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Formation of quasiperiodic patterns within a simple two-dimensional model system

A. Quandt and M. P. Teter
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501
(Received 6 August 1998

We present a simple two-dimensional model system which tends to organize itself in the form of a quasi-
periodic state. The system is composed of one sort of particles only, with mutual interactions that strongly
deviate from the standard Lennard-Jones-type of potentials at intermediate distances. The dynamics of this
system are simulated by using standard molecular dynamics methods for classical systems.
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[. INTRODUCTION may assume that the formation of these phases is strongly
driven by stochastic effects, i.e., by the entropic part of the

Due to the discovery of quasicrystals it became very free energy. This is one of the central ideas behind the ran-
clear that the(modulated crystalline and the amorphous dom tiling model classse€ and references therginAl-
state are not the only possible ways for particles to aggrega#@ough there has been considerable progress in understand-
into a solid form. However, the way in which the aggrega-ing the growth of random tiling$ it should not be
tion of the quasicrystalline state takes place is still a puzzleoverlooked that we hardly know anything about the interplay

One empirical finding which might give a hint about the between the various constituents of the free energy during
mechanisms behind the formation of quasicrystals is the fadhe formation of alloy systems, which undoubtedly would be
that, so far, all known quasicrystals are at least binary alloyhe key to explain the formation of quasicrystals. .
system<. The usual way to explain their formation is based Being aware of the many severe problems coming with
on Hume-Rothentypes of stabilization mechanisntfor a  @ny attempt to explain the formation of quasicrystals, is is
brief discussion see Refs. 5 o). 6 quite natural to resort to simple and controllable model sys-

The most serious drawback in trying to establish thistems first, before going into the tedious process of more
theory lies in the fact that up to date, all of these considerrealistic simulations. Of course, with the hope that one
ations are basically static: Usually one has to deal with verynight draw useful information from such simplified ap-
large many-particle systems that can only be treated numerfoaches, but our main results will consist of an illustration
cally as long as the ionic cores of the constituent atoms ar@f how the basic structure elements of a quasiperiodic
kept frozen. Consequently the only dynamical part of thes@quare-triangle-tiling  formed dynamically in a two-
considerations is the structure determination of the crystaldimensional model system that is composed of one sort of
lographers, and any major revision of existing structure modparticles only. To this end, the following section will de-
els carries with it the danger that the refined stable structurescribe the basic numerical methods used to simulate that sys-
m|ght Suddemy turn out to break the “well established” tem. Whereas the remaining sections will deal with the nu-
Hume-Rothery rules. merical results, as well as with a discussion of what, in our

There has also been a long tradition of severe criticism ofYes, might be important in comparison to real systems.
the Hume_Rothery Wpe of stabilization mechanismS, point.. We close the Introduction by mentio-ning that the results
ing out that the formation of metallic systems is primarily in this paper have been largely influenced by two
based on a delicate balance between pairwise central forc@blications,>** which demonstated the formation of local
and volume-dependent terms, which does not necessarifatterns related to dodecagonal quasicrystals in three-
have to follow the Hume-Rothery rulésThis of course dimensional3D) model systems. However, we do not think
poses another problem: In order to examine such a hypotthat the existence of these papers makes the present study
esis in practice, it would be necessary to determine the paitinnecessary: whether there are much simpler and more trans-
wise and Vo|ume_dependent potentia|s very accurate|y’ e_gp’arent model SyStemS that show a similar behavior is a non-
by fitting them to precisab initio data of known elemental trivial question, and a serious test of the general findings
metallic systems and simple a”oyS, and then run Compute(aocumented in Refs. 13 or 14. Besides that, one should al-
time expensive dynamical simulations for appropriateways keep in mind that there is an elegant and straighfor-
sample approximants. This has not been achieved to any supard way even to connect icosahedral and dodecagonal or-
stantial extent yet, and consequently the whole chemistry ofler, based on corrugated layers made of distorted and
the binding partners in quasicrystalline alloy systems relndistorted tiles of a perfect 2D square-triangle tilffig.
mains unclear.

Another problem complicating our understanding of qua-
sicrystal formation is the fact that the vast majority of qua-
sicrystals maynot be properly described on the basis of per- The central point in any classical molecular dynamics
fect quasiperiodic tilings. At least, one should take intosimulation is the way in which one chooses the classical
account a serious rate of defectiveness. Alternatively, onenodel potential. As we are interested in the formation of

Il. OUTLINE OF METHODS
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solids well below their melting points, it is quite natural to

choose a binding pairwise type of potential. However, the V)
form of the potential should leave us with enough freedom to

suppress certain coordination spheres, a process which is a: 1
sumed to happen quite often in real metallic systems, base(
on Friedel oscillations of interatomic potentigfer a brief 0.5}

discussion see Ref).7

For the two-dimensional simulations to be discussed, we . S
consequently chose the following type of potentil(s ;): \ /15’/ 2 20
i
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wherer;=|r;—r}| for particles located at;, respectively, 0.2 / \
r i, andr being a suitably chosen cutoff radidsee also o " /2\ — .
Table ). 0.ah S r
We notice that the basic potential is of Lennard-Jones
(LJ) type, and indeed all basic units are related to the stan- T0.4
dard unit systems in use for such systgieg., see Ref. 12 0.6}
But we also decided to add one or more Gauss&pso the o8 [
LJ potential whenever necessary. The role of these Gaussiar BRIV
is diverse: They can be used to shift minima, to narrow the
regime of favorable bond length, or to suppress certain co-
ordination spheres of stable geometries usually reached b}(b)
the unperturbed model system. When carrying out actual
simulations, we found that the rational approximation to the V)
Gaussians
0.4
eX[X _ r2)% 1 (4) 0.2
(1412124428812 o SN
. ) . ) . 1.5 "2 2.5 3
worked very well, especially in speeding up the simulations 0.2} yd r
enormously. e
Finally we would like to modify the potentials such that o4
we get rid of the long-range tail of the potential by multiply- -0.6}1
ing it with a cutoff factorF, which adjusts the potential to o8 /
go to zero at the cutoff radius,. Beyond that radius, the R AV
potential will be set equal to zero. This of course is not the

case in Fig. 1. There we extended the range beyond the cut( )
off radius, as an easy check that the potential has properly©
gone to zero at, and then bounced off due to the symmet- £ 1. pictures of the potentials tabulated in Table(d)

ric nature of the smoothing factor aroung. Lennard-Jones potentiglype 1, without bumpand modified po-
The molecular dynamics simulations themselves havgential with two Gaussians addétype 2. (b) Modified potential

been kept as simple as possible. We took the major routinegith one Gaussian adddtype 3 and the Lennard-Jones potential

from Ref. 12, which should make the present results transgype 1) as a referencéc) Modified potentialtype 4, with a mod-

parent and easily reproducable. Major modifications wererately high Gaussian bump added to it. Note that the values of the

only necessary when implementing the general type of popotential V(r) and of the interatomic distancesare in standard

tentials described above, and in connection with our need tonits of Lennard-Jones type of potentials.

obtain a formatted input and output from the program. A

formatted output was very helpful when checking the resultscheck the calculation of derivatives based on Ha%-(3),

restarting the program from previous simulations, and in orwhich is a very tedious exercise.

der to produce an output that could be read meLE v. We Among the features going into the program, we used a

used the latter to produce the graphic$ course with the predictor-corrector movef imposed constant temperature

exception of the diffraction spectra shown bejolut also to by velocity rescaling? and sped up the calculation of forces
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TABLE |I. List of potential parameters. The parameters, which  TABLE Il. Data characterizing the simulation runs. “Steps”
characterize the basic Lennard-Jones potential and the Gaussiamsnotes the number of time steps, and “sample” denotes the size of
added to it, are explained in connection with E@—(3). All pa- the system. The label of the potentials refers to Table I. The (
rameters must be thought relative to the basic units of Lennardappearing after the number of time steps, is thought to indicate a
Jones type of potentials. Pictures of these potentials are shown iestart from a previous simulation. It should be noted gllasimu-

Fig. 1. lations were carried out at a temperatdre 0.15 and a densitp
=0.82.
Type So Sy (o3} Wy S, Co W le
No. steps size potential
1 1.0 2.5
2 1.5 1.2 19 015 1.0 105 01 25 1 100000 900 1
3 1.0 1.2 19 0.15 25 2 100000 900 2
4 10 075 19 0.15 25 3 100000 900 3
4 100 000 900 4
5 200 000(r) 900 4
and potentials using a linked cell technique as described ig 100 000(r) 900 4
Ref. 12. The volume was kept fixed throughout all simula-7 200 000 1600 4
tions, and we imposed periodic boundary conditions onto the 300 000(r) 1600 4

system. The resulting program was then checked against the
results given in the literature, e.g., concerning results for

soft-sphere potentials described in Ref. 12 itself, but also byyal metallurgy,” as at the beginning we were just blindly
carrying out a rough travel through the phase diagrams foghifting through the phase diagrams trying to produce as
LJ type of potentials, which are, e.g., described in Ref. 16. many crude samples as possible and looking for a certain
The diffraction spectra were evaluated using a program ofrend which might lead us to quasicrystalline patterns. Thus
D. Joseph (Cornell/MPI Dresden designed for two- the material presented in this paper is more or less the very
dimensional systems. The basis for calculating the peak inpest of all those crude trials. This situation is quite compa-
tensitiesl(lzj) given a set of mesh pointstzj] in k space is rable to the few good quasicrystals compared to the many
very simple: imperfect alloy samples disappearing in the laboratory waste
baskets over the years.
We usually started our series of simulations within a high-
) or low-density domain, seeking to stabilize tflewest pos-
sible) pressure on the system without creating too much
whereN is the number of atoms in the unit cell, and the setstructural defects. Let us illustrate this in the following, start-
of all r, comprises the respective locations of the atomsng from Table II.
within the unit cell. As one can see, the first three simulations were carried out
Let us close this section by recalling the features that an the same set of 900 atoms, but using quite different types
potential chosen according to Eq4$)—(3) will lack in com-  of potentials. The first simulation was based on a smoothed
parison to realistic metallic systems: First one physical di-LJ potential(see Fig. 1 The result of the simulation run is
mension, second all kinds of volume-dependent interactionsshown in Fig. 2. Obviously, we did not choose the optimal
which of course is a minor flaw as we kept the volume of thedensity to fill the simulation box. There are wide areas of
unit cell constant, and third all kinds of angular-dependentoles and structural defects within the sample. Nevertheless
interactions. Despite these problems, the model potentisduch samples are very useful when examining the time evo-
chosen is not very different in nature from other types oflution of structural defects, e.g., as described in Ref. 17. We
potentials that have been used for qualitative studies in also see that the smoothed LJ sample has a tendency to crys-
metallic systert! We explicitly recommend to browse tallize in the form of a hexagonal lattice. The reason why we
through the latter monogragfinot only for the sake of com- did not show a diffraction pattern for this sample is pretty
parison with the model potentials chosen, but also for makelear: no crystallographer would ever use such a bad sample;
ing up one’s mind about the astonishing diversity of “quali- or he would rather cut it into pieces, and carry out some sort
tative” model potentials chosen for transition metals, as wellof powder diffraction.
as for Al. This fact illustrates rather nicely the abovemen- For the second sample, we added two Gaussians to the LJ
tioned technical difficulties in fitting appropriate model po- potential. Their effect was to shift and narrow the minimum

2
I(k)=N"Y > explikj-rp)| ,
n

tentials for realistic intermetallic systems. of the potential, but we also used them to suppress a certain
range of bonding distancésee Fig. 1 Let us have a look at
IIl. NUMERICAL RESULTS the resultgFig. 2). Obviously, the shift of the minimum,,;,

in the potential forces the particles to longer mutual bonding
The simulations described in this paper were all carrieddistances—as a consequence, the simulation box is nearly
out at a fixed temperature=0.15 and a fixed density ¢f  homogeneously filled.
=0.82, starting from a homogeneous cubic arrangement of We also see that the effect of the outermost Gaussian
atoms. The optimal time steps for the mover were found taemains to sharpen the minimum, only. In order to suppress
be At=0.001. the second coordination sphere of the resulting triangular
The way in which we determined these valueS@ndp  lattice effectively, the Gaussian should have been placed
was more or less btrial and error. One could call it “vir-  closely to a distance of 1.782,,, which means roughly at
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FIG. 2. Stucture and diffraction spectra of the generated sanfipleBhe frame to the left contains a clip from within the center of the
sample, comprising about 400 atoms. The lonely “atom” in the corner has been added to mark one of the vertices of the simulation box, in
order to illustrate the location of the clip within the sample. The box dimensions are given in basic units of length scale for Lennard-Jones
potentials. The frame to the right contains the diffraction patterns for a complete atomic arrangement within the simulation box.

r=2.1, as simple geometrical calculus shows. Such numbertson sphere of the triangular lattice for a LJ potential without
should, of course, be taken with a grain of salt—it is verybumps(see Fig. 1 The result of an MD simulation on such
unlikely that nature will ever produce perfectly suppressinga system is documented in Fig. 2: Obviously, the starting

potentials with such a high precision when forming a solidcubic lattice mainly goes over into a slightly modulated
state. Rather, we should expect a certgindowof favorable

form, which could already be seen during the simulation
bond lenghts?®

runs, because the overall pressure went to zero very quickly.
The placement of the suppressing Gaussian for the third Such a behavior seems to make sense, as the cubic ar-

sample remained at the same place, whereas the shifting irangement is supposed to be a configuration with optimal
ward Gaussian was removed. The result is an impressinglgearest neighbor bonding, but avoiding the unfavorable sec-
high barrier, located approximately at the second coordinaend nearest neighbor coordination shell of the triangular lat-
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FIG. 3. Stucture and diffraction spectra of the generated saniip)es-or explanations see Fig. 2.

tice. Of course the packing density of this systems is considthe formation of this pattern, certainly due to an improved
erably lowered by such an arrangement, and we found thatverage local coordination of the atoms.
the binding energy per particle used to drop considerably. Now the question arises whether the formation of these
The next step in changing our potential is pretty clear:patterns might just be an artifact, which will go away after a
lower the suppressing Gaussian, such that there will be bonger simulation period of time. Consequently we extended
broader range of favorable coordination shéflee Fig. L.~ the simulation times from 100000 simulation steps up to
The result is pretty amazing—once again the system cord00 000 simulation stepg&ee Table ). It is very obvious
tracts, but this time, squaresd triangles are formed, and, (Fig. 3 that we found an improvement in the quality of the
even better, the arrangment of the particles leads to 12-foldamples, rather than a deterioratigtig. 3).
symmetric diffraction patterns, as to be expected foapn An usual problem is created by finite size effects on the
proximantto the square-triangle tilin¢see Fig. 3 We also  results. Here, we can only show that when raising the num-
found that the binding energy per atom slightly raised duringoer of particles moderately from 900 to 1600, and even after
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FIG. 4. Stucture and diffraction spectra of the generated saniplgsFor explanations see Fig. 2.

500 000 time steps, we could not observe noticeable changege ran the simulations: there we could hardly observe any
in the behavior of the systefsee Fig. 4, other than the fact change in the binding energies other than small fluctuations,
that the evolution of the square-triangle patterns proceedwhile the sample obviously improved its aggregation in the
somewhat slower than before. Nevertheless, we cannot eferm of a square-triangle tiling. We think that this is the
clude such finite size effects, and therefore our study mighstrongest indication for entropic effects that we are able to
shed some light on the formation of local square-trianglegive so far. A more careful examination of diffraction pat-
patterns, but not necessarily on the formation of the quasicerns and their interpretation for the present system, as well
rystal bulk itself similar to, e.g., the remarkable results docu-as for a series of improved model systems, must be the topics

mented in Refs. 9, 10. of future publications.
Let us finally say a few words about the detailed structure
of the diffraction patterns. It might be important to note that IV. DISCUSSION

we have suppressed the diffuse background existing in any
of the 12-fold symmetric patterns depicted here, just for rea- We carried out a series of simulations on two-dimensional
sons of beauty. The existence of such a background in prifmodel systems using a family of pairwise model potentials.
ciple points towards a random tiling type of mod&lwhich ~ We showed that, given a certajempirically determineg
in turn would suggest a random tiling idealization of our optimal temperature and density, the system evolves into a
results. However, we would feel unreliable when recom-structure that forms local square-triangle patterns. The key
mending to see the mere existence of this background asfar this process seems to be the “partial suppression” of the
hint for random effects influencing our results, for the fol- second coordination sphere for a triangular lattice in 2D, the
lowing reason: A more precise look at the inner ring revealausual ground state obtained with “unsuppressed” potentials.
that these peaks are not located at the proper positions of a It is possible that similar mechanisms may also play a
perfect 12-fold symmetric diffraction pattern, but more orcertain role in realistic quasicrystalline systems, as pointed
less close to them. Consequently, the patterns we see amyt in Ref. 18. Nevertheless, understanding the real nature of
strictly speaking, only approximants to a proper squarethe metallic phase certainly requires a much higher level of
triangle tiling (see above accuracy than the one chosen for this study. Among the most
Rather we would like to argue on the basis of the obviousmportant features of realistic metallic systems will be a cer-
improvement in the intensity of the main diffraction peakstain type of angular dependence and, even more important,
indicated above, which became more pronounced the longehe abovementioned delicate interplay between volume-
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dependent interactions and pairwise interactions. This leaves However, nobody has been able to find this one-elemental
such systems with a nontrivial density dependence, somésoron quasicrystal so far, and the reason for that is, at least
thing we completely neglected throughout this study. for the authors of this paper, as amazing as the formation of
There is of course another point that ought to be menquasicrystalline alloy systems themselves. Maybe simula-
tioned here, and which makes the present study especialtions such as the present one in 3D, as already carried out in
interesting:boron In fact, any(naive or elaborateconstruc-  Refs. 13 and 14, but of course properly taking into account
tion of structure models for icosahedral quasicrystals somene delicate nature of boron bonding, might bring with them

how starts from icosahedral clusters, seeking ways of sticksome progress in understanding this interesting problem.
ing them together to form the basic rhombohedral unit cells

of the tiling superstructuré.

The surprising fact is that boron does all that—it aggre-
gates into solid structures based on icosahedral clusters, and
especially in the form of a unit cell which is only a slightly i )
distorted variant of a prolate rhombohedral unit cell neces- 1he authors would like to thank Veit ElséCornel) and
sary to form a quasicrystal, and even the corresponding o?ieter JosepiCornell/MPI Dresdenfor many helpful dis-
late unit cell may theoretically be composed as a network ofussions. We also thank Dieter Joseph for providing and
stable icosahedral and tubular clust&fdll of this quite ~ implementing a program to evaluate diffraction spectra for
naturally leads to the hypothesis that the quasicrystallinéwo-dimensional structures. This work was supported by
state could be one of the possible modifications ofghee NSF Grant No. DMR-9520315 and by the Deutsche Fors-
elementboron. chungsgemeinschaft under Project No. Qu 119/1.
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