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Low-energy spectral density for the Alexander-Anderson model
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Langreth’s expression relating the low-energy impurity spectral density of the Anderson model to the
Fermi-level phase shift of the conduction electrons is extended to the two-impurity model. As an application,
the accuracy of two numerical renormalization-group spectral-density computations are checked against the
exact expressioS0163-18209)01301-9

Three decades ago, a concise argument planted a landlamiltonian, which combines the orbital energywith the
mark in the theory of dilute magnetic alloydn his proof ~ Coulomb repulsiot between opposite-spin electrons occu-
that the conduction-electron phase shifts for the singlepying the same impurity, is
impurity Anderson model obey the Friedel sum rule, Lan-
greth obtained an expression implicitly relating the low-
energy impurity spectral density to the Fermi-level phase
shift. Many years later, that relation would prop the final
effort that brought to light the underlying physics of the To apply renormalization-group theory, we need
modef and check the accuracy of spectral densitya basis in which the impurities couple exclusively to
computations:* To this date, it remains one of the few exacttwo basis state¥. Unfortunately, the two states
expressions describing the excitation properties of strongly, ,cy,exp(*ik-R/2), to which the two impurities couple in
correlated electrons. Eq. (1), respectively, are nonorthogonal. We therefore take

In view of the extensive literature on the Alexander- advantage of the inversionR(~—R) symmetry of the
Anderson model, which includes spectral density Hamiltonian to define an alternative basis, consisting of
computation$, it is surprising that this important expression states that are either ever)(or odd (0) with respect to
has not been generalized. In this report we show that thaversion®
combination of a few well-established results extends Lan-
greth’s analysisto the two-impurity model. After deriving Cku T Cip
the expression that connects the spectral densities to the Chueo=—" > (k;>0). ()

. : - 2
conduction-band phase shifts, we analyze numerical results
in the light of the exact expression. Since the model has tw@he restrictionk,>0 avoids double counting. We likewise
widely studied versions with different properti®éwe con-  define symmetric combinations of impurity orbitals:
sider data for both the symmetric and the asymmetric mod-
els. For the former version, we discuss the ground-breaking dy,*dy,
numerical renormalization-groyplRG) results in Ref. 6 and dyeo=—"- (4)
show that today’s more powerful computational resources V2
and more efficient nur‘nencal procedures yield S|gn|f|c§ntly The model Hamiltonian then becomes
more accurate results; for the latter, we present and discuss
new NRG results for the low-energy spectral density calcu-
lated at three impurity separations chosen to probe the three H= 2 [EkClMkaMp+(VkdekaMp+ H.c)]+H;, (5
characteristic regimes defined by the competition between mp
the Ruderman-Kittel-Kasuya-Yosid&dRKKY) interaction \yhere
and the Kondo temperature.

The Alexander-Anderson model comprises two orbitals Vie=2V cogk-R/2), (6)
representing two impurities, positioned R{=R/2 andR,
= —R/2, coupled to noninteracting conduction electrons rep—and
resenting the metallic host. Its Hamiltonian is

HiZJZ fddjTMdjﬁU; dj;df d; dj; @)
"

Vio=2iV sin(k-R/2). @

The following analysis depends only on the coupling be-
tween the impurities and the conduction band. The form of
the impurity HamiltoniarH; in the new basis is thus unim-
whereu is a spin component, the Fermi operatgrannihi-  portant and need not be recorded.

lates a conduction electron with momentlkmnand energy To compute the conduction-band phase shiftssociated
€, the operatord; (j=1,2) annihilates an electron at the with the Hamiltonian(5), we give attention to th& matrix,
impurity orbital at positionR;, andV is the coupling be- whose energy-shell eigenvalues are exgi(), and to theT
tween the conduction states and each impurity. The impuritynatrix, defined by

H=H;+>X eci ck,+VX (dl e, eRi+H.c), (D)
K Tk
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Skp,u,k’p’,u,’:5kp;¢,k’p’u’_277i 5(€k_€k’)Tkpu,k’p’p,’ . <P *
(8) 2 Sk Vie
As pointed out by Langrethsince the conduction elec-
trons can only scatter off the impurities, tliematrix is pro- = 1—27-riGp(ek)E "8 e— ek,)|Vk,p|2
portional to the impurity Green’s function: k'

(14
The term within square brackets on the right-hand side is the
eigenvalue ofS; , associated wittv},. At the Fermi level,
(H)=T(d, (t)d;,ﬂ,(O)). (10) it follows that

Tipukrp’n =VipGpuprw (€Virpr  (x=¢€c), (9)
where the Green’s function is defined, as usual, by

iGpup

Here T is the time-ordering operator and the brackets on the

L8P =1 — D Y 2
right-hand side denote the ground-state expectation value. XX ~129F)=1 ZW'GP(GF)E S er—€w)| Vil

At low excitation energieg, the T matrix becomes diag- (15)
onal in its parity and spin indices. To prove this, we refer to
the literature on the two-impurity problém®°8showing This equation relates the impurity Green’s function to the

that, ase—0, the impurity degrees of freedom are frozen.conduction phase shifts. To determine the parity-resolved
Given that parity, charge, and spin are conservedspectral densities, defined by,(e)=—(1/m)Z ,Im[Gy(e)]
renormalization-group theory then shows thateasO, the  (p=e,0), we take the real part of each side of Efj5) and

model Hamiltonian approaches the fixed pbint sum over spin components. The result is
— ! T 4 t
H*=2 fkckﬂpckmkk%pKpckﬂpckwp- (11) poler)= sm2<5p> (16)

Here and henceforth the primes remind us that the restrictioyhere

on the right-hand side of E@3) limits the momentum sums

to the half-spacé,>0. The constant&, (p=e,0) are lo- , 5

calized scattering potentials that determine the even- and Fp:”Z S(er— €)|Viep|*. (17)
odd-channel Fermi-level phase shiféf. For sufficiently “

small couplingsV, the even and the odd impurity occupa-  Finally, we substitute the right-hand sides of E(#.and
tions being identical, the Friedel sum rule makes the Fermit7) for V,,, andV,.,, carry out the sum on the right-hand
level phase shifts symmetncaﬁF — &% it follows that, as  side of Eq.(17), and find that
V—0, the effective potentialk,, must become symmetrical, ) )
Ke— —K,. Additional information about these two model- 5 . SINkeR)
parameter dependent constants can only be extracted from a Fe=mg(ep)V7 1+ " keR |
full-scale diagonalization of the Hamiltonidf). ) ’
At nonzero energies, the effective Hamiltoniaf11) de-  and
scribes only approximately the spectrum of the model i . .
Hamiltonian (5). The deviationH—H* is nonetheless a Iy = 7g(er)V2 1 sin(keR) (19
combination of irrelevant operators. Since the most impor- F keR )
tant of these make contributions @¥(e) to the physical
properties of the model, for sufficiently small energies it is
safe to ignore them. The effective Hamiltonian ruling out
spin-flip and parity-reversion scattering, the expression for
the T matrix in Eq.(9) can be simplified:

(18

respectively, wherg(eg) is the conduction density of states
at the Fermi level. This completes our derivation.
Equation(16) provides a convenient test on the accuracy
of numerical computations. To underscore the importance of
such a check, we call the reader’s attention to a recent
(12) argument! supported by an innovative scaling procedure,
guestioning the generalized NRG approach employed in Ref.
where G,,(€) denotesG,, ,,(€). Rotational symmetry 8 to compute thermodynamical properties for the two-
making theT matrix and the Green'’s function independent of impurity Kondo model. While the numerical results showed
M, spin indices will henceforth be dropped. that the low-energy thermodynamics is controlled by the ra-
The expression for th& matrix can likewise be simpli- tio between the RKKY interaction and the Kondo tempera-
fied. With the right-hand side of E@12) substituted for the ture, that perturbative scaling analysis of the Kondo limit of
T matrix, Eq.(8) becomes the Anderson-Alexander model found a single characteristic
energy—the Kondo temperature. From this, Fisthém-
Sk = O — 271 S( &= €0 )VipVie pGpl€),  (13)  ferred that the generalized NRG method yield less reliable
results than those computed by the standard NRG

Tipuk’p =Vy pCpu( €10 VipOppr Ot »

whereS ,, is a shorthand foy,, ' proceduré. The following comparison of the low-energy
It is now straightforward to venfy ‘that the coupling coef- spectral densities calculated by the generalized NRG method
ficients Vi kp diagonalize thes matrix} The matrix multipli-  with those predicted by Eq16) argues against that conclu-

cation of both sides of Eq13) by V[:,p yields sion.



PRB 59 BRIEF REPORTS 87

! ' ] TABLE I. Phase shiftss and static spectral densitigsfor the

1 1 pe—susn E - . . i ! .
| S osk 3 indicated impurity separatiorR and effective Kondo couplingd
{mo . 3 S";f‘;}ﬂ;&glg_ [see Eq.20)]. The impurity separationR= 7/2kg, 7/kg, andw
F L model ] correspond to ferromagnetic, antiferromagnetic, and zero RKKY
08| 7 couplings, respectively. In all cases, the Coulomb repulsiod is
| ] =100D and the Fermi momentukr= 1. The(5% or les$ discrep-
I ] ancy between the absolute values of the even and the odd phase
& 06 . shifts computed for the same model parameters are due to irrelevant
o r 1 operators, expected to vanish &s:0.
"E o2
04k ] keR JD Solm (T d2)pe  Solm  (mwLo2)po
/2 0.10 —0.496 1.004 0.497 1.003
T 0.10 —0.029 0.008 0.030 0.009
0z r T T 0.14 —0.105 0.104 0.109 0.112
T 0.17 —0.188 0.309 0.191 0.317
T 0.20 —0.240 0.467 0.245 0.482
0O oz 0 oz os % 0.10 —0.500 1.002 0.500 1.002
6/m
FIG. 1. Numerically computed evers€0) and odd ¢>0) Next, we turn to a comparison with the work of Sakai and

Fermi-level spectral densitig®pen circles for the asymmetrical-  co-workers® a standard NRG procedure applied to the sym-
model parameters listed in Table | as functions of the Fermi-leveh,]etriC model obtained by substituting the momentum-
phase shifts, compared with Eq(16). The vertical axis is normal- independent Coupling§kap(‘)‘(kF— k|) for Vi, on the

H H g Mmax__ —

ized by the maximum density,™'=2/71", (p=¢,0), wherel'e  ioh hand side of Eq.(5). This substitution affects the

and I, are given by Eqs(18) and (19), respectively. For the  py v jnteraction, whose coefficient becomes negative-
particle-hole symmetric model, the densitiepen squargsappear definite® ’

in the inset, as functions of the ratio between the RKKY interaction

Iy and the Kondo thermal enerdsg Ty . To avoid overcrowding, sin(keR) 2
only the odd densities are shown. The phase shifts dropping discon- |=— (J/D)2 kbt In 2. (21
tinuously from 7/2 to 0 as that ratio grows past a critical value KeR

lo/kgTk=2.3, Eq.(16) shows that the solid lines are the exact

- To simulate an antiferromagnetic interaction a cougling
densities.

. . . Hcoup|=|031~52 (22)
To this end, it is appropriate to choose model parameters o .
representative of the limity = —2e4>g(ep) V2, in which ~ must then be added to the model Hamiltonian. Hgre0 is

the Alexander-Anderson model maps onto the two-impurityan artificial RKKY interaction.

Kondo model with coupling constafit Particle-hole symmetry allows only two phase shifts:
=0 or 6=m/2=—m/2. There is extensive documentation
for the Kondo regime showing that the phase shiftse /2

J=8V?/U. (20 for all ferromagnetic RKKY coupling$,<0 and for suffi-
) ) ) ciently weak antiferromagnetic couplings, such that the ratio
The conduction electrons mediate an effectiiRKKY) in- lo/ksg Tk (where T is the Kondo temperatuyds smaller
teractionl S, - S, between the impurity spinS; andSy) that  than a critical value approximately equal to 23 with &
is proportional ta)® and, depending on the separatRncan = /2, the Fermi-level spectral densities should attain the
be antiferromagneticl &0) or ferromagneticl(<0).8 maximum value allowed by Eq16),

To calculate the even and the odd Fermi-level spectral
densities for the Alexander-Anderson model, we followed
the procedure in Ref. 8, with the same discretization param- Pol€r)= - (23
eter A=10. This relatively large value makes a good com- P
promise between computational effort and accuracy, thé&or larger antiferromagnetic couplingky/kgTx>2.3, the
deviations® in the computed densities being inferior to 1% phase shifts and hence the Fermi-level spectral densities
of the maximum density allowed by E¢L6). should vanish.

Figure 1 shows the even and odd Fermi-level spectral The numerical results in Ref. 6 agree qualitatively with
densities for the particle-hole—asymmetric model parameterthese conclusions. The calculated Fermi-level spectral densi-
in Table | as a function of the Fermi-level phase shifts. Theties are maximized for ferromagnetic and weak antiferro-
latter are extracted from the low-energy eigenvalues of thenagnetic RKKY interactions and they decrease sharply as
model HamiltonianH: as the excitation energies approachly/kgTx grows past the critical ratio. Unfortunately, due to
zero,H approaches the simple fixed point described by Eqpractical limitations:® the number of states kept in those
(11), whose low-energy single-particle levels determine theexploratory calculations was insufficient to guarantee good
Fermi-level phase shifté:® The agreement between the nu- accuracy. In particular, for infinitely separated impurities, the
merical dataopen circles and Eq.(16) (solid line) is excel-  problem becoming equivalent to that described by the single-
lent. impurity Hamiltonian, the authors pointed out that the low-
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TABLE Il. Phase shiftss and static spectral densitigsfor the
indicated ratios of the antiferromagnetic RKKY interactign de-
fined in Eq.(21), and the Kondo energ¥sTx. The data were
computed for impurity separatioR= m/kg and Kondo coupling
constantJ=0.1D.
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eralized NRG computation of the spectral densities for the
symmetric model. By fixing the impurity separation Rt
= m/kg [to make the RKKY couplind in Eqg. (21) equal to
zerq|, fixing the Kondo couplingl=0.1D and varyingl,
we then swept the ratio between ttagtificial) RKKY inter-
action and the Kondo temperature through the critical value

lo/kgTk Oelm (mLe/2)pe Ol (7' o/2)po lo/kgT~2.3.

The results in Table Il show that, as expected, the abso-
1.80 0500 1.006 0.500 0.999 lute value of the phase shifts drops discontinuously fref®
2.00 —0.500 1.005 0.500 1.001 to zero at the critical ratio. The inset in Fig. 1 displays the
2.10 —0.500 1.005 0.500 1.000 calculated densitie®pen squar@sas a function of the ratio
2.20 —0.500 1.005 0.500 1.000 lo/kgTk . The agreement with discontinuous solid line rep-
2.27 —0.500 1.010 0.500 1.000 resenting Eq(16) is again excellent.
2.30 0.000 0.000 0.000 0.000 In summary, we have extended Langreth’s exact expres-
2.50 0.000 0.000 0.000 0.000 sion for the Fermi-level spectral density of the single-
3.00 0.000 0.000 0.000 0.000 impurity Anderson model to the Alexander-Anderson model.

energy spectral density is 14% smaller than the value pr

dicted by Langreth’s(single-impurity expressiort. When

As an illustration, we compared NRG results with the ana-
Iytical expression and showed that accurate spectral density
computations are within the reach of present computational

Sesources. In particular, the generalized NRG procedure in

Ref. 8 was shown to yield excellent agreement with analyti-

compared with E¢(23), the values obtained in the ferromag- .| expression for both the asymmetric and the symmetric

netic case display similar deviations, which grow as onegrsions of the model. A study of the energy dependence of
moves into the vyeakly ant|fer'romagnet|c regime. Finally, 'Nthe spectral densities will be the subject of a forthcoming
the strongly antiferromagnetic case, the calculated Ferm'r'eport.

level densities, although small, fail to vanish.
In order to show that a more accurate calculation purges This work was supported by the Brazilian agencies
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