hopping bers of the localized modes are derived in Sec. IV. Section V
model by Orbactet al3>~" and the model of diffusive trans- shows the obtained results concerning the lifetime of the
port of nonpropagating modes by Allen and Feldrfi@The localized modes and the ac behavior of heat conductivity.
debate between these two models centers around the lifetinfd!® parameters are chosen wtSi in mind. We find, as
of high-energy vibrational modes in dependence on the mod@xpected, an increase of the Ilfe_tlme with the localized m'o<'je
frequency. The diffusive transport model predicts a decreasgeduency. Another result is the increase of heat conductivity
of the lifetime with increasing mode frequency and the hopIn a@n ac temperature gradient in the hopping system. This
ping model asserts an increasing lifetime. While the diffusivecould provide a way to experimentally distinguish between
model is supported by simulations on structuse®i models  hopping heat transport and the diffusive mechanism pro-
(of up to 4000 atoms to dafd, as well as large 1D simula- Posed by Allen and Feldméit. Finally, in Sec. VI the es-
tions, the hopping model behavior is supported by experis?”t'aﬂ differences between electron and phonon hopping are
mental evidencé!~ discussed.
To further elaborate on the differences between the hop-
ping and the diffusive model we present calculations based Il. THE MODEL SYSTEM
on our hopping modéf'® which is — on the one hand —
less specific than Orbach’s model, in that it considers more
or less unspecified localized modes, rather than fractons, but We study the behavior of localized vibrational modes
— on the other hand — goes beyond the fracton hoppingwhich will be called “optical phonons,” irrespective of
model, in that it can explain the saturation tendency of thgheir origin), which interact anharmonically with extended
heat conductivity at high temperatures. phonongwhich will here be called “acoustic phononsand
We study a system of localized vibrational modes, whichare subjected to a temperature gradient. The mechanism
anharmonically interact with extended phonons and focus oproper which leads to phonon localization is not explicitly
the localized mode contribution to energy transport due teonsidered. It is assumed that there is a mobility edge
thermally excited hopping. This transport mechanism is asseparating the spectrum of extended mostisfying w,
sumed to determine the high temperat(ire., above the pla- <w., characterized by the indexand the wave vecton)
teau temperatuyeheat conductivity behavior. In Sec. Il the from the localized modes«(,,>w., characterized by the
model system is introduced, which differs from the former*site” index mand the localization cent®,,). The highest
model of Refs. 15 and 16 in that it allows to incorporate afrequency of the extended phonons is in the following de-

A. Hamiltonian
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noted as Debye frequeneyy. . There may or may not be a A\

gap between the frequencies of extended and localized HS= e > hogRmChHem, 8

phonons. "

The model Hamiltonian Jo

= hwg—blb, 9
H=Ho+Hy+Hy+H,, (1) % “a7gg "o ©

is decomposed into the harmonic contribution Vg P
ng—i7 > ﬁ(bgﬂdzbqﬂlz).@o- (10

Ho=>, fwgbib,+ >, hwycic )

4G a4 memem Possible anharmonic contributions have been omitted.

and the anharmonic terms of third order in the displacements ) o
B. Anharmonic coefficients
H.— a9’ (pt+b_ (b, +b_..)(ch+c @3 _ Egtimates o_f the anhar_monic coefficie_nts vv_iII be derived
1= 2 S d o) (B @) (CntCm)s (3 in this subsection, mainly in order to obtain their dependence
on the parameters. Assuming a purely pairwise interaction

potential between the atoms, i.e., a potential energy of the
Ho= 2 ¢ (bi+b_g(chten(Cytem), @ form

mm’ g

maq’

1
V=32 V(n=r), (11

Ha= 2 %99 (bl+b_g) (b}, +b_q)(bl,+b_g). vt

1

qa’q
(5) the expansion into third order in the atomic displacement

Here, b and b, represent the creation and annihilation op-]tjc')r_mrI R, yields an interaction tensor of third order of the
erators of extended phonons, Whererq{$ and c,, denote
those of localized phonons. abc abc

H, describes the interaction between two extended modes V= 20 A= 8m ) (Sie—Smn). (12
and one localized modé], the interaction between one ex- (D)
tended mode and two localized modes, &hdbetween three Here,r, is the position of atonh, R, its rest position, and the
extended modes. The corresponding term with three locathird order potential energy term reads

ized phonons is omitted since the expected smallness of tha/3!)s,, ,l,,zabcvﬁ‘?ﬁ,uf‘u:’,uf,,_ The tensoA is antisymmet-

interaction ’ coefficients. The anharmonic CoefﬁCientSriC in the atomic site indices and fu”y Symmetric under per-
999, $39 andg] . are assumed to be small and subse-mutations of the Cartesian coordinatgsb, andc.
quently used as expansion parameters for a perturbation the- The displacements are now expressed by the normal mode

oretical treatment. coordinates
The nonequilibrium situation is dealt with in accordance
. . . 16 _
with our earlier study of phonon hoppifg®i.e., the tem u=> eU;, (13)
J

perature gradient is treated as an external field. The obtained
results are then correct up to first order in the temperature herei both dm. th he ei
gradient. The external field yields the additional tehﬂg in  \Vherej runs over othg %n m, thee, are the eigenvectors
the Hamiltonian satisfying the conditidsee Appendix A In site representation an

T TR
P VA1) .:[bq+b_q i (14
plHgHI=—5—"S, ©) Vel +en  if j=m.
where S is the energy current operator agE 1/kgT the The eigenvectors of the localized states are taken to be
inverse temperature. The upper indeat H;; indicates the
parametric time dependence, due to the time-dependent tem- = | Simen (15)
perature gradien¥ B(t). This time dependence has to be m 2Maw, M

wea_ker(i.e., the ext_ernal frequenay has to be smallértha_n and of the extended states
the inverse of the time for the system to reach the stationary
state, in order for the above approdtfeatment of nonequi- 7
librium by external field termto be applicable. 8g= "\ /—eiq'Rleq, (16)
The energy current operators for localizéddex O for 2MaogN
optical phonons and extended(index A for acoustic heree, ande, are unit vectors. The atomic mas has
phonong modes and the corresponding external field termgyeen assumed to be site independdhdenotes the number
read of atoms.
Using the fact, that the acoustic phonons have a very long
P=> ﬁmemi(CTmCm)' @ Wavelengthjq|<1/a (with a a typical atomic distangeone
m dt obtains after some algebra
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. IIl. THE EXTENDED MODES IN NONEQUILIBRIUM
#expli(q+q') Ry [wqwq: Q

ac’\N oy In order to determine the nonequilibrium state of the ex-
(17) tended phonons the expectation valgtatistical mechanical

_ o _ average in the nonequilibrium situatjon
Here,a is the mean atomic distan¢the “lattice constant’,

V=Na® the total vplume of the systerp, the mass Q(_ensity, an=<bg,K,2bq+K,2> (22

c the sound velocity and/ an effective anharmonicity pa- . I )
rameter(essentially the configurational average of the scalalVill be calculated. The nonequilibrium state of the acoustic
product of the tensoA with the mode eigenvectors, and ~ Phonons is taken into account by treating Ef0) as an
&) external field term. This means we have to obtain
Analogously, one obtains

1
Nge(t) = STr(e™ AHo T HIUT(H)b] g w2V (1))

32 ;
. + Ry

P 4 (i expli g (Rgn Rm)/2) 29

31V 2p a‘c . . . iy .

in the limit t—oo. Here,Z is the partition function and the
g time evolution operator reads
X exp(— a|Rpn—Ru|), (18 _ A
Om@ny U(t)=exp(—i(Hy+H,+ Hﬁ)t/ﬁ). (29

where it is assumed that the=m’ term is determined by Here, it has been assumed, that the acoustic phonon sub-

the same effective parameter Furthermore, then#m’  system is unaffected by the state of the optical phonon sub-
terms are assumed to fall off exponentially with a parametegystem.

a as an inverse localization length. Tidefunction expres- Now, we obtain in Heisenberg representation
sion (15) for the localized modes would yield a strong de- _
pendence oib?nm, on the mode indicem andm’, which it d | A Lt

. . : — =—[Ho+H,+H .
would be questionable to average over to get rid of this de- dt (Pa—wi2Pa+w2) = 7 IHoH+Hat Hig.ba_ 2Dq - 2]
pendencdas has been done to obtain E8)]. However, (25

the Io_callzed moo!es do not truly I|v_e ona smgl_e_ato_m. TheThis yields a differential equation far,, . The calculation of
resulting summation over the atomic sites participating in 3his commutator yields two operator terms of the fofib
localized mode can be seen as an averaging, which mak%% well as terms containing three operators, stemming from

the above assumptions reasonable. . . the commutator witlH,. The time derivative of these three
Comparing the analogously obtained expression for the

interaction coefficient of three extended bhonons operator terms is subsequently calculated too, leading to four
P operator terms in addition to the three operator terms. These

four operator terms are already second order in the anharmo-

3/2

PLE —4 [ 7} Voquq g s(q+q’+q’) (19  nicity (throughH,) and their expectation value can be cal-
3! \/l—)\ZP 2¢c3 culated withH,, i.e., the Wick theorem can be applied and

the four operator terms are reduced to ¢(eem of products

of two operator terms. The differential equations thus ob-
tained are then expanded into zeroth and first order in the
temperature gradient, all higher order terms being omitted.

with the corresponding expressions of other authdos
acoustic phonons in crystalene obtains the estimates

~ 2
y=pc 20 The equilibrium distributiorN,=[ exp(Bfiwg)—1]* is taken
according to GurevicH or as initial condition att=0 and the solution at—« (the
stationary stateis determined.
y~2|yg|pc? (22) This approach finally yields after a lengthy calculation
according to Srivastav. The first of these estimates is re- Ng,e=Ng(K) +i(INg/IB)V B- 5/(,()4_”355(,()_ (26)

markable, since it is an order of magnitude estimation for an
anharmonic parameter, which rests solely on harmonic quartdere, &' () is the derivative of thes-function with respect
tities. The symbolys denotes the mode averaged @gisen 1o its argumentn}® is antisymmetric ing:n5=—n$°. The
constant. kinetic equations fongs, which we obtain, are equivalent to
Since there are as yet no reliable data on anharmonic cdhose given, e.g., by Ref. 19. The first term on the right hand
efficients of amorphous solids, the relati@0) will be used side corresponds to the equilibrium distribution and the sec-
throughout this work. Furthermore, the numerical parametersnd term to the deviation from equilibrium in the sense of
in this paper are chosen witSi in mind, and incidentally, local equilibrium. Note that both of these terms are indepen-
v of silicon is about 0.5 at room temperatdfdThe Grin-  dent on the details of interactiofthey do not contain ab
eisen constant is strongly temperature dependent, and evearameter, for instangewhereas the third term is deter-
changes sign below 100 K for Si. However, the relatidh mined by the actual scattering mechanisms present and,
is not intended to predict a temperature dependence of thmoreover, governs the energy transport within the extended
effective anharmonic coupling constaptbut merely to give  phonon subsystem, as can be seen, if one considers the ex-
an order of magnitude estimate of the energetic scale of thirgression determining the heat conductivity within the ex-
order interactiong. tended phonon subsyst&n
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The hopping contribution, arising from diagrams with two

K= ;2 b nAS%-VT (27) H, interaction points, reads
WvTZD T g
In order to really exploit the term’S, scattering on inho- d am a 12
y p q g a1+ __2 |¢mm’| {5(wm_wm,_wq)

Nm =
mogeneities or the interaction with soft modes and two level dt hopping 2 g
systems should certainly have been taken into consideration

apart from the three phonon scattering. But since all expres- XL+ M) N g = N1+ ) (14 1) ]

sions describing hopping transport are symmetric sunts in + 8 @y— o + ©g)
. R .. m m q
(as will be seen beloyy the discussed term is irrelevant for
the purposes of this work. X[(1+nm) N (1+ng) = Nep(1+n5)Nng]}

(32)
IV. THE RATE EQUATIONS FOR THE LOCALIZED
MODES There are no diagrams with bothHy and aH, interac-
tion point, since this would yield expectation values of odd
The external field terni8) can easily be incorporated into numbers of creation and annihilation operators.

Ho through the substitution The nonequilibrium situation is now taken into consider-
ation by the substitution&8), (29), and(30). The resulting
wn— on(1=Ry-VB/B). (28)  equations are subsequently linearized with respec¥ &

An upper index (0) or (1) will denote the corresponding
guantities of zeroth or first order iN 3, respectively. The
coustic phonons obey

This substitution will be applied immediately before the lin-
earization in the temperature gradient. The formalism ca
therefore proceed as for a system in equilibri(as far as the
localized modes are concerned 0 _N = -1

The nonequilibrium distribution of the extended phonons Ny =Nog={exp( B wg) =1} 33
can also be taken into consideration by inserting certain sub- The sum of Eqs(31) and(32) yield the searched for rate
stitutions in the final phases of the calculation only. Thegquations and read in zeroth order
distribution functionng, of the acoustic phonons is nondi-
agonal due to theS’ term in Eq.(26), which nevertheless d
only has support on a single point, namely=0. This &' anﬁ?)zwﬁ)(efﬁh“’mlz(yr ny)—eftenn() - (34)
term leads finally to a derivative of the anharmonic constants
¢ with respect to their wave-vector arguments, which has to

be taken at=0, i.e., the finally occurring expectation val- +> WP (1+n)n0—wW n@1+n))) (35
uesng, are diagonaland are simply denoted ag). A care- m’
ful analysis yields the substitutions with

|$39|12ng— | 3% |2Ng(1— hwg(1+Ng)Ry- VB) (29) o _2m  efflom—onl2

™M 52 Sink Bh| wm— o |/2)

| S [Ng= | by [PNg(L = Frwg(1+ Ng)

mmn’ mm’
X (Ry+Riy)- V B12), (30) X% |y [20(0q— lom—wm|)  (36)
which are to be applied at the end of the calculations in ordegng

to introduce the temperature gradient. The acoustic phonon
subsystem will therefore be considered to be in equilibrium

T ) N wpm— wg— wgr)
for now. W'=——2 | |2 (@ SR :
Rate equations for the distribution functiog, of the op- 2h%qq’ sinh( B wg/2)sinh( Bhiwg12)
tical phonons will be calculated using the Konstantinov-Perel (37

diagram techniqué’** All diagrams up to second order in Equation(35) is solved by
the interaction$d,; andH, are taken into consideration. Fur-
thermore, the Markovian limit is already taken in the expres- nO=N,={exp Bhoy,) —1} . (39
sions below.

The diagrams which contain two interaction points corre- To first order inV 8 the substitutiong29) and (30) (i.e.,
sponding toH ; describe the decay of an optical phonon intothe nonequilibrium distribution of the acoustic phonpgise

two acoustic phonons and yield the expression rise to the terms
d 2 , _ ﬁmem~Vﬂ _ Rm+ Rm'
i =ﬁ2 | 12 8(0m— wq— wg) Tm +§ R
decay qq (39)

X[NgNg: (14 Nm) = (14 ng) (1+Ng/) ] in the rate equations. The substituti28) contributes the

(31 first order terms
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ﬁw R V 1 ! 1 1
+M+2 T i e (Rn@m— Ry 0y ) - V B. ! : : :
Tm m’ : | , -- W, |
40 m o @:
Here, the inversédirect decay lifetime is L__?____J é :\____?__,'
(a =
1 T

Tm  4h2sinh Bho/2)

S wp— wq—ogr)

X qq’| 2 41
% |#n'| Sinh( Bt wg/2)sinh Bh w:12) 4y
and the symmetrized hopping rate
F _ r
mm ﬁzsinr(,Bﬁwm/Z)sinl"(,Bﬁwm,/Z)
q_|wm_wm’|)
XZ LA SinN Bfiwgl2) (42

The first order rate equations thus altogether read

d n(b
dt"™ = T 7N (1+N,)

nfnl,) n%) FIG. 1. The equivalent electrical scheme faj electron hop-
+E Ui N (1+N,) ping and(b) and(c) phonon hopping. Note the occurrence of cur-
m’ Ni (1+Npy) m m rent sources and grounding resistances in the phonon case. For de-

tails see the text.

W T @
+, Fm,mh¥(Rm—Rm,)~V[g’. (43)
m’ (ioNp(1+Ny) +17r) 0 um

Note that this system of equations is translationally invariant,

whereas the corresponding system without the nonequilib- :Z Limrm(Opm = Spm)

rium acoustic phonons would not be translation invariant. m

Somewhat surprisingly, foF ;=0 (without hopping the

asymptotic distribution is{’=0 even with an applied tem- +E Tt ———(Rm—Rm)-VB.  (45)
perature gradient. This is easily explained, though, since the

external field treatment of the nonequilibrium state ignoredHerew is the frequency of the externally applied temperature
the difference between local and total equilibrium, as isgradient. The energy currett?) can now be split into an
shown above. To account for this difference, one can‘Ohmic” part

either interpretnﬁ,}) as the deviation from local equili-

. L . + Wy
brium, or, add the missing termfg.e., n"{V)—n{P+ N (1 ehm_ =~ 2 T w(mem_ Ry @)
+N)hwRy VB]. 20t
The thermal current?) is unaffected by this difference
0 y o(R—Ry)- VB, (46)

and the quantitiea(}’ could be seen as artificially arising in
the formalism without their having any specific physical and a diffusive part

meaning. However, in order to numerically simulate the sys-

tem of rate equations for@ecessarilyfinite system, bound- iff _

ary conditions have to be specified, which necessitates a n% Lt enft (Ren@m = Rey 0 ) ( Sty = Sptn)
more detailed knowledge. (47)

Introducing the generalized chemical potental,,, )
wheree denotes the dyadic product.

a_ ot We are now in a position to compare the obtained rate
N’ =Nm(1+Npy)e' dpm (449 equations with the analogous expressions valid for electron
hopping (see, e.g., Ref. 31 Figure 1a) shows the usual
the rate equation&3) become Abrahams-Miller network used in the theory of electron hop-



PRB 59 ENERGY TRANSPORT IN GLASSES DUE TO PHONON ... 8631

ping (see, e.g., Ref. 21 and references therelihe fat dots 10* : . . .
correspond to the localization sites. The rate equafii) .

corresponds to Fig.(b). The resistances between the sites 10 r © total current 2000x100 i
are 1I',,, and the capacitances aXg,(1+N,,). These are 10° - o Shmic Current 2000100 |
fully analogous to the electron cagxcept for the now non- +100000x3

electrical units, of courge The last term of Eq(45) gives 3 107 - s © 10000x10 1
rise to the current sources between the sites, which cannot be s‘a °

transformed into resistances, since the resulting current is not ™~y
proportional to the “voltage” difference&w, — dum. Fi- 2 100 |
nally, the decay term gives rise to the grounding resistances

equal tor,,. These differences are discussed in Sec. VI.

Figure Xc) shows a transformed version ofol. It arises, 10" L
if the n{}) (and thus thesu,,) arenot interpreted as devia- }
tions from local equi[iprigm, but as thg true occupa.ttion.num— LS 20 20 60 50 10.0
bers. The local equilibrium expectation values give rise to ao,

the voltage sources. Note, that the current sources are trans- o ) o

formed in this case. They now correspond to the last term of FIG. 2. The heat condut_:tlvny for different localization param-
Eq. (39). Furthermore, the sites inside a heat bath are not afftérsae. The temperature is chosen aBdb, /kg; all other pa-
linked to the same voltage souréelectrodé as is the case rameters are as given in the text. The solid line shows the approxi-
for electron hopping, because the equilibrium occupatior{nation (B7). The first data set is the total conductivity; all others

number does depend on the individual site eneraies only show the Ohmic conductivity. The numbers given in the leg-
P gles. end mearfnumber of optical oscillatoix [number of systems in

the configuration average
V. LIFETIME AND AC BEHAVIOR

All numerical values in this paper are chosen vati in _ why (51)
mind. This is because, even thougtSi is possibly some- 96p3a’c?
what exceptional, it is the only amorphous material for ]
which there are lifetime measurements of high-energy vibrahas been introduced.
tional modes available, of which the authors are aware. ~ Assuming that (2)®V is the volume per extended mode

The density of states of the extended phonons is taken t& _Wave vector space, the maximal wave vectorgis
follow the three dimensional Debye model =327 NIV. Using wp: =cqp one obtains

9(0)=3Nw? 0, . 48) N_ 1 [aop)? 52
N 272\ ¢

Here, NV is the number of extended modes.

The considered high temperature case corresponds
Bhwp,<1. The sinh functions containing acoustic phonon
frequencies can therefore be approximated by their argume
(the first term of their Taylor serigsOne finally obtains

fs an approximation for the relatio\/N.

The numerical values will now be estimated for amor-
Ionus silicon &-Si). Scholten and Dijkhufé use c
=5000 m/s and a localization frequency of w2
X 1.95 THz(corresponding to 65 cit). The spectrum of
states ina-Si reaches up to 70 meV (570 ¢t cf. Ref. 8.

2
i=A(— i We choosewp: < wn,<8wp, . The atomic mass ipa®=M
Tm N/ 10 =28 u(u denotes the atomic mass ynithe anharmonicity
5 ) constanty is estimated apc?. The atomic distance ia
x12—(wm/wDr) +2(me/a)Dr) —30(a)m/wDr) =275 AIZZ
Bh2wpr @SN Bh w,/2) These values vyield A=9.3x10° Hz=7.7x10°
(49) wp’, C/(a(x)DI): 15,MN20015, and kaD/ /a

=0.6 W/(m K) (the unit of heat conductivity in the numeri-
cal calculations

The total number of localized modes is three times as
large as the number of atoms in the considered ¢asly a

for oy <2wp: (1/7,,=0 otherwis¢ and

B c |\ few percent of the modes are extenfesince the localized
Linrm=A a wp N modes will have significant amplitude even several atomic
distances from the localization center, the localization expo-
(wm_wm,)ze—m\Rm—Rmrl nenta can be assumed to be small in relation to the inverse
X . ) atomic distance &. Appendix B elaborates upon expres-
Bl wpr oo SN A om/2)SINK S w1y 12) sions for the lifetime of localized modes and the thermal

(500  conductivity in systems witlva<1.
To assess the quality of the estimates obtained in Appen-
for |wym— om|<wp: ('mm=0 otherwisg, where the quan- dix B, Fig. 2 shows some calculations efusing the param-
tity eters fora-Si as cited above. The relatidB7) yields a rea-
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T T : TABLE I. The values for the localization parameteat of a-Si
as obtained by EqB5) using the lifetime values of Scholten. The
values ofr are obtained from Fig. 2 of Ref. 14.
~ 10 ™) T 1/(aa)
QEQ cm™! ns
Ea 150 2 4.0
F 200 5 3.6
S s o 300 5 47
~ (m]
vy o 400 40 2.8
o o & 480 70 2.6
o o
O <>
O 1 <> 1 1 1 1 1
0 6 7 8 distances appear realistic. It is furthermore noteworthy, that

3 4 5
T/(thwy/ky) all parameters have been used as given, without choosing
special valuegfitting). Especially, only rough estimates have
FIG. 3. The heat conductivity in dependence on temperaturepeen used for the anharmonicity paramegerthe localiza-
The parameteaa is chosen as 4, all other parameters are as giveion edgewp:, and the fraction of extended modag3N.
in the text. The solid line shows the approximati®v). The dia-  varying these parameters, the lifetime and heat conductivity
monds show the total conductivity, numerically obtained by aver-egits can be brought into better agreement. For instance,
aging over 100_systems. of 2000 o_S(_:iIIators each. The squares Sho[We (probably unrealistic decrease ofy by three orders of
the corresponding Ohmic conductivity. magnitude yields coinciding values foad) (then about
1/130). However, a systematic adaptation of the parameters
sonable estimate of the Ohmic current even for laage  to the experimental values is certainly premature, since only
But, the magnitude of the diffusive current increases w&ith  few measurements of the lifetime are available, and with
and renders the estimate invalid for large valuesef For  uncertain error bars at that. The lifetime of the localized
sufficiently largeaa the total current should decrease expo-states ina-Si has been measured by Scholten at five frequen-
nentially as in percolation theory. cies, where there are given very large error bars for the high-
The numerical data points, here and in the following, areest frequency states, essentially indicating, that the values
obtained as follows. A three dimensional box is filled with give only the order of magnitude. We are not aware of fur-
localization sites of random energy and location. The sitesher such measurements.
within a 10% slice on two opposing faces of the box are The density of stateg(w) usually depends on energy.
taken to constitute the heat baths, i.e., th#ir, are fixed.  The inverse localization length will similarly be a function
The system of rate equatiorid5) is then solved and the of w. Both these dependencies have been neglected here,
energy curreni7) (denoted as total currents calculated, since the amount of available data is insufficient to make the
along with its componentbEgs. (46) and (47)]. Actually,  sophistication reasonable. This is especially clear, if one con-
there is a third component to the total current, arising due tgiders the uncertainty in the “basic” model parameters
the decay terms. This is discussed in Sec. VI. The numerica), wp, and A/N.
calculations showed, however, that it is negligible3(0% of The above stated increase @ffor increasing energy of
SP) for the parameter values used here. The next step is tthe state, as obtained from the lifetime measurements, indi-
carry out a configurational average. cates a stronger localization for higher energy states, which
As expected, the temperature dependence & practi-  would be expected. The small value @f as obtained from
cally linear as shown in Fig. 3. There is no saturation behavihe heat conductivity, can be seen as an indication that the
ior in this model, since multiphonon processes are neglecteghain contribution to energy transport stems from energeti-
in contrast to our former modét:*® cally low lying localized modes. This behavior would corre-
Very small ae would imply the numerical solution of spond to the fracton model results.
very large systems to obtain meaningful results, because the To determine the ac behavior of the heat conductivity, the
interaction range between the oscillators is large. The followsystem of rate equations was solved for the above given pa-
ing calculations rest therefore on the approximate solutiongameters together witha=4. Figure 4 shows the obtained
derived in Appendix B. frequency dependence of the real parkofAs can be seen,
Exploiting Egs.(B5) and(B8), the parameterda) is cal-  the heat conductivity increases with the external frequency,
culated fora-Si. The valué® x/T=6x10"3 W/mK? leads as is the case for the electrical conductivity in the case of
to (ae)~1/13. The measurements of Scholtepield life-  electron hopping. However, in calculating the frequency de-
times between 1 and>70 ns for the states between pendence of heat conductivity one has to note the fundamen-
150 cmi! and 480 cm'. The values lead toaa)~1/3 tal difference of it from the frequency dependence of the
(cf. Table ), where this quantity somewhat increases withelectrical conductivity of a system of charged particles.
increasing energy of the stat@except for the value at There is a problem in that the temperature gradient inside the
300 cm'l). probe is delayed relative to a changing temperature at the
These two values are of the same order of magnitude, budontacts. To describe such(@me-dependentprocess by a
show a significant difference nevertheless. Above all, weguantity«(w) only makes sense if the retardation is small, or
note, that localization lengths of the order of 3 to 13 atomicif the temperature change somehow directly effects the inte-
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3.0 - . - - The particle number nonconservation is due to the decay of
optical phonons into acoustic ones. In a disordered system
the effective relaxation timer,N,(1+N,) is a random
quantity and depends om. Thus, the decay of optical

S20f o o © A phonons does not have an exponential character. However,
3 o © ° © for weak disorder, when the inverse relaxation time may be
<> P
Sm replaced _by an average quantity !, the decay becomes
o4 exponential
IS 1.0 + . —
=~ N(t)=Ngexp(—t/7), (59
<
1 < 1 > 55
0.0 ! 1 ! 1 7_ TmNm(1+Nm) ,
0.0 2.0 40 g 60 8.0 10.0
®/(10"0,)
N(t) =2 n(t). (56)
m

FIG. 4. The heat conductivity in dependence on external fre-

quency of the temperature gradient. The mean temperature is chqhe angle brackets indicate the configuration average. The
sen as 4wp /kg and the localization parameter ase=4. Al concrete expressiofl) for 7, describes the decay process
other parameters are as given in the text. The calculation used SY§F an optical phonon into two acoustic phonons and is appli-
tems of 1000 optical oscillators and averaged over 100 disorde&able only in the case of a sufficiently small gap between the
configurations. frequencies of optical and acoustic modes< 2wy . For a

_ large gapw,> wp, an optical phonon has to decay into sev-
rior of the sample, and not only the surface. Thus, the relaeral acoustic phonons. In this case for weak anharmonicity
tion k(w) makes sense only for sufficiently small frequen-the lifetime 7, will be sharply increased and one can expect

cies. that 7, exp(w>/wj), where the characteristic frequenay

The.calculatlon.s are therefore only valid for thin :sample:s.is proportional to the anharmonic const@‘rﬂ,“' , which gov-
As a first approximation one can assume, that the energ

travels 3 atomic distances — according to the above giver%'(ms the interaction bet_ween optical and acoustic yibrations.
extension of the states — within the lifetime of order 70 ns The presence of optical phqnon_decay strongly influences
this gives a lower limit for the velocity of energy transport the hopplng transport, esp.eC|aIIy in large systems and. for
Assuming that this velocitfabout 0.1 A/ns) controls the. large tmes. The problem is that thg subsystem of o.ptlcal
“propagation” of the temperature grédient the maximal eX_phonons is not closed, bu't loses particles to the acoustic sub-
ternal frequency would be $0Hz for a san;ple of 1000 A syster_n. Therefor_e, equations of the fo_m$) or (45) do not
hickness describe the stationary state at large times and for large sys-
t 'T_| ' . tems, anch)(t)—0 for t—oo. The stationary state can only

owever, the proposed smallnessaaf for a-Si and other .om . o -

e obtained by taking the transitions from the acoustic into

dense glasses leads to a very small diffusive current. Th e optical subsystem into account. The characteristic time of
ohmic current is frequency independent and the increas P ystem . ' o
ese reverse transitions, is large and satisfies,,N,(1

with frequency can therefore probably not be seen in thes ; 2 “mi
glasses. But the current should at least stay constant witif Nm) = 7m(1+Np)". Thus, the transport equation in the
increasing frequency, in contrast to the diffusive model ofform (43) describes the heat conduction of a system, if the
Allen and Feldman. This could provide an additional way totraveling time of the particl€optical phonoh through the

experimentally distinguish between these models — apagampleAt is smaller thanr, . If 7, <At<r,, the heat con-
from the lifetime behavior. ductivity calculated by Eq(43) starts to decrease with in-

creasing dimension of the sample.
The term with,.* in Eq. (43) actually has an analog in
VI. COMPARISON BETWEEN ELECTRON AND PHONON electron transport in disordered systems. The corresponding
HOPPING contribution to the electronic transport equation occurs for
. . . hopping transport in the presence of trapping. In this case the

There are three basic problems relating to the derived ratg|ectrons are gradually captured in trapping centers and cease
equations and the considered hopping current: particle NUMg contribute to the current. The stationary current in such
ber nonconservation, energy nonconservation, and nonlnvaré-ystems with Iarge sample dimensio(rsample thickness is
ance of the hopping current with respect to coordinate tranqarger than the distance covered until trappisdcontrolled
lations. These are discussed in the following paragraphs. by thermal ionization of the trapping centers.

(i) In contrast to electron transpadfwhich conserves the Equation(43) also describes the process of transition to
electron number Eq. (43) does not conserve the total num- gqilibrium of the subsystem of optical phonons, excited,
ber of optical phonons e.g., by infrared irradiatior(then the termV 3 has to be

omitted, of coursg Strictly speaking, Eq43) is applicable

to those cases of optical excitation only, where the phonon
(53) system affected by irradiation only slightly deviates from

thermodynamic equilibrium. For large deviation nonlinear-

d ni(t)
s g MmO
gia (0= 2 T TN

m m
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ized equations had to be used. There are two energy dissipa- To describe the dependence of the heat conductivity on
tion channels driving the system to thermodynamic equilib-the concentration of localization centerene may make use
rium. The first is connected with the direct decay of opticalof percolation theory. The corresponding basic relation for
phonons into acoustic onése., the termr,Y). The second the heat conductivity isexp(—2aR;), wherea™* denotes
channel is caused by hopping of optical phonons betweeHe radius of the localized state aRd is the typical hopping
sites with a gradual loss of energy up to the minimal valugdistance. This distance is — apart from a numerical fagtor
omin, followed by the direct decay of optical phonons with — €gual to the mean distance between sites lying in the

o iNto acoustic phonons. The relation between these tw§NETY interval between i, andwpin+Aw. If the density of
channels is governed by the rat&q}/l—‘fl ie. the ratio states of optical phonons is a constant in the interval from
. ) S mime e i Omin 10 @mint Qmax, thenR= 7(NQ nax/Aw)?, whered de-
betwc_een the time of.dlrec.:t recombmanon a_lnd the tlr’_n_e Ofnotes the spatial dimension. At low temperature
hopping events. If this ratio is small, then direct tranS|t|ons<ﬁwD,, the characteristic hopping distance depends on

prevail. Then, if the sample has been excited by monochrogmperaturdct. the Mott law for low-temperature electronic
matic light with the frequency», the relaxation has expo- hopping conductivity.

nential character exp(t/7), and the relaxation time equals  (ji) The presence of energy dissipation
Tm(0m=w), i.e., is proportional to expf/wp). If, on the  [S #w,(dnd/dt)#0] for hopping transitions of optical
other hand,rmll“;],lm is large, the relaxation proceeds in two phonons leads to the third serious difference for the calcula-
stages. At first, the energy relaxation takes place by hoppingon of heat conductivity in contrast to the electronic electri-
inside the subsystem of optical phonons from sites with phocal conductivity. The problem is that the express{@h for

non energyi o to finally sites with/ w,,;,. In this stage the the heat current density

relaxation in a strongly disordered system has a marked non- 1 dn®(t)

exponential character due to the large spread of hopping s= _E o — (57)
times (continuous-time random-walk thegryThe duration | |

and_ _chargcter of the relaxation in this stage depends on thlg not invariant with respect to a change of the origin of the
exciting light frequencyw. The second stage of the relax-

. . ) . - X coordinate systerR,,— R+ Ry, whereR, denotes an arbi-
ation consists of direct transitions fromy,, in the optical trary radius vector. Under these circumstances the relation
subsystem into acoustic phonons. It has exponential chara&-ﬂ) requires to be stated differently:

ter and does not depend on the light frequency.

(if) The second fundamental difference of phonon trans- 1 dnP(t) 1 dnﬁnl,)(t)
port as compared to electron transport consists in the fact, s= ]—}2 R On T gr NS O gt [
that in studying heat conductivity the relevant quantity is m m’
the energy current, whereas for electron transport it is the (58)

particle current. However, Eq(43) does not conserve whereN now denotes the number of localization centers. The
the total energy of the optical phonon subsyst¢(d/  relation (58) is invariant with respect to translatiorR,,
dt)EmﬁwmnﬁT})(t);&O] even if the direct decay of optical —R,+Ry. We note that we already had to establish the
phonons is neglectedr{,— ). The cause of this nonconser- invariance of the transport equatiof¥3) with respect to
vation is the inelastic nature of the elementary hopping protranslations. However, in the static limit, it does not describe
cesses, which are accompanied by absorption or emission tfe transport in terms of the combinatiorSu,,
acoustic phononkcf. Eq. (42)]. The processes with emission —% w,,R,V 8, the analogous notion in electron transport be-
of an acoustic phonon are more probable, than those withng the electrochemical potential in the case of a small de-
absorption. Therefore, successive hops of an optical phonoriation from the thermodynamic equilibrium. Accordingly,
lead to a decrease of its energy, the loss being transferred &ven if r,,—~, Eq. (43) does not fulfill Kirchhoff's law in

the thermostatthe subsystem of acoustic phonarighis dis-  the random network of resistols_" , as it is the case for
sipation lasts until the energy of the optical phonon reachegjectron hopping. One has to additionally include electromo-
the lower limit of the spectrumw,,. Here, a balance be- tjve forces between all pairs of sites in the equivalent elec-
tween hops with absorption and emission of acoustirical schemdsee Fig. )].

phonons is attained and no energy is dissipated, provided, of These difficulties with the invariance relative to a transla-
course, that there are no decay processes of optical inon of the coordinate system for the calculation of heat con-
acoustic phononsr;—<). In this sense, the lower spectral ductivity in a system of localized phonons are a matter of
limit of optical phonons plays a role similar to the value of principle. The nature of the problem lies in the choice of the
the chemical potential in electron transport. In this final re-jnteraction Hamiltonian with the “external ﬁe|d’Vﬁ,H2_
gime all hopping events take place between sites, which hav€oy 4 translation of the origin of the coordinate system this
an energy in the interval betweedy,, and wmintAw. FOr  Hamiltonian term changes according to

large temperatures the Debye frequengy, characterizes
the inelastic energy of a hop in which one acoustic phonon o o. RoVB N

takes part and accordinglyw~ wp: . For low temperatures Hzp—Hg+ B 2 hwnChCm. (59
kT<fwp. the width of the energy bandw carrying the "

current depends on the temperature and, especislly~0  This noninvariance is closely connected with the circum-
for T—0, because the characteristic energy for the hoppingtance, that it is very difficult to separate the notion of the
transitions is of the ordekT. “force” VB — the temperature gradient — from the co-
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ordinate dependence of the temperature itself. As a result, faransport of nonpropagating modes. The hopping behavior
a translation R,—R,+R, the energy of the phonons predicted in this paper is possibly not seen in the simulation,
S omChcn obtains the additional factor (AR,V3/8).  because a localization radius of 3 atomic distar(ses Sec.
This change describes the displacement of the sample as\A would be of the order of the sample size. These problems
whole by the vectolR, in an inhomogeneous temperature need further attention and careful scrutinization.
field. For a position dependent temperature by-effects occur, Finally, the phonon hopping is formally compared to the
such as, e.g., a spatial variation of the heat capdtiitpugh ~ known electron hopping and the essential differences are dis-
the temperature variationin a phenomenological derivation cussed. These are mainly particle number nonconservation,
of the equations for the heat conductivity, these effects are@nergy nonconservation, and difficulties regarding the exter-
neglected* In the kinetics of electrons the right limiting nal field treatment of nonequilibrium.
procedure is to first let the volume of the system go to infin- The particle number nonconservation would require one
ity, and only thereafter the timémeasured relative to the to consider a production term in addition to the decay term of
moment the electric field is turned Jorif, on the other hand, optical phonons in order to describe the hopping heat con-
a thermal deviation from the state of thermal equilibrium isductivity of very thick samples. The thickness here is deter-
considered, one has to be very cautious in the transition to amined by the ratio of the travelling time of an optical phonon
infinitely large system, because the linear approximation irfhrough the sample to the decay or production rate. To fol-
the “force” VB has to assume, that the dimensionless palow this program, one had to take into consideration the en-
rameterLV 8/ 8 remains small [( denotes the linear dimen- ergy transport within the extended phonon subsystem. More-
sion of the system over, the relaxation behavior differs strongly depending on
the ratio between decay and hopping rate.
Due to the energy nonconservation of hopping events
VIl. CONCLUSIONS (from the perspective of the localized phonon subsystém

We investigated the behavior of localized vibrational €N€rgy transport through hopping takes place within an en-
states which anharmonically interact with extended state§9y Pand near the lowest localized mode frequency in a
(acoustic phononsunder the assumption, that the anharmo-Sufficiently large system. The width of this band becomes
nicity is weak and can be treated perturbatively. Furtheri€mMperature dependent for sufficiently low temperatures.
more, we assume, that system is exposed to a temperature The difficulty to separate the temperature gradient, which

gradient and derive rate equations for the occupation nun@CtS as an external “force” driving the current, from the
bers of the localized states in the Markov limit and in linearc00rdinate dependence of the temperature itself leads to the

order in V3. Our model is rather generic, in that it can noninvariance under translations of the expressions for the

accommodate quite arbitrary dependencies of the anhafl©PPing current.

monic “constants” ¢ on their indices(except for some re-

quirements having to do with the assumed translation invari- APPENDIX A: NONEQUILIBRIUM AS AN EXTERNAL

ance of certain termsThey can be arbitrary functions of the FIELD

frequencies of the interacting modes. A restriction of the

model is its applicability to the high temperature regime

only, i.e., temperatures above the plateau region, since twd

level systems have been neglected. B it
For a certain — rather simple — choice of the anhar- Bxt)=pB+e“VB-X. (A1)

monic coefficients, we try to catch the generic behavior of

glassy systems. We solved the rate equations numericaI[NOte that the same symbd is used for several quantities

and obtained analytic expressions for a limiting case%é'g" mean inverse temperature, time- and position-

" , . : dependent inverse temperatur€he correct meaning in each
(“dense” systemg which compare very good with the nu- C )

i L . . case is indicated by the arguments and is as well clear from
merical results. The lifetime of localized modes increases, ¢

with the mode frequency in accordance with the fracton hop- The statistical operator of such a system only contains the

ping model(but following a different functional dependence ) .
but in contrast to the diffusive model of Allen and Feldman. N¢"9Y densityh(x) and the energy current densitfx).

The increase of the heat conductivity with temperature is-[li—gﬁse quantities satisfy the local energy conservation rela-
reproduced as well.

Another result is the ac behavior of heat conductivity. It is
shown thatk slightly increases with the external frequency, Jh(x)
and in practice will probably be seen as constant. This is in ot
contrast to the model of Allen and Feldman, which predict a .
decrease ok with frequency. However, the situation here is | e Hamiltonian and the operator of the total energy current
not fully clear yet. It is not certain how the calculatefw) are the vqlume mtegralssof these operator densities. .
of Refs. 8 and 22 are to be interpreted, since the authors haye According t(_).ZL_Jbare\?, §uph a system can be described
omitted some terms, which do not contribute in the limit  °Y the nonequilibrium statistical operator
=0. But, a molecular dynamics simulatfdrof a similara-Si

model also shows a decreasesofvith frequency. This de- 7~y _ %exp[ _GJO qt’ eetrJ BBt ()}

The studied nonequilibrium system is considered to be
hermodynamically described by(given) temperature field

+div s(x)=0. (A2)

crease is therefore perhaps an artifact of the specific model
structure and not a generic property of the model of diffusive (A3)
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Time arguments of operators in round brackets denote henghere
(at h) and in the following the Heisenberg representation.
The limit of e— + 0 has to be taken after the thermodynamic 1

3
limit and will not be explicitly stated in the followingQ is ploe= o=° AN, (A1)
the normalization factor, i.e., @eneralized partition func-
tion. The equilibrium expectation value of the current operator is
Integration by parts and making use of E42) yields zero as well as the expectation value in local equilibrium.

This term is therefore neglected in this work and only briefly
~ A1 _ 3 considered in the paragraph after E43).
pH=Q exp‘ f XA N(X) Applying Eq. (A8) on S one obtains the known thermal
Kubo formula

0
+f dt’ ef"fd3xV3(x,t+t')-s(x,t') : 1
- K= — dtf drel HOYSt—iAN) S (AL2)

TV)
(A4)
where the time derivative of the temperature has been ne- The nonequilibrium state of the system will now be taken
glected, as well as any boundary terms. into consideration in the dynamics of the system instead of in
Insertion of Eq.(A1) leads to the expression the statistical operator. To this end, the system Hamiltonian

H is supplemented by a fictitious external field tdﬂp. The
0 ; ) S .
A B et B , upper index denotes a possibly explicit time dependefioe
p(H=Q exp{ BHJFf,wdt e” (") VA(t+t) this case of the temperature gradjentow, the sumH
+H}3 determines the dynamics, i.e., the time evolution op-

_J' d3xh(x)x-V,8(t)]. (A5) eratorU reads
i [t ,
Up to linear order in the temperature gradient, this yields U(t,t0)=Texp{ %), dt’ (H+ H;;)]: (A13)
0
o)~ exp(—BH) (7 denotes the time ordering super opergtovhereas the
p Q statistical operator only contairt$ (and is those of equilib-
rium).
/ € / The expectation values obtained in this way wfifibr
X — Yt —ik + . ; TR
[ B wdt j dre S(t 1AN)-V BT now) be written with an overbar, to distinguish them from
5 Eq. (A8)
— 3 —. . —_— ~
0 ‘“f dXh(x, ~1AA) X Vﬁ“)]' (A6) A= (UT(t, 1) AUt 1)) (A1)
The expectation value of afarbitrary) operatorA with The first terms of the Dyson expansiondfwith respect
the statistical operatdiA6) toHg are
~ ~ ~ . i t ’
(Ar=Tr{p(t)A} (A7) U(t,to)%e("ﬁ)H("0)<1—%J dt’ Htﬁ(t’—to)).
t
is (omitting the last term ° (A15)
(A),=(A)ed The time argument in round brackets again denotes the
Heisenberg representatigwith respect toH)
o [*ar [Pan e YU g i Ayes , i =t
B . e e (S(t"—ihN)A)®A Htﬁ(t):e(llﬁ)Hthﬁe—(llh)HI_ (A16)
(A8) The expectation valugA14) up to first order irH 4 reads
The symbol(- - - )*9 denotes the expectation value with the -
equilibrium statistical operator A= (A)Yeo+ %f dt’ ([Htﬂ/(t’ —to),A(t—tg)])ed
to
R 1 (A17)
pSi=——e A1, (A9) ) . .
Qe and using the Kubo identity becomes

The term omitted in Eq(A8) corresponds to the differ- A (7 ' Hteer A
ence between the statistical operator of local equilibrium and Ac=(A)*H ﬁfto dt fo dx <[HB (t"—ifn) H]A)™
those of equilibriunin linear approximation in the tempera- (A18)
ture gradient, of courge
. . The artificial dynamics due tbi; is only relevant in the
(A)yloc—(Aye, (A10)  limit t—ty—oo. It holds (if any of the limits exist
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lim A;=lims
t—tg— s—0

ye sTA L (AL9) modes per atom. According to conditigin) the decay into
two extended phonons is for most of the localized modes
Inserting Eq.(A18) and integration by parts yields energetically forbidden and the decay current will be omit-
ted. Condition(iii) implies, that very many states interact
with any single given state. The diffusive current E4j7) is
o st therefore small and can be neglected. This fully corresponds
5[ dt’e to the equivalent finding in the electron hopping thetsge,
e.g., Ref. 21 and can be qualitatively understood as follows.
B it _ " The large number of interacting sites leads to an averaging of
Xf dN([Hg™" (t'—iAN),H]A)® their mutual influence, such that tié,, become small. The
0 data shown in Fig. 2 verifies this argument. Furthermore, the
(A20) averages over the energetic and the spatial disorder will be
taken independently.

Let us first consider the case of low temperaturesT(
<hwps) without a temperature gradient. We assume that
only one mode is excited beyond its equilibrium occupation.
The relevant rate equation now reads

fac _ Because of conditiorti), there are about three localized
d(t—tg

lim A= (A)*% lim

t—tg— s—0

—0o0

The comparison with Eq(A8) shows that the nonequilib-
rium state can be represented by an external field t@mm
linear order in the temperature gradignf it satisfies the
condition (6).

The time dependence of the temperature gradiery.,
the frequencyw) has to be weakgismalle) than the inverse
relaxation time in order for the above equivalence to hold. d

(1)
—n = —
dat ™

n'y ST
No(LrNpg mm o B

APPENDIX B: DENSE SYSTEMS

A system of localized states where not only the next nearngd the inverse lifetime of moda equals

est neighbors interact but a large quantity of them is a
“dense system” in the sense of this work. Specifically, the
following shall be the conditions satisfied by a dense system. (M) 1=4 sinf(Bhom2) D, Tim. (B2)
(i) There are only a few extended modag'N<1. m
(i) The extended modes lie very low energeticatly;, The upper indes indicates, that this lifetime is solely based

< Wmax- on hopping processes.e., decay processes have been ne-
(iii) The interaction range of the localized modes spanglected.
many atomic distancesea<<1. Using
2
- :A( c (i/) |wm— @3 exp( —2a|Ry— Ry |) ©3)
T awpr ] \N/ 200 0o SINN BA o W/2)SINN Bh 0 py12)SINN BA| 0n— @y |12)

and substituting the sum over’ by an independent average In the limit of high temperatures@fi wp:<<1) we obtain(if
over spatial and energetic disorder there is no gap between acoustic and optical phonons, such
that wpr= wmin)

> N J &R J 4 (B4)
—_— ’ W
m’ V(wmax—wD,) m wp’ m ) ,
we obtain in the low temperature approximation = kg ( ¢ (i/) 6 / “p’ )
) ) L a \awp N (aa)5\ Omax— ©p’
- 3
N c i/’) (ad)® wmax— 0p- s b
(@) ((u ) A(aw ] N 37wy X | coth = | —coth| ||, (B7)
D D D DkgT 2kaT

(BS)

wherew,, has been replaced by the generic argument
The heat conductivity can be analogously derived for ayhich is approximately

dense system. The current density reduces to
SNy 67 [ wp |7 2KET
K*.A N 5 .
awp (aa) \wmax—wDr ﬁa)Dra

X (Rm—Rm)- V8. (B6) (B8)

(,Um+ Wy

1
5= ﬁ% L i (@R = 0 R )i —— c
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