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Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory
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Analytic bond-order potentials~BOP’s! are derived for thes and p bond orders by approximating the
many-atom expansion for the bond order within the two-center, orthogonal tight-binding~TB! model. The
analytic expression, BOP4, is obtained by retaining terms to four levels in the continued fractions for the
appropriate Green’s functions and describes thes bonds in the dimer C2 , the tetrahedral methane molecule
CH4 and the trigonal methyl radical CH3 exactly. A simplified, but accurate, variant, BOP4S, depends only on
the two recursion coefficientsb1 andb2 that characterize the root-mean-square width and the unimodal versus
bimodal shape of thes bond eigenspectrum, respectively. An analytic expression for thep bond order,
BOP2M, is obtained by performing matrix recursion to two levels, thereby ensuring that the expression is
independent of the choice of coordinate axes, depending only on neighboring bond integrals, bond angles and
dihedral angles. A simple analytic expression for the promotion energy is also presented. Advantages of these
BOP’s over the empirical Tersoff-Brenner potentials are, first, their analytic form is predicted by the theory,
second, thes bond order expression BOP4S includes the very important shape parameter (b2 /b1)2, and third,
the p bond order expression BOP2M describes the breaking of saturatedp bonds both on radical formation
and under torsion. The following paper examines the accuracy of these BOP’s for modeling the energetics of
diamond, graphite, and hydrocarbon molecules.@S0163-1829~99!03313-5#
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I. INTRODUCTION

The atomistic simulation of many materials proces
such as chemical vapor deposition~CVD! growth,1 etching,2

or tribological degradation3 involves breaking and re-makin
of chemical bonds. Thus, the results of the computer sim
lations can only be as reliable as the ability of the interatom
potentials to handle bond making and breaking. In the fi
of drug design and polymer research valence force fie
have been highly successful in modeling the weak hydro
bonds and the electrostatic and Van der Waals interact
that determine the docking energetics of a particular drug4 or
the interchain coupling of a particular polymer.5 However, in
the field of covalently bonded materials that lie at the he
of the semiconductor industry classical interatomic potent
have singularly failed to describe correctly the breaking
the strong covalent bond.6 This is due to their inability to
handle the dangling bonds that are formed during bond r
ture and the subsequent rehybridization of the valence e
trons.

Somewhat over ten years ago Tersoff7 proposed an em
pirical many-body interatomic potential for covalent mate
als that was based on the quantum-mechanical concep
bond order.8 Following Abel,9 he assumed that the tota
binding energy of the system could be written as a sum o
individual bonds, the energy of each bond comprising a
pulsive pairwise contribution and an attractive contributi
given by the product of the bond order and a pairwise bo
integral. The bond order was parametrized in a many-b
form to depend on the local atomic environment about
bond so that it was explicitly angularly dependent by invo
ing the nearest-neighbor bond angles. The Tersoff poten
has been widely used with reasonable success to mode
structural and tribological properties of the group IV e
ments C, Si, and Ge and their binary systems.7,10–12In 1990
PRB 590163-1829/99/59~13!/8487~13!/$15.00
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Brenner12 extended the analytic form of the Tersoff potent
by introducing two additionalad hoctermsHi j andFi j into
the bond order between atomsi and j in order to counter the
overbinding of radicals and the incorrect treatment of con
gacy in the original Tersoff scheme. The Brenner hydroc
bon potential scored an immediate success with the mole
lar dynamics prediction of a very importantb scission
reaction on the~100! diamond surface during CVD diamon
growth that allows the reconstructed dimer bond to be b
ken with the insertion of an adsorbed methylene radic
thereby providing a first step for diamond growth.13

However, the Tersoff-Brenner potentials suffer from tw
important drawbacks. First, their analytic form is empiric
with many unknown parameters to be fitted. In addition
the eleven parameters in the usual Tersoff potential fo
given elemental system, the Brenner potential introduce
further fourteenHi j parameters and nineFi j parameters for
the hydrocarbons. Second, the Tersoff-Brenner poten
contains only a single bond-order term whose angular dep
dence reflects that of as bond.14 The problems associate
with the overbinding of radicals and the poor treatment
conjugacy lie in the neglect of an explicit treatment of thep
bond.15

In this paper~Paper I! we show that the analytic form o
thes andp bond orders can be derived as an approximat
to the exact many-atom expansion for the bond order16,17

within the two-center, orthogonal tight-binding~TB! repre-
sentation for the electronic structure.18 The latter TB model
has recently been demonstrated to give an excellent des
tion of the energetics of the hydrocarbons.19 In Sec. II this
TB model is presented and the exact many-atom expan
for the bond order outlined. In Sec. III an analytic bon
order potential~BOP! is derived within the so-called four
level approximation that depends explicitly on the Lancz
recursion coefficientsa1 ,a2 ,a3 ,b1 ,b2 ,b3 .20 This provides
8487 ©1999 The American Physical Society
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8488 PRB 59D. G. PETTIFOR AND I. I. OLEINIK
an exact treatment~within the TB model! of the dimer C2 ,
the tetrahedral molecule CH4, and the trigonal radical CH3.
In Sec. IV a simplified, but accurate, expression for thes
bond order is obtained by setting the recursion coefficie
b35b1 and thean50. Explicit expressions forb1 andb2 are
given in terms of nearest-neighbor bond angles and b
integrals. In Sec. V a simplified expression for thep bond
order is obtained by performing matrix recursion21,22 with
respect to thep states. The use of matrix rather that sca
recursion guarantees that the expression for thep bond order
is independent of the choice of coordinate axes, depen
only on the neighboring bond angles, dihedral angles,
renormalized bond integrals. This provides an interatom
potential that correctly describes the formation of radica
thereby avoiding the endemic problem of overbinding fac
by previous potentials such as Tersoff. In Sec. VI a sim
analytic expression is derived for the promotion ene
which, as expected, is more a property of thesp-valent atom
in its local environment than a property of a given individu
bond. In Sec. VII we conclude.

In the companion paper~Paper II! we show that the sim-
plified expressions for thes and p bond orders and the
promotion energy give a good description of the energe
of diamond, graphite, and hydrocarbon molecules.

II. BOND-ORDER POTENTIALS WITHIN THE TIGHT-
BINDING MODEL

A. The tight-binding model

The two-center, orthogonal tight-binding~TB! model18,23

approximates the total energy of a binary system ofs-valent
atoms~here represented by hydrogen H! andsp-valent atoms
~here represented by carbon C! as follows:

U5Urep1Uprom1Ubond, ~1!

where we have assumed that each atom is locally ch
neutral~LCN! and nonspin-polarized. Both these constrai
may be lifted within the TB model if required.23,24

The first term contains the overlap repulsion25 and may be
written in the form26

Urep5(
i

FF(
j Þ i

fmn~Ri j !G , ~2!

whereF(w) is an embedding function27 andfmn(Ri j ) is the
repulsive pairwise potential between am atomic species a
site i and an atomic species at sitej, a distanceRi j apart
(m,n5H for hydrogen, C for carbon!. If the embedding
function F(w) is directly proportional tow, then the repul-
sive energyUrep is simply pairwise, as is often assumed.18,28

The second term is also repulsive and represents the
motion energy of bringing thesp-valent atoms together from
infinity. It is given by

Uprom5(
i

~Ep
C2Es

C!~DNp! i
CdmC , ~3!

where (Ep
C2Es

C) is the splitting between the valences andp
energy levels on the carbon atom which is assumed to
constant and (DNp) i

C is the change in the number ofp elec-
trons on the carbon atom at sitei compared to the free atom
ts
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value. ~Note that due to LCNDNs1DNp50, so thatDNs
52DNp .) The promotion energy, therefore, tends to ze
as the atoms are pulled apart. The Kronecker delta,dmC ,
ensures that the promotion energy is associated only with
sp-valent atoms, not thes-valent atoms.

The third term is the attractive covalent bond energy
may be written in the form

Ubond5
1

2(iÞ j
~Ubond! i j

mn , ~4!

where the individual bond energies are given by

~Ubond! i j
mn52 (

m,m8
Him, jm8

mn Q jm8,im
nm ~5!

in terms of the Hamiltonian and bond-order matrix eleme
with respect to the valence orbitalsu im& and u jm& on sitesi
and j, respectively. The prefactor 2 accounts for the s
degeneracy.

Following Slater and Koster29 the Hamiltonian matrix el-
ements can be expressed directly in terms of the two-ce
integrals and appropriate direction cosines. We will assu
for the C-C bond that thesps bond integral can be approxi
mated by the geometric mean ofusssuand pps as this al-
lows thes bond energy to be described by a single sca
bond orderQs .30 This approximation is valid to within 12%
for Xu et al.’s parametrization for carbon.26 We, therefore,
write

sssCC

ppsCC

spsCC
J 5

21/~11ps!

ps /~11ps!

Aps/~11ps!
J hs

CC~R! ~6!

and

pppCC52hp
CC~R!, ~7!

wherehs
CC(R) and hp

CC(R) have been defined above to b
positive quantities. In general, thes and p bond integrals
will display different distance dependencies. We see thatps

gives the ratio of the strength of thepps bond integral to the
sss bond integral and takes the value of 1.100 for carbon
the particular TB parametrization of Xuet al.26 The C-H
bond integrals may be written in the form

sssCH

spsCHJ 5
21/A11ps

Aps/A11ps
J hs

CH~R!, ~8!

where we have assumed that (sps/sss)CH5(sps/sss)CC

5Aps. This is an excellent approximation for carbon a
the hydrocarbons since (sps/sss)CH51.044 whereasAps

5A1.10051.048.19 Finally, the H-H bond integral is written
as

sssHH52hs
HH~R! ~9!

so that againhs
HH(R) is a positive quantity. The TB param

etrization with the constraints~6! and ~8! will be referred to
as thereduced TB model.

The individuali j th bond energy now takes the transpare
form30
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~Ubond! i j
mn522Q i j ,s

mn hs
mn~Ri j !22~Q i j ,px

mn 1Q i j ,py

mn !

3hp
mn~Ri j !dmCdnC , ~10!

where the bond orders are formally defined to be half
difference between the number of electrons in the bond
state (1/A2)(u imt&1u j nt&) and antibonding state
(1/A2)(u imt&2u j nt&), i.e.,

Q i j ,t
mn 5

1

2
~N12N2! i j ,t

mn , ~11!

wheret5s,px or py . For the case of the C-C bond, thes
states are formed from the particular hybrids

u iCs&5
1

A11ps

@ u iCs&1Apsu iCz&

u j Cs&5
1

A11ps

@ u j Cs&2Apsu j Cz&,6 ~12!

where thez axis runs along the axis of the bond from atomi
to atom j. On the other hand, thep states are formed from
the valencepx and py orbitals, namelyu iCpx&[u iCx& and
u j Cpx&[u j Cx& and analogously forpy . The sum of thepx
and py bond orders in Eq.~10! must be invariant to the
choice of axesx andy.

The definition of the bond order Eq.~11! allows us to
quantify the concept of the order of the bondQ i j

mn between
the m andn atomic species on sitesi and j, namely

Q i j
mn5Q i j ,s

mn 1~Q i j ,px

mn 1Q i j ,py

mn !dmCdnC . ~13!

We will see in the following paper that this correlates w
the conventional description of single, double, and tri
bonds between carbon atoms. For the case of the H-H
C-H bonds we have only thes contribution in the Eq.~13!.
We see at once that the hydrogen molecule has a saturats
bond with a bond order of unity since from Eq.~11! Qs

5 1
2 (220)51.

B. The bond-order potential expansion

An exact many-atom expansion for the bond order may
derived within the two-center, orthogonal TB model17,31 by
starting from the definition of the bond order in terms of t
imaginary part of the intersite Green’s functionGi j (E),
namely

Q i j 52
2

p
ImEEF

Gi j ~E!dE, ~14!

where Gi j (E)5^ i u@E2Ĥ#21u j &. Ĥ is the Hamiltonian op-
erator,EF is the Fermi energy, andE is assumed to contain
small imaginary part, i.e.,E[E1 ih. For simplicity in this
and the next section we have dropped the sufficesm andn
which are subsumed into the definition of the statesu i & and
u j & @see, for example, Eq.~12!#. Equation~14! follows from
Eq. ~11! since

1

2
~G112G22!5Gi j , ~15!
e
g

nd

d

e

whereu1& is the bonding state (1/A2)(u i &1u j &) and u2& is
the antibonding state (1/A2)(u i &2u j &).

The off-diagonal Green’s-function matrix elementGi j
may be written as the derivative of thediagonal Green’s-
function matrix elementG00

l , where

G00
l ~E!5^u0

lu@E2Ĥ#21uu0
l& ~16!

with

uu0
l&5

1

A2
@ u i &1exp~ ic!u j &], ~17!

where c5cos21 l. It follows by substituting Eq.~17! into
Eq. ~16! that

G00
l ~E!5

1

2
@Gii ~E!1Gj j ~E!#1lGi j ~E!. ~18!

Hence, we have the exact result that

Gi j ~E!5
]

]l
G00

l ~E!. ~19!

But the diagonal elements of a Green’s function may be
pressed as a continued fraction by using the Lanczos re
sion algorithm.20,32 In particular,

G00
l ~E!5

1

E2a0
l2

~b1
l!2

E2a1
l2

~b2
l!2

E2a2
l2

~b3
l!2

E2a3
l2•••,

~20!

where the recursion coefficientsan
l ,bn

l are defined by the
Lanczos algorithm

bn11
l uun11

l &5Ĥuun
l&2an

luun
l&2bn

luun21
l & ~21!

with uu0
l& given by Eq.~17!. Consequently,an

l5^un
luĤuun

l&
and bn

l5^un21
l uĤuun

l& since the Lanczos statesuun
l& are or-

thonormal.
The recursion coefficients$an

l ,bn
l% may be expressed in

terms of the moments$mn
l% of the local density of states

associated with the starting Lanczos orbitaluu0
l&, namely

mn
l5E

2`

`

EnF2
1

p
Im G00

l ~E!GdE5^u0
luĤnuu0

l&. ~22!

Substituting Eq.~17! into Eq. ~22! we have

mn
l5

1

2
@~mn! i1~mn! j #1l~zn11! i j , ~23!

where (mn) i5^ i uĤnu i & and (mn) j5^ j uĤnu j & are thenth mo-
ments of the local density of states associated with orbi
u i & and u j &, respectively, and (zn11) i j 5^ i uĤnu j & is an inter-
ference term linking orbitalsu i & and u j &, as illustrated dia-
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grammatically in Fig. 2 of Ref. 33. The recursion coefficien
may then be written in terms of the moments,32 the lowest
four being given explicitly by

a0
l5m1

l[0, ~24!

~b1
l!25m2

l , ~25!

a1
l5m3

l/m2
l , ~26!

and

~b2
l!25m4

l/m2
l2~m3

l/m2
l!22m2

l . ~27!

Thus,a0
l gives the center of gravity of the local density

states, which we have chosen as the energy zero so tha0
l

[0.b1
l and a1

l give the root-mean-square width and ske
ness of the local density of states, respectively. (b2

l/b1
l)2 is a

measure of the unimodal versus bimodal behavior of the
cal density of states with the spectrum being said to be
modal if it takes a value less than unity~see, for example
Sec. 4.5 of Ref. 22!.

The intersite Green’s functionGi j (E) may now be ob-
tained by substituting Eq.~20! into Eq.~19! and writing it in
the form

Gi j ~E!5 (
n50

` ]G00
l

]an
l

]an
l

]l
1 (

n51

` ]G00
l

]bn
l

]bn
l

]l
. ~28!

The first factor in each term measures the change in
Green’s functionG00

l (E) with respect to the change in th
recursion coefficients, whereas the second factor gives
change in the recursion coefficients with respect to
change in the phase between the orbitalsu i & and u j & in the
starting Lanczos orbitaluu0

l&. The first factor may be written
as the product of the Green’s functionsG0n

l (E) defined along
the semi-infinite recursion chain,34 namely

]G00
l ~E!

]an
5G0n

l ~E!Gn0
l ~E!, ~29!

]G00
l ~E!

]bn
5G0n

l ~E!G~n21!0
l ~E!1G0~n21!

l ~E!Gn0
l ~E!

~30!

with the semi-infinite chain Green’s functions satisfying t
recursion relations

~E2an
l!Gnm

l ~E!2bn
lG~n21!m

l ~E!2bn11
l G~n11!m

l ~E!5dnm .
~31!

The second factor may be written35 in terms of the interfer-
ence terms (zn11) i j as

]an
l

]l
5 (

r 51

2n11 ]an
l

]m r
l

]m r
l

]l
5 (

r 51

2n11 ]an
l

]m r
l

~z r 11! i j , ~32!

]bn
l

]l
5(

r 51

2n ]bn
l

]m r
l

]m r
l

]l
5(

r 51

2n ]bn
l

]m r
l

~z r 11! i j , ~33!

where]m r
l/]l5(z r 11) i j from Eq. ~23!. It follows that the

first three derivatives are given explicitly by33
-

-
i-

e

he
e

]a0
l

]l
5~z2! i j , ~34!

]b1
l

]l
5@1/~4m2

l!1/2#~z3! i j , ~35!

]a1
l

]l
5@1/~m2

l!#~z4! i j 2@m3
l/~m2

l!2#~z3! i j 22~z2! i j .

~36!

Finally, the bond order can be written as an exact exp
sion by substituting Eq.~28! into Eq. ~14!, namely

Q i j 522F (
n50

`

x0n,n0~EF!dan1 (
n51

`

2x0~n21!,n0~EF!dbnG ,

~37!

where dan5(]an
l/]l)l50 and dbn5(]bn

l/]l)l50 is the
conventional notation for these derivative terms since in
original linearized version of the theory@see Eqs.~2.26!–
~2.30! of Ref. 33# we have

dan5
1

2
~an

l512an
l521!5

1

2S ]an
l

]l D
l50

~dl52!5S ]an
l

]l D
l50

~38!
and similarly fordbn . The response functions are defined

x0m,n0~EF!5
1

p
ImEEF

G0m~E!Gn0~E!dE ~39!

with G0n(E)[G0n
l50(E). The response functions depend o

the recursion coefficients$an,bn% where an[an
l50 , bn

[bn
l50 through the recurrence relation Eq.~31!, and the con-

tinued fraction Eq.~20!, for G00(E). Hence, they depend
explicitly on the momentsmn where from Eq.~23! we have

mn[mn
l505

1

2
@~mn! i1~mn! j #

5
1

2
@^ i uĤu i 1&^ i 1uĤu i 2&•••^ i n21uĤu i &1^ j uĤu j 1&

3^ j 1uĤu j 2&•••^ j n21uĤu j &# ~40!

where we imply the summation over repeated indic
i 1 ,i 2 , . . . ,j 1 , j 2 , . . . .

We see, therefore, that thenth moment can be written a
the sum over all self-returning paths of lengthn that start
from either orbitalu i & or u j & that comprises thei 2 j bond.36

Thus, expression~37! is referred to as a bond-order potenti
~BOP! ~Ref. 16! because it relates the bond order to expli
hopping paths within the local atomic environment about
bond. This provides the crucial link between the electro
structure ~calculated within the TB approximation! and
many-body interatomic potentials~calculated from the BOP
expansion!.

III. AN ANALYTIC BOP TO FOUR LEVELS

The eigenvalues and eigenfunctions of the dimer C2 , the
trigonal methyl radical CH3, and the tetrahedral methan
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molecule CH4 may all be found analytically by using th
irreducible representations of the appropriate point group
simplify the two-center, orthogonal TB Hamiltonia
matrix.37 Here we shall consider the results for C2 and CH4,
respectively.

The s states of the C2 dimer have even~gerade! and odd
~ungerade! symmetry with corresponding eigenvalues23

E~sg!52
1

2
hs

CC6
1

2
A~hs

CC!21d2, ~41!

E~su!51
1

2
hs

CC6
1

2
A~hs

CC!21d2, ~42!

where d5(Ep
C2Es

C) and we have assumed for algebra
simplicity thatps51, a value that is close to that of 1.10 fo
the carbon system.26 The energy zero has been chosen so t

m15
1

2
@~m1! i1~m1! j #5

1

2
~Es

C1Ep
C!50, ~43!

where the orbitalsu i & and u j & are the carbon hybrids of Eq
~12!. It follows from the eigenvectors38 that the bond order
of the carbon-carbons bond is given by

Qs
CC5

1

A11~ d̂CC!2
, ~44!

where d̂CC5d/hs
CC . Thus, as expected, we have a perfe

saturated bond withQs51 for the idealized case of zerosp
splitting, whereas we have zero bond order in the limiths

CC

→0, corresponding to the atoms being pulled apart towa
their free atom ground states2p2 configuration~see, for ex-
ample, Fig. 3.13 of Ref. 23!.

The states of the tetrahedral molecule CH4 display theA1
or T2 symmetry of the tetrahedral point group37 with corre-
sponding eigenvalues39

E~A1!52
1

4
d6

1

2
A8~hs

CH!21S D1
1

2
d D 2

, ~45!

E~T2!51
1

4
d6

1

2
A8

3
~hs

CH!21S D2
1

2
d D 2

, ~46!

where we have takenps51. D5Es
H2 1

2 (Es
C1Ep

C) gives the
position of the hydrogen 1s level with respect to the averag
of the valences andp energy levels for the carbon atom. Th
energy zero has been chosen so that

m15
1

2
@~m1! i1~m1! j #5

1

2FEs
H1

1

2
~Es

C1Ep
C!G50,

~47!

where the orbitalsu i & and u j & are the carbon hybridu iCs&
and the hydrogen 1s orbital u jHs&, respectively. The presen
TB model, Eq.~1!, requires the hydrogen 1s level to be
adjusted self-consistently to guarantee local charge neutr
~LCN!. This leads to a quartic equation forD̂CH5D/hs

CH in

terms ofd̂5d/hs
CH , namely
to

t

,

s

ity

D̂41
26

3 S 12
2

52
d̂2D D̂22

28

3
d̂D̂1

13

6
d̂2S 11

3

104
d̂2D50,

~48!

whereD̂[D̂CH and d̂[d̂CH. At equilibrium, methane takes
a value19 of d̂56.70/9.37750.715 so that it is an excellen
approximation to neglect the fourth-order termsD̂4, d̂2D̂2,
and d̂4 in Eq. ~48!. The resultant quadratic equation may
solved to give

~D̂CH!LCN5
1

26
~1423A3!d̂CH. ~49!

The bond order of the carbon-hydrogens bond may then be
written

Qs
CH5

1

2A2F 1

A11k2~ d̂CH!2
1

A3

A11
1

9
k2~ d̂CH!2G ,

~50!

wherek53A3(3A321)/(52A2)50.296. The first term in-
side the square brackets is the contribution to thes bond
order from the occupied nondegenerate bonding orbitalA1 ,
the second term is from the occupied triply degenerate bo
ing stateT2 . We see, therefore, that the carbon-hydrog
bond in methane is nearly saturated as the bond order t
the value 0.957 ford̂CH50.715. This is within 1% of the
value 0.966 for the idealized situation of zero energy-le
splitting.

These analytic expressions for the bond order, Eqs.~44!
and~50!, have been derived due to the high symmetry of2
and CH4 . The BOP expansion, Eq.~37!, on the other hand
has been derived with no assumptions about symmetry
may, therefore, be applied to any atomic configuration o
covalent system. However, if we are to represent the dim
C2 , the trigonal methyl radical CH3, and the tetrahedra
methane molecule CH4 exactly within the BOP expansion
then the continued fraction must be taken to four levels
Eq. ~20! in order to retain the four-level eigenspectrum
Eqs.~41! and~42! and Eqs.~45! and~46!, respectively. That
is, we approximate

G00~E!5
1

2
@Gii ~E!1Gj j ~E!# ~51!

by the four-level continued fraction which reduces to

G00~E!5

F ~E2a1!~E2a2!~E2a3!

2b2
2~E2a3!2b3

2~E2a1!
G

F ~E2a0!~E2a1!~E2a2!~E2a3!

2~E2a0!~E2a1!b3
2

2~E2a0!~E2a3!b2
2

2~E2a2!~E2a3!b1
21b1

2b3
2

G , ~52!

where the zero of energy has been chosen so thata0
5 1

2 @(m1) i1(m1) j #50 from Eq.~24!.
The poles of this Green’s function may be found by r

ducing the quartic in the denominator to standard form40 by
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shifting the energy zero by14 (a01a11a21a3) so that the
cubic contribution vanishes. We may then write

G00~e!5

F ~e2a18!~e2a28!~e2a38!

2b2
2~e2a38!2b3

2~e2a18!
G

e41pe21qe1r
, ~53!

where e5E2 1
4 (a01a11a21a3), an85an2 1

4 (a01a11a2

1a3), and the coefficientsp, q, andr are given by

p5a08a181a28a381~a081a18!~a281a38!2~b1
21b2

21b3
2!,

~54!

q52~a081a18!a28a382~a281a38!a08a181b1
2~a281a38!

1b2
2~a081a38!1b3

2~a081a18!, ~55!

r 5a08a18a28a382b1
2a28a382b2

2a08a382b3
2a08a181b1

2b3
2 .

~56!

The poles ofG00(e) are at

en55
2

1

2
a2

1

2
Aa224b

1
1

2
a2

1

2
Aa224g

1
1

2
a1

1

2
Aa224g

2
1

2
a1

1

2
Aa224b

for n55
1

2

3

4

, ~57!

wherea is a nonzero real root of the equation

a612pa41~p224r !a22q250, ~58!

b5
1

2
~p1a22q/a! ~59!

and

g5
1

2
~p1a21q/a!. ~60!

We see thatg2b5q/a is a measure of the asymmetry
the eigenspectrum. For a symmetric eigenspectrum all
odd moments vanish by definition~i.e., m2n1150), so that
an850 andq50 from Eq.~55!.

We can check the above expression for the poles by c
sidering the dimer and CH4, respectively. For the dimer with
ps51 the eigenspectrum is symmetric so thatan850 for all
n. The bn recursion coefficients may be evaluated from t
moments@see, for example, Eqs.~25! and ~27!#. We find

bn
255

hs
21d2/4

1

4

hs
2d2

hs
21d2/4

1

16

d4

hs
21d2/4

for n5H 1

2

3

, ~61!
e

n-

where hs[hs
CC . It follows from Eqs. ~54!–~56! that p5

2(hs
21 1

2 d2), q50, and r 5 1
16 d4. Therefore, substituting

into Eq. ~58! we havea25hs
2 , and from Eqs.~59! and~60!

b5g52 1
4 d2. Hence, the poles in Eq.~57! predict correctly

the dimer eigenspectrum in Eqs.~41! and ~42!.
For methane we have seen that the bond order for

idealized situation of zero energy splitting corresponding
d50, D50 agrees to within 1% of the exact TB result.
this idealized case the eigenspectrum is symmetric so
an850 for all n. Again, thebn recursion coefficients may b
evaluated from the moments. We find

bn
25H 7hs

2/6

5hs
2/14

8hs
2/7

for n5H 1

2

3

, ~62!

where hs[hs
CH . It follows from Eqs. ~54!–~56! that p5

2 8
3 hs

2 , q50, andr 5 4
3 hs

4 . Therefore, substituting into Eq
~58! we havea25 4

3 (22A3)hs
2 , and from Eqs.~59! and~60!

b5g522/A3hs
2 . The resultant poles predicted by Eq.~57!

simplify to 6A2hs and 6A2/3hs in agreement with the
eigenspectrum for CH4 in Eqs. ~45! and ~46!. @Note that
these same four poles would have been obtained by choo
the roota25 4

3 (21A3)hs
2 instead of4

3 (22A3)hs
2 , but the

latter guarantees the desired orderinge1,e2,e3,e4 in Eq.
~57!#.

The intersite Green’s functionGi j (e) may now be ob-
tained from Eqs.~28!–~30! and Eq.~38! as

Gi j ~e!5 (
n50

3

G0n
2 ~e!dan12(

n51

3

G0~n21!~e !Gn0~e!dbn ,

~63!

where from the recurrence relation, Eq.~31!,

G0n~e!55
b1@~e2a28!~e2a38!2b3

2#

D~e!

b1b2~e2a38!

D~e!

b1b2b3

D~e!

for n5H 1

2

3

.

~64!

D(e)5e41pe21qe1r is the denominator ofG00(e).
Equation~63! may be simplified by requiring that the pole
of this four-level intersite Green’s functionGi j (e) are the
same as those of the four-level Green’s functionG00(e)
5 1

2 @Gii (e)1Gj j (e)#. This constraint will be exactly satis
fied by those systems which display four-level behavior su
as thes bonds in C2 and CH4 which we have considered
above. In general, this constraint implies that the numera
in Eq. ~63! must factorize as (Ae21Be1C)D(e). The co-
efficientsA, B, andC may be obtained by equating the c
efficients ofe6, e5, ande4 in this factorized expression with
those of Eq.~63!. We find

A5da0 , ~65!

B52~a08da01b1db1!, ~66!
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and

C5Kda022b1~a1812a2812a38!db11b1
2da1 ~67!

with

K5@~a08!21~a18!21~a28!21~a38!2#13~a18a281a28a381a38a18!

1~b1
22b2

22b3
2!, ~68!

where da0 , db1 , and da1 are defined by Eqs.~34!–~36!
with l50. Moreover, equating the coefficients
e3, e2, e, ande0 givesdb2 , da2 , db3 , andda3 , respec-
tively, in terms ofda0 , db1 , andda1 .

The four-level intersite Green’s function, Eq.~63!, may
thus be written in the form

Gi j ~e!5H e212a08e1K

D~e! J da0

1H 2b1e22b1~a1812a2812a38!

D~e! J db1

1H b1
2

D~e!J da1 , ~69!

where the prefactors in the curly brackets depend on
recursion coefficients defining the continued fraction
G005

1
2 (Gii 1Gj j ), whereasda0 , db1 , and da1 also de-

pend on the interference terms linking orbitalsu i & and u j &.
The imaginary part of these prefactors integrated up to
Fermi energy would define the appropriate response fu
tions for the four-level bond-order potential expansion.

However, rather than keeping these terms separate
group them together and work with the compact form
Gi j , namely

Gi j ~e!5
Ae21Be1C

e41pe21qe1r
. ~70!

This can be written explicitly in terms of the polesen and
residueswn as

Gi j ~e!5 (
n51

4
wn

e2en
, ~71!

where

wn5

¦

1
P

a
1

Q

Aa224b

2
P

a
1

R

Aa224g

2
P

a
2

R

Aa224g

1
P

a
2

Q

Aa224b

for n55
1

2

3

4

. ~72!

The coefficientsP, Q, andR are defined by
e
r

e
c-

e
r

P5
C1 1

2 @~g2b!/a#B2 1
2 ~g1b!A

2~g1b!1@~g2b!/a#2
, ~73!

Q52@11~g2b!/a2#P2
1

2
A1~1/2a!B, ~74!

and

R52@12~g2b!/a2#P2
1

2
A2~1/2a!B. ~75!

It follows from Eq. ~14! that the bond order is now give
simply by the sum of the residues of the poles that are oc
pied, namely

Q i j
~4!52(

nocc

wn , ~76!

where the suffix (4) is to remind us that it has been deriv
within the four-level approximation. We will refer to thi
bond-order potential expression by the acronym BOP4.

We now consider how BOP4 leads to the analytic expr
sions Eq.~44! and Eq.~50!, for thes bond order of C2 and
CH4, respectively. It follows from Eqs.~34!–~36! that da0

52hs , db150, andda15hs
3/b1

2 where the latter two ex-
pressions follow because there are no three- and fo
member ring contributions present. Thus, substituting i
Eqs. ~65!–~68!, A52hs , B50, and C52(b1

22b2
22b3

2

2hs
2)hs .

For the dimer withb1
2 , b2

2 , andb3
2 given by Eq.~61! we

have thatC50 so thatP5Q5R5 1
4 hs , and

wn55 1
1

4
1

1

4

1

A11~ d̂CC!2

2
1

4
1

1

4

1

A11~ d̂CC!2

for n5H 1

2
. ~77!

Thus, for the carbon dimer with both polese1 ande2 occu-
pied, we recover the well-knowns bond-order expression
given by Eq.~44!. We see that ifd̂50, then the contribution
for w2 vanishes, corresponding to a nonbondings state. In-
terestingly, on the other hand, we see that ifd̂Þ0, then the
contribution fromw2 is negative, corresponding to an an
bonding state. We will return to this again in Paper II wh
comparing the nature of the ‘‘single’’ s bond in C2 and
C2H2, respectively.

For methane withb1
2 , b2

2, andb3
2 given by Eq.~62! for the

idealized cased5D50, we have thatC5 4
3 hs

3 so thatP5

2(1/4A3)(22A3)hs and Q5R5(1/4A3)(21A3)hs . It
follows from Eq.~72! that

wn55
1

8
~A21A32A22A3!5

1

4A2

1

8
~A21A31A22A3!5

A3

4A2

for n5H 1

2
.

~78!
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Thus, for the methane molecule with both polese1 and e2
occupied, we recover thes bond order given by Eq.~50!

with d̂CH50. In Paper II we will see that BOP4 also yield
the exact TB bond order for methane under the realistic c
ditions d̂CHÞ0 andpsÞ1.

IV. SIMPLIFIED EXPRESSION FOR THE s BOND
ORDER

The general expression for BOP4, which we have deri
in the previous section, is too complicated for the rap
evaluation of the energies and forces that is required
large-scale molecular-dynamics simulations. Fortunat
however, as we have seen in Eq.~50!, the idealized situation
with d5D50 leads to a bond order for methane in its eq
librium geometry that is within 1% of the correct TB resu
This behavior is also exhibited by the other hydrocarbo
which we will consider in Paper II. We will, therefore, in th
section present a simplified version of BOP4 in whichd
5D50 andb35b1 . The latter approximation is well satis
fied by most hydrocarbons@see Eq.~62! and Table II of
Paper II#. We will also assume that there are no od
membered rings present so thatan5an850 for all n.

The assumption that all the odd moments vanish lead
a symmetric eigenspectrum in Eq.~57! sinceb5g. The ei-
genvalues are then determined bya25(b12b3)21b2

2 and
a224b5(b11b3)21b2

2 . The corresponding residues in E
~72! are determined by P5 1

4 hs1(b1
22b2

22b3
2

2hs
2)hs /(4b1b3) and Q52P1 1

2 hs . The resultant bond
order for a half filled eigenspectrum withEF50 such as for
C2 and CH4 is then given by

Q i j ,s
~4Z!~EF50!55 11

b̂2
22~ b̂1

221!

~ b̂11b̂3!b̂3

A11S b̂2

b̂11b̂3
D 26 1

b̂1

, ~79!

whereb̂n5bn /hs for n51,2,3. We shall refer to this expres
sion for the bond order, which has been evaluated under
assumption that all the odd moments arezero,by the acro-
nym BOP4Z. Finally, takingb35b1 , we have

Q i j ,s
~4S!~EF50!55 11

b̂2
22~ b̂1

221!

2b̂1
2

A11
b̂2

2

4b̂1
2
6 1

b̂1

, ~80!

where the superscript 4S is to remind us that the bond orde
has been evaluated within the four-level approximation
der thesimplifyingassumption thatb35b1 in addition to all
the odd moments vanishing~i.e., d5D50 andz2n11

ring 50).
The error is made in going from Eq.~79! to Eq. ~80! by
assumingb35b1 is small for most hydrocarbons. For CH4

we have Q (4S)50.9651 compared to Q (4Z)5(1
1A3)/(2A2)50.9659, so that the error is only 0.1%.
n-

d

y
y,

-
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-

to
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The recursion coefficientsb1 and b2 may be written ex-
plicitly in terms of the hopping paths of length two an
length four within the local atomic environment about t
bond, as illustrated in Fig. 1. It follows30,40,41from Eqs.~25!
and ~40! that for thes bond

b̂1
2511

1

2 (
kÞ i , j

$@gs
m~u j ik !#2@ ĥs

mk~Rik!#21~ i↔ j !%,

~81!

where the renormalized bond integrals are defined
ĥs

mk(Rik)5hs
mk(Rik)/hs

mn(Ri j ) and (i↔ j ) implies an addi-
tional contribution obtained by interchangingi and j in the
preceding term~or terms!. The angular functionsgs

m(u) are
given by

gs
C~u!5@ps /~11ps!#~ps

211cosu! ~82!

and

gs
H~u!51. ~83!

For simplicity gs
C(u) has been derived under the assum

tion that @hp
CC(R)/hs

CC(R)#2!1 which is a very good ap-
proximation for the carbon system.26

Moreover, it follows from Eqs.~27! and ~40! that

b̂1
2b̂2

25~ b̂1
221!2~ b̂1

221!2

1
1

2 (
kÞ i , j

$@gs
m~u j ik !#2@ ĥs

mk~Rik!#41~ i↔ j !%

1
1

2 (
k,k8Þ i , j

kÞk8

$@gs
m~u j ik !gs

m~ukik8!gs
m~uk8 i j !#

3@ ĥs
mk~Rik!#2@ ĥs

mk8~Rik8!#
21~ i↔ j !%. ~84!

The first term (b̂1
221) on the right-hand side of Eq.~84!

represents the four-path contribution arising from hopp

FIG. 1. Hopping paths of length 2~a! and length 4~b!, ~c!, ~d!
that contribute to the recursion coefficientsb1 andb2 , respectively,
for the bondi 2 j . There is an equivalent set of three- and four-bo
diagrams for paths originating from atomj rather than atomi.
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from u i & ~or orbital u j &) throughu j & ~or u i &) and then out to
the neighbors and back as illustrated in Fig. 1~b!. The second
term, 2(b̂121)2, is a small correction factor that remain
after subtractingm2

2 from m4 in Eq. ~27!. The third term on
the right-hand side of Eq.~84! corresponds to the self
retracing paths of length four between orbitalu i & ~or orbital
u j &) and a neighboring atomk that is illustrated in Fig. 1~c!.
The fourth term on the right-hand side corresponds to
paths of length four between orbitalu i & ~or orbital u j &) and
the nearest-neighbor atomsk and k8 as illustrated in Fig.
1~d!. Again the angular function has been approximated
assuming@hp /hs#2!1. We have evaluatedb̂2 in Eq. ~84!
by retaining only the hopping paths within the first neare
neighbor shell of atoms about the bond. The contribut
from the four-hop term from first- to second-neare
neighbor shell and back is negligible for thes bond. We are
also assuming no four-member ring contributions. Th
have been given explicitly elsewhere.41

We can check these expressions forb̂1 and b̂2 by evalu-
ating them for CH4 under the assumption thatps51. Then,
since for the tetrahedral bond cosu521/3, we have from
Eqs.~81! and ~84! that

b̂1
2511

1

2
333

1

9
5

7

6
~85!

and

b̂1
2b̂2

25
1

6
2S 1

6D 2

1
1

2
333

1

9
1

1

2
33323

1

27
5

5

12
~86!

which agrees with our earlier values in Eq.~62! We shall
compare the predictions of this simplified bond-order expr
sion Q (4S) with the exact TB results for diamond, graphit
and the hydrocarbons in Paper II. It will be referred to by t
acronym BOP4S.

Finally, we comment on the analytic form of BOP4S. T
factor 1/b̂1 outside the curly brackets in Eq.~80! with b̂1

given by Eq.~81! is very similar to Tersoff’s7 empirical ex-
pression for the bond order, as has been stres
previously.14 It arises from embedding the bond in its loc
atomic environment and determining the energy scale of
bonding through the square root of the corresponding sec
moment m2 . However, as has been stressed by Nishit
et al.,42 this second moment approximation does not diff
entiate between the binding energies of different eleme
structure types with the same dimensionality if the reas
able assumption is made that the pairwise repulsive pote
falls off with the distance as the square of the bond integ
This follows because the two-level approximation for t
bond order of symmetric structures such as graphite,
mond, or simple cubic takes the form

Q i j ,s
~2S!51/b̂15@~11ps!/~11ps

2/d!1/2#/z1/2, ~87!

whered is the dimensionality of the lattice andz is the local
coordination within a first-nearest-neighbor model. Th
since each atom hasz bonds, the bond energyper atomis
proportional toz1/2 which results in the equilibrium binding
energy being independent of the coordinationz ~for a given
dimensionalityd). This is illustrated by the left-hand pane
e

y

-
n
-

e

-

e

ed

e
nd
i

-
al
-

ial
l.

a-

,

in Fig. 2 where we see that the three-dimensional structu
diamond, simple cubic, and face-centered cubic have ide
cal binding energies.

This failure to differentiate between structure types with
the second moment approximation is not unexpected s
m2

1/2 fixes the energy scalebut not the shape of the
eigenspectrum. The latter is determined by the higher m
ments, in particular,m4 which reflects the unimodal versu
bimodal behavior.23 The fourth moment has been shown
control the structural trends within the periodic table of t
sp-valent elements.43 However, evaluating the bond order t
the third level by takingb350 would lead to an unphysica
nonbonding state for the hydrocarbons at the Fermi ene
Our symmetric four-level approximation, on the other han
has an energy gap given by

Egap5Ehomo2Elumo5A~b11b3!21b2
22A~b12b3!21b2

2.
~88!

This leads to the additional factor inside the curly brack
for the bond order in Eq.~79! for the symmetric four-level
approximation BOP4Z or in Eq.~80! for the simplified
BOP4S expression whenb35b1 . This inclusion of the
fourth moment in BOP4S now ensures structural differen
tion as is illustrated by the right-hand panel in Fig. 2. W
will find in Paper II that it also causes an increase in thes
bond order by up to 5% for the hydrocarbons.

V. SIMPLIFIED EXPRESSION FOR THE p BOND ORDER

The Tersoff-Brenner potential7,12 does not include an ex
plicit p bond contribution. This causes radicals to be ov
bound. For example, within the Tersoff formalism the C
bond in the radical C2H5 will behave approximately as th
average of the C-C bonds in C2H4 and C2H6. This implies
that the C-C bond in the ethyl radical C2H5 is being treated
as a bond with strength midway between that of a sin
bond~as in ethane C2H6) and a double bond~as in ethylene
C2H4). In practice, thep bond is broken in going from C2H4
to C2H5 so that the C-C bond in the radical is essentially
single bond rather than a double bond.

FIG. 2. Model binding energy curves within the simplified tw
level approximation BOP2S~left-hand panel! and the simplified
four-level approximation BOP4S~right-hand panel! for the dimer
(z51), graphite (z53), diamond (z54), simple cubic (z56),
and fcc (z512). The repulsive energy is assumed to be pairw
with the potential falling off with the distance as the square of
bond integral. Thep bond energy and the promotion energy co
tributions are neglected. Note that BOP2S gives no structural
ferentiation between the three-dimensional structures diamo
simple cubic, and fcc.
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The p bond contribution in Eq.~10! must be invariant to
the choice of thex andy coordinate axes, once thez coordi-
nate has been fixed along the bond axisRi j . In order to
guarantee this within an approximate scheme, we must
the matrix rather than scalar form of the Lancz
algorithm,21,22 namely

uun11)Bn115Ĥuun)2uun)An2uun21)Bn
1 , ~89!

whereAn andBn are matrices analogous to the scalar rec
sion coefficientsan and bn in Eq. ~21!. The Lanczos state
uun) are obtained recursively by acting with the Hamiltoni
operatorĤ on the starting state

uu0)5~ upx&,upy&), ~90!

where

upx&5
1

A2
~ u ix&1A21u jx&) ~91!

and

upy&5
1

A2
~ u iy&1A21u jy&) ~92!

by generalizing for thep bond the scalar starting orbita
uu0

l50& in Eq. ~17!.
The diagonal block of the Green’s functionG00(E) may

be written

G00~E!5FEI2A02

2B1
1@EI2A12B2

1@•••#21B2#21B1
G21

,

~93!

whereI is the 232 unit matrix. We now derive the simples
approximation for thep bond by settingAn50 ~an excellent
approximation for thep bond if the energy zero is chosen
Ep

C) andBnÞ150, so that

G00~E!5FEI2
1

E
B1

1B1G21

, ~94!

where

B1
1B15~u0uĤ2uu0!5S bxx

2 bxy
2

byx
2 byy

2 D ~95!

with bxx
2 5^pxuĤ2upx&, byy

2 5^pyuĤ2upy&, bxy
2 5byx

2

5^pxuĤ2upy&. It follows that

G00~E!5H E

~E22bxx
2 !~E22byy

2 !2bxy
4 J

3S E22byy
2 bxy

2

byx
2 E22bxx

2 D . ~96!

The poles of this Green’s function are solutions of a sim
quartic equation, namely
se

-

e

E1,2,3,456b6

56A1

2
~bxx

2 1byy
2 !6A1

4
~bxx

2 2byy
2 !21bxy

4 .

~97!

As expected, these poles are invariant to the choice of
x and y coordinate axes. This can be seen by writing t
Hamiltonian matrix elements in terms of the appropria
bond integrals and directional cosines29 and substituting into
Eq. ~97!. We find after manipulating the algebra that

1

2
~ b̂xx

2 1b̂yy
2 !511

1

4 (
kÞ i , j

H sin2u j ik

ps

11ps
@ ĥs

Ck~Rik!#2

1~11cos2u j ik !@ ĥp
CC~Rik!#2dkC1~ i↔ j !J

~98!

and

1

4
~ b̂xx

2 2b̂yy
2 !21b̂xy

4 5
1

16 (
k,k8Þ i , j

$sin2u j ik sin2u j ik 8b̂ ik
2 b̂ ik8

2

1sin2u j ik sin2u i jk 8b̂ ik
2 b̂ jk8

2
1~ i↔ j !%

3cos 2~fk2fk8!, ~99!

where

b̂ ik
2 5

ps

11ps
@ ĥs

Ck~Rik!#22@ ĥp
CC~Rik!#2dkC ~100!

and b̂xx , b̂yy , b̂xy , ĥs
Ck , and ĥp

CC are the quantitiesbxx ,

byy , bxy , hs
Ck , andhp

CC normalized byhp
CC(Ri j ). Thus the

poles6b6 in Eq. ~97! depend only on the bond integral
bond anglesu i jk andu j ik , and dihedral angles (fk2fk8), so
that they are independent of the choice of thex andy coor-
dinate axes. It follows from Eq.~87! that thep bond order
for EF50 can be written

Q i j ,p
~2M !~EF50!5Q i j ,p2

~2M ! ~EF50!1Q i j ,p1

~2M ! ~EF50!

5
1

b̂2

1
1

b̂1

, ~101!

wherep2 andp1 refer to thep bond orders along the two
principal axes. We shall refer to this expression for thep

bond order, whereb̂1 andb̂2 are given by Eqs.~97!–~100!,
by the acronym BOP2M since we have derived it by us
matrix recursion to two levels.

This analytic BOP2M expression for thep bond order
handles correctly the changing order of the bond in go
from C2H2 →C2H4→C2H5→C2H6. Taking the ideal trigo-
nal and tetrahedral bond angles for C2H4 and C2H6 rather
than the experimental values of 121.3° and 111.2°, resp
tively, and assuming C2H5 also takes these ideal bon
angles, we have for the caseps51 that
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Q i j ,p
~2M !5

¦

1 1 1 for C2H2

1 1

1

A11
3

4
ĥs

2
for C2H4

1

A11
1

3
ĥs

2
1

1

A11
17

24
ĥs

2
for C2H5

1

A11
2

3
ĥs

2
1

1

A11
2

3
ĥs

2
for C2H6

~102!

where ĥs5hs
CH(Rik)/hp

CC(Ri j ). In order to examine the
changing behavior of thep bond within this hydrocarbon
sequence we now assume that the C-C and C-H bond len
do not alter so thatĥs is constant. Taking the typical value o
ĥs56,19 we have that thep bond order decreases from
2.000→1.189→0.471→0.400 on going from C2H2→C2H4
→C2H5→C2H6.

Thus, we see that BOP2M predicts correctly the satura
doublep bond behavior in C2H2 and the saturated singlep
bond behavior in C2H4 . Moreover, it follows from Eq.~102!
that the conventional saturatedp bond in C2H4 that corre-
sponds to 1/b̂251.000 is effectively broken on going t
C2H5 and C2H6, since 1/b̂2 takes the reduced values o
0.277 and 0.200, respectively, forĥs56. We find, therefore,
that the totalp bond order in the radical C2H5 is only 10%
that of C2H4 but 90% that of C2H6 . The Tersoff potential,7

on the other hand, would have predicte
50% C2H4, 50% C2H6 which gives rise to the inheren
problems associated with overbinding of radicals.12

BOP2M also leads to a rotational barrier in ethylene d
to the saturatedp bond again being effectively broken und
rotation. It follows from Eqs.~97!–~99! that rotation through
a dihedral angle of 90° leads to the reduced bond order

Q i j ,p
~2M !S Df5

p

2
D 5

1

A11
3

8
ĥs

2

1
1

A11
3

8
ĥs

2

~103!

compared to that of C2H4 with Df50 in Eq. ~102!. This
corresponds to an energy barrier of

DUp522hp
CC~Ri j !DQ i j ,p

~2M ! ~104!

which takes the value of 3.1 eV forĥs56 eV and ĥp

52.3 eV.26 This energy barrier falls between theab initio
values of 2.1 eV and 4.7 eV for relaxed44 and unrelaxed45

configurations during twisting. Interestingly, BOP2M pr
dicts no rotational barrier for ethane C2H6. This is consistent
with a detailed Hartree-Fock analysis that deduced zero
rier height for zero charge transfer.45

BOP2M is similar to that of BOP4S in that both requi
the solution of a quartic equation to determine the poles
ths

d

e

r-

f

the appropriate Green’s functions. However, BOP2M is l
accurate than BOP4S since it only satisfies up to the sec
moment exactly. Fortunately, however, we will see in Pa
II that the absolute errors in thep bond energy are usually
not much greater than those in thes bond energy becaus
the p bond integral is smaller than thes bond integral.

VI. SIMPLIFIED EXPRESSION
FOR THE PROMOTION ENERGY

The promotion energy is a term that is not conside
explicitly in the Tersoff-Brenner potentials.7,12 It arises from
the fact that in carbon thes2p2 configuration of the free-atom
ground state must be promoted to a configuration close
that of sp3 in order to achieve the optimum binding energ
In the simplest version of valence bond theory exactly onp
electron would be promoted in order to create thesp, sp2,
or sp3 hybrids for thes bonds in linear, trigonal, or tetrahe
dral coordinations and the correspondingp2, p1, or p0 or-
bitals for thep bonds. In practice, within molecular orbita
or TB theory, there is a competition between maximizing t
magnitude of the bond integral by choosing the prefer
hybrid and minimizing the cost of the promotion energy,
that DNp is usually less than one~see Sec. 3.7 of Ref. 22!.

The promotion energy is a property of the carbon atom
its environment rather than a property of the individual bon
In fact, within the simplest version of valence bond theo
the promotion energyper C atomis independent of whethe
we have two-fold, three-fold, or four-fold coordination sinc
DNp51 in all these cases. In practice, the promotion ene
does depend on the local environment. This environment
pendence could be displayed explicitly by deriving an e
pression forDNs ~and henceDNp) by taking the appropriate
Green’s function,GCs ,Cs

(E), to four levels as in Eq.~20!.
Unfortunately, however, the resultant expression would
too time consuming to evaluate within large-scale molecu
dynamics simulations. In this section, therefore, we prese
simple analytic expression for the promotion energy that
will demonstrate in Paper II reproduces the TB promoti
energies of most hydrocarbon molecules in their grou
state.

The promotion energy of the trigonal CH3 radical and the
tetragonal CH4 molecule can be found analytically by usin
group theory to simplify the TB Hamiltonian matrix.37 We
find that

DNs52F 12

1

2
DÊss

CH

A11
1

4
~DÊss

CH!2
G , ~105!

where

DÊss
CH5~Es

H2Es
C!/Az~sssCH!2 ~106!

with the local coordinationz taking the values 3 and 4 fo
CH3 and CH4, respectively. Therefore, not unexpected
DNs depends on the energy difference between the C an
s levels, Es

H2Es
C , normalized by the root-mean-squa
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width of the resultant eigenspectrum determined by
sssCH bonding integral. The latter factor varies asz1/2.

However, this coordination dependence that entersDÊss
CH

through the root-mean-square width in the denominato
countered by a not too dissimilar coordination dependenc
the energy difference (Es

H2Es
C) in the numerator. This is

found to increase with increasing coordination in order
maintain local charge neutrality~LCN!. We shall, therefore,
assume that after LCNDÊss

CH is explicitly coordination inde-
pendent and takes the value displayed by CH4, namely

~DÊss
CH!LCN5

1

2
A11ps

~2723A3ps!d̂CH

~272ps!
, ~107!

where, as before,d̂CH5d/hs
CH . Finally, substituting Eq.

~107! into Eq. ~105!, the promotion energy per C atom ca
be written as

Uprom5d@12kd̂/A11k2d̂2 #, ~108!

where

k5
1

4
A11ps~2723A3ps!/~272ps!. ~109!

For ps51 this reduces to the expression fork in Eq. ~50!.
This simple analytic expression for the promotion energy
assumed to be valid for a carbon atom in any environm
This is achieved by defining the normalized energy diff
enced̂ by d̂5d/^hs& where the averages bond integral is
given by

^hs&5A1

z(kÞ i
@hs

Ck~Rik!#2, ~110!

wherez is the local coordination of the carbon atom at siti
~see, for example, Eq.~14! of Ref. 12!. We see, therefore
from Eqs.~108! and~110! that the promotion energy tends
zero as the atoms are pulled apart to infinity.

In Paper II we will show that Eq.~108! reproduces the
promotion energy of most hydrocarbon molecules in th
ground states and even predicts accurately the promotion
ergy of a carbon atom in a purely carbon environment s
as trigonal graphite or tetrahedral diamond. However, in
der to handle transverse vibrational models, Eq.~108! will
probably need to be generalized to include changes of b
angle about the ground state since Eq.~108! is dependent
solely on the bond length. This will require the addition
information contained in the fourth moment of the local de
sity of states of the carbon atom rather than just the sec
moment that enters Eq.~106!. This will be considered else
where.
e

is
of

s
t.
-

ir
n-
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r-

nd

l
-
nd

VII. CONCLUSIONS

In this paper we have derived analytic expressions for
s and p bond orders by approximating the many-atom e
pansion for the bond order within the TB model. In partic
lar, by retaining terms to four-levels in the continued fra
tions for the appropriate Green’s functions, we have obtai
an expression, BOP4, that describes exactly thes bonds in
the dimer C2 , the trigonal methyl radical CH3, and the tet-
rahedral methane molecule CH4. A simplified, but accurate
variant of this expression, BOP4S, depends only on the
recursion coefficientsb1 and b2 that characterize the root
mean-square width and the unimodal versus bimodal sh
of the s bond eigenspectrum, respectively. The coefficie
themselves may be written explicitly in terms of three- a
four-body contributions involving thes bond integrals
hs(R) and simple angular functionsgs(u) whereR and u
are the bond lengths and bond angles, respectively. We h
also obtained an analytic expression for thep bond order,
BOP2M, by performing matrix recursion to two levels. Th
use of matrix rather than scalar recursion guarantees tha
BOP2M is independent of the choice of thex andy coordi-
nate axes, depending only on the neighboring bond ang
dihedral angles, and renormalized bond integrals. In ad
tion, a simple analytic expression for the promotion energ
presented that has the required feature that it tends to ze
the atoms are pulled apart to infinity.

These analytic BOP’s have four main advantages over
empirical Tersoff-Brenner potentials. First, their analy
form is predictedby the theory, thereby providing insigh
into the origin of each term and reducing the number
fitting parameters. Second, thes bond-order expression
BOP4S includes explicitly the shape parameter (b2 /b1)2 that
is essential for understanding structural trends wit
molecules46 and solids.43 Third, thep bond-order expression
BOP2M describes the breaking of saturatedp bonds on radi-
cal formation, thereby avoiding the endemic overbinding
radicals of previous interatomic potentials. Fourth, BOP2
also describes the breaking of the saturatedp bond in the
ethylene molecule C2H4 under torsion, thereby avoiding th
necessity of including anad hoctorsional stiffness contribu-
tion.

In the following paper we examine the accuracy of the
analytic BOP’s for modeling the energetics of diamon
graphite, and hydrocarbon molecules that would be relev
for the atomistic simulation of CVD diamond growth, fo
example.
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