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Low-energy spectral density for the Alexander-Anderson model
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Langreth’s expression relating the low-energy impurity spectral density of the Anderson model to the
Fermi-level phase shift of the conduction electrons is extended to the two-impurity model. As an application,
the accuracy of two numerical renormalization-group spectral-density computations are checked against the
exact expression.@S0163-1829~99!01301-6#
an

le
n

w-
s
a
e
ity
ct
g

r-
y
n
th

an

t
u

tw

od
in

ce
tl
cu
cu
hr
ee

al

ep

e

ri

u-

d
to

ke

of

e

e-
of

-

Three decades ago, a concise argument planted a l
mark in the theory of dilute magnetic alloys.1 In his proof
that the conduction-electron phase shifts for the sing
impurity Anderson model obey the Friedel sum rule, La
greth obtained an expression implicitly relating the lo
energy impurity spectral density to the Fermi-level pha
shift. Many years later, that relation would prop the fin
effort that brought to light the underlying physics of th
model2 and check the accuracy of spectral dens
computations.3,4 To this date, it remains one of the few exa
expressions describing the excitation properties of stron
correlated electrons.

In view of the extensive literature on the Alexande
Anderson model,5 which includes spectral densit
computations,6 it is surprising that this important expressio
has not been generalized. In this report we show that
combination of a few well-established results extends L
greth’s analysis1 to the two-impurity model. After deriving
the expression that connects the spectral densities to
conduction-band phase shifts, we analyze numerical res
in the light of the exact expression. Since the model has
widely studied versions with different properties,6,7 we con-
sider data for both the symmetric and the asymmetric m
els. For the former version, we discuss the ground-break
numerical renormalization-group~NRG! results in Ref. 6 and
show that today’s more powerful computational resour
and more efficient numerical procedures yield significan
more accurate results; for the latter, we present and dis
new NRG results for the low-energy spectral density cal
lated at three impurity separations chosen to probe the t
characteristic regimes defined by the competition betw
the Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction
and the Kondo temperature.

The Alexander-Anderson model comprises two orbit
representing two impurities, positioned atR15R/2 andR2
52R/2, coupled to noninteracting conduction electrons r
resenting the metallic host. Its Hamiltonian is

H5Hi1(
km

ekckm
† ckm1V(

j km
~dj m

† ckmeik–Rj1H.c.!, ~1!

wherem is a spin component, the Fermi operatorck annihi-
lates a conduction electron with momentumk, and energy
ek , the operatordj ( j 51,2) annihilates an electron at th
impurity orbital at positionRj , and V is the coupling be-
tween the conduction states and each impurity. The impu
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Hamiltonian, which combines the orbital energyed with the
Coulomb repulsionU between opposite-spin electrons occ
pying the same impurity, is

Hi5(
j m

eddj m
† dj m1U(

j
dj↑

† dj↓
† dj↓dj↑ . ~2!

To apply renormalization-group theory, we nee
a basis in which the impurities couple exclusively
two basis states.8 Unfortunately, the two states
(kmckmexp(6ik–R/2), to which the two impurities couple in
Eq. ~1!, respectively, are nonorthogonal. We therefore ta
advantage of the inversion (R→2R) symmetry of the
Hamiltonian to define an alternative basis, consisting
states that are either even (e) or odd (o) with respect to
inversion:8

ckme,o5
ckm6c2km

&
~kz.0!. ~3!

The restrictionkz.0 avoids double counting. We likewis
define symmetric combinations of impurity orbitals:

dme,o5
d1m6d2m

&
. ~4!

The model Hamiltonian then becomes

H5(
kmp

@ekckmp
† ckmp1~Vkpdmp

† ckmp1H.c.!#1Hi , ~5!

where

Vke52V cos~k–R/2!, ~6!

and

Vko52iV sin~k–R/2!. ~7!

The following analysis depends only on the coupling b
tween the impurities and the conduction band. The form
the impurity HamiltonianHi in the new basis is thus unim
portant and need not be recorded.

To compute the conduction-band phase shiftsd associated
with the Hamiltonian~5!, we give attention to theS matrix,
whose energy-shell eigenvalues are exp(22id), and to theT
matrix, defined by
85 ©1999 The American Physical Society



-

th
e
-
to

n
ed

tio

an

a-
m

l,
l-
om

de

o

is
u
fo

o

f-

the

he
ved

d

s

cy
of

ent
re,

ef.
o-
ed
ra-
ra-
of
stic

ble
RG
y
thod
-

86 PRB 59BRIEF REPORTS
Skpm,k8p8m85dkpm,k8p8m822p id~ek2ek8!Tkpm,k8p8m8 .
~8!

As pointed out by Langreth,1 since the conduction elec
trons can only scatter off the impurities, theT matrix is pro-
portional to the impurity Green’s function:

Tkpm,k8p8m85Vkp* Gpm,p8m8~ek!Vk8p8 ~ek5ek8!, ~9!

where the Green’s function is defined, as usual, by

iGpm,p8m8~ t !5T ^dpm~ t !dp8m8
†

~0!&. ~10!

HereT is the time-ordering operator and the brackets on
right-hand side denote the ground-state expectation valu

At low excitation energiese, theT matrix becomes diag
onal in its parity and spin indices. To prove this, we refer
the literature on the two-impurity problem6,7,9,10,8 showing
that, ase→0, the impurity degrees of freedom are froze
Given that parity, charge, and spin are conserv
renormalization-group theory then shows that ase→0, the
model Hamiltonian approaches the fixed point8

H* 5(
kmp

8ekckmp
† ckmp1 (

kk8mp

8Kpckmp
† ck8mp . ~11!

Here and henceforth the primes remind us that the restric
on the right-hand side of Eq.~3! limits the momentum sums
to the half-spacekz.0. The constantsKp (p5e,o) are lo-
calized scattering potentials that determine the even-
odd-channel Fermi-level phase shiftsdF

p . For sufficiently
small couplingsV, the even and the odd impurity occup
tions being identical, the Friedel sum rule makes the Fer
level phase shifts symmetrical,de

F52do
F ; it follows that, as

V→0, the effective potentialsKp must become symmetrica
Ke→2Ko . Additional information about these two mode
parameter dependent constants can only be extracted fr
full-scale diagonalization of the Hamiltonian~1!.

At nonzero energiese, the effective Hamiltonian~11! de-
scribes only approximately the spectrum of the mo
Hamiltonian ~5!. The deviationH2H* is nonetheless a
combination of irrelevant operators. Since the most imp
tant of these make contributions ofO(e) to the physical
properties of the model, for sufficiently small energies it
safe to ignore them. The effective Hamiltonian ruling o
spin-flip and parity-reversion scattering, the expression
the T matrix in Eq.~9! can be simplified:

Tkpm,k8p8m85Vk8p
* Gpm~ek!Vkpdpp8dmm8 , ~12!

where Gpm(e) denotes Gpm,pm(e). Rotational symmetry
making theT matrix and the Green’s function independent
m, spin indices will henceforth be dropped.

The expression for theS matrix can likewise be simpli-
fied. With the right-hand side of Eq.~12! substituted for the
T matrix, Eq.~8! becomes

Sk,k8
p

5dk,k822p id~ek2ek8!Vkp* Vk8pGp~ek!, ~13!

whereSk,k8
p is a shorthand forSkpm,k8pm .

It is now straightforward to verify that the coupling coe
ficients Vkp* diagonalize theS matrix.1 The matrix multipli-
cation of both sides of Eq.~13! by Vk8p

* yields
e
.
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k8

8Sk,k8
p Vk8p

*

5F122p iGp~ek!(
k8

8d~ek2ek8!uVk8pu2GVkp* .

~14!

The term within square brackets on the right-hand side is
eigenvalue ofSk,k8

p associated withVkp* . At the Fermi level,
it follows that

exp~2 i2dF
p !5122p iGp~eF!(

k8

8d~eF2ek8!uVk8pu2.

~15!

This equation relates the impurity Green’s function to t
conduction phase shifts. To determine the parity-resol
spectral densities, defined byrp(e)52(1/p)(mIm@Gp(e)#
(p5e,o), we take the real part of each side of Eq.~15! and
sum over spin components. The result is

rp~eF!5
2

pGp
sin2~dF

p !, ~16!

where

Gp5p(
k8

8d~eF2ek8!uVk8pu2. ~17!

Finally, we substitute the right-hand sides of Eqs.~6! and
~7! for Vk8e and Vk8o , carry out the sum on the right-han
side of Eq.~17!, and find that

Ge5pg~eF!V2F11
sin~kFR!

kFR G , ~18!

and

Go5pg~eF!V2F12
sin~kFR!

kFR G , ~19!

respectively, whereg(eF) is the conduction density of state
at the Fermi level. This completes our derivation.

Equation~16! provides a convenient test on the accura
of numerical computations. To underscore the importance
such a check, we call the reader’s attention to a rec
argument,11 supported by an innovative scaling procedu
questioning the generalized NRG approach employed in R
8 to compute thermodynamical properties for the tw
impurity Kondo model. While the numerical results show
that the low-energy thermodynamics is controlled by the
tio between the RKKY interaction and the Kondo tempe
ture, that perturbative scaling analysis of the Kondo limit
the Anderson-Alexander model found a single characteri
energy—the Kondo temperature. From this, Fischer11 in-
ferred that the generalized NRG method yield less relia
results than those computed by the standard N
procedure.6 The following comparison of the low-energ
spectral densities calculated by the generalized NRG me
with those predicted by Eq.~16! argues against that conclu
sion.
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To this end, it is appropriate to choose model parame
representative of the limitU522ed@g(eF)V2, in which
the Alexander-Anderson model maps onto the two-impu
Kondo model with coupling constant12

J58V2/U. ~20!

The conduction electrons mediate an effective~RKKY ! in-
teractionIS1•S2 between the impurity spins~S1 andS2! that
is proportional toJ2 and, depending on the separationR, can
be antiferromagnetic (I .0) or ferromagnetic (I ,0).8

To calculate the even and the odd Fermi-level spec
densities for the Alexander-Anderson model, we follow
the procedure in Ref. 8, with the same discretization par
eter L510. This relatively large value makes a good co
promise between computational effort and accuracy,
deviations13 in the computed densities being inferior to 1
of the maximum density allowed by Eq.~16!.

Figure 1 shows the even and odd Fermi-level spec
densities for the particle-hole–asymmetric model parame
in Table I as a function of the Fermi-level phase shifts. T
latter are extracted from the low-energy eigenvalues of
model HamiltonianH: as the excitation energies approa
zero,H approaches the simple fixed point described by
~11!, whose low-energy single-particle levels determine
Fermi-level phase shifts.14,8 The agreement between the n
merical data~open circles! and Eq.~16! ~solid line! is excel-
lent.

FIG. 1. Numerically computed even (d,0) and odd (d.0)
Fermi-level spectral densities~open circles! for the asymmetrical-
model parameters listed in Table I as functions of the Fermi-le
phase shiftd, compared with Eq.~16!. The vertical axis is normal-
ized by the maximum densityrp

max52/pGp (p5e,o), whereGe

and Go are given by Eqs.~18! and ~19!, respectively. For the
particle-hole symmetric model, the densities~open squares! appear
in the inset, as functions of the ratio between the RKKY interact
I 0 and the Kondo thermal energykBTK . To avoid overcrowding,
only the odd densities are shown. The phase shifts dropping dis
tinuously from p/2 to 0 as that ratio grows past a critical valu
I 0 /kBTK'2.3, Eq. ~16! shows that the solid lines are the exa
densities.
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Next, we turn to a comparison with the work of Sakai a
co-workers,6 a standard NRG procedure applied to the sy
metric model obtained by substituting the momentu
independent couplings(kVkpd(kF2uku) for Vkp on the
right-hand side of Eq.~5!. This substitution affects the
RKKY interaction, whose coefficient becomes negativ
definite:9

I 52~J/D !2Fsin~kFR!

kFR G2

ln 2. ~21!

To simulate an antiferromagnetic interaction a coupling7

Hcoupl5I 0S1•S2 ~22!

must then be added to the model Hamiltonian. HereI 0.0 is
an artificial RKKY interaction.

Particle-hole symmetry allows only two phase shifts:7 d
50 or d5p/2[2p/2. There is extensive documentatio
for the Kondo regime showing that the phase shiftsd arep/2
for all ferromagnetic RKKY couplingsI 0,0 and for suffi-
ciently weak antiferromagnetic couplings, such that the ra
I 0 /kBTK ~where TK is the Kondo temperature! is smaller
than a critical value approximately equal to 2.3.6,7,9 With d
5p/2, the Fermi-level spectral densities should attain
maximum value allowed by Eq.~16!,

rp~eF!5
2

pGp
. ~23!

For larger antiferromagnetic couplings,I 0 /kBTK.2.3, the
phase shifts and hence the Fermi-level spectral dens
should vanish.

The numerical results in Ref. 6 agree qualitatively w
these conclusions. The calculated Fermi-level spectral de
ties are maximized for ferromagnetic and weak antifer
magnetic RKKY interactions and they decrease sharply
I 0 /kBTK grows past the critical ratio. Unfortunately, due
practical limitations,13 the number of states kept in thos
exploratory calculations was insufficient to guarantee go
accuracy. In particular, for infinitely separated impurities, t
problem becoming equivalent to that described by the sin
impurity Hamiltonian, the authors pointed out that the lo

l

n

n-

TABLE I. Phase shiftsd and static spectral densitiesr for the
indicated impurity separationsR and effective Kondo couplingsJ
@see Eq.~20!#. The impurity separationsR5p/2kF , p/kF , and`
correspond to ferromagnetic, antiferromagnetic, and zero RK
couplings, respectively. In all cases, the Coulomb repulsion isU
5100D and the Fermi momentumkF51. The~5% or less! discrep-
ancy between the absolute values of the even and the odd p
shifts computed for the same model parameters are due to irrele
operators, expected to vanish asJ→0.

kFR J/D de /p (pGe/2)re do /p (pGo/2)ro

p/2 0.10 20.496 1.004 0.497 1.003
p 0.10 20.029 0.008 0.030 0.009
p 0.14 20.105 0.104 0.109 0.112
p 0.17 20.188 0.309 0.191 0.317
p 0.20 20.240 0.467 0.245 0.482
` 0.10 20.500 1.002 0.500 1.002
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energy spectral density is 14% smaller than the value
dicted by Langreth’s~single-impurity! expression.1 When
compared with Eq.~23!, the values obtained in the ferroma
netic case display similar deviations, which grow as o
moves into the weakly antiferromagnetic regime. Finally,
the strongly antiferromagnetic case, the calculated Fer
level densities, although small, fail to vanish.

In order to show that a more accurate calculation pur
the results of such discrepancies, we have carried out a

TABLE II. Phase shiftsd and static spectral densitiesr for the
indicated ratios of the antiferromagnetic RKKY interactionI 0 , de-
fined in Eq. ~21!, and the Kondo energykBTK . The data were
computed for impurity separationR5p/kF and Kondo coupling
constantJ50.1D.

I 0 /kBTK de /p (pGe/2)re do /p (pGo/2)ro

1.80 20.500 1.006 0.500 0.999
2.00 20.500 1.005 0.500 1.001
2.10 20.500 1.005 0.500 1.000
2.20 20.500 1.005 0.500 1.000
2.27 20.500 1.010 0.500 1.000
2.30 0.000 0.000 0.000 0.000
2.50 0.000 0.000 0.000 0.000
3.00 0.000 0.000 0.000 0.000
on
rt
e-

e

i-

s
n-

eralized NRG computation of the spectral densities for
symmetric model. By fixing the impurity separation atR
5p/kF @to make the RKKY couplingI in Eq. ~21! equal to
zero#, fixing the Kondo couplingJ50.1D and varyingI 0 ,
we then swept the ratio between the~artificial! RKKY inter-
action and the Kondo temperature through the critical va
I 0 /kBTK'2.3.

The results in Table II show that, as expected, the ab
lute value of the phase shifts drops discontinuously fromp/2
to zero at the critical ratio. The inset in Fig. 1 displays t
calculated densities~open squares! as a function of the ratio
I 0 /kBTK . The agreement with discontinuous solid line re
resenting Eq.~16! is again excellent.

In summary, we have extended Langreth’s exact exp
sion for the Fermi-level spectral density of the sing
impurity Anderson model to the Alexander-Anderson mod
As an illustration, we compared NRG results with the an
lytical expression and showed that accurate spectral den
computations are within the reach of present computatio
resources. In particular, the generalized NRG procedure
Ref. 8 was shown to yield excellent agreement with anal
cal expression for both the asymmetric and the symme
versions of the model. A study of the energy dependence
the spectral densities will be the subject of a forthcom
report.
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