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Possibility of long-range order in clean mesoscopic cylinders

M. Lisowski, E. Zipper, and M. Stebelski
Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland

~Received 23 June 1998!

A microscopic Hamiltonian of the magnetostatic interaction is discussed. This long-range interaction can
play an important role in mesoscopic systems leading to an ordered ground state. The self-consistent mean-
field approximation of the magnetostatic interaction is performed to give an effective Hamiltonian from which
the spontaneous, self-sustaining currents can be obtained. To go beyond the mean-field approximation the
mean-square fluctuation of the total momentum is calculated and its influence on self-sustaining currents in
mesoscopic cylinders with quasi-one-dimensional and quasi-two-dimensional conduction is considered. Then,
by the use of the microscopic Hamiltonian of the magnetostatic interaction for a set of stacked rings, the
problem of long-range order is discussed. The temperatureT* below which the system is in an ordered state
is determined.@S0163-1829~99!03311-1#
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I. INTRODUCTION

One of the most exciting areas of physics is the study
mesoscopic electronic systems, i.e., metal or semicondu
samples that are sufficiently small and at sufficiently lo
temperature, such that inelastic electron-phonon scatterin
reduced and the electron propagates as a phase coh
wave throughout the entire sample.1

Recently in a series of papers2,3 we discussed a possibilit
of spontaneous persistent currents in relatively clean~ballis-
tic regime! metallic or semiconducting systems of cylindric
geometry.

It was shown in the mean-field approximation~MFA! that
the inclusion of the magnetostatic interaction among e
trons can lead to an ordered ground state with spontan
self-sustaining orbital currents that run without support
external magnetic field.

In our investigations we considered a collection of ma
mesoscopic rings with a thicknessd!R ~R is the radius of
the ring! stacked alongz axis and the three-dimensional~3D!
mesoscopic cylinder of very small thickness.4

In this paper we want to give some justification to t
calculation mentioned above, because there was no m
scopic theory of this phenomenon till now. We will examin
a microscopic Hamiltonian for the magnetostatic~current-
current! interaction and show that the self-consistent MFA
it gives the effective HamiltonianHMF leading to self-
sustaining currents. We also show that magnetostatic in
action is long range and therefore the criteria of the MFA
met.

The orbital magnetic interaction and its static version,
magnetostatic coupling, has been discussed previously
Pines and Nozieres5 and has been shown to be small in ma
roscopic metallic samples. However, this interaction sho
be reexamined in mesoscopic systems where the presen
energy gaps in the energy spectrum changes qualitativel
physical properties leading, e.g., to persistent currents dr
by the static magnetic fluxf at low temperatures.6 Persistent
currents create orbital magnetic moments and their inte
tion can lead to interesting coherent collective phenome
PRB 590163-1829/99/59~12!/8305~10!/$15.00
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which bear some resemblance to ferromagnetism and
superconductivity.2,7

To go beyond the MFA and discuss fluctuations we f
low the ideas developed by Bloch.8 He discussed the prob
lem of quantum coherence in a macroscopic, metallic r
manifested, e.g., by the thermodynamically stable flux tr
ping at zero external magnetic field. He covers in his pa
different long-range characteristics of the normal and the
perconductive state of a metal.

Irrespective of the specific dynamical properties of t
systems he shows that the general criteria for flux trapp
are closely related to the mean-square fluctuation of the t
momentum and depend strongly on the dimensionality of
system.

We will show, using Bloch’s formulas that if we reduc
the dimensions of a macroscopic cylinder made of a nor
metal or semiconductor to mesoscopic dimensions, the
tem exhibits coherent properties absent in macrosco
samples. We will formulate the criteria under which flu
trapping can be obtained in mesoscopic cylinders with qu
one-dimensional~quasi-1D! and quasi-2D conduction. In
particular, we will discuss the mean-square fluctuation of
total momentum—the decisive quantity for the characteri
tion of the properties of the system. We show that it
smaller in mesoscopic systems than in the correspond
macroscopic ones thus favoring quantum coherence.

Finally, using the microscopic Hamiltonian we discuss t
possibility of the long-range order in a mesoscopic cylind
made of a set of mesoscopic rings. We calculate the corr
tion length and the characteristic temperature under wh
the system is in a magnetically ordered state.

II. MAGNETOSTATIC INTERACTION

The general formula for the magnetostatic interaction is
the form

Hmgt52
m0

8pE d3rd3r 8
J~r !•J~r 8!

ur2r 8u
, ~1!
8305 ©1999 The American Physical Society
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whereJ(r )5ep(r )/me , J(r ) is the current density,p(r ) is
the momentum of an electron.

Let us assume that the currents run in a set ofMz meso-
scopic rings of small thickness deposited along thez axis.
We can write

J~r !5(
m/1

Mz

I m R
Cm

d3
„r2jm~s!…djm , ~2!

whereCm is given by a parametric equation for an electr
going around the circumference of a ring, andjm
5jm(s), s is the coordinate along the circumference of t
ring, I m is the current in themth ring.

We obtain

Hmgt52
1

2(m/1

Mz

(
m8/1

Mz

Lmm8I mI m8 , ~3!

where

Lmm85
m0

4p R
Cm

R
Cm8

djmdjm8

ujm2jm8u
, Lmm85Lm8m . ~4!

Thus we have obtained the interaction Hamiltonian of
currents from different rings. In this derivation we neglect
the self-inductance effects in each single ring. It can ea
be seen that they are small.

The interaction constantLmm8 depends on the sample g
ometry; here it has to be calculated for the rings depos
along thez axis at distancezmm85zm2zm8 .

The result is9

Lmm85m0RF S 2

hmm8

2hmm8D K2
2

hmm8

EG , ~5!

where

hmm8
2

5
4R2

4R21zmm8
2 , ~6!

K5E
0

p/2 du

~12h2 sin2u!1/2
, E5E

0

p/2

~12h2 sin2u!du,

~7!

K and E are the elliptical integrals of theI and II kind,
respectively.

Thez dependence of the coupling constantL is presented
in Fig. 1. We see that the interaction~3! is a long-range
interaction. For smallz it falls down slowly proportionally to
m0R ln(R/z22), for largez it falls down faster proportionally
to 1/z3. The interaction constant depends only onR and on
the relative distance of the centers of the rings.

As the currentsI m can run only in the clockwise or anti
clockwise direction the Hamiltonian~3! has the form of the
Ising Hamiltonian. It can be also expressed via the mome
pm , pm8 from different rings.

For the ring geometry we get

I m5
e

2pRme
pm , ~8!
e

ly

d

ta

pm5(
n/1

NR

pnm ,

where NR is a number of conducting electrons in a sing
ring.

Hmgt given by Eq.~3! can be rewritten in the form

Hmgt52
e2

2me
2 (m/1

Mz

(
m8/1

Mz

gmm8pmpm8 , ~9!

gmm85
1

4p2R2
Lmm8 .

If we add toHmgt the kinetic energy term and if we as
sume that the external magnetic field parallel to thez axis is
applied to the system, we obtain HamiltonianH:

H5
1

2me
(
m/1

Mz

(
n/1

NR

pnm
2 2

e2

2me
2 (m/1

Mz

(
m8/1

Mz

gmm8pmpm8 , ~10!

where pnm5pnm
0 2eAe ; pnm

0 is the momentum of thenth
electron inmth ring. Ae is the vector potential of an externa
magnetic field that points in thex direction measured along
the ring.

The first term in Eq.~10! represents the kinetic energy o
electrons in the external magnetic field, the second term
resents the orbital magnetic interaction; due to the nega
sign it favors states with large total momentum in compe
tion with the kinetic energy.

III. MEAN-FIELD APPROXIMATION
OF MAGNETOSTATIC COUPLING

We have seen in Sec. II that the magnetostatic couplin
a long-range interaction. This indicates, in particular, th
thermodynamic fluctuations of the current will be strong
supressed.10

Let us perform a self-consistent MFA of the interactio
~9!; such an approximation is known to be good for a lon
range interaction:

FIG. 1. The interaction constantL as a function of distancez
between the ring centers.
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Hmgt52
e2

2me
2 (m pm(

m8
gmm8pm8[2

e

2me
(
m

pmAI~zm!,

~11!

AI~zm!5
e

2me
(
m8

gmm8pm8 , ~12!

BC→B^C&1^B&C2^C&^B&,

Hmgt52
e

2me
(
m

@2pm^AI~zm!&2^pm&^AI~zm!&#, ~13!

where the first term in Eq.~13! has been obtained b
use of the symmetry relation ~4!, ^AI(zm)&5(e/
2me)(m8gmm8^pm8&[AI , where we assumed that̂pm&
[^p& is the same for all rings, and hence from Eq.~8!
^I m&[^I &.

Assuming that our stack ofMz rings forms a long cylinder
of length l we can calculate the vector potentialAI . We get

AI5m0R
Mz^I &

2l
. ~14!

Calculating the current̂I & with a total vector potentialA
5Ae1AI we get

^I &5
e

2pRme
~^p&2NReAI !. ~15!

Inserting Eq.~15! into ~14! we obtain the self-consisten
equation forAI :

AI5
m0eMz

4p lme
~^p&2NReAI !, ~16!

from which we get

eAI5
h

11hNRMz

Mz^p&, ~17!

where

h5
m0e2

4p lme
.

Inserting ^p& from Eq. ~17! into Eq. ~13! we obtain the
Hamiltonian H @Eq. ~10!# in the self-consistent mean-fiel
approximation:

HMF5
1

2me
(
m/1

Mz

(
n/1

NR

~pnm2eAI !
21

f I
2

2L , ~18!

whereL5m0pR2(Al 22R22R)/ l 2, f I52pRAI .
The Hamiltonian ~18! was the basis of our previou

investigations2 of spontaneous self-sustaining currents@see
Eqs. ~50! and ~51!#. Its derivation from the long-range
current-current interaction serves as a justification of the
of the Hamiltonian~18! to investigate magnetic properties
mesoscopic systems.

It has been generally believed that the MFA should wo
well for long-range forces. However, it has been shown
e

k
n

Ref. 11 that the above statement is correct if an additio
condition is fulfilled. The authors defined there the quant
S:

S5

S (
m8
Lmm8D 2

(
m8
Lmm8

2
, ~19!

where Lmm8 is the interaction constant. They proved th
MFA is correct if S@1.

We have calculatedS with Lmm8 given by Eq.~5! for the
following set of parameters: b[zm,m11510 Å,
R55000 Å, Mz;103. We have obtainedS;105; it means
that the MFA should work well in the case considered by

IV. SUMMARY OF THE BLOCH’S RESULTS

We are going now to investigate the possibility of flu
trapping in mesoscopic cylinders using the ideas develo
by Bloch.8 The general criteria for flux trapping are close
related to mean-square fluctuations and give a natural wa
describe the system in terms of the two-fluid model. At fi
we briefly recall Bloch’s results.

Let us consider a system ofN particles with massm and
chargee, contained in a ring with radiusR and radial width
d!R. We assume that the magnetic field parallel toz axis is
caused by a current around the ring, so the vector poten
A5f/(2pR) points in thex direction.

The total momentum in thex direction is given by

Px5(
n/1

N

pn
0 , ~20!

where pn
0 represents the momentum of thenth particle (n

51,2, . . . ,N).
The Hamiltonian of the particles is of the form

H5
~Px2NeA!2

2Nme
1H8, ~21!

whereH8 contains the kinetic energy of the motion in they
andz direction and of the relative motion in thex direction as
well as any additional terms that arise from interactions a
characterize the specific dynamical properties of the syst

From the symmetries and periodic boundary conditio8

we get the eigenvalues ofPx :

P5n
\

R
5~Nn1m!

\

R
, ~22!

wheren, n are arbitrary integers, andm is likewise an inte-
ger such that

2
N

2
,m<

N

2
.

Eigenenergies of the system are given by
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Emnq5

\2NS n2f81
m

ND 2

2meR
2

1Eqm8 , ~23!

whereq represents the system of additional quantum nu
bers necessary in addition toP(n,m) in order to fully char-
acterize the state of the system;f85f/f0 , f05h/e.

Using Eq.~23! we can calculate the free energy from t
particles. The flux-dependent part of the total free energ

F~f8!5F1~f8!1F2~f8!, ~24!

whereF1(f8) is a periodic function off8 with period 1,

F1~f8!52kBT ln Z1~f8!, ~25!

Z1~f8!5A p

NgS 112(
g/1

`

age2 ~pg!2/Ng cos 2pgf8D ,

~26!

ag5(
m

zme22p igm/N, ~27!

g5\2/(2meR
2kBT); zm is the statistical weight of the

stateEqm8 ,

(
m

zm51, zm>0; ~28!

F2~f8!5
\2f82

2e2L
, ~29!

whereF2(f8) is the energy stored in the magnetic field,L is
the self-inductance of the ring.

Thermodynamically stable flux trapping is determined
those values off8 for which F(f8) has a minimum. To
achieve it a strong variation ofF1(f8) is necessary to pre
vent the dominance ofF2(f8), which has minimum atf8
50.

Let us consider now three special cases that elucidate
different states of matter can be described in this model.
information about specific properties of the system is c
tained in the quantitieszm .

a. zm is independent ofm, i.e., zm51/N. After some al-
gebra we arrive at

Z1~f8!5A p

NgS 112(
g/1

`

e2(pg)2N/g cos 2pgNf8D .

~30!

The general periodicity inf851 is accompanied here by
far shorter periodf851/N, which is vanishingly small for
largeN. Besides the amplitude of the oscillation is small
any realistic temperature leading to a very small variation
F1(f8) and hence to the absence of stable flux trappi
This situation corresponds to the case where the system
hibits no long-range order and is characteristic of the nor
state of a metal.

b. zm5dm0 . From Eq.~26! we find
-

is

w
e
-

t
f
.
x-

al

Z1~f8!5A p

NgS 112(
g/1

`

e2(pg)2/Ng cos 2pgf8D ,

~31!

which has the periodicity withf851. However, in order to
get a stable flux trapping forf8Þ0 we need

Ng5
N\2

2meR
2kBT

@1, ~32!

which is satisfied at low temperaturesT. ThenF1(f8) can
well dominate the partF2(f8) in Eq. ~24!. The pronounced
minima of F(f8) occur atf85n and are equivalent with
stable flux trapping. This case corresponds to a conden
ideal Bose gas where all particles have momentump
5n\/R.

c. zm5 1
2 (dm01dm(N/2)). The partition function is of the

form

Z1~f8!5A p

NgS 112(
g/1

`

e2~2pg!2/Ng cos 4pgf8D .

~33!

This expression has the periodicity inf8 with f851/2, i.e.,
with f5h/2e. This case exhibits the property thatN/2 pairs
all have the same momentump5n\/R and corresponds to
the long-range order characteristic of a superconducto
temperatures in which the condition~32! is satisfied.

To consider other, more general cases one assumes
the total momentumP can admit the values given by Eq
~22! with mÞ0, but with a sharp maximum aroundm50.
The formula forZ1(f8) has then the form

Z1~f8!5A p

NgS 112(
g/1

`

e2~pg!2/[Ng~12r!]cos 2pgf8D ,

~34!

where

r5
^~DP!2&
NmekBT

, 0<r<1, ~35!

^(DP)2& is the mean-square fluctuation of momentumP
around the set of valuesf8N\/R, wheref8 is an integer
multiple of the period, andr can be called a relative fluctua
tion;

^~DP!2&5
\2

R2
^~Dm!2&52mekBT(

a
pa

] f ~pa!

]pa
,

~36!

where^(DP)2&5^P2&2^P&2; f (pa) is the mean numbe
of particles with momentumpa5\(a2f8)/R, a50,61,
62, . . .

Equation~34! covers the special cases discussed befo
Casea corresponds to the situation where all values ofm are
equally probable, which leads tor→1; Z1(f8) becomes
then independent off8 with the exclusion of flux trapping.
Casesb and c correspond tor50 and thus describe th
systems in the coherent state with no fluctuations.

The intermediate case
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0,^~DP!2&,NmekBT, ~37!

or equivalently, 0,r,1, still results in a pronounced varia
tion of F1(f8) as long as

Ng~12r!@1. ~38!

It means that stable flux trapping can be expected as soo
^(DP)2& is found to be smaller than the maximal value
mean-square fluctuation ofP.

V. FLUX TRAPPED IN MESOSCOPIC CYLINDERS

We will perform now, using Bloch’s formalism, som
model calculations of flux trapped in mesoscopic hollow c
inders of radiusR, length l, and wall thicknessd (d!R)
made of a normal metal or semiconductor. Such cylind
can be treated as a multichannel system withMz channels in
the length andMr channels in the thickness of the cylind
(M[MzMr), with the total number of conducting electron
N5NRM . We will study the systems with quasi-1D an
quasi-2D conduction. It is known that coherent response
mesoscopic cylinders can be obtained12,4 for systems with
large phase correlation of currents from different chann
which is related to the shape of the Fermi surface~FS!. The
most favorable situation is for systems with quasi-1D co
duction, i.e., with a flat FS parallel to axes of the wave vec
k. There exists then a perfect correlation among the cha
currents and the magnetic response is the strongest. Suc
can be obtained in bcc crystals,13 in low-dimensional organic
conductors with the overlap of the orbitals mainly in o
direction, and when a cylinder is made of a set ofM
quasi-1D rings stacked along thez axis by, e.g., the litho-
graphic method. Such multiple quantum chains can
mapped into a system with the flat~rectangular! FS.

In the case of quasi-2D conduction our cylinder can
constructed from a set ofMr 2D coaxial cylinders~e.g., mul-
tiwall carbon nanotubes and cylinders made of a mate
with layered structure!.

To simulate different shapes of the 2D FS~Refs. 4 and
14! we can use the equation

kF
u5kFx

u 1kFz

u , ~39!

whereu is an integer number.
For u52 we get the circular FS, foru>12 the rectangular

one, and for 2,u,12 the rectangular FS with rounded co
ners. For the circular FS the currents from different chann
add almost without correlation, the correlation increases w
increasing the curvature of the FS, i.e., with increasingu.

Let us consider at first a set ofM quasi-1D rings stacked
along thez axis ~or in general a cylinder with quasi-1D con
duction!. Let us assume that the magnetic field is caused
persistent currents from all rings. Thus we meet conditio
from the Bloch’s paper and our mean-field HamiltonianHMF

@Eq. ~18!# leads to the free energy given by Eq.~24! with

F1~f8!5MF1
R~f8!, ~40!

whereF1
R(f8) is the free energy of a single ring.

In general an external magnetic fluxfe parallel to thez
axis can be also applied to the system but we are ma
interested in the self-sustaining flux atfe50.
as
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The necessary condition for coherent behavior has
form

NRg[
D0

kBT
@1, ~41!

where D05\2NR/(2meR
2), D0 is the quantum size en

ergy gap at the FS.
Let us calculate the momentumP defined as in Eq.~22!

for three different model cases.
~1! If the number of electronsNR in each ring is odd we

find

P5Nn
\

R
for ~n2 1

2 !,f8,~n1 1
2 !, n50,1, . . . , ~42!

which corresponds to the caseb with zm5dm0 and r50.
Calculating the minimum of the total free energy@Eq. ~24!#
at fe50 and atT!D0 /kB we get the value of the flux
trappedf8t in the cylinder:2

fodd8t 5
n

11k
, ~43!

where

k5
4p2meR

2

e2LN
and unu< 1

2 ~11k21!.

Equation~43! reveals the influence of the finite-size effect—
the flux trapped is quantized in units less thanf0 .15 For
macroscopic samplesk→0 andfodd8t 5n.

~2! If the number of electronsNR in each ring is even, the
momentumP is

P5N~n1 1
2 !

\

R
for ~n2 1

2 !,f8,~n1 1
2 !, n50,1, . . . ,

~44!

which corresponds tozm5dm(N/2) and stable values o
trapped flux are

feven8t 5
n1 1

2

11k
, un1 1

2 u, 1
2 ~11k21!. ~45!

For macroscopic samplesfeven8t 5n1 1
2 , which corresponds

to stable minima of the free energy at half-integral values
f0 .

We see that a system under consideration exhibits t
modynamically stable persistent currents and flux trappe
temperaturesT!D0 /kB . This condition is easily satisfied
for mesoscopic rings at T<1 K ~e.g., for R
;1 mm, D0 /kB;12.5 K); it is, however, unrealistic for
macroscopic samples~for R;1 cm, D0 /kB;1023 K).16

Our treatment is not only for identical rings. We hav
performed the calculations for a set of rings in which t
number of electronsNR changes in the rangeNR5N̄R

6DNR, DNR510. We have considered two kinds o
changes: ~i! NR fluctuates from N̄R to N̄R62n, n
51,2,3,4,5—the influence of such fluctuation on the pers
tent current is very small.~ii ! NR changes fromN̄R to N̄R
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6(2n21)—the influence of this kind of changes on the cu
rent is fairly large~see below!.

In the presented paper we study mainly the systems w
the diamagnetic reaction on small magnetic fluxf. The rings
with odd NR give a diamagnetic current whereas those w
evenNR give a paramagnetic current. We have found that
diamagnetic reaction and trapped flux can still be obtaine
about 20% of rings carry an even number of conducting e
trons.

~3! Finally, we may also consider the model case wh
roughly half of the rings have an even number of electro
and half of the rings have an odd number of electrons
corresponds to casec, wherezm5 1

2 (dm01dm(N/2)) and the
minima of the free energy occur with the twice smaller p
riod. We have not discussed this situation here in det
because the total current in this case is paramagnetic.2

We now go beyond the MFA and consider fluctuatio
around the set ofP values discussed above. We assume t
the total momentumP in a cylinder given by Eq.~22! can
admit the values withmÞ0 and/ormÞN/2 but with a maxi-
mum atm50 and/orm5N/2. This assumption leads to th
partition functionZ1(f8) given by Eq.~34! and the criteria
for quantum coherence manifesting themselves in the
trapping are ultimately related to the magnitude of the me
square fluctuation of momentumP. The condition for coher-
ent behavior takes then the form

D0~12r!

kBT
@1, ~46!

and we see that the fluctuations decrease the energy
Equation~34! covers also as a special case a situation ch
acteristic of a normal state of a metal~no flux trapping! in
which all values ofm can be found, with equal probability, i
the formula forP.

Stable flux trapping can be expected as soon as^(DP)2&
is found to be a small fraction belowNmekBT, called by
Bloch the equipartition value. In the following we will ca
culate^(DP)2& from Eq.~36! and relate its magnitude to th
coherent behavior of the sample.

The mean number of electrons with momentu
pam , f (pam) is given by the Fermi-Dirac distribution func
tion:

f ~pam![ f „Eam~f!…5
1

e~Eam2mc!/kBT11
, ~47!

wheremc is calculated from the condition

N5Mr(
m/1

Mz

(
a/0,61

6`

f ~Eam~f!!. ~48!

The electron energy eigenvalues, calculated by the us
periodic boundary conditions in thex direction and cyclic
boundary conditions in thez direction:

Eam5
1

2me
F S \

R
a2eAD 2

1\2kz
2~m!G , A5

f

2pR
,

~49!

f5fe1f I , ~50!
-

th

e
if
c-

e
s
It

-
ls

at

x
-

ap.
r-

of

with f the total flux contained in the cylinder,f I5LI (f),
where

I ~f!5
e\

2pmeR
2

Mr(
m/1

Mz

(
a/0,61

6`

~a2f8! f „Eam~f!…,

~51!

and after expansion in the Fourier series,4

I ~f!5
4eakBT

p\
Mr(

m/1

Mz

(
g/1

`

kFx
~m!

3

expS 2
2p2gkBT

D0~12r! D
12expS 2

4p2gkBT

D0~12r! D
cos@2pgRkFx

~m!#

3sin~2pgf8!,

where a is the lattice constant, and according to E
~39! kFx

(m)5kF@12(kz(m)/kF)u#1/u, kz(m)5mp/ l , m

51,2, . . . ,Mz .
Equations~50! and~51! form a set of self-consistent equa

tions for the current. The question of existence of se
sustaining, persistent currents is reduced to the problem
whether these equations have stable, nonvanishing solu
at fe50.

Notice that the dispersion relation~49! is modified by the
presence of the fluxf I coming from the currents and has
be calculated in a self-consistent way. We show below t
f I produces a dynamic gap in the system and therefore
creases coherence.

The values of̂ (DP)2& for different shapes of the FS an
for R.104 Å/(2p), Mz510 000, Mr5100 at T
515 K are presented in Table I.

For the rectangular FS, corresponding to quasi-1D c
duction, we assumed that it lies in the middle of an ene
gapD0 for an electron going along the circumference of t
cylinder. We see that the magnitude of^(DP)2& ~or the cor-
responding relative fluctuationr! decreases with increasin
the curvature of the FS. The difference between the nor
and the coherent state of a mesoscopic cylinder is reflecte
the magnitude of̂ (DP)2&.

In the ideal, limiting case corresponding to^(DP)2&50
@case~1!# the system is fully coherent, i.e.,N5Nc , whereNc
is the number of electrons in a coherent state.

Finite values of̂ (DP)2& can be interpreted by use of th
two-fluid model8,7 as being proportional to Nn5N
2Nc , Nn is the number of particles in the normal stat
We can write^(DP)2&5NnmekBT.

The maximal values of̂(DP)2& given by Eq.~36! will be
obtained for macroscopic values ofR where the replacemen
of the sums overa by integrals is permitted. This gives u
^(DP)2&5NmekBT or N5Nn and the system is in a norma
phase. However, for mesoscopic cylinders such replacem
is not allowed and the presence of finite-size energy g
leads toNn,N, which means that a part of the electrons is
a coherent state. The presence of coherent electrons resu
persistent currents, the amplitude of which depends on
shape of the FS.
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TABLE I. The relative mean-square fluctuations of the total momentumP, r5^(DP)2&/NmekBT, in a
system made of 2D coaxial cylinders withN510 0013106 conducting electrons~lattice constanta
51 Å, b55 Å) at temperatureT515 K, in the magnetic fluxfe and f5fe1f I , respectively, for
different shapes of the Fermi surface.f I has been calculated for eachfe in the self-consistent way, assumin
the number of interacting coaxial cylindersMr5100. Nn represent the total number of ‘‘normal’’ electron
in the system. The number of coherent electrons isNc5N2Nn .

Shape of the FS fe /f0 f/f0 rfe rf Nn
fe 3106 Nn

f 3106

Half-circular 0.000 0.000 0.9851 0.9851 9852.22 9852.22
(u52) 0.100 0.088 0.9968 0.9944 9969.15 9944.78
Rectangular with 0.000 0.000 0.0695 0.0695 0695.52 0695.52
rounded corners 0.100 0.017 0.1207 0.0709 1207.51 0708.9

(u56)
Rectangular 0.000 0.000 0.0688 0.0688 0687.00 0687.00
(u512) 0.100 0.016 0.1195 0.0700 1195.00 0700.00

0.250 0.041 0.5725 0.0767 5727.00 0768.00
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Persistent currents driven by an external fluxfe vanish if
we switch the external field off. However, the presence of
flux f I coming from the magnetostatic interaction can le
to persistent self-sustaining currents or, in other words
trapped flux. In general persistent currents can be param
netic or diamagnetic. Paramagnetic self-sustaining curr
correspond to spontaneous currents,4 and diamagnetic self
sustaining currents correspond to flux trapping.7 In the fol-
lowing we will study mainly the diamagnetic solutions.

In order to discuss the influence off I on the coherent
properties of mesoscopic cylinders we calculate an ene
gap at the FS for electrons going around the circumferenc
the cylinder~and forf,f0/2). Using Eq.~49! we find

DF[EaF11,m2EaF ,m5D0S 122fe812
LuI u
f0

D . ~52!

DF contains a term

Dd[D0

LuI u
f0

, ~53!

Dd is the dynamic part of an energy gap that should incre
coherence in the sample.

That this is really the case we can see from the comp
son of the first and second columns in Table I. We see
the mean-square fluctuation^(DP)2& when calculated with
the dispersion relation pertinent for normal electro
namely, with Eam5@(\a/R2eAe)

21\2kz
2(m)#/(2me) is

larger than^(DP)2& calculated with the dispersion relatio
~49!, modified by the presence of self-consistent fluxf I .
Thus the presence of the magnetostatic coupling decre
fluctuations and the number of normal electrons in
sample. This is also seen in Fig. 2 where the tempera
smearing of the distribution function calculated with the se
consistent flux is smaller than that calculated withfe . We
also checked that, as should be expected, the mean-sq
fluctuation^(DP)2& decreases with an increase in the nu
ber of interacting channels.

This type of analysis bears some resemblance to the
fluid description of a superconductor.17 For free electrons
with the dispersion relationEa the electron density can b
written as
e
d
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of
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n52
2\2

3meV
(

k
k2

] f ~Ek!

]Ek
. ~54!

Defining similarly the density of normal electrons in a sup
conductor, with a dispersion relationEk5AEk

21D2, as

nn52
2\2

3meV
(

k
k2f 8~Ek! ~55!

and the density of superelectrons as

nc5n2nn , ~56!

we get the two-fluid description.
We are going to discuss now the influence of fluctuatio

on self-sustaining currents. In Fig. 3 we present the curre
given by Eqs.~50! and~51! at fe50, for different shapes of
the FS and for different values ofr. The fluctuations de-
crease the current, but self-consistent solutions can stil
obtained for Fermi surfaces with flat regions (u56 and u
512). However, as should be expected, the value of s
consistent current~flux! is smaller for the case with fluctua

FIG. 2. The Fermi-Dirac distribution functionf (Ea) versus en-
ergy Ea , for the cylinder made of a set of quasi-1D mesosco
rings, in the magnetic fluxfe andf5fe1f I , respectively.f I has
been calculated in the self-consistent way for parameters as in
figure.
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tions included. Foru52 we do not get flux trapping becaus
the number of coherent electrons is too small.

Finally, to get more insight into the properties of our sy
tem we discuss, using the microscopic Hamiltonian~3!, the
possibility of long-range order in a cylinder made of a set
mesoscopic rings. In the literature one finds the statem
that phase transitions and long-range order are impossib
quasi-1D systems. It is true for systems in the thermo
namic limit with short-range interactions. However, one c
look for the conditions for an ordered state for a large
finite number of interacting entities.18

Let us consider a set ofMz rings described by the Ising
like Hamiltonian ~3!. In the ground state all currents ru
parallel. Let us construct a new configuration by revers
the direction ofL currents (L!Mz) in s (1<s!Mz) differ-
ent places in the chain of rings. The energy change will
denoted bysDEL(Mz), and the change in the free energy

DF5sDEL~Mz!2TDS5s@DEL~Mz!2kBTlnMz#.
~57!

If DF.0 then the ordered configuration is stable. This co
dition is equivalent to

jT[eDEL /kBT.Mz , ~58!

where jT has the sense of a~dimensionless! correlation
range. If Eq.~58! is fulfilled the system is ordered in th
sense that the correlations extend over all its length.

Let us discuss the possibility of long-range order for t
case considered by us. The energyDEL(Mz) is of the form

DEL~Mz!5
1

2S e\NR

2pmeR
2D 2

(
n/1

L

(
m2m8/L11

Mz2n

L~m2m8!.

~59!

The L dependence ofDEL(Mz) is presented in Fig. 4. We
see thatDEL(Mz) increases withL and decreases withb

FIG. 3. Persistent currentsI as a function of magnetic fluxf/f0

in quasi-2D mesoscopic cylinders with different shapes of
Fermi surfaces, with and without fluctuations. Self-sustaining c
rentsI s .
-

f
ts
in
-

n
t

g

e

-

[zm,m115zm112zm. The smallest energy change is obtain
when reversing a direction of a single current in several d
ferent places. In Fig. 5 we present theMz dependence of
DE1 . We see thatDE1 increases withMz for small Mz and
then saturates.

We are in position now to calculate the temperatureT* at
which the crossover from an ordered to disordered state
curs:

T* 5
DE1~Mz!

kB ln Mz
. ~60!

The calculations performed for the following set of para
eters: Mz5104, Mr51, R55000 Å, b510 Å gave
us T* ;0.14 K. It means that atT,T* the system exhibits
a long-range order in the sense that the correlation rang
longer than the sample size. The temperatureTc calculated in
the MFA for the above set of parameters isTc;0.216 K.2

We see thatT* obtained by the use of the Ising model
of the same order asTc obtained with the MFA. It means tha
long-range interactions encountered in our system stron
supress fluctuations. If we assume that each ring has a s
number of transverse channelsMr then, e.g., for Mr
;3, T* ;1 K.

e
r-

FIG. 4. The energy change DEL /W, where W
5

1
2 (e\NR/2pmeR

2)2, as a function of the number of magnet
momentsL for different values ofb[zm,m11 .

FIG. 5. The energy changeDE1 and the temperatureT* as a
function of the number of channelsMz in a single cylinder.
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It has to be stressed, e.g., that finite value ofT* for our
system is a finite-size effect. Indeed, as we can see from
~60! and Fig. 5T*→0 for Mz→`.

VI. DISCUSSION AND CONCLUSIONS

In the presented paper we discussed the magnetos
coupling of electrons in mesoscopic systems and its appr
mations. This interaction is known to be weak in mac
scopic samples; however, it seems it can play an impor
role in mesoscopic samples due to very peculiar propertie
mesoscopic systems in the magnetic field.

It is possible to induce persistent currents~or in other
words orbital magnetic moments! in mesoscopic ring by the
static magnetic field. The magnetic interaction of orbi
magnetic moments can lead to magnetically ordered gro
state. This possibility has been discussed in a numbe
papers2,11 using the mean-field approximation, which stat
that each electron moves in an external magnetic field
the field coming from all currents in a system. The obtain
two self-consistent equations for the current can lead
spontaneous self-sustaining current at zero external field.
neglected here the Zeeman energy of the electron spins
cause it turns out to be very small compared to the orb
energies. The influence of spins has been discussed in
19.

In this paper we have presented the microscopic Ham
tonian which is responsible for the internal magnetic field
the magnetostatic~current-current! interaction. The strength
of the interaction depends strongly on the sample geome
For the stack of mesoscopic rings deposited along cer
axis we get the long-range interaction with the coupling c
stant depending only on the radii of the rings and on
relative distance of its centers.

We have shown that the self-consistent MFA of t
current-current interaction, gives the effective Hamiltoni
HMF leading to self-sustaining currents. Its derivation fro
the long-range interaction serves as a justification of the
of the Hamiltonian~18! to investigate magnetic properties
mesoscopic systems. The MFA is known to be the best
systems with long-range forces@if the condition~19! is ful-
filled#, thus we should expect that it leads to reasonable
sults in the considered case.

To obtain the full Hamiltonian describing our system o
should add to the Hamiltonian given by Eq.~10! the Cou-
lomb interaction and the interaction with impurity potentia
It was recently shown that the Coulomb interaction does
influence persistent currents in clean systems,20 whereas it
enhances the current in diffusive regime.21 In a work by
o
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Pascaud and Montambaux22 the experiments that permit u
to test the role of Coulomb interaction have been sugges

In the model calculations presented in this paper we
not consider the effect of impurities in order not to obscu
the whole subject with too many details. The influence
disorder on self-sustaining currents has been analyzed in
3. We found that disorder decreases persistent currents
self-sustaining currents can still be obtained for relativ
clean samples~ballistic regime!.

To go beyond the MFA we have considered the influen
of fluctuations, calculated by the use of Eq.~36!, on the
properties of a mesoscopic cylinder. We have shown t
these fluctuations are smaller in mesoscopic systems tha
macroscopic ones because of the quantum size energy g
On the top of it the magnetostatic coupling modifies a d
persion relation and creates a dynamic gap that leads to
ther reduction of the fluctuations. Thus in mesoscopic s
tems coherent and normal electrons coexist and the sys
can be described by the two-fluid model where the fluct
tions are proportional to the amount of normal electro
Self-sustaining currents run by coherent electrons surv
fluctuations in systems with FS having flat regions; howev
their magnitude is reduced.

Having the microscopic Hamiltonian for electrons inte
acting by magnetostatic coupling@Eq. ~3!# we have dis-
cussed, for a set of stacked rings, the possibility of lon
range order. Phase transitions and long-range order
possible in the strict mathematical sense only for system
the thermodynamic limit. For finite~but still large! systems
discontinuities of thermodynamic quantities and infin
range correlations are not necessary. ‘‘Discontinuities’’ ha
finite widths and correlation ranges may be as large as
system itself, regardless of the behavior in the thermo
namic limit.18 What is more, finite systems can show inte
esting effects that will be wiped away in the thermodynam
limit. This is the situation in the presented paper where
temperaturesT<T* ;0.121 K the set of mesoscopic ring
~or, in general, the mesoscopic cylinder with quasi-1D co
duction! can exhibit the long-range order, butT*→0 for
Mz→`.

The statistical properties of the system following from E
~3! will be presented in a subsequent paper.
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