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Theory of giant magnetoresistance in granular alloys
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A theory of giant magnetoresistance in granular alloys was developed by considering the spin-dependent
scattering within the magnetic granules and at their boundaries and the continuous distributions of granule
sizes and directions of magnetization. The CPP formalism was recovered in the limit when the effective
conductivities in the granules are much larger than the matrix conductivity. When this condition is not satisfied,
the transport properties of the granular alloys derive from the crossover of the parallel and perpendicular
current configurationd.S0163-182609)10309-9

Since the discovery of giant magnetoresistaf@®R) in mixed configurations. When the granule conductivities are
Fe/Cr multilayer$ and subsequently in Co-Cu granular much larger than the matrix conductivity, exactly the same
films,23 the phenomenon has been intensively subjected t&MR equations of Ref. 4 are obtained. In the other case
experimental and theoretical research. The mechanisms giwhen the matrix conductivity is much larger than the granule
ing rise to GMR in granular alloys are the same as in layeredonductivities, the transport is similar to that in the CIP ge-
structures, namely, the spin-dependent scattering within themetry.
magnetic granules and at their boundafigdowever, in So let us consider an assembly of ferromagnetic granules
granular alloys there is not such a clear distinction as thembedded in a nonmagnetic metal. Generally, the granules
contrast in multilayers between the currents paral@P)  are not of the same size and the magnetic moment per gran-
and perpendiculafCPB to the plane of the layers. For CIP, yle is not constant. The density of granules whose magnetic
there occurs a large magnetoresistive effect only if the meanmoment is betweem and p+du is f(x)du.’ In the ab-

free path exceeds, or at least is comparable to, the thickneggnce of the magnetic field, the directions of magnetiza-
of the layers. This length scale does not appear for CPP, ang,, are randomly distributed.

GMR occurs even if the mean-free path is smaller than the Neglecting the spin-flip scattering

thickness of the layers. . : .
Zhang and LeV§ developed a model in which the same arg two independent conductlon' channels for spinf)pad
spin-down (/) electrons. Restricting our approach to the

formalism for layered structures in the CPP configuration is ; . . .
lassical electrodynamics of continuous media, we accept the

applied for granular alloys. The transport properties o , o e
granular alloys are modeled by considering the two Spin_Iocal form of the Ohm’s law when the quantization axis is

dependent scattering mechanisms and the distribution diarallél to the magnetic moment of the granule. When the

sizes of the magnetic granules. In a previous paper, we e@bsolute quantization axis is parallel to the applied magnetic

amined the model in further det&iNevertheless, there is an field, the electric fields and the current densities take the
accumulation of evidence that the size effects which are imform (Appendix

portant for the CIP geometry in multilayers also contribute to

the GMR in granular alloy8-'°When the mean-free path is

comparable with the sizes and distances between the gran- 1 1

ules, current lines tend to bypass the high-resistivity granules E”(r):EE+,(r)(1+cose)+ EE,+(r)(1—coa9), 1)

and therefore the GMR is intermediate between CIP and

CPP.

The crossover of CIP and CPP in granular alloys is ac-
counted in classic&lsemiclassical,and quantufitransport 1
theories for explaining the maximum in the annealing tem- j“(r)=§a+_E+_(r)(1+ cos))
perature dependence of magnetoresistance. However, the
common simplifying assumptions of these treatments, 1
namely, (i) all granules are of the same size afid they + Eo-,+E,+(r)(1—cos9), 2
have only two magnetization directiofisp and dowp, pre-
vent their results from comparing with the results of Zhang
and Levy.

We developed a transport theory of granular alloys whichjn which 6 is the angle between the magnetic moment of the
as the theory of Zhang and Levy, includes the two spingranule and the magnetic fiele, andE_ are the electric
dependent scattering mechanisms, the continuous distribields ando, and o_ are the conductivities of the spin-up
tions of granule sizes and magnetization directions, and agnd spin-down electrons, respectively, when the magnetic
the cited theorie8;® takes into account the CIP and CPP moment of the granule is parallel to the magnetic field.

we assume that there

0163-1829/99/5@.3)/84124)/$15.00 PRB 59 8412 ©1999 The American Physical Society



PRB 59 BRIEF REPORTS 8413

Following closely the steps of Refs. 6 and 12, we express Solving the classical problem of a magnetic sphere em-
the volume average of the electric fields and the current derbedded in a nonmagnetic metallic matrix, we can obtain the
sities in the form granule averages in the Lorentz field approximation. The so-

lution is'®

1 ©
<Eu>v:|—f (<EH>VM+<EH>TM)Mf(ﬂ)dM 1
- A (I M(H.T)]

<ETL>VM:
+(L-FE v, ©)

1
+EA—+(M)[1—m(MyH:T)]]<Em>vm,
1 o0
<1T¢>VZEL (v, pt(dpt (1=Hon(E )y, 4 (11)

in which I andV, are the magnetization and the volume of

the granule =1sV,), T, is the volume of the transition <ETL>VM+<EN>TM:
interface between the granule and the mawix,ando,, are

the volume and the conductivity of the matrix, and- i 1

:Vm/V_ +§[1+D+(M)][l_m(M1H1T)]]

The granule and matrix volume averages are defined by

1
§[1+D+7(M)][1+m(M1H1T)]

G (12)
— 1 d3
<ETL>VN_V_MJV#EH(") r (5 .
<JTL>VM:[§U+—A+—(M)[1+m(M!H!T)]
(Er, =y |, e ® !
T, V/-L T, Tl ) +§0'_+A_+(,LL)[1_m(,LL,H,T)] <EH>Vm’
(13
1
<Eu>vm=v—mfv E; (ndr, (7 in which
I
1 A (1) 3om
. . o4 — =————Frp
(v :V_f jp (nd3r. 8 P 1+ 2k w)
M u“ V#
CPP
The average conductivity is the sum of the conductivities 1+D, _(p) :M, (14)
for the spin-up and spin-down channels, 1+2kSPR w)
. with
Endv CPP Im 13
k+—(ﬂ):o__(1+r+—0'+—l’«71 ). (19

The thermal average is obtained by substituting -

m(x,H,T) for coss in the above equations. If the granules 1o coefficients ,  are the effective resistivities of the in-

are superparamagnetic, the component of magnetizatig ace petween the granules and the matrix. Since the con-
along the magnetic field is given by the Langevin function, q,ctivity for the minority-spin electrons is smaller than the

conductivity for the majority-spin electonsk“P{w)
e #H) KT >k ().
m(’U“’H’T)_COti_( ﬁ) S uH’ (10 Therefore, the conductivities take the form

I o[Z—1+2kCPP(M)[1+m(“’H'T)]+Em[l—m(u,H,T)] pf(w)dp+1-f
~ s i_ CPF
o= 1r=[1 3KSPRw) 1 3kSPRuw) On (16
Tt -+
.Jo [ 2 1+2k$p_p(m[ (wHT]+ 35 1Jr2kgp+,3(m[ (u )]]M (p)du
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and are proportional to the matrix conductivity.
Introducing the positive terms
200,

_ f“3
_CO 05
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(18
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m(u,H,T) wf(p)du, (19

we express the conductivity in the fotfn
£ot2hof]
&§-&

in which A y=20,/cq is the mean-free path in the pure ma-
trix [Eqgs.(24) and (25) below.

- CO y (20)
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1R 6 31 1 26
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Ps + 29

1+p§ ro+ry’

The parametew introduced in our previous paperkes the
form

_ r__r+
Clo_—1lo, -

a (30
Therefore, when +2kS"fu), the magnetoresistance for
granular alloys can be derived using the formalism for cur-
rents perpendicular to the pla€PBP in layered structures.
This is the CPP limit.

In the largek$™" limit, £&,~0 and the total conductivity
takes the form

Co

% (31

g=

The magnetoresistance and the magnetoresistance ratio

are, therefore,

1 E+2Néi

Ap=p(H,T)—p(Hc,T)=—CO cronge (2
0 0%1

D

Ap E+ 2020

MR= = ,
p(He,T) €6+ 2\ oé1 60

(22

in which H, is the coercive field. Note that the absolute
value of the GMR amplitude is smaller than 1, beca&ige
>§1.

Let us examine the two limits whens12k$"( ) and
when 1<2kS" (). In the smallk$™ limit, £,>2\0£2 and
thus the total conductivity takes the form

c &o
P g2

which coincides with the expression of the conductivity in
the theory of Zhang and Levy.

Comparing term by term Eq&)—(11) in Ref. 4 with Egs.
(17)-(23), we determine the following relationships among
the corresponding parameters:

(23

g=

ne’kg
Co= ,
0 me,:

(24

which does not depend on the directions of the magnetic
moments. Therefore, the electrons avoid the high resistivity
granules, the transport occurs mainly through the matrix, and
the GMR vanishes. This is the CIP limit.

In the CPP limit, the granule conductivities are larger than
the matrix conductivity and the granules are larger than a
certain minimum size,

CPPlimit. o, _>20y, V,>VSP=(LSH?3

—1/3\ 3

20 o4 _lg

o,_—20n (32)
In the CIP limit, either the granule conductivities are smaller
than the matrix conductivityd, -<2a,,) or the granules
are smaller than a certain minimum siz€ VS, Of
course L $°" are the relevant length scales.

Zhang and Levy attribute the initial increase of the GMR
amplitude as a function of the annealing temperature to the
superparamagnetic behavior of the smaller grarftildew-
ever, because of E@32), this explanation is not consistent
when the measurements are made at the blocking tempera-
ture of the smallest granules. The correct explanation is that
the magnetoresistance drops when the alloy is close to the
CIP limit.5~8

Camblong, Levy, and Zhahyset the general framework
for a theory of electron transport in magnetic inhomogeneous
media based on the real-space Kubo formula, and succeeded
in obtaining the magnetoresistance for the CIP and CPP ge-
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ometries in multilayers. Although restricting our approach to

the formalism of classical electrodynamics, we extended the jg(f)zf ahd(rr)-E}(r)d3’. (A1)
theory of transport in granular alloys beyond the CPP ap-
proach of Ref. 4 and the simplifying conditions of Refs. 6—8.

Measurements of the magnetization and magnetoresi%
tance on melt-spun Co-Cu ribbons at high fields and Iowm
temperatures are being made to test our theory.

In conclusion, we developed the theory of giant magne-
toresistance in granular alloys by taking into account the
spin-dependent scattering within the magnetic granules anlxgl1 whichj,=j*, E.=E?, ando,=0"", etc
at their boundaries and the continuous distributions of gran- The ch+ang(+a,of t+he qtjicmtizatign a;i; ,from. the magnetic

ule sizes and directions of magnetization. The CPP model

was recovered in the limit when the granule conductivitiesr.noment direction to the field direction arises from the rota-

are larger than the matrix conductivity and the granule sizeﬁOn characterized by the spherical anglésq) and the ma-
are much larger than a certain length scale. When these co X

ditions are not satisfied, the transport properties of the granu- . _

lar alloys derive from the crossover of the parallel and per- c ( cog 6/2) sin(6/2)e™"'¢

We assume that in the most symmetric configuration
hen the quantization axis is parallel to the magnetic mo-
ent Eq.(Al) reduces to the local form of Ohm'’s law,

jy-=o, By, (A2)

pendicular current configurations. —sin(0/2)e'¢  cog6/2) |- (A3)

APPENDIX The bispinorss=E, j transform according to

In fact, the electric fields and the current densities are the

diagonal components of the bispindeg and j? which are s'g:(c—l)gsg(c:)g (A4)
connected through the linear relationshiggppendix A of
Ref. 1] and after simple algebraic operations take the form:

s, co(0/2)+s_sir?(6/2)  (s,—s_)sin(8/2)coq /2)e~'¢
s'=| (s, —s_)sin(6/2)cog 0/2)€' s, SiP(0/2) +s_cog6/2 : (A5)

Therefore, the diagonal terms reduce to EGsand(2) and the nondiagonal terms average out with the azimuthal integration.
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