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Formation of quasiperiodic patterns within a simple two-dimensional model system

A. Quandt and M. P. Teter
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501

~Received 6 August 1998!

We present a simple two-dimensional model system which tends to organize itself in the form of a quasi-
periodic state. The system is composed of one sort of particles only, with mutual interactions that strongly
deviate from the standard Lennard-Jones-type of potentials at intermediate distances. The dynamics of this
system are simulated by using standard molecular dynamics methods for classical systems.
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I. INTRODUCTION

Due to the discovery of quasicrystals1–3 it became very
clear that the~modulated! crystalline and the amorphou
state are not the only possible ways for particles to aggre
into a solid form. However, the way in which the aggreg
tion of the quasicrystalline state takes place is still a puz

One empirical finding which might give a hint about th
mechanisms behind the formation of quasicrystals is the
that, so far, all known quasicrystals are at least binary a
systems.4 The usual way to explain their formation is bas
on Hume-Rotherytypes of stabilization mechanisms~for a
brief discussion see Refs. 5 or 6!.

The most serious drawback in trying to establish t
theory lies in the fact that up to date, all of these consid
ations are basically static: Usually one has to deal with v
large many-particle systems that can only be treated num
cally as long as the ionic cores of the constituent atoms
kept frozen. Consequently the only dynamical part of th
considerations is the structure determination of the crys
lographers, and any major revision of existing structure m
els carries with it the danger that the refined stable struct
might suddenly turn out to break the ‘‘well established
Hume-Rothery rules.

There has also been a long tradition of severe criticism
the Hume-Rothery type of stabilization mechanisms, po
ing out that the formation of metallic systems is primar
based on a delicate balance between pairwise central fo
and volume-dependent terms, which does not necess
have to follow the Hume-Rothery rules.7 This of course
poses another problem: In order to examine such a hyp
esis in practice, it would be necessary to determine the p
wise and volume-dependent potentials very accurately,
by fitting them to preciseab initio data of known elementa
metallic systems and simple alloys, and then run comp
time expensive dynamical simulations for appropria
sample approximants. This has not been achieved to any
stantial extent yet, and consequently the whole chemistr
the binding partners in quasicrystalline alloy systems
mains unclear.

Another problem complicating our understanding of qu
sicrystal formation is the fact that the vast majority of qu
sicrystals maynot be properly described on the basis of pe
fect quasiperiodic tilings. At least, one should take in
account a serious rate of defectiveness. Alternatively,
PRB 590163-1829/99/59~13!/8586~7!/$15.00
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may assume that the formation of these phases is stro
driven by stochastic effects, i.e., by the entropic part of
free energy. This is one of the central ideas behind the r
dom tiling model class~see8 and references therein!. Al-
though there has been considerable progress in unders
ing the growth of random tilings,9,10 it should not be
overlooked that we hardly know anything about the interp
between the various constituents of the free energy du
the formation of alloy systems, which undoubtedly would
the key to explain the formation of quasicrystals.

Being aware of the many severe problems coming w
any attempt to explain the formation of quasicrystals, is
quite natural to resort to simple and controllable model s
tems first, before going into the tedious process of m
realistic simulations. Of course, with the hope that o
might draw useful information from such simplified ap
proaches, but our main results will consist of an illustrati
of how the basic structure elements of a quasiperio
square-triangle-tiling11 formed dynamically in a two-
dimensional model system that is composed of one sor
particles only. To this end, the following section will de
scribe the basic numerical methods used to simulate that
tem. Whereas the remaining sections will deal with the n
merical results, as well as with a discussion of what, in o
eyes, might be important in comparison to real systems.

We close the Introduction by mentioning that the resu
in this paper have been largely influenced by tw
publications,13,14 which demonstated the formation of loc
patterns related to dodecagonal quasicrystals in th
dimensional~3D! model systems. However, we do not thin
that the existence of these papers makes the present s
unnecessary: whether there are much simpler and more tr
parent model systems that show a similar behavior is a n
trivial question, and a serious test of the general findin
documented in Refs. 13 or 14. Besides that, one should
ways keep in mind that there is an elegant and straigh
ward way even to connect icosahedral and dodecagona
der, based on corrugated layers made of distorted
undistorted tiles of a perfect 2D square-triangle tiling.15

II. OUTLINE OF METHODS

The central point in any classical molecular dynam
simulation is the way in which one chooses the class
model potential. As we are interested in the formation
8586 ©1999 The American Physical Society
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PRB 59 8587FORMATION OF QUASIPERIODIC PATTERNS WITHIN . . .
solids well below their melting points, it is quite natural
choose a binding pairwise type of potential. However,
form of the potential should leave us with enough freedom
suppress certain coordination spheres, a process which i
sumed to happen quite often in real metallic systems, ba
on Friedel oscillations of interatomic potentials~for a brief
discussion see Ref. 7!.

For the two-dimensional simulations to be discussed,
consequently chose the following type of potentialsV(r i j ):

V~r i j !5F s0S 4

r i j
12

2
4

r i j
6 D 1(

m
SmGmG3Fs , ~1!

Gm5expF2S r i j 2cm

wm
D 2G , ~2!

Fs5F12
r i j

4

r c
4G 2

, ~3!

where r i j 5urW i2rW j u for particles located atrW i , respectively,
rW j , and r c being a suitably chosen cutoff radius~see also
Table I!.

We notice that the basic potential is of Lennard-Jon
~LJ! type, and indeed all basic units are related to the s
dard unit systems in use for such systems~e.g., see Ref. 12!.
But we also decided to add one or more GaussiansGm to the
LJ potential whenever necessary. The role of these Gauss
is diverse: They can be used to shift minima, to narrow
regime of favorable bond length, or to suppress certain
ordination spheres of stable geometries usually reached
the unperturbed model system. When carrying out ac
simulations, we found that the rational approximation to
Gaussians

exp~2r 2!'
1

~11r 2/121r 4/288!12
~4!

worked very well, especially in speeding up the simulatio
enormously.

Finally we would like to modify the potentials such th
we get rid of the long-range tail of the potential by multipl
ing it with a cutoff factorFs , which adjusts the potential to
go to zero at the cutoff radiusr c . Beyond that radius, the
potential will be set equal to zero. This of course is not
case in Fig. 1. There we extended the range beyond the
off radius, as an easy check that the potential has prop
gone to zero atr c , and then bounced off due to the symme
ric nature of the smoothing factor aroundr c .

The molecular dynamics simulations themselves h
been kept as simple as possible. We took the major rout
from Ref. 12, which should make the present results tra
parent and easily reproducable. Major modifications w
only necessary when implementing the general type of
tentials described above, and in connection with our nee
obtain a formatted input and output from the program.
formatted output was very helpful when checking the resu
restarting the program from previous simulations, and in
der to produce an output that could be read intoMAPLE V. We
used the latter to produce the graphics~of course with the
exception of the diffraction spectra shown below!, but also to
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check the calculation of derivatives based on Eqs.~1!–~3!,
which is a very tedious exercise.

Among the features going into the program, we use
predictor-corrector mover,12 imposed constant temperatu
by velocity rescaling,12 and sped up the calculation of force

FIG. 1. Pictures of the potentials tabulated in Table I.~a!
Lennard-Jones potential~type 1, without bump! and modified po-
tential with two Gaussians added~type 2!. ~b! Modified potential
with one Gaussian added~type 3! and the Lennard-Jones potenti
~type 1! as a reference.~c! Modified potential~type 4!, with a mod-
erately high Gaussian bump added to it. Note that the values o
potential V(r ) and of the interatomic distancesr are in standard
units of Lennard-Jones type of potentials.



d
la
th
t t
fo
b
fo
6
o

i

e
m

t

d
n

th
en
ti
o
n
e
-
ak
li-
e
n

o-

ie

t
t

ly
as

tain
us
ery
a-

any
ste

h-

ch
rt-

out
pes
hed

al
of
less
vo-
We
crys-
we
tty
ple;
ort

e LJ
m

rtain

ing
arly

ian
ess
lar

ced
t

ich
si

ar
n

’’
e of

te a

8588 PRB 59A. QUANDT AND M. P. TETER
and potentials using a linked cell technique as describe
Ref. 12. The volume was kept fixed throughout all simu
tions, and we imposed periodic boundary conditions onto
system. The resulting program was then checked agains
results given in the literature, e.g., concerning results
soft-sphere potentials described in Ref. 12 itself, but also
carrying out a rough travel through the phase diagrams
LJ type of potentials, which are, e.g., described in Ref. 1

The diffraction spectra were evaluated using a program
D. Joseph ~Cornell/MPI Dresden! designed for two-
dimensional systems. The basis for calculating the peak
tensitiesI (kW j ) given a set of mesh points@kW j # in k space is
very simple:

I ~kW j ![N21U(
n

exp~ ikW j•r n
W !U2

, ~5!

whereN is the number of atoms in the unit cell, and the s
of all r n comprises the respective locations of the ato
within the unit cell.

Let us close this section by recalling the features tha
potential chosen according to Eqs.~1!–~3! will lack in com-
parison to realistic metallic systems: First one physical
mension, second all kinds of volume-dependent interactio
which of course is a minor flaw as we kept the volume of
unit cell constant, and third all kinds of angular-depend
interactions. Despite these problems, the model poten
chosen is not very different in nature from other types
potentials that have been used for qualitative studies i
metallic system.17 We explicitly recommend to brows
through the latter monograph,17 not only for the sake of com
parison with the model potentials chosen, but also for m
ing up one’s mind about the astonishing diversity of ‘‘qua
tative’’ model potentials chosen for transition metals, as w
as for Al. This fact illustrates rather nicely the aboveme
tioned technical difficulties in fitting appropriate model p
tentials for realistic intermetallic systems.

III. NUMERICAL RESULTS

The simulations described in this paper were all carr
out at a fixed temperatureT50.15 and a fixed density ofr
50.82, starting from a homogeneous cubic arrangemen
atoms. The optimal time steps for the mover were found
be Dt50.001.

The way in which we determined these values ofT andr
was more or less bytrial and error. One could call it ‘‘vir-

TABLE I. List of potential parameters. The parameters, wh
characterize the basic Lennard-Jones potential and the Gaus
added to it, are explained in connection with Eqs.~1!–~3!. All pa-
rameters must be thought relative to the basic units of Lenn
Jones type of potentials. Pictures of these potentials are show
Fig. 1.

Type s0 s1 c1 w1 s2 c2 w2 r c

1 1.0 2.5
2 1.5 1.2 1.9 0.15 1.0 1.05 0.1 2.5
3 1.0 1.2 1.9 0.15 2.5
4 1.0 0.75 1.9 0.15 2.5
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tual metallurgy,’’ as at the beginning we were just blind
shifting through the phase diagrams trying to produce
many crude samples as possible and looking for a cer
trend which might lead us to quasicrystalline patterns. Th
the material presented in this paper is more or less the v
best of all those crude trials. This situation is quite comp
rable to the few good quasicrystals compared to the m
imperfect alloy samples disappearing in the laboratory wa
baskets over the years.

We usually started our series of simulations within a hig
or low-density domain, seeking to stabilize the~lowest pos-
sible! pressure on the system without creating too mu
structural defects. Let us illustrate this in the following, sta
ing from Table II.

As one can see, the first three simulations were carried
on the same set of 900 atoms, but using quite different ty
of potentials. The first simulation was based on a smoot
LJ potential~see Fig. 1!. The result of the simulation run is
shown in Fig. 2. Obviously, we did not choose the optim
density to fill the simulation box. There are wide areas
holes and structural defects within the sample. Neverthe
such samples are very useful when examining the time e
lution of structural defects, e.g., as described in Ref. 17.
also see that the smoothed LJ sample has a tendency to
tallize in the form of a hexagonal lattice. The reason why
did not show a diffraction pattern for this sample is pre
clear: no crystallographer would ever use such a bad sam
or he would rather cut it into pieces, and carry out some s
of powder diffraction.

For the second sample, we added two Gaussians to th
potential. Their effect was to shift and narrow the minimu
of the potential, but we also used them to suppress a ce
range of bonding distances~see Fig. 1!. Let us have a look at
the results~Fig. 2!. Obviously, the shift of the minimumr min
in the potential forces the particles to longer mutual bond
distances—as a consequence, the simulation box is ne
homogeneously filled.

We also see that the effect of the outermost Gauss
remains to sharpen the minimum, only. In order to suppr
the second coordination sphere of the resulting triangu
lattice effectively, the Gaussian should have been pla
closely to a distance of 1.732r min , which means roughly a

ans

d-
in

TABLE II. Data characterizing the simulation runs. ‘‘Steps
denotes the number of time steps, and ‘‘sample’’ denotes the siz
the system. The label of the potentials refers to Table I. The (r ),
appearing after the number of time steps, is thought to indica
restart from a previous simulation. It should be noted thatall simu-
lations were carried out at a temperatureT50.15 and a densityr
50.82.

No. steps size potential

1 100 000 900 1
2 100 000 900 2
3 100 000 900 3
4 100 000 900 4
5 200 000~r! 900 4
6 100 000~r! 900 4
7 200 000 1600 4
8 300 000~r! 1600 4
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FIG. 2. Stucture and diffraction spectra of the generated samples~I!. The frame to the left contains a clip from within the center of t
sample, comprising about 400 atoms. The lonely ‘‘atom’’ in the corner has been added to mark one of the vertices of the simulatio
order to illustrate the location of the clip within the sample. The box dimensions are given in basic units of length scale for Lenna
potentials. The frame to the right contains the diffraction patterns for a complete atomic arrangement within the simulation box.
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r 52.1, as simple geometrical calculus shows. Such num
should, of course, be taken with a grain of salt—it is ve
unlikely that nature will ever produce perfectly suppress
potentials with such a high precision when forming a so
state. Rather, we should expect a certainwindowof favorable
bond lenghts.18

The placement of the suppressing Gaussian for the t
sample remained at the same place, whereas the shiftin
ward Gaussian was removed. The result is an impressi
high barrier, located approximately at the second coord
rs

g

rd
in-
ly

a-

tion sphere of the triangular lattice for a LJ potential witho
bumps~see Fig. 1!. The result of an MD simulation on suc
a system is documented in Fig. 2: Obviously, the start
cubic lattice mainly goes over into a slightly modulate
form, which could already be seen during the simulati
runs, because the overall pressure went to zero very quic

Such a behavior seems to make sense, as the cubi
rangement is supposed to be a configuration with optim
nearest neighbor bonding, but avoiding the unfavorable s
ond nearest neighbor coordination shell of the triangular
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FIG. 3. Stucture and diffraction spectra of the generated samples~II !. For explanations see Fig. 2.
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tice. Of course the packing density of this systems is con
erably lowered by such an arrangement, and we found
the binding energy per particle used to drop considerabl

The next step in changing our potential is pretty cle
lower the suppressing Gaussian, such that there will b
broader range of favorable coordination shells~see Fig. 1!.
The result is pretty amazing—once again the system c
tracts, but this time, squaresand triangles are formed, and
even better, the arrangment of the particles leads to 12-
symmetric diffraction patterns, as to be expected for anap-
proximantto the square-triangle tiling~see Fig. 3!. We also
found that the binding energy per atom slightly raised dur
d-
at

:
a

n-

ld

g

the formation of this pattern, certainly due to an improv
average local coordination of the atoms.

Now the question arises whether the formation of the
patterns might just be an artifact, which will go away afte
longer simulation period of time. Consequently we extend
the simulation times from 100 000 simulation steps up
400 000 simulation steps~see Table II!. It is very obvious
~Fig. 3! that we found an improvement in the quality of th
samples, rather than a deterioration~Fig. 3!.

An usual problem is created by finite size effects on
results. Here, we can only show that when raising the nu
ber of particles moderately from 900 to 1600, and even a
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FIG. 4. Stucture and diffraction spectra of the generated samples~III !. For explanations see Fig. 2.
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500 000 time steps, we could not observe noticeable cha
in the behavior of the system~see Fig. 4!, other than the fact
that the evolution of the square-triangle patterns proce
somewhat slower than before. Nevertheless, we cannot
clude such finite size effects, and therefore our study m
shed some light on the formation of local square-trian
patterns, but not necessarily on the formation of the qua
rystal bulk itself similar to, e.g., the remarkable results do
mented in Refs. 9, 10.

Let us finally say a few words about the detailed struct
of the diffraction patterns. It might be important to note th
we have suppressed the diffuse background existing in
of the 12-fold symmetric patterns depicted here, just for r
sons of beauty. The existence of such a background in p
ciple points towards a random tiling type of model,19 which
in turn would suggest a random tiling idealization of o
results. However, we would feel unreliable when reco
mending to see the mere existence of this background
hint for random effects influencing our results, for the fo
lowing reason: A more precise look at the inner ring reve
that these peaks are not located at the proper positions
perfect 12-fold symmetric diffraction pattern, but more
less close to them. Consequently, the patterns we see
strictly speaking, only approximants to a proper squa
triangle tiling ~see above!.

Rather we would like to argue on the basis of the obvio
improvement in the intensity of the main diffraction pea
indicated above, which became more pronounced the lon
es
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we ran the simulations: there we could hardly observe
change in the binding energies other than small fluctuatio
while the sample obviously improved its aggregation in t
form of a square-triangle tiling. We think that this is th
strongest indication for entropic effects that we are able
give so far. A more careful examination of diffraction pa
terns and their interpretation for the present system, as
as for a series of improved model systems, must be the to
of future publications.

IV. DISCUSSION

We carried out a series of simulations on two-dimensio
model systems using a family of pairwise model potentia
We showed that, given a certain~empirically determined!
optimal temperature and density, the system evolves in
structure that forms local square-triangle patterns. The
for this process seems to be the ‘‘partial suppression’’ of
second coordination sphere for a triangular lattice in 2D,
usual ground state obtained with ‘‘unsuppressed’’ potenti

It is possible that similar mechanisms may also play
certain role in realistic quasicrystalline systems, as poin
out in Ref. 18. Nevertheless, understanding the real natur
the metallic phase certainly requires a much higher leve
accuracy than the one chosen for this study. Among the m
important features of realistic metallic systems will be a c
tain type of angular dependence and, even more import
the abovementioned delicate interplay between volum
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8592 PRB 59A. QUANDT AND M. P. TETER
dependent interactions and pairwise interactions. This lea
such systems with a nontrivial density dependence, so
thing we completely neglected throughout this study.

There is of course another point that ought to be m
tioned here, and which makes the present study espec
interesting:boron. In fact, any~naive or elaborate! construc-
tion of structure models for icosahedral quasicrystals so
how starts from icosahedral clusters, seeking ways of st
ing them together to form the basic rhombohedral unit c
of the tiling superstructure.4

The surprising fact is that boron does all that—it agg
gates into solid structures based on icosahedral clusters
especially in the form of a unit cell which is only a slight
distorted variant of a prolate rhombohedral unit cell nec
sary to form a quasicrystal, and even the corresponding
late unit cell may theoretically be composed as a network
stable icosahedral and tubular clusters.20 All of this quite
naturally leads to the hypothesis that the quasicrystal
state could be one of the possible modifications of thepure
elementboron.
e
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However, nobody has been able to find this one-eleme
boron quasicrystal so far, and the reason for that is, at l
for the authors of this paper, as amazing as the formatio
quasicrystalline alloy systems themselves. Maybe simu
tions such as the present one in 3D, as already carried o
Refs. 13 and 14, but of course properly taking into acco
the delicate nature of boron bonding, might bring with the
some progress in understanding this interesting problem
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