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Possibility of long-range order in clean mesoscopic cylinders
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A microscopic Hamiltonian of the magnetostatic interaction is discussed. This long-range interaction can
play an important role in mesoscopic systems leading to an ordered ground state. The self-consistent mean-
field approximation of the magnetostatic interaction is performed to give an effective Hamiltonian from which
the spontaneous, self-sustaining currents can be obtained. To go beyond the mean-field approximation the
mean-square fluctuation of the total momentum is calculated and its influence on self-sustaining currents in
mesoscopic cylinders with quasi-one-dimensional and quasi-two-dimensional conduction is considered. Then,
by the use of the microscopic Hamiltonian of the magnetostatic interaction for a set of stacked rings, the
problem of long-range order is discussed. The temperdttirbelow which the system is in an ordered state
is determined[S0163-182¢09)03311-1]

I. INTRODUCTION which bear some resemblance to ferromagnetism and to
superconductivity:’

One of the most exciting areas of physics is the study of To go beyond the MFA and discuss fluctuations we fol-
mesoscopic electronic systems, i.e., metal or semiconductd@w the ideas developed by BloéHe discussed the prob-
samples that are sufficiently small and at sufficiently lowlem of quantum coherence in a macroscopic, metallic ring
temperature, such that inelastic electron-phonon scattering f§anifested, e.g., by the thermodynamically stable flux trap-
reduced and the electron propagates as a phase coher&Hi9 at zero external magnetic f|eld. He covers in his paper
wave throughout the entire sample. different Ior)g-range characteristics of the normal and the su-

Recently in a series of papéfawe discussed a possibility Perconductive state of a metal.

of spontaneous persistent currents in relatively cidealis- Irrespective of the specific dynamical properties of the

tic regime metallic or semiconducting systems of cylindrical systems he shows that the general criteria for flux trapping
geometry are closely related to the mean-square fluctuation of the total

It was shown in the mean-field approximatigFA) that g/(;rtr;(;?tum and depend strongly on the dimensionality of the
the inclusion of the magnetostatic interaction among elec- We will show, using Bloch’s formulas that if we reduce

trons can lead to an ordered ground state with spontaneoyge yimensions of a macroscopic cylinder made of a normal
self-sustaining o_rb|FaI currents that run without support Ofmetal or semiconductor to mesoscopic dimensions, the sys-
external magnetic field. _ _ tem exhibits coherent properties absent in macroscopic

In our investigations we considered a collection of manysamples. We will formulate the criteria under which flux
mesoscopic rings with a thickness<R (R is the radius of  trapping can be obtained in mesoscopic cylinders with quasi-
the ring stacked along axis and the three-dimensiori@8D)  one-dimensional(quasi-1D and quasi-2D conduction. In
mesoscopic cylinder of very small thicknéss. particular, we will discuss the mean-square fluctuation of the

In this paper we want to give some justification to thetotal momentum—the decisive quantity for the characteriza-
calculation mentioned above, because there was no micraéion of the properties of the system. We show that it is
scopic theory of this phenomenon till now. We will examine smaller in mesoscopic systems than in the corresponding
a microscopic Hamiltonian for the magnetostatozirrent-  macroscopic ones thus favoring quantum coherence.
curren} interaction and show that the self-consistent MFA of ~ Finally, using the microscopic Hamiltonian we discuss the
it gives the effective HamiltoniartHVF leading to self- possibility of the long-range order in a mesoscopic cylinder
sustaining currents. We also show that magnetostatic intefade of a set of mesoscopic rings. We calculate the correla-
action is long range and therefore the criteria of the MFA ardion length and the characteristic temperature under which
met. the system is in a magnetically ordered state.

The orbital magnetic interaction and its static version, the
magnetostatic coupling, has been discussed previously by
Pines and Nozierésind has been shown to be small in mac- Il. MAGNETOSTATIC INTERACTION
roscopic metallic samples. However, this interaction should T
be reexamined in mesoscopic systems where the presencetﬂg
energy gaps in the energy spectrum changes qualitatively its
physical properties leading, e.g., to persistent currents driven
by the static magnetic fluy at low temperature$Persistent ,

i : i Mo J(r)-J(r")

currents create orbital magnetic moments and their interac- Hmgi=— _J' d3rd3r——— =, (1)
tion can lead to interesting coherent collective phenomena, 8w r—r'|

he general formula for the magnetostatic interaction is of
form
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whereJ(r)=ep(r)/mg, J(r) is the current densityp(r) is
the momentum of an electron.

Let us assume that the currents run in a selgfmeso-
scopic rings of small thickness deposited along zhexis.
We can write

MZ
IN=2In 35 (1 — &n(S))dén, 2)
m/1 Cnm
whereC,, is given by a parametric equation for an electron
going around the circumference of a ring, ang,
=£&.(s), sis the coordinate along the circumference of the
ring, |, is the current in thenth ring.

We obtain
1 MZ MZ
ngt: - E%:l 2 L Ll me ©)
m'/1
where
Mo déndé&ny .
Emm’_ﬂ %Cm ﬁcm'ﬁ, Emm’—['m’m- (4)

Thus we have obtained the interaction Hamiltonian of th

be seen that they are small.
The interaction constart,,,,; depends on the sample ge-
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e
currents from different rings. In this derivation we neglected
the self-inductance effects in each single ring. It can easily
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FIG. 1. The interaction constart as a function of distance
between the ring centers.
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where NR is a number of conducting electrons in a single
ring.
Hmgt given by Eq.(3) can be rewritten in the form

eZ Mz M,

E 2 Imm PmPm’ »

ml w1

2
2mg

€)

ngt: -

ometry; here it has to be calculated for the rings deposited

along thez axis at distance,,y =zn— Zy -

The result i€
,Cmer,uOR _hmm/)K_ E ’ (5)
mm'’ mm’
where
5 4R? ©
72—21
AR 4z,
72 de 72
= _ Ezf 1—-h?sirf6)de,
fo (1—h?sirf9)*? 0 ( )
(7)

K and E are the elliptical integrals of thé and Il kind,
respectively.

The z dependence of the coupling constahis presented
in Fig. 1. We see that the interactigB) is a long-range
interaction. For smatt it falls down slowly proportionally to
uoR In(RIz—2), for largez it falls down faster proportionally
to 1/z3. The interaction constant depends only Rmand on
the relative distance of the centers of the rings.

As the currentd , can run only in the clockwise or anti-
clockwise direction the Hamiltonia(8) has the form of the

! L
47°R?

Omm = mm' -

If we add toH 4 the kinetic energy term and if we as-
sume that the external magnetic field parallel to ztzis is
applied to the system, we obtain Hamiltonidn

M, NR 2 M; M,
He o 2 =SS G PP (10
2me . Pom 2m§ ml mmEmEme

where p,m= pgm— eA; pgm is the momentum of theith
electron inmth ring. A, is the vector potential of an external
magnetic field that points in the direction measured along
the ring.

The first term in Eq(10) represents the kinetic energy of
electrons in the external magnetic field, the second term rep-
resents the orbital magnetic interaction; due to the negative
sign it favors states with large total momentum in competi-
tion with the kinetic energy.

[ll. MEAN-FIELD APPROXIMATION
OF MAGNETOSTATIC COUPLING

We have seen in Sec. Il that the magnetostatic coupling is

Ising Hamiltonian. It can be also expressed via the momentg |ong-range interaction. This indicates, in particular, that

Pm, Pm from different rings.
For the ring geometry we get

e

|m:mpm, (8)

thermodynamic fluctuations of the current will be strongly
supressed®

Let us perform a self-consistent MFA of the interaction
(9); such an approximation is known to be good for a long-
range interaction:
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e
mgt 2 sz gmm’pm’—_H%: pmAI(Zm)
e
(13)
AI(Zm) 2m62 Imm Pm’ » (12)

BC—B(C)+(B)C—(C){B),

e
Himg= = 52 [2Pn(Ai(Zn) = (Pm){AZm)], (13

where the first term in Eq(13) has been obtained by
use of the symmetry relation(4), (A/(zy))=(e/
2Me)Z i Omm{Pm’Y=A,, where we assumed thafp,,)
=(p) is the same for all rings, and hence from H§)
(I =(1).

Assuming that our stack d&fl, rings forms a long cylinder
of lengthl we can calculate the vector potentil We get

A= ,uOR (14)

2I

Calculating the currenl) with a total vector potential
=A.1T A, we get

(1= ((P)—NFeA). (19

Inserting Eq.(15) into (14) we obtain the self-consistent
equation forA, :

e
2mRm,

(16)
from which we get
eA=————Mp) 17
1+NRM,
where
_ o€’
= A7lmg’

Inserting (p) from Eg. (17) into Eq. (13) we obtain the
HamiltonianH [Eqg. (10)] in the self-consistent mean-field
approximation:

M, 2

HMF=_—— 22(pnm eA)2+ ¢ (18)

2Mg L i

where L= p,mR?*(VI?=R?=R)/1?2, ¢,=27RA .

The Hamiltonian (18) was the basis of our previous
investigationd of spontaneous self-sustaining currefgse
Egs. (50) and (51)]. Its derivation from the long-range

current-current interaction serves as a justification of the use
of the Hamiltonian(18) to investigate magnetic properties of

mesoscopic systems.

Ref. 11 that the above statement is correct if an additional
condition is fulfilled. The authors defined there the quantity
S

S=———, (19

where L,y iS the interaction constant. They proved that
MFA is correct if S>1.

We have calculate® with £,y given by Eq.(5) for the
following set of parameters: b=z, ;=10 A,
R=5000 A, M,~10%. We have obtaine~ 10°; it means
that the MFA should work well in the case considered by us.

IV. SUMMARY OF THE BLOCH'’S RESULTS

We are going now to investigate the possibility of flux
trapping in mesoscopic cylinders using the ideas developed
by Bloch® The general criteria for flux trapping are closely
related to mean-square fluctuations and give a natural way to
describe the system in terms of the two-fluid model. At first
we briefly recall Bloch’s results.

Let us consider a system of particles with massn and
chargee, contained in a ring with radiuR and radial width
d<<R. We assume that the magnetic field parallet txis is
caused by a current around the ring, so the vector potential
A= ¢/(27R) points in thex direction.

The total momentum in thg direction is given by

P,=>, p2, (20)

where pﬁ represents the momentum of theéh particle h
=12,...N).
The Hamiltonian of the particles is of the form

_ (Py—NeA?

AN +H’, (21

whereH’ contains the kinetic energy of the motion in the
andz direction and of the relative motion in thxairection as
well as any additional terms that arise from interactions and
characterize the specific dynamical properties of the system.

From the symmetries and periodic boundary condifions
we get the eigenvalues &, :

P= " N " 22
=ng=(Nvtuwg, 22

wheren, v are arbitrary integers, and is likewise an inte-
ger such that

N
<-.
2

I
N| Z
N

It has been generally believed that the MFA should work
well for long-range forces. However, it has been shown in  Eigenenergies of the system are given by
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2

n

2 gy

N(V o'+ N ,

B 2m.R? "Ea

(23

whereq represents the system of additional quantum num-
bers necessary in addition B(v,u) in order to fully char-

acterize the state of the syste:= ¢/ o, $o=hle.

Using Eq.(23) we can calculate the free energy from the
particles. The flux-dependent part of the total free energy is

F(¢')=Fu(¢")+Fa(d), (24)
whereF (¢") is a periodic function ok’ with period 1,
Fi(¢')=—kgTInZ1(o"), (25)
Z.(o' )—\/ 1+22 age” ("9?INY cos 27g b |,
g/l
(26)
aQZZ Z’ue—Zﬂ'rig,u/N’ (27)
o
y=%2/(2mR%T); 1z, is the statistical weight of the
stateEg,, ,

>z, 2,>0; (28)
M
, ﬁ2¢'2
Fa(g')= 2L (29

whereF,(¢’) is the energy stored in the magnetic fieltlis
the self-inductance of the ring.

Thermodynamically stable flux trapping is determined by
those values ofp’ for which F(¢’) has a minimum. To
achieve it a strong variation d¥,(¢’) is necessary to pre-

vent the dominance df,(¢'), which has minimum at)’
=0.

Let us consider now three special cases that elucidate how
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1+22 e~ (")°INY cos 27rg b’
g/l

Zi(¢')= I
(31)

which has the periodicity witlp’ = 1. However, in order to
get a stable flux trapping fop’ #0 we need

N72

—>1, (32
2mgR%kg T

Ny=

which is satisfied at low temperaturéds ThenF(¢’) can
well dominate the parf,(¢') in Eq. (24). The pronounced
minima of F(¢') occur at¢’=v and are equivalent with
stable flux trapping. This case corresponds to a condensed
ideal Bose gas where all particles have momentpm
=vh/R.

C. zﬂ=%(5ﬂo+ d,(Ni2))- The partition function is of the

form
Z(¢")= VN~
(33

This expression has the periodicity ¢ with ¢'=1/2,i.e.,

with ¢=h/2e. This case exhibits the property tHdf2 pairs

all have the same momentup¥ v#/R and corresponds to
the long-range order characteristic of a superconductor at
temperatures in which the conditid@2) is satisfied.

To consider other, more general cases one assumes that
the total momentunP can admit the values given by Eq.
(22) with w#0, but with a sharp maximum arouna=0.

The formula forZ,(¢") has then the form

Zl(¢'): \/

1+22 e~ 2m9NY o5 drg o’
g/l

o

1+22 e~ (TZINYA-P) cog 27g ¢!

g/l
(34
where
((AP)?)
= NmkaT’ Os=p=1, (35

different states of matter can be described in this model. Th&AP)?) is the mean-square fluctuation of momentum
information about specific properties of the system is conaround the set of value$’N#A/R, where ¢’ is an integer

tained in the quantities,, .

a. z, is independent of., i.e., z,=1/N. After some al-

gebra we arrive at

Zy(9')= \/

The general periodicity i’
far shorter periodp’ =

1+22 e~ (")°N1Y cos 2rgN g’
g/l

(30)

where((AP)?)=(P?)—(P)?
=1 is accompanied here by a of particles with momentunp ,=#(a—
1/N, which is vanishingly small for

large N. Besides the amplitude of the oscillation is small at

multiple of the period, ang can be called a relative fluctua-
tion;

t(py)
Py

h2
(AP)?)= @((AM)ZF - mekBTZ't Pa
(36)
f(p,) is the mean number
¢")IR, a=0,£1,

+2,...
Equation(34) covers the special cases discussed before.

any realistic temperature leading to a very small variation ofCasea corresponds to the situation where all values.aire
F.(¢’) and hence to the absence of stable flux trappingequally probable, which leads to—1; Z;(¢') becomes
This situation corresponds to the case where the system etien independent of’ with the exclusion of flux trapping.
hibits no long-range order and is characteristic of the normaCasesb and ¢ correspond togp=0 and thus describe the

state of a metal.
b. z,=8,0. From Eq.(26) we find

systems in the coherent state with no fluctuations.
The intermediate case
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0<((AP)?)<NmgKkgT, (37 The necessary condition for coherent behavior has the

form
or equivalently, B<p<1, still results in a pronounced varia-

tion of F1(¢') as long as Ag
NRy= L (41)
Ny(1—p)>1. (38 B
where Ag=7°NF/(2meR?), Aq is the quantum size en-
gy gap at the FS.
Let us calculate the momentuRmhdefined as in Eq(22)
for three different model cases.

(1) If the number of electrondI® in each ring is odd we
find

It means that stable flux trapping can be expected as soon
((AP)?) is found to be smaller than the maximal value of &"
mean-square fluctuation &f

V. FLUX TRAPPED IN MESOSCOPIC CYLINDERS

We will perform now, using Bloch’s formalism, some 5
model calculations of flux trapped in mesoscopic hollow cyl-5_ , 1 , 1 _
inders of radiusR, lengthl, and wall thicknessl (d<R) P=Nvg for (y=z)<¢'<(v+z), »=01,..., (42
made of a normal metal or semiconductor. Such cylinders _ . )
can be treated as a multichannel system Withchannels in  Which corresponds to the casewith z,=6,, and p=0.
the length andM, channels in the thickness of the cylinder Calculating the minimum of the total free enerigyg. (24)]
(M=M,M,), with the total number of conducting electrons & $e=0 and atT<Ao/ks we get the value of the flux
N=NRM. We will study the systems with quasi-1D and trappedg 'in the cylinder?
guasi-2D conduction. It is known that coherent response in
mesoscopic cylinders can be obtaitfetifor systems with Bl __r 43)
large phase correlation of currents from different channels, odd™ 1 +
which is related to the shape of the Fermi surf@€g). The
most favorable situation is for systems with quasi-1D con-Where
duction, i.e., with a flat FS parallel to axes of the wave vector ’ )
k. There exists then a perfect correlation among the channel = 47 meR and [v|<i(1+« Y
currents and the magnetic response is the strongest. Such FS e2/N z '
can be obtained in bcc crystafsin low-dimensional organic ) ) o
Conductors W|th the over|ap Of the 0rbita|s main'y in one Equat|0n(43) reVeaIS the |nﬂuence Of the f|n|te'S|Ze effeCt—
direction, and when a cylinder is made of a set \f the flux trapped is quantized in units less thep.* For
quasi-1D rings stacked along theaxis by, e.g., the litho- Mmacroscopic samples—0 and ¢y ys= v.
graphic method. Such multiple quantum chains can be (2) If the number of electronsi® in each ring is even, the
mapped into a system with the flaectangular FS. momentump is
In the case of quasi-2D conduction our cylinder can be .
constructed from a set ®fl, 2D coaxial cylinderge.g., mul- _ 1 1 , 1 _
tiwall carbon nanotubes and cylinders made of a material -~ NPT 2) g for (vma)<é'<(vtz), »=01,...,
with layered structune (44
To simulate different shapes of the 2D FRefs. 4 and

14) we can use the equation which corresponds ta,=dJ, N and stable values of

trapped flux are
kEzkEXJr k”z, (39 i1
2
whereu is an integer number. even= Trr’ lv+3[<3(1+x7Y), (45)
Foru=2 we get the circular FS, far=12 the rectangular
one, and for 2 u<12 the rectangular FS with rounded cor- For macroscopic samples,,.,= v+ 3, which corresponds
ners. For the circular FS the currents from different channel$o stable minima of the free energy at half-integral values of
add almost without correlation, the correlation increases withpg .
increasing the curvature of the FS, i.e., with increasing We see that a system under consideration exhibits ther-
Let us consider at first a set &f quasi-1D rings stacked modynamically stable persistent currents and flux trapped at
along thez axis (or in general a cylinder with quasi-1D con- temperaturesT<A,/kg. This condition is easily satisfied
duction. Let us assume that the magnetic field is caused bjor mesoscopic rings atT<l1l K (e.g., for R
persistent currents from all rings. Thus we meet conditions~-1 um, Ay/kg~12.5 K); it is, however, unrealistic for

from the Bloch’s paper and our mean-field HamiltoniaM™  macroscopic sample$or R~1 cm, Ay/kg~107° K).16

[Eq. (18)] leads to the free energy given by EG4) with Our treatment is not only for identical rings. We have
R performed the calculations for a set of rings in which the
Fi(¢")=MFi("), (40 humber of electronsNR changes in the rang®R=NR

whereF§(¢') is the free energy of a single ring. =ANF, AN"=10. We have considered_two kinds of
In general an external magnetic fluk parallel to thez ~ changes: (i) N® fluctuates from N® to N°f=2n, n

axis can be also applied to the system but we are mainly= 1,2,3,4,5—the influence of such fluctuation on the persis-

interested in the self-sustaining flux ét=0. tent current is very smallii) NR changes from\R to NR
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+(2n—1)—the influence of this kind of changes on the cur-with ¢ the total flux contained in the cylindes, = LI (),

rent is fairly large(see below. where
In the presented paper we study mainly the systems with

the diamagnetic reaction on small magnetic ftbixThe rings

MZ +oo
> > (a— ¢ (Eam(®),

with odd NR give a diamagnetic current whereas those with I(p)= —zMr

evenNR give a paramagnetic current. We have found that the 2mmeR ml a0l

diamagnetic reaction and trapped flux can still be obtained if (5D

?rg?]l;t 20% of rings carry an even number of conducting elecénd after expansion in the Fourier sefles,
(3) Finally, we may also consider the model case where 4 T M o=

roughly half of the rings have an even number of electrons 1(p)= ealg Mrz 2 ke (M)

and half of the rings have an odd number of electrons. It wh m1gn X

corresponds to casg Wherezﬂz%(éﬂ(ﬁ d,uniz) and the 2 r2akaT

minima of the free energy occur with the twice smaller pe- exp{ _cm9%e )

riod. We have not discussed this situation here in details Ao(1-p) R

because the total current in this case is paramagf'letic. 47729 KT mingRkFx(m)]
We now go beyond the MFA and consider fluctuations 1—exp( - m)

around the set oP values discussed above. We assume that
the total momentun® in a cylinder given by Eq(22) can Xsin(2mwge’),

admit the values withu# 0 and/oru# N/2 but with a maxi-

mum atu=0 and/oru=N/2. This assumption leads to the Where a is the lattice constant, and according to Eqg.
partition functionZ,(¢’') given by Eq.(34) and the criteria (39 ke (M) =ke[1—(k(m)/ke)"T™, k(m)=mmz/I, m

for quantum coherence manifesting themselves in the flux=1,2,... M,.

trapping are ultimately related to the magnitude of the mean- Equationg50) and(51) form a set of self-consistent equa-
square fluctuation of momentufh The condition for coher- tions for the current. The question of existence of self-

ent behavior takes then the form sustaining, persistent currents is reduced to the problem of
whether these equations have stable, nonvanishing solutions
Ao(1-p) o1 49 ade=0.
kgT ' (46 Notice that the dispersion relatidd9) is modified by the

) presence of the fluy, coming from the currents and has to
and we see that the fluctuations decrease the energy gag. calculated in a self-consistent way. We show below that

Equa_tio_n(34) covers also as a special case a situation Char&b, produces a dynamic gap in the system and therefore in-
acteristic of a normal state of a mefao flux trapping in creases coherence.

which all values ofu can be found, with equal probability, in The values of (AP)?) for different shapes of the FS and

the formula forP. for R=10* A/(2w), M,=10000, M,=100 at T
Stable flux trapping can be expected as soof((A%)?) =15 K are presented in Table I.

is found to be a small fraction beloNmekgT, called by For the rectangular FS, corresponding to quasi-1D con-

Bloch the equipartition value. In the following we will cal- duction, we assumed that it lies in the middle of an energy

culate((AP)?) from Eq.(36) and relate its magnitude to the gapA, for an electron going along the circumference of the

coherent behavior of the sample. _ cylinder. We see that the magnitude(¢a P)?) (or the cor-
The mean number of electrons with momentumyegnonging relative fluctuatiop) decreases with increasing

Pam. f(Pem) is given by the Fermi-Dirac distribution func- he cyrvature of the FS. The difference between the normal

tion: and the coherent state of a mesoscopic cylinder is reflected in

the magnitude of (AP)?).
47) In the ideal, limiting case corresponding ¢6AP)?)=0

f =f(E = . -
(Pam) =F (B an( ) elE [case(1)] the system is fully coherent, i.eN,=N., whereN,

am™ #c)/kBT—{- 1 '

M

o

is the number of electrons in a coherent state.
where . is calculated from the condition Finite values of (AP)?) can be interpreted by use of the
v, two-fluid modﬁi"7 asb bei?g pr?portionr?l to Nn|= N
B —N¢, N, is the number of particles in the normal state.
N= M’mE,l Wt f(Eam(#)). 48 e can write{ (AP)?)=N_mkgT.

The maximal values of(AP)?) given by Eq.(36) will be
The electron energy eigenvalues, calculated by the use @btained for macroscopic values Rfwhere the replacement
periodic boundary conditions in the direction and cyclic  of the sums ovew by integrals is permitted. This gives us

boundary conditions in the direction: ((A P)2>: NmkgT or N=N, and the system is in a normal
5 phase. However, for mesoscopic cylinders such replacement
E =i{(éa—eA +h2k2(m)} A K is not allowed and the presence of finite-size energy gaps
am 2mg\R z ' 27R’ leads toN,<N, which means that a part of the electrons is in

(49 a coherent state. The presence of coherent electrons results in
persistent currents, the amplitude of which depends on the
d= bt P, (50) shape of the FS.
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TABLE I. The relative mean-square fluctuations of the total momer®ynp=((AP)?/NmKkgT, in a
system made of 2D coaxial cylinders with=10001x10® conducting electronglattice constanta
=1 A, b=5 A) at temperatureT=15 K, in the magnetic fluxp, and ¢= .+ ¢,, respectively, for
different shapes of the Fermi surfagh. has been calculated for eagh in the self-consistent way, assuming
the number of interacting coaxial cylindet, = 100. N, represent the total number of “normal” electrons
in the system. The number of coherent electrondisN—N, .

Shape of the FS el Do &l by pPe p? N, % x 10° N,% x 10°

Half-circular 0.000 0.000 0.9851 0.9851 9852.22 9852.22

(u=2) 0.100 0.088 0.9968 0.9944 9969.15 9944.78

Rectangular with 0.000 0.000 0.0695 0.0695 0695.52 0695.52
rounded corners 0.100 0.017 0.1207 0.0709 1207.51 0708.92

(u=6)

Rectangular 0.000 0.000 0.0688 0.0688 0687.00 0687.00

(u=12) 0.100 0.016 0.1195 0.0700 1195.00 0700.00

0.250 0.041 0.5725 0.0767 5727.00 0768.00
Persistent currents driven by an external fibxvanish if 2#2 Zaf(gk)
we switch the external field off. However, the presence of the n=— 3meV§k: K o8 (54

flux ¢, coming from the magnetostatic interaction can lead
to persistent self-sustaining currents or, in other words, t@efining similarly the density of normal electrons in a super-

trapped flux. In general persistent currents can be paramagy nquctor. with a dispersion relatid, = \/Ez+_A2 as
netic or diamagnetic. Paramagnetic self-sustaining currents ' k ’

correspond to spontaneous curréhtmd diamagnetic self- 242
sustaining currents correspond to flux trapping. the fol- Np=— 2 k?f'(Ey) (55)
lowing we will study mainly the diamagnetic solutions. 3MeV K

In order to discuss the influence @f, on the coherent
properties of mesoscopic cylinders we calculate an energ
gap at the FS for electrons going around the circumference of

9nd the density of superelectrons as

the cylinder(and for ¢<<¢y/2). Using Eq.(49) we find Ne=N="Nn, (56)
2| we get the two-fluid description.
Ar=E, ., ,—E, m:AO< 1-2¢L+ 2_)_ (52) We are going to discuss now the influence of fluctuations
P P bo on self-sustaining currents. In Fig. 3 we present the currents

given by Eqgs(50) and(51) at ¢.=0, for different shapes of

Ar contains a term the FS and for different values @f. The fluctuations de-

2| crease the current, but self-consistent solutions can still be
Ag=Ay—, (53 obtained for Fermi surfaces with flat regions<6 andu
bo =12). However, as should be expected, the value of self-

Ay is the dynamic part of an energy gap that should increasgonsistent currenfflux) is smaller for the case with fluctua-
coherence in the sample.

That this is really the case we can see from the compari-
son of the first and second columns in Table I. We see that
the mean-square fluctuatidifA P)2) when calculated with 084
the dispersion relation pertinent for normal electrons,
namely, with &,m=[(fha/R—eA)?+#%kZ(m)]/(2m,) is ~
larger than((AP)?) calculated with the dispersion relation <,
(49), modified by the presence of self-consistent flix. £ o0ad
Thus the presence of the magnetostatic coupling decrease
fluctuations and the number of normal electrons in the 0.2-
sample. This is also seen in Fig. 2 where the temperature
smearing of the distribution function calculated with the self- 0.0+ — T
consistent flux is smaller than that calculated with. We —— 7
a.lSO Checked that, as ShOUld be eXpeCted, the mean-Squal 6.020x10-18  6.022x10-18 6A024x10-1E8 (¢;3.026x10-13 6.028x108  6.030x10-18
fluctuation((AP)?) decreases with an increase in the num- "
ber of interacting channels. FIG. 2. The Fermi-Dirac distribution functiof(E,) versus en-

This type of analysis bears some resemblance to the tWargy E_,, for the cylinder made of a set of quasi-1D mesoscopic
fluid description of a superconductbr.For free electrons rings, in the magnetic flug, and¢=p.+ ¢, , respectively, has
with the dispersion relatiog, the electron density can be been calculated in the self-consistent way for parameters as in the
written as figure.

1.0

NR= 10001
M, = 10000
M = 100

4
a=1Ab=5A

T=15K

(1) ¢, =025¢,
@) 0=0+4,= 00410,
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0.2 2 u=12, =0.069 LT TN M_= 10000 eee- b= 20A
3----u=6, p=0.000 WA 2.0x105 =
4 ----u=6, p=0.070 v =
0.1+ 5 —mim u=2, p=0.000 = =
6 —mie u=2, p=0.985 < =
S, 1.5x105 -
< 5 =
= 00 KT A 2
~
Wi 1.0x105
<
-0.14 4 N = 10001 x108
9 a=1Ab=5A
74 5.0x104
2 ,
e L2, T=156k |\ LT
-0.2 NP, 1/ e T
< 0.0 piREE ; ; ; - -
0 200 400 600 800 1000
03 — 71 v T v 1 v 1 T T T T L

—T T r r T
00 01 02 03 04 05 06 07 08 09 10

¢/¢0 FIG. 4. The energy changeAE /W, where W

, ] ] =Z(eiNR/27m,R?)?, as a function of the number of magnetic
FIG. 3. Persistent currentsas a function of magnetic flug/ ¢, momentsL for different values ob=z,, .1
m,m .

in quasi-2D mesoscopic cylinders with different shapes of the
Fermi surfaces, with and without fluctuations. Self-sustaining cur-

rentsls. =Znm+1=Zm+1—Zm. The smallest energy change is obtained

when reversing a direction of a single current in several dif-
tions included. Fou=2 we do not get flux trapping because '€rént places. In Fig. 5 we present thé, dependence of
the number of coherent electrons is too small. AE,. We see thahE, increases witiM for smallM, and

Finally, to get more insight into the properties of our sys-then saturates.

tem we discuss, using the microscopic Hamiltonia) the We are in position now to calculate the temperaflifeat
possibility of long-range order in a cylinder made of a set ofWhich the crossover from an ordered to disordered state oc-
mesoscopic rings. In the literature one finds the statemenf&!'s:
that phase transitions and long-range order are impossible in

quasi-1D systems. It is true for systems in the thermody- . AEi(My) 60
namic limit with short-range interactions. However, one can ~kgInM, (60)
look for the conditions for an ordered state for a large but

finite number of interacting entitie®. The calculations performed for the following set of param-

Let us consider a set d¥l, rings described by the Ising- eters:M,=10*, M,=1, R=5000 A, b=10 A gave
like Hamiltonian (3). In the ground state all currents run usT*~0.14 K. It means that af<T* the system exhibits
parallel. Let us construct a new configuration by reversinga long-range order in the sense that the correlation range is
the direction ofL currents {<M,) ins (1<s<M,) differ-  |onger than the sample size. The temperaiiyrealculated in
ent places in the chain of rings. The energy change will behe MFA for the above set of parametersTis~0.216 K?
denoted bysAE (M), and the change in the free energy is  We see thal™* obtained by the use of the Ising model is
of the same order &k, obtained with the MFA. It means that
long-range interactions encountered in our system strongly
supress fluctuations. If we assume that each ring has a small
number of transverse channeM, then, e.g., forM,
~3, T*~1 K
If AF>0 then the ordered configuration is stable. This con-
dition is equivalent to

AF=SAE_(M,)—TAS=S[AE,(M,) —kgTInM,].

fTEeAE'-/kBT>MZ, (58) 100-5

where &1 has the sense of &imensionless correlation
range. If Eq.(58) is fulfilled the system is ordered in the
sense that the correlations extend over all its length.

Let us discuss the possibility of long-range order for the
case considered by us. The enefgly, (M,) is of the form

and T° [K]

101 3
o 3

R =5000A — AE Kk
4 a=2A

AE 1/k

2L M,—n 1/ -

2 ‘C(m_m,)' 102 R | AL | LR | ML | LA |

V1 m—m'/L+1 101 102 108 M 104 108 108

(59 z

The L dependence oAE, (M,) is presented in Fig. 4. We FIG. 5. The energy chang&E; and the temperaturé* as a
see thatAE (M,) increases withL and decreases with function of the number of channeld, in a single cylinder.

enNR
27mgR?

1
AEL(Mz):E
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It has to be stressed, e.g., that finite valueTéffor our ~ Pascaud and Montambatixhe experiments that permit us
system is a finite-size effect. Indeed, as we can see from Edo test the role of Coulomb interaction have been suggested.

(60) and Fig. 5T* —0 for M ,— . In the model calculations presented in this paper we did
not consider the effect of impurities in order not to obscure
V1. DISCUSSION AND CONCLUSIONS the whole subject with too many details. The influence of

) disorder on self-sustaining currents has been analyzed in Ref.

In the presented paper we discussed the magnetostaic \we found that disorder decreases persistent currents but
coupling of electrons in mesoscopic systems and its approXie|f-sustaining currents can still be obtained for relatively
mations. This interaction is known to be weak in macrO'C|ean Samp'e@)a”istic regimé_
scopic samples; however, it seems it can play an important 1o go beyond the MFA we have considered the influence
role in mesoscopic samples due to very peculiar properties Qf fluctuations, calculated by the use of E@6), on the
mesoscopic systems in the magnetic field. _ properties of a mesoscopic cylinder. We have shown that

It is possible to induce persistent currerits in other  these fluctuations are smaller in mesoscopic systems than in
words orbital magnetic moments mesoscopic ring by the  macroscopic ones because of the quantum size energy gaps.
static magnetic field. The magnetic interaction of orbitalon the top of it the magnetostatic coupling modifies a dis-
magnetic moments can lead to magnetically ordered groundersjon relation and creates a dynamic gap that leads to fur-
state. This possibility has been discussed in a number Gher reduction of the fluctuations. Thus in mesoscopic sys-
paper$*! using the mean-field approximation, which statestems coherent and normal electrons coexist and the system
that each electron moves in an external magnetic field angan be described by the two-fluid model where the fluctua-
the field coming from all currents in a system. The obtainedijons are proportional to the amount of normal electrons.
two self-consistent equations for the current can lead tGse|f.sustaining currents run by coherent electrons survive
spontaneous self-sustaining current at zero external field. W@, ctuations in systems with FS having flat regions; however,
neglected here the Zeeman energy of the electron spins bgyeijr magnitude is reduced.
cause it turns out to be very small compared to the orbital Haying the microscopic Hamiltonian for electrons inter-
energies. The influence of spins has been discussed in Refeting by magnetostatic couplingEg. (3)] we have dis-

19. _ _ _cussed, for a set of stacked rings, the possibility of long-

In this paper we have presented the microscopic Hamilrange order. Phase transitions and long-range order are
tonian which is responsible for the internal magnetic field—possible in the strict mathematical sense only for systems in
the magnetostati¢current-currentinteraction. The strength the thermodynamic limit. For finitéout still large systems
of the interaction depends strongly on the sample geometryjiscontinuities of thermodynamic quantities and infinite
For the stack of mesoscopic rings deposited along certaifange correlations are not necessary. “Discontinuities” have
axis we get the long-range interaction with the coupling con<injte widths and correlation ranges may be as large as the
stant depending only on the radii of the rings and on thesystem itself, regardless of the behavior in the thermody-
relative distance of its centers. _ namic limit!® What is more, finite systems can show inter-

We have shown that the self-consistent MFA of thegsgting effects that will be wiped away in the thermodynamic
HMF leading to self-sustaining currents. Its derivation fromtemperaturegg'r*,\_,0_1_1 K the set of mesoscopic rings
the long-range interaction serves as a justification of the USBr, in general, the mesoscopic cylinder with quasi-1D con-
of the Hamiltonian(18) to investigate magnetic properties of gyction can exhibit the long-range order, blit —0 for
mesoscopic systems. The MFA is known to be the best fof 00,
systems with long-range forc¢s the condition(19) is ful- The statistical properties of the system following from Eq.
filled], thus we should expect that it leads to reasonable reg3) yj|l be presented in a subsequent paper.
sults in the considered case.

To obtain the full Hamiltonian describing our system one
should add to the Hamiltonian given by E{.0) the Cou-
lomb interaction and the interaction with impurity potential.
It was recently shown that the Coulomb interaction does not We would like to thank W. Brenig, Y. Imry, and W.
influence persistent currents in clean systéfshereas it Zwerger for useful discussions. This work was supported by
enhances the current in diffusive regiffeln a work by ~ KBN Grant No. 2P03B 129 14 and by a DAAD grant.
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