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Theory of giant magnetoresistance in granular alloys

E. F. Ferrari, F. C. S. da Silva, and M. Knobel
Instituto de Fı´sica ‘‘Gleb Wataghin,’’ Universidade Estadual de Campinas (UNICAMP),

CP 6165, 13083-970, Campinas, Sa˜o Paulo, Brazil
~Received 26 May 1998!

A theory of giant magnetoresistance in granular alloys was developed by considering the spin-dependent
scattering within the magnetic granules and at their boundaries and the continuous distributions of granule
sizes and directions of magnetization. The CPP formalism was recovered in the limit when the effective
conductivities in the granules are much larger than the matrix conductivity. When this condition is not satisfied,
the transport properties of the granular alloys derive from the crossover of the parallel and perpendicular
current configurations.@S0163-1829~99!10309-6#
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Since the discovery of giant magnetoresistance~GMR! in
Fe/Cr multilayers1 and subsequently in Co-Cu granul
films,2,3 the phenomenon has been intensively subjected
experimental and theoretical research. The mechanisms
ing rise to GMR in granular alloys are the same as in laye
structures, namely, the spin-dependent scattering within
magnetic granules and at their boundaries.4 However, in
granular alloys there is not such a clear distinction as
contrast in multilayers between the currents parallel~CIP!
and perpendicular~CPP! to the plane of the layers. For CIP
there occurs a large magnetoresistive effect only if the me
free path exceeds, or at least is comparable to, the thick
of the layers. This length scale does not appear for CPP,
GMR occurs even if the mean-free path is smaller than
thickness of the layers.

Zhang and Levy4 developed a model in which the sam
formalism for layered structures in the CPP configuration
applied for granular alloys. The transport properties
granular alloys are modeled by considering the two sp
dependent scattering mechanisms and the distribution
sizes of the magnetic granules. In a previous paper, we
amined the model in further detail.5 Nevertheless, there is a
accumulation of evidence that the size effects which are
portant for the CIP geometry in multilayers also contribute
the GMR in granular alloys.6–10 When the mean-free path i
comparable with the sizes and distances between the g
ules, current lines tend to bypass the high-resistivity granu
and therefore the GMR is intermediate between CIP
CPP.

The crossover of CIP and CPP in granular alloys is
counted in classical,6 semiclassical,7 and quantum8 transport
theories for explaining the maximum in the annealing te
perature dependence of magnetoresistance. However
common simplifying assumptions of these treatmen
namely, ~i! all granules are of the same size and~ii ! they
have only two magnetization directions~up and down!, pre-
vent their results from comparing with the results of Zha
and Levy.

We developed a transport theory of granular alloys whi
as the theory of Zhang and Levy, includes the two sp
dependent scattering mechanisms, the continuous dist
tions of granule sizes and magnetization directions, and
the cited theories,6–8 takes into account the CIP and CP
PRB 590163-1829/99/59~13!/8412~4!/$15.00
to
iv-
d
e

e

n-
ss

nd
e

s
f
-
of
x-

-

n-
s
d

-

-
the
,

,
-
u-
as

mixed configurations. When the granule conductivities
much larger than the matrix conductivity, exactly the sa
GMR equations of Ref. 4 are obtained. In the other c
when the matrix conductivity is much larger than the gran
conductivities, the transport is similar to that in the CIP g
ometry.

So let us consider an assembly of ferromagnetic gran
embedded in a nonmagnetic metal. Generally, the gran
are not of the same size and the magnetic moment per g
ule is not constant. The density of granules whose magn
moment is betweenm and m1dm is f (m)dm.5 In the ab-
sence of the magnetic fieldH, the directions of magnetiza
tion are randomly distributed.

Neglecting the spin-flip scattering, we assume that th
are two independent conduction channels for spin-up (↑) and
spin-down (↓) electrons. Restricting our approach to th
classical electrodynamics of continuous media, we accep
local form of the Ohm’s law when the quantization axis
parallel to the magnetic moment of the granule. When
absolute quantization axis is parallel to the applied magn
field, the electric fields and the current densities take
form ~Appendix!

E↑↓~r!5
1

2
E12~r!~11cosu!1

1

2
E21~r!~12cosu!, ~1!

j↑↓~r!5
1

2
s12E12~r!~11cosu!

1
1

2
s21E21~r!~12cosu!, ~2!

in which u is the angle between the magnetic moment of
granule and the magnetic field,E1 and E2 are the electric
fields ands1 and s2 are the conductivities of the spin-u
and spin-down electrons, respectively, when the magn
moment of the granule is parallel to the magnetic field.
8412 ©1999 The American Physical Society
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Following closely the steps of Refs. 6 and 12, we expr
the volume average of the electric fields and the current d
sities in the form

^E↑↓&V5
1

I s
E

0

`

~^E↑↓&Vm
1^E↑↓&Tm

!m f ~m!dm

1~12 f !^E↑↓&Vm
, ~3!

^ j↑↓&V5
1

I s
E

0

`

^ j↑↓&Vm
m f ~m!dm1~12 f !sm^E↑↓&Vm

, ~4!

in which I s andVm are the magnetization and the volume
the granule (m5I sVm), Tm is the volume of the transition
interface between the granule and the matrix,Vm andsm are
the volume and the conductivity of the matrix, and 12 f
5Vm /V.

The granule and matrix volume averages are defined

^E↑↓&Vm
5

1

Vm
E

Vm

E↑↓~r!d3r , ~5!

^E↑↓&Tm
5

1

Vm
E

Tm

E↑↓~r!d3r , ~6!

^E↑↓&Vm
5

1

Vm
E

Vm

E↑↓~r!d3r , ~7!

^ j↑↓&Vm
5

1

Vm
E

Vm

j↑↓~r!d3r . ~8!

The average conductivity is the sum of the conductivit
for the spin-up and spin-down channels,

s5s̃↑1s̃↓ , s̃↑↓5
^ j↑↓&V

^E↑↓&V
. ~9!

The thermal average is obtained by substitut
m(m,H,T) for cosu in the above equations. If the granule
are superparamagnetic, the component of magnetiza
along the magnetic field is given by the Langevin functio

m~m,H,T!5cothS mH

kT D2
kT

mH
. ~10!
s
n-

y

s

on

Solving the classical problem of a magnetic sphere e
bedded in a nonmagnetic metallic matrix, we can obtain
granule averages in the Lorentz field approximation. The
lution is13

^E↑↓&Vm
5H 1

2
A12~m!@11m~m,H,T!#

1
1

2
A21~m!@12m~m,H,T!#J ^E↑↓&Vm

,

~11!

^E↑↓&Vm
1^E↑↓&Tm

5H 1

2
@11D12~m!#@11m~m,H,T!#

1
1

2
@11D21~m!#@12m~m,H,T!#J

3^E↑↓&Vm
, ~12!

^ j↑↓&Vm
5H 1

2
s12A12~m!@11m~m,H,T!#

1
1

2
s21A21~m!@12m~m,H,T!#J ^E↑↓&Vm

,

~13!

in which

s12A12~m!5
3sm

112k12
CPP~m!

,

11D12~m!5
3k12

CPP~m!

112k12
CPP~m!

, ~14!

with

k12
CPP~m!5

sm

s12
~11r 12s12m21/3!. ~15!

The coefficientsr 12 are the effective resistivities of the in
terface between the granules and the matrix. Since the
ductivity for the minority-spin electrons is smaller than th
conductivity for the majority-spin electons,k2

CPP(m)
.k1

CPP(m).
Therefore, the conductivities take the form
s̃↑↓5

1

I s
E

0

`H 1

2

3

112k12
CPP~m!

@11m~m,H,T!#1
1

2

3

112k21
CPP~m!

@12m~m,H,T!#J m f ~m!dm112 f

1

I s
E

0

`H 1

2

3k12
CPP~m!

112k12
CPP~m!

@11m~m,H,T!#1
1

2

3k21
CPP~m!

112k21
CPP~m!

@12m~m,H,T!#J m f ~m!dm112 f

sm ~16!
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and are proportional to the matrix conductivity.
Introducing the positive terms

h05
2sm

c0
H 1

I s
E

0

`3

2F 1

112k2
CPP~m!

1
1

112k1
CPP~m!

G
3m f ~m!dm112 f J , ~17!

j05
1

h0
H 1

I s
E

0

`3

2F k2
CPP~m!

112k2
CPP~m!

1
k1

CPP~m!

112k1
CPP~m!

G
3m f ~m!dm112 f J , ~18!

j15
3

2h0

1

I s
E

0

`F k2
CPP~m!

112k2
CPP~m!

2
k1

CPP~m!

112k1
CPP~m!

Gm~m,H,T! m f ~m!dm, ~19!

we express the conductivity in the form14

s5c0

j012l0j1
2

j0
22j1

2
, ~20!

in which l052sm /c0 is the mean-free path in the pure m
trix @Eqs.~24! and ~25! below#.

The magnetoresistance and the magnetoresistance
are, therefore,

Dr5r~H,T!2r~Hc ,T!52
1

c0

j1
212l0j1

2j0

j012l0j1
2

, ~21!

MR5
Dr

r~Hc ,T!
52

j1
212l0j1

2j0

j0
212l0j1

2j0

, ~22!

in which Hc is the coercive field. Note that the absolu
value of the GMR amplitude is smaller than 1, becausej0
.j1 .

Let us examine the two limits when 1@2k12
CPP(m) and

when 1!2k12
CPP(m). In the smallk12

CPP limit, j0@2l0j1
2 and

thus the total conductivity takes the form

s5c0

j0

j0
22j1

2
~23!

which coincides with the expression of the conductivity
the theory of Zhang and Levy.

Comparing term by term Eqs.~6!–~11! in Ref. 4 with Eqs.
~17!–~23!, we determine the following relationships amon
the corresponding parameters:

c05
ne2kF

meF
, ~24!
tio

1

lnm
5

c0

2~112 f !sm
, ~25!

11pb
2

lm
5

c0

2~112 f !

3

2S 1

s2
1

1

s1
D , ~26!

~36p!1/3~11ps
2!

ls /a0
5

c0

2~112 f !
I s

21/33

2
~r 21r 1!, ~27!

2pb

11pb
2

5
1/s221/s1

1/s211/s1
, ~28!

2ps

11ps
2

5
r 22r 1

r 21r 1
. ~29!

The parametera introduced in our previous paper5 takes the
form

a5
r 22r 1

1/s221/s1
. ~30!

Therefore, when 1@2k12
CPP(m), the magnetoresistance fo

granular alloys can be derived using the formalism for c
rents perpendicular to the plane~CPP! in layered structures
This is the CPP limit.

In the largek12
CPP limit, j1'0 and the total conductivity

takes the form

s5
c0

j0
, ~31!

which does not depend on the directions of the magn
moments. Therefore, the electrons avoid the high resisti
granules, the transport occurs mainly through the matrix,
the GMR vanishes. This is the CIP limit.

In the CPP limit, the granule conductivities are larger th
the matrix conductivity and the granules are larger tha
certain minimum size,

CPP limit: s12.2sm , Vm@V12
CPP5~L12

CPP!3

5S 2smr 12s12I s
21/3

s1222sm
D 3

. ~32!

In the CIP limit, either the granule conductivities are smal
than the matrix conductivity (s12,2sm) or the granules
are smaller than a certain minimum size (Vm!V12

CPP). Of
course,L12

CPP are the relevant length scales.
Zhang and Levy attribute the initial increase of the GM

amplitude as a function of the annealing temperature to
superparamagnetic behavior of the smaller granules.4 How-
ever, because of Eq.~32!, this explanation is not consisten
when the measurements are made at the blocking temp
ture of the smallest granules. The correct explanation is
the magnetoresistance drops when the alloy is close to
CIP limit.6–8

Camblong, Levy, and Zhang11 set the general framewor
for a theory of electron transport in magnetic inhomogene
media based on the real-space Kubo formula, and succe
in obtaining the magnetoresistance for the CIP and CPP
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ometries in multilayers. Although restricting our approach
the formalism of classical electrodynamics, we extended
theory of transport in granular alloys beyond the CPP
proach of Ref. 4 and the simplifying conditions of Refs. 6–

Measurements of the magnetization and magnetore
tance on melt-spun Co-Cu ribbons at high fields and l
temperatures are being made to test our theory.

In conclusion, we developed the theory of giant mag
toresistance in granular alloys by taking into account
spin-dependent scattering within the magnetic granules
at their boundaries and the continuous distributions of gr
ule sizes and directions of magnetization. The CPP mo
was recovered in the limit when the granule conductivit
are larger than the matrix conductivity and the granule si
are much larger than a certain length scale. When these
ditions are not satisfied, the transport properties of the gra
lar alloys derive from the crossover of the parallel and p
pendicular current configurations.

APPENDIX

In fact, the electric fields and the current densities are
diagonal components of the bispinorsEb

a and ja
b which are

connected through the linear relationship~Appendix A of
Ref. 11!
.
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ja
b~r!5E sag

bd~r,r8!•Ed
g~r8!d3r 8. ~A1!

We assume that in the most symmetric configurat
when the quantization axis is parallel to the magnetic m
ment Eq.~A1! reduces to the local form of Ohm’s law,

j125s12E12 , ~A2!

in which j1[ j1
1 , E1[E1

1 , ands1[s11
11 , etc.

The change of the quantization axis from the magne
moment direction to the field direction arises from the ro
tion characterized by the spherical angles (u,w) and the ma-
trix

C5S cos~u/2! sin~u/2!e2 iw

2sin~u/2!eiw cos~u/2! D . ~A3!

The bispinorss5E, j transform according to

s8b
a5~C21!g

asd
g~C!b

d ~A4!

and after simple algebraic operations take the form:
tion.
s85S s1cos2~u/2!1s2sin2~u/2! ~s12s2!sin~u/2!cos~u/2!e2 iw

~s12s2!sin~u/2!cos~u/2!eiw s1sin2~u/2!1s2cos2u/2 D . ~A5!

Therefore, the diagonal terms reduce to Eqs.~1! and~2! and the nondiagonal terms average out with the azimuthal integra
ez,

R.
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