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Analytic bond-order potential$BOP’s) are derived for ther and = bond orders by approximating the
many-atom expansion for the bond order within the two-center, orthogonal tight-bifi@Blgmodel. The
analytic expression, BOP4, is obtained by retaining terms to four levels in the continued fractions for the
appropriate Green'’s functions and describesdhieonds in the dimer & the tetrahedral methane molecule
CH, and the trigonal methyl radical GHexactly. A simplified, but accurate, variant, BOP4S, depends only on
the two recursion coefficients, andb, that characterize the root-mean-square width and the unimodal versus
bimodal shape of ther bond eigenspectrum, respectively. An analytic expression forathgond order,
BOP2M, is obtained by performing matrix recursion to two levels, thereby ensuring that the expression is
independent of the choice of coordinate axes, depending only on neighboring bond integrals, bond angles and
dihedral angles. A simple analytic expression for the promotion energy is also presented. Advantages of these
BOP’s over the empirical Tersoff-Brenner potentials are, first, their analytic form is predicted by the theory,
second, ther bond order expression BOP4S includes the very important shape paramgter)€, and third,
the = bond order expression BOP2M describes the breaking of saturatezshds both on radical formation
and under torsion. The following paper examines the accuracy of these BOP’s for modeling the energetics of
diamond, graphite, and hydrocarbon molecul&€163-18209)03313-3

[. INTRODUCTION Brennel? extended the analytic form of the Tersoff potential
by introducing two additionadd hoctermsH;; andF;; into
The atomistic simulation of many materials processeshe bond order between atornandj in order to counter the
such as chemical vapor depositif®VD) growth! etching?  overbinding of radicals and the incorrect treatment of conju-
or tribological degradatiohinvolves breaking and re-making gacy in the original Tersoff scheme. The Brenner hydrocar-
of chemical bonds. Thus, the results of the computer simubon potential scored an immediate success with the molecu-
lations can only be as reliable as the ability of the interatomidar dynamics prediction of a very importar# scission
potentials to handle bond making and breaking. In the fieldeaction on thé100 diamond surface during CVD diamond
of drug design and p0|ymer research valence force f|e|d§rOWth that allows the reconstructed dimer bond to be bro-
have been highly successful in modeling the weak hydrogeken with the insertion of an adsorbed methylene radical,
bonds and the electrostatic and Van der Waals interactiori§ereby providing a first step for diamond growth.
that determine the docking energetics of a particular Houg However, the Tersoff-Brenner potentials suffer from two
the interchain coupling of a particular polyntedowever, in ~ important drawbacks. First, their analytic form is empirical
the field of covalently bonded materials that lie at the heartvith many unknown parameters to be fitted. In addition to
of the semiconductor industry classical interatomic potential$he eleven parameters in the usual Tersoff potential for a
have singularly failed to describe correctly the breaking ofdiven elemental system, the Brenner potential introduces a
the strong covalent borfiThis is due to their inability to  further fourteenH;; parameters and nin;; parameters for
handle the dangling bonds that are formed during bond rupthe hydrocarbons. Second, the Tersoff-Brenner potential
ture and the subsequent rehybridization of the valence ele€ontains only a single bond-order term whose angular depen-
trons. dence reflects that of & bond2* The problems associated
Somewhat over ten years ago TerSqgffoposed an em- With the overbinding of radicals and the poor treatment of
pirical many-body interatomic potential for covalent materi- conjugacy lie in the neglect of an explicit treatment of the
als that was based on the quantum-mechanical concept bbnd*®
bond ordef Following Abel? he assumed that the total  In this paper(Paper ) we show that the analytic form of
binding energy of the system could be written as a sum ovethe o and 7 bond orders can be derived as an approximation
individual bonds, the energy of each bond comprising a reto the exact many-atom expansion for the bond dfdér
pulsive pairwise contribution and an attractive contributionwithin the two-center, orthogonal tight-bindin@B) repre-
given by the product of the bond order and a pairwise bondentation for the electronic structuifeThe latter TB model
integral. The bond order was parametrized in a many-bodyas recently been demonstrated to give an excellent descrip-
form to depend on the local atomic environment about thdion of the energetics of the hydrocarbdidn Sec. Il this
bond so that it was explicitly angularly dependent by involv-TB model is presented and the exact many-atom expansion
ing the nearest-neighbor bond angles. The Tersoff potentidbr the bond order outlined. In Sec. Il an analytic bond-
has been widely used with reasonable success to model tlggder potential(BOP) is derived within the so-called four-
structural and tribological properties of the group IV ele-level approximation that depends explicitly on the Lanczos
ments C, Si, and Ge and their binary systénf§:*?In 1990  recursion coefficients; ,a,,a3,b1,b,,b;.%° This provides
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an exact treatmer(within the TB model of the dimer G,  value.(Note that due to LCNANg+AN,=0, so thatANg
the tetrahedral molecule GHand the trigonal radical CH = —AN,.) The promotion energy, therefore, tends to zero
In Sec. IV a simplified, but accurate, expression for the as the atoms are pulled apart. The Kronecker deifg;,
bond order is obtained by setting the recursion coefficientensures that the promotion energy is associated only with the
b;=b; and thea,=0. Explicit expressions fdo; andb, are ~ sp-valent atoms, not the-valent atoms.
given in terms of nearest-neighbor bond angles and bond The third term is the attractive covalent bond energy. It
integrals. In SecV a simplified expression for the bond ~ may be written in the form
order is obtained by performing matrix recursibf? with
respect to ther states. The use of matrix rather that scalar _ EE uv

. . Ubond d, (Ubond)u ’ (4)
recursion guarantees that the expression forthend order 2{F]
is independent of the choice of coordinate axes, dependin
only on the neighboring bond angles, dihedral angles, an
renormalized bond integrals. This provides an interatomic
potential that correctly describes the formation of radicals, (Upondf{"=2 > Himim @ im im 5)
thereby avoiding the endemic problem of overbinding faced mm’

by pre_vious pote_ntial_s such_ as Tersoff. In Sec. _VI a simplen terms of the Hamiltonian and bond-order matrix elements
analytic expression is derived for the promotion energyytn respect to the valence orbitdisn) and|jm) on sitesi
which, as expected, is more a property of #valent atom  anq j, respectively. The prefactor 2 accounts for the spin
in its local environment than a property of a given individual degeneracy.
bond. In Sec. VIl we conclude. _ Following Slater and Kostét the Hamiltonian matrix el-

_In the companion papgPaper 1) we show that the sim-  ements can be expressed directly in terms of the two-center
plified expressions for ther and = bond orders and the ihtegrals and appropriate direction cosines. We will assume
promotion energy give a good description of the energetic$y, the C-C bond that thepo bond integral can be approxi-

here the individual bond energies are given by

of diamond, graphite, and hydrocarbon molecules. mated by the geometric mean [fsz|and ppo as this al-
lows the o bond energy to be described by a single scalar
Il. BOND-ORDER POTENTIALS WITHIN THE TIGHT- bond order® , .*° This approximation is valid to within 12%
BINDING MODEL for Xu et al.’s parametrization for carboff. We, therefore,
A. The tight-binding model write

The two-center, orthogonal tight-bindin@B) modet®23 sso©)  —1(1+p,)
approximates the total energy of a binary systens-eélent

CC\ _ CccC
atoms(here represented by hydrogen &hdsp-valent atoms bpo =Po/(1Ps) ¢ h7%(R) ©®
(here represented by carbon & follows: spoec®)  Jp,/(1+p,)
U:Urep+Uprom+Ubondv 1) and
where we have assumed that each atom is locally charge pprtC=—hStSR), (7
neutral(LCN) and nonspin-polarized. Both these constraints ce ce ]
may be lifted within the TB model if required:>* whereh;~(R) andh*(R) have been defined above to be
The first term contains the overlap repulsidand may be  Positive quantities. In general, the and 7 bond integrals
written in the fornf® will display different distance dependencies. We see pphat
gives the ratio of the strength of tipgo bond integral to the
B Y sso bond integral and takes the value of 1.100 for carbon for
Ufep_Z F JE#I (R, @ the particular TB parametrization of Xat al?® The C-H
bond integrals may be written in the form
whereF (¢) is an embedding functidhand ¢**(R;;) is the
repulsive pairwise potential betweenuaatomic species at ssoCH -1N1+p, cH
. . . . g . - — h R , 8
site i and av atomic species at sitg a distanceR;; apart spo| ~ JpoTTpl| (R) (8)

(m,v=H for hydrogen, C for carbon If the embedding

function F(¢) is directly proportional tap, then the repul-  where we have assumed thatpg/sso) "= (spo/sso) ¢

sive energy ., is simply pairwise, as is often assuméd® = /o This is an excellent approximation for carbon and
The second term is also repulsive and represents the prgne hydrocarbons sincespo/sso)CH=1.044 whereas/p,,

motion energy of bringing thep-valent atoms together from _ 7 100=1.0481° Finally, the H-H bond integral is written
infinity. It is given by as

upmm:Z (ES—ES)(AN)8,c, (3) ssof=—htH(R) 9)

so that agairh!"(R) is a positive quantity. The TB param-
where €S —E) is the splitting between the valens@ndp etrization with the constraint) and (8) will be referred to
energy levels on the carbon atom which is assumed to bas thereduced TB model
constant andLKNp)iC is the change in the number pfelec- The individualij th bond energy now takes the transparent
trons on the carbon atom at siteompared to the free atom form®
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(Upond"= —2®ﬁfghﬁv(Rij)_2(®ﬁ,’}wx+ OL".) where|+) is the bonding state (42)(|i)+]j)) and|—) is
Y the antibonding state (42)(|i)—|j)).
Xh2"(Rij) 8,c6,c (10 The off-diagonal Green’s-function matrix elemeng;;

may be written as the derivative of tldtagonal Green’s-

where the bond orders are formally defined to be half th unction matrix eIemenGSO, where

difference between the number of electrons in the bonding
state  (142)(liu7)+|jv7)) and antibonding state

AN2) (i wr)—|jvr)), ie., Goo(E) = (upl[E—H] " ug) (16)
1 with
Off =5 (N =N, (12) )
wherer=g,, or m,. For the case of the C-C bond, the |u3>= E[|i)+exp(i PN, 17)

states are formed from the particular hybrids 1 o )
where ¢y=cos ~\. It follows by substituting Eq(17) into

1 Eg. (16) that

liCa)= [liCs)+ Vp,|iCz)
Vi+p, N 1
1 (12 Goo(E)= E[Gii(E)+ij(E)]+)\Gij(E)- (18
jCo)= jCs)—\p4liC2),
i€ Vv1+ p(,[IJ ) Jp—“ ) Hence, we have the exact result that

where thez axis runs along the axis of the bond from atom 9

to atomj. On the other hand, the states are formed from Gij(B)= XGSO(E)' (19

the valencep, and p, orbitals, namely|i Czr,)=|iCx) and

|jCm)=|jCx) and analogously fop,. The sum of ther,  But the diagonal elements of a Green’s function may be ex-
and 7, bond orders in Eq(10) must be invariant to the pressed as a continued fraction by using the Lanczos recur-

choice of axex andy. sion algorithn?%3? In particular,
The definition of the bond order Eq1l) allows us to
quantify the concept of the order of the bofid;” between \ 1
the » and » atomic species on sitésandj, namely GoolE)= ()2
14 14 14 14 E_a>‘_ -
Of" =00, + (0, + 0" )ducdec. (19 ° = (b3)?

—a}-

We will see in the following paper that this correlates with E_ah_ (bg)2

the conventional description of single, double, and triple a E—ag—---

bonds between carbon atoms. For the case of the H-H and (20)
C-H bonds we have only the contribution in the Eq(13).
We see at once that the hydrogen molecule has a saturatedwhere the recursion coefficients) b}y are defined by the
bond with a bond order of unity since from E€Ll) ®, Lanczos algorithm
=3(2-0)=1. A
bhsaluns 1) =Hlup)—aqlup) —bplup 1) (2D
B. The bond-order potential expansion

with |ud) given by Eq.(17). Consequentlyat=(u|H|u}
An exact many-atom expansion for the bond order may be |Uo) y Eq.(17 a yan=({uplH|up)

derived within the two-center, orthogonal TB modeftby 279 bp=(up_4|Hlup) since the Lanczos statés;) are or-
starting from the definition of the bond order in terms of thethonormal.

imaginary part of the intersite Green’s functidg;;(E), The recursion coefﬂmsnt&an ,bn} may be gxpressed in
namely terms of the moment$u,} of the local density of states
associated with the starting Lanczos orbjtg)), namely
2 E
®i,-=——|mJ "Gy (E)dE, (14) , 1 )
™ mzj_ E”[—;ImGSO(E) dE=(uj|A"u}). (22

where G;;(E)=(i[[E—H] [j). H is the Hamiltonian op-
erator,E is the Fermi energy, anfl is assumed to contain a Substituting Eq(17) into Eq. (22) we have
small imaginary part, i.e E=E+i%. For simplicity in this

and the next section we have dropped the sufficeand v N
which are subsumed into the definition of the stdtésand #n =L ()it (pn)i I M (nsa)ij 23
[j) [see, for example, Eq12)]. Equation(14) follows from R ~
Eq. (12) since where (u,);=(i|H"]i) and (u,);=(j|H"|j) are thenth mo-
ments of the local density of states associated with orbitals
E(G G )=G: (15 iy and|j), respectively, andg,1);;=(i|A"j) is an inter-
2T T e ference term linking orbital$i) and|j), as illustrated dia-
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grammatically in Fig. 2 of Ref. 33. The recursion coefficients (9ag
may then be written in terms of the momefitshe lowest K:(Zz)ij , (34
four being given explicitly by

_ A b

=#1=0, 4 —=[U4u) (L) (35

(b})?=p3, (25) X
ﬁal N N2

=M ud, (26) —[1/(Mz 108a)i; = [mal (r2)°1(&3)ij = 2(&2)55 -

and (36)
(b} N)2= }\/M)\_(M)\/ﬂ)\)z_l—l} 27) Finally, the bond order can be written as an exact expan-
2 3 2 2

sion by substituting Eq(28) into Eq. (14), namely
Thus, aj gives the center of gravity of the local density of " "
states, which we have chosen as the energy zero s@ghat
i=—2 Er)da,+ 2Xo(n— Er)db, |,
=0.b} anda} give the root-mean-square width and skew- nZO Xon.no(Ee) 02, nz'l Xo(n-1).n0( Er) 00,
ness of the local density of states, respectivety/ K)l)2 isa (37)
measure of the unimodal versus bimodal behavior of the lowhere Sa,=(3aMaN),—o and sb,=(dbMaN),—o is the

cal ddelnfs'ttytmk states vlwth Ithe sﬂp])ectrum bemfg said to tl)e bIconventlonal notation for these derivative terms since in the
modal if it takes a value less than unitgee, for example, original linearized version of the theofgee Eqs(2.26—

Sec. 4.5 of Ref. 2R
The intersite Green’s functio®;;(E) may now be ob- (2.30 of Ref. 33 we have

tained by substituting Eq20) into Eq.(19) and writing it in 1 1/ 9a) gal
the form da, —(ax 1 a%‘l):_(_) (5)\:2):(_>
2\ an | o
dGhy 92 & IGh, db) (38)
Gj(E)= 2> 4+ ——=". (29 - . .
n=0 gab IN A=1 gb) I\ and similarly foréb, . The response functions are defined by

©

The first factor in each term measures the change in the 1 Er

Green'’s functionGyy(E) with respect to the change in the Xom,no(Eg) = ;Imj Gom(E)Gno(E)dE (39
recursion coefficients, whereas the second factor gives the

change in the recursion coefficients with respect to théVith Gon(E)=Gg, °(E). The response functions depend on
change in the phase between the orbitajsand|j) in the  the recursion coefﬂments{an ba} where a,=a;™°, b,
starting Lanczos orbitdlig). The first factor may be written =b}~° through the recurrence relation E§1), and the con-
as the product of the Greensfuncuo@é (E) defined along tinued fraction Eq.(20), for Goo(E). Hence, they depend

the semi-infinite recursion cha?ﬁ,namely explicitly on the moments.,, where from Eq(23) we have
dGH(E ~o_1
) Gh(EGN(E). @9 me=un gLt ()]
n
1 " ~ ~ A~
f7G30(E) =—[{i[H[i)iq[H|io)---{ip_q|H|IY+{j|H]]
GBn(E)Gly-1)0(E) + Gl 1) (E)Gho(E) LRI ol DGR

b,

30 X(jalFlj2)- - (in-alF1])] (40)
with the semi-infinite chain Green’s functions satisfying the

) : where we imply the summation over repeated indices
recursion relations

P PR I PU
A A A We see, therefore that tireth moment can be written as
(E—2an)Gnn(E)—D G(n ym(E)— by +1G n+ym(E) = 5(”3""1) the sum over all self-returning paths of lengththat start
from either orbitalli) or |j) that comprises the—j bond>®
The second factor may be writt&rin terms of the interfer- Thus, expressiofB7) is referred to as a bond-order potential

ence terms {,1);; as (BOP) (Ref. 16 because it relates the bond order to explicit
N — hopping paths within the local atomic environment about the
gal gal au gal bond. This provides the crucial link between the electronic
N 21 ot ON - = 5 (Greai s (32 structure (calculated within the TB approximatipnand
K many-body interatomic potentialsalculated from the BOP
expansion
obh 2L obh our 2 ob)
= PN (§r+1)|11 (33
N PE1gu) IN =1 gud lll. AN ANALYTIC BOP TO FOUR LEVELS
where du} o\ = (¢r+1)i; from Eqg. (23). It follows that the The eigenvalues and eigenfunctions of the dimgy the

first three derivatives are given explicitly By trigonal methyl radical Ckl, and the tetrahedral methane
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molecule CH may all be found analytically by using the

irreducible representations of the appropriate point group to A%+

simplify the two-center, orthogonal TB Hamiltonian
matrix 3’ Here we shall consider the results fos é&nd CH;,
respectively.

The o states of the €dimer have eveligerade and odd
(ungeradg symmetry with corresponding eigenvaléés

1 1
E(og)=—5h5 =5V(h5)?+ &, (41)
1 cc 1 [(hCC\2 2

where 5= (E;—ES) and we have assumed for algebraic
simplicity thatp,=1, a value that is close to that of 1.10 for

the carbon systerf. The energy zero has been chosen so that eCH=
g

1 1 c —c
Mlzi[(ﬂl)i_l—(:ufl)j]:E(Es_l—Ep):Ou (43
where the orbital$i) and|j) are the carbon hybrids of Eq.
(12). It follows from the eigenvectof8 that the bond order
of the carbon-carbon bond is given by

1
Vi+ (592

where 5°¢=6/hSC. Thus, as expected, we have a perfect,
saturated bond witl® ,=1 for the idealized case of zesp
splitting, whereas we have zero bond order in the linfit
—0, corresponding to the atoms being pulled apart toward
their free atom ground sta&#p? configuration(see, for ex-
ample, Fig. 3.13 of Ref. 23

The states of the tetrahedral molecule Gtisplay theA;
or T, symmetry of the tetrahedral point graliith corre-
sponding eigenvalué%

05°= (44

2
(45)

N
2

11
E(A)=— Zﬁiz\/S(th)qu

1 2
A—Ec‘i) , (49

1 1\/8 CHu
E(Tz)_+25i§ §(h0 ) +

where we have takep,=1. A=E{—3(E¢+EJ) gives the
position of the hydrogendlevel with respect to the average
of the valences andp energy levels for the carbon atom. The
energy zero has been chosen so that

1
EX+ E(E§+ Eg)|=0,
(47)

where the orbitalgi) and|j) are the carbon hybrifiC o)
and the hydrogendorbital |jHs), respectively. The present
TB model, Eq.(1), requires the hydrogensllevel to be

1 1
p1=5 ()it (ma)il=5

adjusted self-consistently to guarantee local charge neutrality 1

(LCN). This leads to a quartic equation f&°H=A/hSH in
terms of 6= 6/hS", namely

o

DER... . I . 8491
[N P Ul W PRI o
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@8

whereA=ACH and §=5°H. At equilibrium, methane takes
a valué® of 5=6.70/9.37%0.715 so that it is an excellent
approximation to neglect the fourth-order ter$, 52A2,

and &* in Eq. (48). The resultant quadratic equation may be
solved to give

(ACWLCN=§%<14—3v§>3°W (49)

The bond order of the carbon-hydrogerbond may then be
written

V3

1
1+ §K2($CH)2

1 1
+

22| \1+k2(3%H)2 \/

(50

wherex=3+/3(3y/3—-1)/(52/2)=0.296. The first term in-
side the square brackets is the contribution to ¢ghéond
order from the occupied nondegenerate bonding orlital

the second term is from the occupied triply degenerate bond-
ing stateT,. We see, therefore, that the carbon-hydrogen
bond in methane is nearly saturated as the bond order takes
the value 0.957 fos"=0.715. This is within 1% of the
value 0.966 for the idealized situation of zero energy-level
splitting.

These analytic expressions for the bond order, E4#.
gnd(SO), have been derived due to the high symmetry of C
and CH,. The BOP expansion, Eq37), on the other hand,
has been derived with no assumptions about symmetry and
may, therefore, be applied to any atomic configuration of a
covalent system. However, if we are to represent the dimer
C,, the trigonal methyl radical CH{ and the tetrahedral
methane molecule CHexactly within the BOP expansion,
then the continued fraction must be taken to four levels in
Eqg. (20) in order to retain the four-level eigenspectrum of
Egs.(41) and(42) and Eqs(45) and(46), respectively. That
is, we approximate

1
Goo(E)ZE[Gii(E)+ij(E)] (52)

by the four-level continued fraction which reduces to
(E—ap)(E-ay)(E—as)
—b3(E—ag)~b3(E-ay)
(E-ag)(E—a)(E-az)(E—az)
—(E—ap)(E—ay)bj
—(E—ag)(E—ajz)b3
—(E—ap)(E—ag)bf+bib3

GooE)=

(52

’

where the zero of energy has been chosen so #jat

2[(p1)i+(m1);1=0 from Eq.(24).
The poles of this Green’s function may be found by re-

ducing the quartic in the denominator to standard fSrby
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shifting the energy zero by(ay+a;+a,+as;) so that the whereh,= h‘;c. It follows from Eqgs. (54)—(56) that p=

cubic contribution vanishes. We may then write —(h2+16%, q=0, andr=2%4* Therefore, substituting
, , , into Eq. (58) we havea?=h?, and from Egs(59) and (60)
(e-ay)(e-a;)(e—a) B=7y=—1%6 Hence, the poles in E¢57) predict correctly
—b3(e—aj)—b3(e—aj) the dimer eigenspectrum in Eqg1) and (42).
Goole) = : (53 For methane we have seen that the bond order for the

4 2
e tpetqetr idealized situation of zero energy splitting corresponding to

where e=E—3(ap+a;+a,+ag), a,=a,—:(a,+ta;+a, 90=0, A=0 agrees to within 1% of the exact TB result. In

+aj), and the coefficientp, g, andr are given by this idealized case the eigenspectrum is symmetric so that
a, =0 for all n. Again, theb, recursion coefficients may be
p=aja;+asas+(ag+ay)(as+as)—(bf+b3+b3), evaluated from the moments. We find
(54) ,
7h2/6 1
q=—(ap+a;)aza;—(ay+az)aga; +bi(ay+ay) b2=1< 5h%/14 for n={ 2, (62)
+b2(ay+aj) +b3(aj+ay), (55) 8h2/7 3
—1CH
r—a'a'ala’—b2a’a’.—b2a’a’—b2a’a’ +b2b2. whereh,=h;". It follows from Egs. (54)—(56) that p=
0T172Ts TAT2Ts T2OTSs FeTOTL LTS (569 —3h5, =0, andr=%h3 . Therefore, substituting into Eq.
(58) we havea?= %(2— y3)h2, and from Eqs(59) and(60)
The poles 0fGy((€) are at B=y=—2/\/3h2. The resultant poles predicted by E§7)
(1 1 simplify to = 2h, and +2/3h, in agreement with the
—za- E\/a2—4ﬁ eigenspectrum for CHin Egs. (45 and (46). [Note that
L these same four poles would have been obtained by choosing
1 1 2_4 2 4005 2
Lol the roota®=%(2+ 3)h? instead of(2 V3)h2, but the
2 2 2 latter guarantees the desired orderigl e,<e3<e, in EQ.
€= 1 1 for n= 3 (57 (57)].
+—a+ =Ja?—4y The intersite Green’s functiof®;j(e) may now be ob-
2 2 4 tained from Eqs(28)—(30) and Eq.(38) as
1 1
——-at = a2—4,8 3 3
22 Gij(€)= 2, Ggy(€)dan+22, Gon-1)(€)Grol€) by,
wherea is a nonzero real root of the equation (63)
a®+2pa’+(p?—4r)a?—qg?=0, (58)  where from the recurrence relation, E§2),
1 [ bil(e—a})(e—aj)—b3]
B=5(pta’—ala) (59 D(e) .
bib,(e—aj;
and Gonle)—{ 22022 for n=1{ 2.
D(e) 3
1
y==(p+a’+qla). (60) bibybs
2
_ D(e)
We see thaty— 8=q/« is a measure of the asymmetry of (64)

the eigenspectrum. For a symmetric eigenspectrum all thB(e)

O?d moments vanish by definitidite., u2n,1=0), S0 that  gquation(63) may be simplified by requiring that the poles
a,=0 andq=0 from Eq.(59). _ of this four-level intersite Green's functioB;;(€) are the
We can check the above expression for the poles by consgme as those of the four-level Green's functicgy €)
sidering the dimer and CH respectively. For the dimer with _— %[G“(e)+G”(e)]. This constraint will be exactly satis-
p,=1 the eigenspectrum is symmetric so thgt=0 for all  fied by those systems which display four-level behavior such
n. The b, recursion coefficients may be evaluated from theas thes bonds in G and CH, which we have considered
momentssee, for example, Eq§25) and (27)]. We find above. In general, this constraint implies that the numerator
C 2y 24 in Eq. (63) must factorize asAe®+Be+C)D(¢). The co-
o efficientsA, B, andC may be obtained by equating the co-
1 h2s? 1 efficients ofe®, €°, ande* in this factorized expression with
z those of Eq.(63). We find

=e*+pe’+qe+r is the denominator ofGge).

b2={ 4 h2+8%4 for n=1 2, 61
1 & 3 A= day, (65)

{ 16 h§.+ 52/4 B=2(a65ao+ blﬁbl)y (66)
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and

C=Kébay—2b,(aj+2a,+2aj) sh,+b?6a, (67

with
K=[(ap)*+(a;)*+(ay)*+(a3)?]+3(ajas+azas+aza;

+(bi—b3—b3), (68)
where day, 6b;, and Sa,; are defined by Eqs(34)—(36)
with  N\=0. Moreover, equating
€, €2, ¢, ande givesdb,, da,, by, anddaz, respec-
tively, in terms ofdagy, 6b,, andéda;.

The four-level intersite Green'’s function, E3), may

thus be written in the form

e2+2ale+K
D(e)
{ 2b,e—2by(aj+2a,+ 2a§)]
+ 1

(3ij( E) = (SEio

D(e)

(69

where the prefactors in the curly brackets depend on thﬁ_r
recursion coefficients defining the continued fraction for

Goo=3(Gii +Gj;), whereasda,, by, and sa; also de-
pend on the interference terms linking orbitéls and |j).

The imaginary part of these prefactors integrated up to the
Fermi energy would define the appropriate response fun

tions for the four-level bond-order potential expansion.

ANALYTIC BOND-ORDER . .. .

the coefficients of

8493
C+3[(y—B)a]B—3(y+B)A
P= , (73
2(y+B) +[(y—B)lal?
Q=—[1+(y—B)a?]P— %A+(1/2a)B, (74)
and
R=—[1-(y—B)/a?]P— %A—(llZa)B. (75)

It follows from Eq. (14) that the bond order is now given
simply by the sum of the residues of the poles that are occu-
pied, namely

0fY=22 wy,

Noce

(76)

where the suffix (4) is to remind us that it has been derived
within the four-level approximation. We will refer to this
bond-order potential expression by the acronym BOP4.

We now consider how BOP4 leads to the analytic expres-
sions Eq.(44) and Eq.(50), for the o bond order of G and
CH,, respectively. It follows from Eqd34)—(36) that da,
—h,, 6b;=0, andsa,=h3/b? where the latter two ex-
essions follow because there are no three- and four-
member ring contributions present. Thus, substituting into
Egs. (65—(68), A=—h,, B=0, and C=—(b5—b3—b}
—h?)h,.

For the dimer witb?, b3, andb3 given by Eq.(61) we

fave thatC=0 so thatP = Q=R=%h,, and

However, rather than keeping these terms separate, we

group them together and work with the compact form for

G;;, namely

ij
Ae?+Be+C

Gi(e)=—
il *+peX+qe+r

(70

This can be written explicitly in terms of the poleg and
residuesw, as

4

Gij(e)= >,

’
n=1 6_En

n

(71)

where

(72

=

=

Il
»w NP

The coefficient, Q, andR are defined by

1 1 1
ot
4 4,/1+(5cc)2

w,= for n=4 _. (77)
11 1 2
__+_

Thus, for the carbon dimer with both poleg and e, occu-
pied, we recover the well-knownr bond-order expression
given by Eq.(44). We see that i6=0, then the contribution
for w, vanishes, corresponding to a nonbondingtate. In-
terestingly, on the other hand, we see thaé#0, then the
contribution fromw, is negative, corresponding to an anti-
bonding state. We will return to this again in Paper Il when
comparing the nature of thesingle’ o bond in G and
C,H,, respectively.

For methane wittb?, b3, andb2 given by Eq.(62) for the
idealized cas&=A=0, we have thaC=3h3 so thatP=
—(1/43)(2—3)h, and Q=R=(1/4/3)(2+3)h,. It
follows from Eq.(72) that

|~

1

g(\/2+ V3- \/2— V3)=
42

3

2

S

; 1
or n= >

|

%(\/2+ V3+12-\3)=
4

&‘

(78)
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Thus, for the methane molecule with both polgsand e,

occupied, we recover the bond order given by Eq(50) Kk (a) (b) K
with 3°"=0. In Paper Il we will see that BOP4 also yields
the exact TB bond order for methane under the realistic con- I
i SCH
ditons 6°"#0 andp,#1. N R ee
i J i J

IV. SIMPLIFIED EXPRESSION FOR THE o BOND
ORDER

The general expression for BOP4, which we have derivedy
in the previous section, is too complicated for the rapid k
evaluation of the energies and forces that is required by
large-scale molecular-dynamics simulations. Fortunately,
however, as we have seen in E§0), the idealized situation ~  ~#3-------- . S < S °
with §=A =0 leads to a bond order for methane in its equi- i j
librium geometry that is within 1% of the correct TB result.
This behavior is also exhibited by the other hydrocarbons
which we will consider in Paper Il. We will, therefore, in this K’
section present a simplified version of BOP4 in whiéh
FAd_bO andtzgﬂ %1' Thﬁ latter apéproggnatlczjn 'II'S \t’)\fenllsat]is' that contribute to the recursion coefficiebtsandb,, respectively,
led by most hyadrocar onfsee Eq.(62) an able 1l o for the bond —j. There is an equivalent set of three- and four-body
Paper 1. We will also assume that there are no Odd'diagrams for paths originating from atgnmather than atoni.
membered rings present so tlagt=a,=0 for all n.

The assumption that all the odd moments vanish leads to The recursion coefficients; andb, may be written ex-
a symmetric eigenspectrum in EG7) since=7y. The ei-  pjicitly in terms of the hopping paths of length two and
genvalues are then determined by=(b;—b3)?+b3 and  |ength four within the local atomic environment about the
a?—4p=(b;+b3)?+b3. The corresponding residues in Eq. bond, as illustrated in Fig. 1. It folloW&***from Egs.(25)
(720 are determined by P=%h,+(b?—b3—b3  and(40) that for thec bond
—h?)h, /(4bsb3) and Q=—P+%h,. The resultant bond A 1 A
order for a half filled eigenspectrum with-=0 such as for bi=1+ > > L9485 1PLRA(Ri) 12+ (=)},
C, and CH, is then given by k)

FIG. 1. Hopping paths of length @) and length 4(b), (c), (d)

(81)

6%—(6%—1) where the renormalized bond integrals are defined by
ﬁﬁK(Rik)zhﬁ"(Rik)/hﬁ”(Rij) and (+]) implies an addi-

04D (Er O) (by+ba)bs | 1 - tional contribution obtained by interchangingndj in the
ij.o (Er=0)= 5 2 6_ (79 preceding term(or terms. The angular functiong“(6) are
14 2 ! given by
by +bg 95(0)=[p,/(1+p,)](p, *+cos6) (82
whereb,=b,/h, for n=1,2,3. We shall refer to this expres- and
sion for the bond order, which has been evaluated under the g('j(e)=1. (83
assumption that all the odd moments aezo, by the acro-
nym BOP4Z. Finally, takingp;=b;, we have For simplicityg(;(e) has been derived under the assump-
tion that[hS“(R)/hSC(R)]2<1 which is a very good ap-
62—(62—1) proximation for the carbon systeff.
1+ % Moreover, it follows from Eqs(27) and (40) that
2b? 1
05 (Er=0)= —— g ®©0 b3b3=(b2—1)— (b2-1)?
b3 1
1+ — 1 o o
4b? + 52 L0500 PIRG (Ri1*+ (=)
where the superscriptSlis to remind us that the bond order 1
has been evaluated within the four-level approximation un- +3 > {19400 9% Ok ) 94 Orij) ]
der thesimplifyingassumption thalb;=b, in addition to all k! #i]
the odd moments vanishin@ge., 5=A=0 and{59,=0). K7k
The error is made in going from Ed79) to Eq. (80) by X[ﬁﬁ“(Rik)]z[ﬁﬁ"'(Rik,)]er(i<—>j)}. (84)

assumingb;=b, is small for most hydrocarbons. For ¢H )
we have 0“9=0.9651 compared to ®@“?=(1  The first term b7—1) on the right-hand side of Ed84)
+\/§)/(2\/§)=O.9659, so that the error is only 0.1%. represents the four-path contribution arising from hopping
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from |i) (or orbital |j)) throughlj) (or |i)) and then out to
the neighbors and back as illustrated in Fi¢h)1The second

term, —(b,—1)?, is a small correction factor that remains
after subtractingu% from w4 in Eq. (27). The third term on
the right-hand side of Eq(84) corresponds to the self-
retracing paths of length four between orbifigl (or orbital
[j)) and a neighboring atorkthat is illustrated in Fig. ().
The fourth term on the right-hand side corresponds to the 15 \ 15 s .
paths of length four between orbitdl (or orbital |j)) and '
the nearest-neighbor atonksand k' as illustrated in Fig.
1(d). Again the angular function has been approximated by FIG. 2. Model binding energy curves within the simplified two-
assuming[hﬂlhg]2<1. We have evaluatefiz in Eq. (84) level approximation BOP2%left-hand panel and the simplified
by retaining only the hopping paths within the first nearestfour-level approximation BOP4&ight-hand panelfor the dimer
neighbor shell of atoms about the bond. The contributioflz=1). graphite ¢=3), diamond ¢=4), simple cubic ¢=6),
from the four-hop term from first- to second-nearest-ar_‘d fcc €= 12)_. The_ repulsiv_e energy is assumed to be pairwise
neighbor shell and back is negligible for thebond. We are with the potential falling off with the distance as the square of the

also assuming no four-member ring contributions. Thes®©ond integral. Ther bond energy and the promotion energy con-
have been given explicitly elsewhete tributions are neglected. Note that BOP2S gives no structural dif-

. ~ ~ ferentiation between the three-dimensional structures diamond,
We can check these expressions igrandb, by evalu- simple cubic, and fcc.
ating them for CH under the assumption thpt,=1. Then,

since for the tetrahedral bond cés—1/3, we have from iy Fig. 2 where we see that the three-dimensional structures
Egs.(81) and(84) that diamond, simple cubic, and face-centered cubic have identi-
. 1 1 7 cal binding energies.
bi=1+ 5%X3%X5=5 (85) This failure to differentiate between structure types within
the second moment approximation is not unexpected since
and u3? fixes the energy scalebut not the shape of the
1 (1\2 1 1 1 1 5 eigenspectrum. The latter is determined by the higher mo-
bfb§=€ —(5 + > X 3><§+ > X 3X 2><2—7= 1 ments, in particularw, which reflects the unimodal versus
(86) bimodal behaviof?® The fourth moment has been shown to
control the structural trends within the periodic table of the
which agrees with our earlier values in E§2) We shall sp-valent element&® However, evaluating the bond order to
compare the predictions of this simplified bond-order expresthe third level by takingo;=0 would lead to an unphysical
sion ®“9 with the exact TB results for diamond, graphite, nonbonding state for the hydrocarbons at the Fermi energy.
and the hydrocarbons in Paper II. It will be referred to by theOur symmetric four-level approximation, on the other hand,
acronym BOPA4S. has an energy gap given by
Finally, we comment on the analytic form of BOP4S. The — —
factor 1b, outside the curly brackets in EG80) with b,  Fgap™ Enomo™ Elumo™ V(b1+bg)?+b5— /(b3 —by) +%2é
given by Eq.(81) is very similar to Tersoff'§ empirical ex- (88)
pression for the bond order, as has been stressethis leads to the additional factor inside the curly brackets
previously** It arises from embedding the bond in its local for the bond order in Eq(79) for the symmetric four-level
atomic environment and determining the energy scale of thapproximation BOP4Z or in Eq(80) for the simplified
bonding through the square root of the corresponding secondOP4S expression whehz=b;. This inclusion of the
moment u,. However, as has been stressed by Nishitanfourth moment in BOP4S now ensures structural differentia-
et al,*? this second moment approximation does not differ-tion as is illustrated by the right-hand panel in Fig. 2. We
entiate between the binding energies of different elementawill find in Paper Il that it also causes an increase in ¢he
structure types with the same dimensionality if the reasonbond order by up to 5% for the hydrocarbons.
able assumption is made that the pairwise repulsive potential
falls off with the distance as the square of the bond integraly. SIMPLIFIED EXPRESSION FOR THE = BOND ORDER
This follows because the two-level approximation for the

. _ _ 742 ;
bond order of symmetric structures such as graphite, dia- 1ne Tersoff-Brenner potenpaﬁ does not include an ex-
mond, or simple cubic takes the form plicit = bond contribution. This causes radicals to be over-

bound. For example, within the Tersoff formalism the C-C
029 =1/b,=[(1+p,)/(1+ p2/d)¥2)/212 (87 bond in the radical ¢Hg will behave approximately as the
" 7 7 average of the C-C bonds in,B, and GHg. This implies
whered is the dimensionality of the lattice arms the local that the C-C bond in the ethyl radicabis is being treated
coordination within a first-nearest-neighbor model. Thus,as a bond with strength midway between that of a single
since each atom hasbonds, the bond energyer atomis  bond(as in ethane §Hg) and a double bon¢as in ethylene
proportional toz*? which results in the equilibrium binding C,H,). In practice, ther bond is broken in going from £&,
energy being independent of the coordinatiofior a given  to C,Hs so that the C-C bond in the radical is essentially a
dimensionalityd). This is illustrated by the left-hand panel single bond rather than a double bond.

/Uy
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The 7r bond contribution in Eq(10) must be invariant to

i i } Ei2347 *bs
the choice of thex andy coordinate axes, once tlzecoordi-

nate has been fixed along the bond akis. In order to
guarantee this within an approximate scheme, we must use
form of the Lanczos

rather than scalar

namely

the matrix
algorithm?%:22
|un)An

|un+1)Bn+1:ﬂ|un)_ _|un—1)B:

232, 14
—bj,) "+ by,

1
Zi\/ 2+b2 \/ (b
(97)

As expected, these poles are invariant to the choice of the
x andy coordinate axes. This can be seen by writing the

(89

whereA, andB, are matrices analogous to the scalar recurHamiltonian matrix elements in terms of the appropriate
sion coefficientsa, andb,, in Eq. (21). The Lanczos states bond integrals and directional cosifand substituting into
|un) are obtained recursively by acting with the Hamiltonian Eq. (97). We find after manipulating the algebra that

operatorH on the starting state

|u0):(|77x>a|77y>),

where

wa>—T (Jix)+=1]jx))

and

| )= f(||y>+ V=11jy))

by generalizing for ther bond the scalar starting orbital

|ud=% in Eq. (17).

The diagonal block of the Green’s functi@y(E) may

be written

El—Ay—

GooE)= —B+[EI—A1—
1

wherel is the 2X 2 unit matrix. We now derive the simples
0 (an excellent  byy, by, hS*, andh$® normalized byhSS(R;;). Thus the

approximation for ther bond by settindA,,=

-1
B[ ']_152]_181} ,

1. 1 . o~
00 pBhrBh=1+3 S {sito s TR (R
+(1+c0g0;)[hSAR) 12 Sec+ (i)
©D (998
and
1 . n
(92 Z(b)z(x— b2,)2+by,= 1@2&., {Sir6,ix SIrP 6,11/ BB
+Sir12t9]ikSirFGijkriBiszjzk,-l—(iHj)}
X €0S A px— Pyr), (99
where
B o (RS (RWP- (AR S, (100

(93
¢ andb,y, byy, by, hS*, andh$® are the quantitied,,,

approximation for ther bond if the energy zero is chosen as poles b, in Eq. (97) depend only on the bond integrals,

Eg) andB,.;=0, so that

1 . -1
Goo(E): EI_EBlBl y
where
. b b3y
BfBlz(Uo|H2|Uo):(b2 b2
yX yy
with b§x=<77x||:|2|77x>1 b32/y=<77y||:|2|77y>’ b>2<y_ yX

= (m,|H?| 7). It follows that

E
G°°(E)_{(Ez—bixxEZ—biy)—biy]

2 2 2
E —byy bxy )
b32/x E*- b>2<x

X

(96)

bond angle®;;, and;;, and dihedral anglesf(— ¢y), so
that they are independent of the choice of shendy coor-
dinate axes. It follows from E(87) that thew bond order

(94)  for EF=0 can be written
O (Er=0)=0" (E=0)+ 0" (Er=0)
= ! + 1 (101

—p2 wherew_ and . refer to thesr bond orders along the two

principal axes. We shall refer to this expression for the

bond order, wheré, andb_ are given by Eqs(97)—(100),
by the acronym BOP2M since we have derived it by using
matrix recursion to two levels.

This analytic BOP2M expression for the bond order
handles correctly the changing order of the bond in going
from C,H, — C,H,— C,Hs— C,Hg. Taking the ideal trigo-
nal and tetrahedral bond angles foyH; and GHg rather
than the experimental values of 121.3° and 111.2°, respec-

The poles of this Green’s function are solutions of a simpldtively, and assuming £{s also takes these ideal bond

quartic equation, namely

angles, we have for the capg=1 that
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CH, the appropriate Green'’s functions. However, BOP2M is less
accurate than BOP4S since it only satisfies up to the second
1 moment exactly. Fortunately, however, we will see in Paper

+ 1 for

+ 3 for C,H, Il that the absolute errors in the bond energy are usually
1+ —h2 not much greater than those in thebond energy because
47 the 7 bond integral is smaller than the bond integral.
1
®i(j2’\7:|-): VI. SIMPLIFIED EXPRESSION
' 14 Lo + L 1752 for  CoHs FOR THE PROMOTION ENERGY
+ - + —
247

The promotion energy is a term that is not considered
1 explicitly in the Tersoff-Brenner potentials= It arises from

. 2 . .
the fact that in carbon th&?p? configuration of the free-atom

[ [ = [
() W] -
>
q

o+ 2 for CjHsg ground state must be promoted to a configuration closer to
1+ —hi 1+ —hi that of sp® in order to achieve the optimum binding energy.
\ 3 3 (102 In the simplest version of valence bond theory exactly pne

electron would be promoted in order to create $f sp?,
where ﬁa:hSH(Rik)/hgc(Rij)' In order to examine the or sp® hybrids for theo bonds in linear, trigonal, or tetrahe-

changing behavior of ther bond within this hydrocarbon dral coordinations and the correspondp@ p*, or p° or-
sequence we now assume that the C-C and C-H bond Iengtll?étals for ther bonds. In practice, within moIecuI.ar.o.rbnaI
do not alter so thd,, is constant. Taking the typical value of or TB'theory, there is a competition betwee_n maximizing the
- 1o v ' magnitude of the bond integral by choosing the preferred
h,=6," we have that ther bond order decreases from phyprig and minimizing the cost of the promotion energy, so
2.000-1.189-0.471-0.400 on going from ¢H,— C;H, that AN, is usually less than ongee Sec. 3.7 of Ref. 22
— CoHs— CoHe. ) The promotion energy is a property of the carbon atom in
Thus, we see that BOP2M predicts correctly the saturatefls environment rather than a property of the individual bond.
double bond behavior in ¢H, and the saturated single | fact, within the simplest version of valence bond theory,
bond behavior in 6H,. Moreover, it follows from Eq(102  the promotion energper C atomis independent of whether
that the conventional saturated bond in GH, that corre-  we have two-fold, three-fold, or four-fold coordination since
sponds to B_=1.000 is effectively broken on going to ANy=1 in all these cases. In practice, the promotion energy
C,Hs and GHg, since 1b_ takes the reduced values of does depend on the Io_cal environmt_ar_lt. This en\_/ir.onment de-
0.277 and 0.200, respectively, for = 6. We find, therefore, Pendence could be displayed explicitly by deriving an ex-

that the totalw bond order in the radical L5 is only 10%
that of GH, but 90% that of GHg. The Tersoff potential,
on the other hand, would have

pression forAN, (and hence\N,) by taking the appropriate
Green’s function,GCS,cs(E), to four levels as in Eq(20).

predicted Unfortunately, however, the resultant expression would be

50% GH,, 50% GHg which gives rise to the inherent t00 time consuming to evaluate within large-scale molecular

problems associated with overbinding of radicdls.

dynamics simulations. In this section, therefore, we present a

BOP2M also leads to a rotational barrier in ethylene dueSimple analytic expression for the promotion energy that we
to the saturatedr bond again being effectively broken under Will demonstrate in Paper Il reproduces the TB promotion

rotation. It follows from Eqs(97)—(99) that rotation through
a dihedral angle of 90° leads to the reduced bond order

(103

@)(?M)(Ad,: z>: ! + !
ij,m
2 3. 3.
1+ -h?2 1+ -h?
8 8

compared to that of £, with A¢=0 in Eq. (102. This
corresponds to an energy barrier of
AU, =—2hS%(R;)AOF

ij,m

(104

which takes the value of 3.1 eV fdn,=6 eV andh,
=2.3 eV?® This energy barrier falls between tlad initio
values of 2.1 eV and 4.7 eV for relaxédand unrelaxet?

configurations during twisting. Interestingly, BOP2M pre-
dicts no rotational barrier for ethaneldy. This is consistent

energies of most hydrocarbon molecules in their ground
state.

The promotion energy of the trigonal Gadical and the
tetragonal CH molecule can be found analytically by using
group theory to simplify the TB Hamiltonian matri%.We
find that

1 ~CH
SAES
ANg=—| 1— , (105
1 .
\/1+Z(AE§SH)2
where
AESH=(E"-ES)/ Vz(ss0®™)? (106

with a detailed Hartree-Fock analysis that deduced zero bawith the local coordinatiorz taking the values 3 and 4 for

rier height for zero charge transfér.

CH; and CH,, respectively. Therefore, not unexpectedly,

BOP2M is similar to that of BOP4S in that both require ANg depends on the energy difference between the C and H
the solution of a quartic equation to determine the poles o levels, E?—Eg, normalized by the root-mean-square
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width of the resultant eigenspectrum determined by the VIl. CONCLUSIONS

sso®" bonding integral. The latter factor varies #&. . . . .
H this coordination dependence that erntdSH In this paper we have derived analytic expressions for the
owever, P i 'Mé. s ¢ and s bond orders by approximating the many-atom ex-
through the root-mean-square width in the denominator I(?L

tered b t 100 dissimil dination d d ansion for the bond order within the TB model. In particu-
countered by a not too dissimilar coordination dependence r, by retaining terms to four-levels in the continued frac-

:he ((ejn;arg_y dlfferenciﬁ(;' ES) n the ngme{_ator_. Th'z Ist tions for the appropriate Green'’s functions, we have obtained
ound to Increase with increasing coordination in order o, , expression, BOP4, that describes exactlyahaonds in
maintain local charge neutralitg.CN). We shall, therefore, ) . .

A CH - licitly coordination inde- the dimer G, the trigonal methyl radical CH and the tet-
assume that after LCME;" is explicitly rahedral methane molecule GHA simplified, but accurate
pendent and takes the value displayed by, CRamely variant of this expression, BOP4S, depends only on the two

recursion coefficient®, and b, that characterize the root-
mean-square width and the unimodal versus bimodal shape

AECH _1\/_(27—3\/3p,,)?5CH 0 of the o bond eigenspectrum, respectively. The coefficients
(AEgs )LCN_§ 1+ps (27-p,) (100 themselves may be written explicitly in terms of three- and

four-body contributions involving theos bond integrals

where, as beforeéCHzélth. Finally, substituting Eq. h,(R) and simple angular functiong,(6) whereR and 6

(107) into Eq. (105), the promotion energy per C atom can &re the bond lengths and bond angles, respectively. We have
be written as also obtained an analytic expression for thebond order,

BOP2M, by performing matrix recursion to two levels. The
use of matrix rather than scalar recursion guarantees that the
O BOP2M is independent of the choice of theandy coordi-

Uprom= 8l 1= k6 V1+k26%], (108 nate axes, depending only on the neighboring bond angles,
dihedral angles, and renormalized bond integrals. In addi-
tion, a simple analytic expression for the promotion energy is
presented that has the required feature that it tends to zero as
the atoms are pulled apart to infinity.

These analytic BOP’s have four main advantages over the
empirical Tersoff-Brenner potentials. First, their analytic
form is predictedby the theory, thereby providing insight
) ) ) into the origin of each term and reducing the number of
For p,=1 this reduces to the expression forin Eq. (50).  fitting parameters. Second, the bond-order expression

This simple analytic expression for the promotion energy i : L 2
assumed to be valid for a carbon atom in any environmensﬁl.aopd'S includes explicitly the shape parametei’p,) " that

This is achieved by defining the normalized ener differ-s essential for understanding structural trends within
N y 9 nergy dler  oleculed® and solid<'® Third, the bond-order expression
enced by 5= 6/(h,) where the average bond integral is

. BOP2M describes the breaking of saturatetonds on radi-
given by cal formation, thereby avoiding the endemic overbinding of
radicals of previous interatomic potentials. Fourth, BOP2M
also describes the breaking of the saturatetbond in the

/1 ethylene molecule £, under torsion, thereby avoiding the
— _ Ck X 2 4 3
{hg)= zgi [ho"(RiT%, (110 necessity of including aad hoctorsional stiffness contribu-
tion.
In the following paper we examine the accuracy of these
wherez is the local coordination of the carbon atom at site analytic BOP’s for modeling the energetics of diamond,

(see, for example, Eq14) of Ref. 12. We see, therefore, graphite, and hydrocarbon molecules that would be relevant

from Egs.(108) and(110) that the promotion energy tends to for the atomistic simulation of CVD diamond growth, for
zero as the atoms are pulled apart to infinity. example.

In Paper Il we will show that Eq(108 reproduces the
promotion energy of most hydrocarbon molecules in their
ground states and even predicts accurately the promotion en-
ergy of a carbon atom in a purely carbon environment such
as trigonal graphite or tetrahedral diamond. However, in or- We thank Professor Adrian Sutton, Professor Masato
der to handle transverse vibrational models, Bf8 will Aoki, and Dr. Andrew Horsfield for stimulating discussions
probably need to be generalized to include changes of bonal the outset of this research. We gratefully acknowledge the
angle about the ground state since EY08) is dependent support of the Defense Advanced Research Projects Agency
solely on the bond length. This will require the additionaland the Naval Research Laboratory under Contract No.
information contained in the fourth moment of the local den-N00014-97-1-G015 on “The development of analytic bond-
sity of states of the carbon atom rather than just the secondrder potentials for atomistic simulations in vapor process-
moment that enters Eq106). This will be considered else- ing.” The project was managed by Dr. Jim Butler who pro-
where. vided many insightful comments on diamond growth.

where

K= %\/1+ P,(27—33p,)/(27—p,). (109
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