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Electronic and magnetic properties of nanographite ribbons
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Electronic and magnetic properties of ribbon-shaped nanographite systems with zigzag and armchair edges
in a magnetic field are investigated by using a tight-binding model. One of the most remarkable features of
these systems is the appearance of edge states, strongly localized near zigzag edges. The edge state in a
magnetic field, generating a rational fraction of the magnetic flux (f5p/q) in each hexagonal plaquette of the
graphite plane, behaves like a zero-field edge state withq internal degrees of freedom. The orbital diamagnetic
susceptibility strongly depends on the edge shapes. The reason is found in the analysis of the ring currents,
which are very sensitive to the lattice topology near the edge. Moreover, the orbital diamagnetic susceptibility
is scaled as a function of the temperature, Fermi energy, and ribbon width. Because the edge states lead to a
sharp peak in the density of states at the Fermi level, the graphite ribbons with zigzag edges show Curie-like
temperature dependence of the Pauli paramagnetic susceptibility. Hence, there is a crossover from high-
temperature diamagnetic to low-temperature paramagnetic behavior in the magnetic susceptibility of nan-
ographite ribbons with zigzag edges.@S0163-1829~99!02111-6#
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I. INTRODUCTION

Nanographites are nanometer-sized graphite fragm
that represent a new class of a mesoscopic system inte
diate between aromatic molecules and extended grap
sheets. In these systems the boundary regions play an im
tant role so that edge effects may influence strongly
p-electron states near the Fermi energy. A useful and sim
system to investigate the electronic states of nanographit
provided by ribbon-shaped graphite sheets. The study of
electronic states of graphite ribbons based on the tig
binding model reveals that the edge shape — we disting
betweenzigzagandarmchair edges~see Fig. 1! — leads to
strikingly different properties of the states near the Fe
level. The ribbons with zigzag edges possess partly
bands at the Fermi level corresponding to electronic st
localized in the near vicinity of the edge. These localiz
states~‘‘edge states’’! correspond to the nonbonding molec
lar orbital ~NBMO! as can be seen examining the analy
solution for semi-infinite graphite with a zigzag edge.1,2 In
contrast, localized edge states and the corresponding
bands are completely absent for ribbons with armchair ed

The localized edge states are of special interest in n
ographite physics, because of their relatively large contri
tion to the density of states~DOS! at the Fermi energy. Ther
is a tendency towards a Fermi surface instability that is
portant to examine. Previously, it was reported that based
the Su-Schrieffer-Hegger model the electron-phonon inte
PRB 590163-1829/99/59~12!/8271~12!/$15.00
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tion does not induce a lattice distortion because of the n
bonding character of the edge states.3 On the other hand, the
electron-electron interaction on the level of an unrestric
Hartree-Fock approximation~HFA! yields a ferrimagnetic
spin polarization at the zigzag edges and an energy gap a
Fermi level.1,4 The effect of long-range Coulomb interactio
on the edge state was examined using the Par-Parier-P
model with the restricted HFA which does not allow an
spin polarization. The conclusion was that long-range C
lomb interaction does not destroy the edge state as we
the flat bands.5 This result was further confirmed by firs
principle calculations based on local density approximatio6

The stability of the edge states has been extensively
vestigated from various points of view. One remaining pro
lem is the influence of an external magnetic field. How a
the edge states affected? Is their NBMO character preser
The answers to these questions will be important for fut
studies of the electronic, magnetic, and transport proper
of nanographites. For this purpose we investigate here
magnetic properties, especially magnetic susceptibility,
the case of noninteracting electrons.

The observed magnetic susceptibilityx is the sum of four
components:~1! localized spin susceptibilityxspin , ~2! dia-
magnetic susceptibility due to the core electronsxcore , ~3!
Pauli paramagnetic susceptibilityxP , and ~4! orbital dia-
magnetic susceptibilityxorb, due to the cyclotron motion o
the itinerant electrons.

Since we neglect electron-electron interaction through
8271 ©1999 The American Physical Society



r
ne
ich
h
t
,
D
th
rp

lik
ry
t i
ld
tu
n
lu
p

ri-
a

ar
d

th
n

m-

bor
of
sed

es,

ere,
e
r-

al

m-
t all
bon
e
m-
by

e
ri-

h

th,
gth.
ag

th
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this paper,xspin can be neglected. Furthermore,xcore is un-
important for us, because it is small and basically tempe
ture independent. On the other hand, the Pauli paramag
susceptibility is related to the DOS at the Fermi level, wh
represents an important component in zigzag nanograp
ribbons where an enhanced density of states appears a
Fermi level. Note thatxP is negligible in armchair ribbons
aromatic molecules, and graphite sheets, because their
is suppressed at the Fermi level. We will see below that
fact that the DOS introduced by the edge states is sha
peaked at the Fermi energy,xP introduces a very pro-
nounced temperature dependence, which is nearly Curie-
The diamagnetic contribution to the susceptibility is ve
familiar from the magnetic properties of graphite sheets. I
due to the orbital cyclotron motion of the electrons in a fie
with a finite component perpendicular to the plane. Na
rally, this diamagnetic response is very anisotropic and o
weakly temperature dependent. From this we can conc
that in nanographite ribbons with zigzag edges the susce
bility should consist mainly of these two competing cont
butions xP and xorb. . Hence, a crossover occurs from
high-temperature diamagnetic to a low-temperature p
magnetic regime, where the characteristic temperature
pends on the width of the ribbon and of the orientation of
external field. It is worth noting that the field direction is a

FIG. 1. The structure of graphite ribbons with~a! zigzag edges
and ~b! armchair edges. The rectangle with the dashed line is
unit cell.
a-
tic

ite
the

OS
e
ly

e.

s

-
ly
de
ti-

a-
e-
e

important tool to distinguish the magnitude of the two co
ponents.

II. ELECTRONIC STRUCTURE OF GRAPHITE RIBBONS
IN MAGNETIC FIELD

A. Harper equation

In this paper, we use a single-orbital nearest-neigh
tight-binding model in order to study the electronic states
nanographite ribbons. This model has been successfully u
for the calculation of electronic states of fullerene molecul
carbon nanotubes, and other carbon-related materials.7,8 The
Hamiltonian is written as

H5(
^ i , j &

t i j ci
†cj , ~2.1!

where the operatorci
† creates an electron on the sitei , ^ i , j &

denotes the summation over the nearest-neighbor sites. H
we neglect spin indices for simplicity. In this model, th
magnetic fieldB perpendicular to the graphite plane is inco
porated in the transfer integralt i j by means of the Peierls
phase,9 defined as

t i j→t i j e
i2pf i , j , ~2.2!

wheref i , j is given by the line integral of the vector potenti
from i site to j site,

f i , j5
e

chEi

j

dl•A. ~2.3!

The magnetic flux through the areaS in units of the flux
quantumfo5ch/e is

1

f0
E dS–B5

e

ch R dl •A5 (
aroundS

f i , j . ~2.4!

The structure of graphite ribbons with zigzag and ar
chair edges are shown in Fig. 1, where we assume tha
edge sites are terminated by hydrogen atoms. The rib
width N is defined by the number of zigzag lines for th
zigzag ribbon and by the number of dimer lines for the ar
chair ribbons. Since a hexagonal lattice can be divided
two sublattices, we call the A~B!-sublattice on thenth zigzag
or dimer line as the nA~nB! site. We assume Landau gaug
with A5(0,Bx,0), where we define the translational inva
ant direction of each ribbon as they axis, and thex axis lies
perpendicular toy axis. In this gauge, the unit cell of eac
ribbon could be taken as the rectangle shown in Fig. 1.

It should be noted that the same numberN for both zigzag
and armchair ribbons does not give the same ribbon wid
when the ribbons are measured by the same unit of len
Therefore, when we compare physical quantities of zigz
and armchair ribbons with a same widthW, we will use the
following definition:

W55
A3

2
Na2a[Wz zigzag ribbons

~N21!
A3

2
a[Wa armchair ribbons,

~2.5!

e
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wherea is the C-C bond length.
Next, let us apply Eq.~2.1! to the graphite lattice and

derive the so-called Harper equations. In order to apply
~2.1! to the graphite lattice and simplify the formulation, w
introduce the lattice transformation as shown in Fig. 2, wh
does not change the lattice topology. For convenience
will use this brick-type lattice structure whenever we p
form real calculations.

The Peierls phase for the graphite ribbons is easily ca
lated from Eq.~2.3!. The Peierls phase of graphite ribbo
with ~a! zigzag and~b! armchair ribbons is shown in Fig. 3
For both cases, the Peierls phase is given byfmB,nA
51/2mfdmn , where f is the magnetic flux through a
plaquette in units of a quantum flux.

Now, let us derive the Harper equation, which possess
translational symmetry along the zigzag axis. In order to
ply Eq. ~2.1! to zigzag ribbons, we define a new opera
ca( i ), which creates an electron on the sitei in the unit cell
a. The momentum representation of this operator in thy
direction is defined by

ca~ i !5
1

AL
(

k
eikragk~ i !, ~2.6!

wherer a represents the position of the unit cella. Here we
also define a one-particle state

uC~k!&5(
m

@CmA~k!gmA
† ~k!1CmB~k!gmB

† ~k!#u0&.

~2.7!

Inserting this one-particle state into the Schro¨dinger equation
HuC&5euC&, we can easily obtain the following four eigen
value equations for the sitesmB, mA, and (m11)A,

FIG. 2. The transformation from hexagonal lattice to brick-ty
lattice, which does not change the lattice topology.

FIG. 3. The Peierls phase for Landau gauge on~a! zigzag rib-
bons and~b! armchair ribbons.
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eCmB5C~m11!A1ei2p~m/2!fCmA1e2 i2p~m/2!fCmA ,

eCmA5C~m21!B1ei2p~m/2!fCmB1e2 i2p~m/2!fCmB ,
~2.8!

eC~m11!A5CmB1ei2p~m/2!fC~m11!B1e2 i2p~m/2!fC~m11!B .

Eliminating the A-sublattice sites, we obtain the differen
equation,

lCm~ky!5amCm11~ky!1bmCm~ky!1am21Cm21~ky!,

~2.9!

where l5e223, am(ky)52 cos(ky /21mpf), bm(ky)52
cos(ky12mpf), andCmB was replaced byCm . Therefore,
our problem was reduced to a one-dimensional tight- bind
model with a superlattice potential of period 2q for a rational
flux f5p/q. Note that this equation does not include a
boundary conditions yet. It may be applied to both graph
ribbons and sheets by imposing the appropriate bound
conditions. In the following calculations, the factormpf
will be replaced by@(N21)/22m11#pf to keep the en-
ergy band symmetric aboutk50 for arbitrary magnetic flux.
This replacement means that the origin of thex axis is set to
the center of the ribbons.

The spectrum is confined to values ofl between26 and
16, i.e., 23<e<13. A close inspection shows that th
following translations do not change the energy spectru
e→2e and f→f1n, wheren is an arbitrary integer. For
rational flux f5p/q, am is a function with period 2q and
bm is a function with periodq. In addition, we must pay
attention to the following symmetry of the energy bands
the Brillouin zone,

eS ky1
2p

q
nD5e~ky!. ~2.10!

Here we should again note that these arguments do not
pend on the boundary conditions.

Similarly, we can also derive the Harper equations, wh
includes the translational symmetry along the armchair a
In the same way as Eq.~2.9!, the following equation is ob-
tained,

lCm~ky!5Cm12~ky!1amCm11~ky!

1amCm21~ky!1Cm22~ky!, ~2.11!

where

l5e223, am~ky!52 cos@ky /21~m21/2!pf#e2 i~p/2!f.

It is easy to confirm that the same symmetry properties
for Eq. ~2.9! apply here too. Similarly, the factoram will
be replaced by am(ky)52 cos$ky /21@(N21)/222m
13#pf%e2 ipf in order to obtain the symmetric energy ban
structure aboutk50 for arbitrary magnetic flux.
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B. Graphite sheet

In this subsection, we consider the electronic structure
a graphite sheet in a magnetic field. This will afterwar
become the basis to discuss the electronic structures of
ographite ribbons. As we have seen in the previous sub
tion, the tight-binding model of the graphite lattice could
reduced to a tight-binding model with superlattice poten
of period 2q. In order to calculate the energy spectrum of t
graphite sheet, we must treat the eigenvalue problem
2q32q matrix with the periodic-boundary conditio
C2q115eikx2qC1 , when the Brillouin zone is reduced to th
magnetic Brillouin zone2p/2q<kx<p/2q and 2p<ky
<p.

At the beginning, we consider the zero-field energy ba
of the graphite sheet. By settingf50 in Eqs. ~2.9! and
~2.11!, the zero-field spectrum is easily obtained. From E
~2.9!, we find for the graphite sheet with translational sy
metry along the zigzag axis,

ek56A312 cos~ky!14 cosS ky

2 D cos~kx!. ~2.12!

Similarly, from Eq. ~2.11!, the zero-field spectrum o
graphites with translational symmetry along the armch
axis is

ek56A312 cos~2kx!14 cosS ky

2 D cos~kx!. ~2.13!

The energy band structures for both Eqs.~2.12! and~2.13!
are shown in Fig. 4, whereky is replaced byk and we have
superposed allkx values in the spectrum. We can find th
degeneracy ate50 in both figures, which originates from
the K-point degeneracy of the band structure of the grap
sheet.1,2

The spectrum of the graphite sheet in a magnetic fiel
shown in Fig. 5, which was first calculated by Rammal15. We
can easily find that the spectrum has the fine recursive st
ture of the Hofstadter butterfly.13 In the weak-magnetic-field
limit, we can clearly see the Landau levels. When the m

FIG. 4. The energy band structure of graphite sheet projecte
~a! zigzag axis and~b! armchair axis in the absence of the magne
field.
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netic flux is getting larger, these levels form the Landau s
bands because of the Harper broadening. As we pointed
in the previous subsection, for the rational fluxf5p/q, we
can see 2q subbands with a reflection symmetry aboute
50 and aboutf51/2. Interestingly, the degeneracy ate
50 exits for arbitrary flux, which confirms that theK-point
degeneracy will not be destroyed.

As an example of the energy band structure in a stro
magnetic field, we show the case of the graphite sheet
jected to the~a! zigzag axis and~b! armchair axis forf
51/4 ~Fig. 6!. In a strong magnetic field, the Landau leve
change to 234 subbands due to Harper broadening and
effect of the lattice structure gets more important, so t
each subband has the basic structure of the zero-field c
Furthermore, we find the symmetrye@ky1(2p/q)n#
5e(ky).

C. Graphite ribbon

The energy band structures of graphite ribbons are
tained in terms of the Harper equation by imposing op
boundary conditions. In the case of zigzag ribbons w
width N, the boundary condition isCN115C050. How-
ever, we need a more careful treatment of the Harper eq
tion at the edge site. In Eqs.~2.9!, it was not considered tha

to

FIG. 5. The energy spectrum of the graphite sheet in a magn
field.

FIG. 6. The energy band structure of the graphite sheet p
jected to~a! zigzag axis and~b! armchair axis forf51/4.
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PRB 59 8275ELECTRONIC AND MAGNETIC PROPERTIES OF . . .
there would be no 0A(B) and (N11)A(B) site. Including
this fact, only form51 andN, the Eq.~2.9! has to be rewrit-
ten as

lCm~ky!5amCm11~ky!

1~bm21!Cm~ky!51am21Cm21~ky!.

~2.14!

Therefore, we must replaceb1(bN) by b121(bN21) in Eq.
~2.9! in order to include the condition that the 0A and (N
11)A sites do not exist. Similarly, for the armchair ribbon
the boundary condition isCN115C050, where we must
replaceb1(bN) by b121(bN21) in order to include the con
dition that the 0A and (N11)A sites do not exist.

We show the energy band structures of the zigzag rib
with N550 for f50,1/500,1/100,1/4 in Figs. 7~a!—7~d!.
For f50, the profile of band structure has almost the sa
structure as in the case of the graphite sheet as shown in
4~a!. However, we can see partly flat bands atE50, which
do not appear in the energy band of the graphite sheet.
electronic states corresponding to partly flat bands are
strongly localized states near the zigzag edges, called ‘‘e
states.’’ Analytical properties will be discussed in the ne
section.

FIG. 7. The energy band structures of zigzag ribbon withN
550 for ~a! f50, ~b! f51/500,~c! f51/100, and~d! f51/4 for
f51/4. The dashed line in~b! is the energy structure atf50 for
comparison.
,
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In the case ofq>N, the Landau levels are not perfect
formed and the band structure atf50 is almost unchanged
because the edges interrupt the cyclotron motion of the e
tron @Fig. 7 ~b!#. For q<N, where the ribbon width is suffi-
ciently wide compared with the cyclotron radius, the Land
levels are nearly developed@Fig. 7 ~c!#.

As an example forq!N and higher commensurates, w
show the energy band structure off51/4 in Fig. 7~d!. The
234 Landau subbands are formed. Between the Landau
bands, we can see the additional dispersion. The state
these dispersions are also localized at the edge,10,14,16which
originate from the cyclotron motion of electrons and not f
topological reason. It should be noted that the partly
bands are formed atE50 again.

Next, we show the energy band structures of the armc
ribbon with N550 for f50,1/500,1/100,1/4 in Figs. 8~a!—
8~d!. For f50, the profile of the band structure is almo
identical to the one of the graphite sheet@Fig. 5 ~a!#. Here,
we cannot see partly flat bands atE50.

In the case ofq>N, the Landau levels are not perfect
formed and the band structure atf50 does not change. Fo
q<N, where the ribbon width is sufficiently wide compare
with the cyclotron radius, the Landau levels are again alm
formed as shown in Fig. 8. For the case ofq!N and higher
commensurate fluxes, we show the energy bands structu

FIG. 8. The energy band structures of armchair ribbon withN
550 for ~a! f50, ~b! f51/500,~c! f51/100, and~d! f51/4 for
f51/4. The dashed line in~b! is the energy structure atf50 for
comparison.
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f51/4 in Fig. 8~d!. We also find that despite the addition
dispersion between Landau subbands, no partly flat band
may occur in zigzag ribbons, are present atE50 even in a
magnetic field.

III. EDGE STATE

The states corresponding to the partly flat bands are
lytically derived by Fujita and co-workers for the sem
infinite graphite sheet with a zigzag edge.1,2 It can be under-
stood as localized states near the zigzag edge. It is
possible to find the edge states by solving the Harper
~2.9!.

At the beginning, let us rewrite the Eq.~2.9! to the trans-
fer matrix form,

S Cm11

Cm
D 5S 1

am
~l2b̃m!

am21

am

1 0
D S Cm

Cm21
D , ~3.1!

where b̃m is bm21 for m51, N and bm for others. Let us
take open boundary conditions, i.e,

S C1

C0
D 5S 1

0D ~3.2!

and we impose the conditione50. One can obtain,

Cn5Dk
n21 , ~3.3!

where Dk is 22 cos(k2). Then the convergence conditio
uDku<1 is required, because otherwise the wave funct
would diverge in the semi-infinite graphite sheet. This co
vergence condition defines the region 2p/3<k<p, where
the partly flat bands exist. The charge density is shown
Fig. 9 at ~a! k5p, ~b! 8p/9, ~c! 7p/9, and~d! 2p/3. At
k5p, the charge is perfectly localized at the zigzag ed
When the wave number deviates fromk5p, the electron
gradually penetrates towards the inner sites. Finally, the e
tron states completely extend atk52p/3.

Similarly, the case of finite magnetic field, using Eq
~3.1! and~3.2! under the condition ofe50, we can derive the
wave function on thenth zigzag line as

Cn5P i 51
n Dk~ i !, ~3.4!

where

Dk~ i !5H 22 cosS k

2
2

N22i 11

2
pf D ~ i>2!

1 ~ i 51!.

~3.5!

For the rational fluxf5p/q, there is a relation ofDk( i
1q)5Dk( i ), so that in the case of semi-infinite graphite E
~3.4! might be rewritten as

Cnq5~Dk!
n21, ~3.6!
as

a-

so
q.

n
-

in

.

c-

.

.

where

Dk5P i 51
q Dk~ i !. ~3.7!

Thus, the edge states are modified in the presence of a m
netic field. The condition of the convergence of the wa
function becomesDk<1, which then defines the region o
the flat band. Note thatDk hasq internal degrees of freedom
In other words, there areq solutions, which give the sam
value of Dk . For example, in the case off51/4, there are
four wave numbers, which giveDk50, i.e, k563/4p,
61/4p, the charge density corresponding to each wave nu
ber is depicted in Fig. 10. The charge density does not p
etrate to the inner sites farther than up to the~411!-th zigzag
chain, and there are four kinds of localized modes cor
sponding to the four internal degrees of freedom ofDk .
Thus, the edge states in a magnetic field behave as the z
field edge states withq internal degrees of freedom.

Next, we discuss the DOS of the edge state in the abse
of a magnetic field, which will be used in the calculation
the Pauli susceptibility of zigzag ribbons in the later sectio
As we have seen in this section, the edge state penetra
inner sites when the wave number changes fromp to 2/3p.
If we consider the graphite ribbons with widthN, two edge
states, which come from both sides of the edge, will over
with each other and develop the bonding and antibond
configurations. Since the magnitude of the overlap becom

FIG. 9. The charge density of the edge state at~a! k5p, ~b! k
58p/9, ~c! k57p/9, and ~d! k52p/3, where the radius of the
circle means the magnitude of the charge density.
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larger when the wave number approaches 2/3p, the band gap
between the bonding and antibonding state formed by
two edge states gets larger towardk52/3p. Therefore, the
partly flat bands have a slight dispersion, which depends
the ribbon widthN. In order to calculate the DOS, we firs
have to derive the precise energy dispersion for the e
states. The energy dispersion is calculated by the overlap
of two edge states. From Eq.~3.3!, the amplitude of the edge
state, which penetrates from the first zigzag line, is given

Cn5Dk
n21[CA , ~3.8!

which is located only on theA sublattice. On the other hand
the amplitude of the edge state, which penetrates from
Nth zigzag line, is given by

CN2n5Dk
n21[CB , ~3.9!

which is located only on theB sublattice. By using the tight-
binding Hamiltonian, the overlapping of two edge states
easily calculated,

^CAuHuCB&5NDk
N21~22t2tDk!5Tk , ~3.10!

whereDk522 cos(k/2). Therefore, the energy spectrum
the edge states is given by the following eigenvalue proble

FIG. 10. The charge density of the edge state at~a! k5
23/4p, ~b! k521/4p, ~c! k51/4p, and ~d! k53/4p, where the
radius of the circle denotes the magnitude of the charge densit
e

n

e
ng

y

e

s

:

S 0 Tk

Tk 0 D S C1

C2
D 5ekS C1

C2
D . ~3.11!

By diagonalization of this Hamiltonian matrix, we find th
energy spectrum

Ek522tNDk
N21F22t12t cosS k

2D G . ~3.12!

From this equation, aroundk5p, the spectrum is given by
E;kN.

Therefore, the DOS related to the edge states has
form,

r~e!5
]k

]e
;

1

N
ea, ~3.13!

wherea51/N21. Note that this DOS has a power-law d
pendence, which is different from the ordinary van Ho
singularity ofr;1/AE observed in the one-dimensional sy
tem. It is also found that the renormalized DOS is invers
proportional to the ribbon width, which has been alrea
confirmed by numerical calculation.2

IV. ORBITAL DIAMAGNETISM OF GRAPHITE RIBBONS

It is well known that graphite shows a large anisotrop
diamagnetic susceptibility, while aromatic molecules sh
only weak diamagnetism. This fact tells us that the orb
diamagnetic susceptibility is sensitive to the size of graph
fragments. Therefore, we would like to clarify the size a
edge shape effect on the orbital susceptibility, in order
understand the magnetic properties of nanographite ribb
Similar calculations of the orbital diamagnetic susceptibil
on carbon nanotubes have been done by several authors11,12

They found that there are universal scaling rules in the
bital susceptibility as a function of the Fermi energy, t
temperature, and the size of the nanotubes. Since it is
expected that graphite ribbons have such scaling rules,
study the scaling properties of the orbital susceptibility a
the dependence on the edge shape.

In this section, the orbital diamagnetic susceptibilityxorb
of graphite ribbons is calculated in terms of the 2nd deri
tive of the free energyF(H,T) with respect to the magneti
field. The free energy is given by

F~H,T!5mN2
1

bpEBZ
dk(

n
ln$11e2b[ ek,n~H !2m]%,

~4.1!

whereb51/kBT andm is the chemical potential andek,n(H)
~n is the band index! is the energy spectrum of the graphi
ribbons in the magnetic field, as calculated in the previo
section. Then the magnetic momentM (H) and magnetic
susceptibilityx(H) per site for finite temperature and arb
trary magnetic fieldH become
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M ~H !52
1

Ne

]F

]H
52

1

Nep
E dk(

n

1

eb~ek,n2m!11

]ek,n

]H
,

~4.2!

and

x~H !5
1

Ne

]M

]H

52
1

Nep
E dk(

n H 2
b

4cosh2
b~ek,n2m!

2

S ]ek,n

]H D 2

1
1

eb~ek,n2m!11

]2ek,n

]H2 J . ~4.3!

The zero-field magnetic susceptibilityx0(T) for finite tem-
perature is given by

x~T!52
1

Nep
S S

f0
D 2E dk(

n

occ.
1

eb~ek,n2m!11
S ]2ek,n

]H2 D ,

~4.4!

whereS is the area of a hexagonal ring.Ne is the electron
number in the system.

The width dependence of the orbital susceptibilityxorb at
T50 is shown in Fig. 11. Analogous to the graphite shee
the aromatic molecules or the carbon nanotubes, the grap
ribbons exhibit diamagnetism. The magnitude ofxorb(T
'0) grows linearly with increasingW in accordance with
the fact thatxorb of the graphite sheet diverges in the zer
temperature limit. A remarkable point is the different slo
in the W dependence ofxorb for armchair and zigzag rib
bons. Actually, the difference between the susceptibilities
the two types of ribbons increases for largerW. At a first
glance, this result may seem unphysical, because one m
attribute the difference to an edge effect, which should
minish for wider ribbons. The origin of this discrepanc
however, is based on topological properties as we will sh
shortly. We would like also to mention the aspect thatxorb
for the armchair ribbons shows some oscillations as a fu
tion of W. This is due to the fact that armchair ribbons a

FIG. 11. The ribbon width dependence of the orbital diam
netic susceptibilityxorb of graphite ribbons atT50.
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metallic or insulating depending onW. On the other hand, no
oscillations occur for zigzag ribbons, as they are metallic
all W.

The difference of the slope inxorb andMorb is related to
the more microscopic and configurational aspect of the r
bons. An important point to take into account is the rin
current susceptibility in the equilibrium state, because
magnetic moments and ring currents are related in the
lowing way

M5
1

cE dVr3 j, ~4.5!

wherer is the position andj is the current operator.17 *dV
means volume integral. The currentj is described on each
bond (i , j ) by

Ji j 5 i
et

\
~ei2pf i j ci

†cj2H.c.! ~4.6!

The ring currents also contribute to the linear response
weak magnetic fields. It is straightforward to calculate the
and the corresponding susceptibility. The pattern of the r
currents for~a! a zigzag ribbon ofN510, and armchair rib-
bons of~b! N518, ~c! N519, and~d! N520 are shown in
Figs. 12~a!–12~d!, respectively. The magnitude@in the units

-

FIG. 12. The texture of the ring currents for~a! zigzag ribbon
(N510) and armchair ribbons of~b! N518, ~c! N519, and~d!
N520. In zigzag ribbon, because of the symmetry of the lattice,
ring currents along the vertical bonds are zero. In armchair ribb
of N518 and 19, the Kekule´ pattern is clear.
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of J0(5et/\)] and directions of the ring current near th
graphite edge is further given in detail in Fig 13. We c
easily find that the current flow is symmetric with respect
x50 and the total current in they direction vanishes, be
cause we consider an equilibrium state. The pattern of
current flow is strikingly different for the zigzag and th
armchair ribbons. In zigzag ribbons, due to the lattice sy
metry, the currents along the vertical bonds are exactly z
The currents flow only along the horizontal bonds, who
directions are antisymmetric with respect tox50. For arm-
chair ribbons, the current distribution is quite different, b
cause currents flow also on vertically oriented bonds,
exhibit a clear Kekule´-type of pattern. Note that the Kekul´
pattern is more pronounced whenNÞ3M21 (M
51,2,3,•••), which corresponds to the semiconducting ar
chair ribbon, whereas it is less distinct for the metallic ca
N53M21(M51,2,3,•••), where almost no currents ar
found close to the ribbon center. The reason can be attrib
to the interference effect between the current flows ass
ated with the two edges. As shown in Fig. 13~b!, the currents
are stronger along the cispolyacetylene, which is separ
by one dimer lines. ForNÞ3M21 andN53M21, the ring
current patterns are depicted schematically in Figs. 14~a! and
14~b!, where thick bold lines denote dominant right-goin
currents while thick shaded lines are for the left-going c
rents. It is easy to find that forNÞ3M21 both types of lines
tend to avoid each other and form a Kekule´ pattern around
the center of the ribbons. However, whenN53M21, the
lines lie perfectly on top of each other so that the left- a
right-going currents cancel each other around the cente
ribbon. Thus, the effect of the lattice topology near graph
edge drastically changes the ring current flow in the wh
sample.

In Fig. 15, the magnitude of the ring-current susceptibil
J is plotted as a function ofx/W with a fixed positiony for
~a! zigzag ribbons,~b! armchair ribbons with (NÞ3M
21), and~c! armchair ribbons with (N53M21). Interest-
ingly, each graphite ribbon has a scaling behavior as a fu
tion of x/W and the magnitude of the ring currents has

FIG. 13. Current flow and magnitude near the edge for~a! zig-
zag ribbon (N550) and armchair ribbon (N550).
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power-law decay. These facts further emphasize that
edge-shape effect is significant in nanographites.

Next we show the Fermi energy dependence ofxorb . Ac-
tually in real graphite materials, a small change in the car
density from the half filling is possible and can even
controlled by substrate properties. The calculated Fermi
ergy dependence is shown in Fig. 16, where it is found t
xorb /W is a universal function ofmW. We normalizexorb
by dividing it by W, since it is proportional toW ~Fig. 11!.
Furthermore, we multiplyEF by W, because the direct gap a
k50 is proportional to the 1/W at k50 for armchair ribbons
and atk52p/3 for zigzag ribbons as is demonstrated in t
Appendix.

As a final point in this section, we show the temperatu
dependence ofxorb in Fig. 17, which is important from the
viewpoint of experiments on nanographites. In all cases
magnitude ofxorb decreases with increasing temperature
is also found that the temperature dependence ofxorb /W
scales as a function ofbW, because the energy gap is pr
portional to the 1/W. Our calculation also demonstrates th
the edge effect becomes more significant with lower te
perature.

V. PAULI PARAMAGNETISM OF GRAPHITE RIBBONS

In the previous section, we have seen that the orbital d
magnetic susceptibility depends on the edge shape in
ographite ribbons, especially, the topology of the latt
strongly affects the flow of diamagnetic ring currents. He
we discuss another important component of the magn
susceptibility, Pauli paramagnetic susceptibilityxP , because
zigzag ribbons have a sharp peak of DOS at the Fermi le
The width of the peak of DOS at the Fermi level has t
order of meV, which is comparable to the temperature sc
of room temperature. Therefore, it is expected that the P
susceptibility of zigzag ribbons might be sensitive to te
perature, although the Pauli susceptibility of other usual m
als is temperature independent. On the other hand, since

FIG. 14. Schematic picture of ring-current flow generated by
interference.
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FIG. 15. The position dependence of magnitude of the ring currents for~a! zigzag ribbons,~b! armchair ribbons (NÞ3M21), and~c!
armchair ribbons (N53M21).
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DOS of armchair ribbons ate50 is zero or very tiny, we can
neglect the effect of the Pauli paramagnetism in armch
ribbons.

The magnetic moment by the Zeeman effect is

M5mB~n↑2n↓!, ~5.1!

wheremB is Bohr magneton andn↑(n↓) means the electron
density with up-spin~down-spin!. The electron density a
arbitrary temperature for each spin is given by

ns5
1

pE1stBZ
dk(

n

1

11eb~en,k2smBH !
, ~5.2!

wheres(5↑,↓) means spin index. Therefore, the Pauli su
ceptibility xP per site is given by

xP5 lim
T→0

]M

]H
5

bmB
2

pNe
(

n
E dk

1

cosh~ben,k!
, ~5.3!

where b51/kBT. Room temperature (T;300 K) corre-
sponds tob;0.25. We numerically calculated the finite tem
perature Pauli susceptibility of graphite ribbons using t
equation up to room temperature.

FIG. 16. The Fermi energy dependence of the orbital magn
momentsxorb of graphite ribbons atT50.
ir

-

s

It is possible to clarify the contribution of the edge stat
to xP . As we have seen in Sec. III, the DOS due to the ed
states is given by Eq.~3.13!. After the substitution of Eq.
~3.13! into Eq. ~5.3!, we replace thek integration by the
energy integration. Then we can obtain thexP contribution
due to the edge states as,

xP5
1

NeNbaE dx
xa

coshx11
;

1

N
Ta, ~5.4!

wherex is bek and a is 1/N21. Interestingly,xP has the
Curie-like temperature dependence, although in normal m
alsxP is basically constant in the temperature. The expon
of xP depends on the ribbon width througha. WhenN be-
comes infinite, the exponenta approches21 andxP show
the Curie-law. However, in this limit, the contribution ofxP
is diminished by a factor 1/N in Eq. ~5.4!.

Numerical results of the Pauli susceptibilityxP of zigzag
ribbons up to room temperature are shown in Fig. 18
various values ofN. As expected, because of the edge sta
xP shows Curie-like temperature dependence. In the inse
Fig. 18, we plotted theN dependence ofa, which was cal-
culated by the least-square method and has a good agree
with the line of 1/N21.

ic FIG. 17. The temperature dependence ofxorb , wherexorb is
scaled by 1/W andb is scaled byW.
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The observed susceptibilityx is essentially the sum of th
orbital xorb and the Pauli susceptibilityxP . The temperature
dependence of the total susceptibilityx is shown in Fig. 19.
The total susceptibilityx shows the diamagnetic behavior
the high-temperature regime and paramagnetic behavio
the low temperature. In the inset, the width dependence
the crossing temperature, i.e.,x50, is plotted, which is well
fitted by 1/b5100.15263N21.846.

Here we should remind you that both aromatic molecu
and bulk graphite show diamagnetic behavior, however, n
ographite with zigzag edges have a remarkable paramag
behavior because of the edge state. If this paramagnetic
havior is experimentally detected, it will be an indirect ev
dence of the existence of the edge state.

VI. SUMMARY AND DISCUSSION

In this manuscript, we discussed the electronic and m
netic properties of nanographite in magnetic field, by us
the single orbital tight binding model with Peierls phas
Deriving the Harper equation for the graphite lattice, w
studied the energy spectrum and dispersion in a magn
field. At f50, it is found that zigzag ribbons have partly fl
bands at the Fermi level, which is attributed to the ed
localized states having nonbonding character. In terms of
Harper equation, the edge state can be analytically descr
even in the presence of a magnetic field. We also stud
orbital diamagnetic properties of the nanographite ribbo
where we found that the diamagnetic susceptibilityxorb is
very sensitive to the size and edge shapes of graphite
bons. It is emphasized that the flow of the orbital diama
netic ring currents significantly depend on the lattice top
ogy near the graphite edges. Especially, in the case
armchair ribbons, the pattern of the ring currents has dra
cally changed because of the interference effect of
edges. It is also found that the orbital diamagnetic susce
bility xorb is scaled as a function of the temperature, Fe
energy, and ribbon width. Because the edge states indu
sharp peak of DOS at the Fermi level, the Pauli paramagn
susceptibility should be an important component in n
ographite with zigzag edges. Therefore, in the last section

FIG. 18. The temperature dependence ofxP for N
510,20, . . . ,50 up toroom temperature. In the inset, the expone
plotted on the widthN and show a good agreement with the line
1/N21.
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Pauli susceptibility in zigzag ribbons has been studied, wh
we found that the zigzag ribbons with nanometer size sh
the Curie-like temperature dependence of the Pauli susc
blity in contrast to usual metals. From this significant cont
bution of the Pauli susceptibility, it is found that the o
served susceptibilityx(5xP1xorb) of zigzag ribbons show
diamagnetic behavior at high temperature and paramagn
behavior at low temperature.

Here we introduce an interesting experimental res
which might be connected with our theoretical results. So
graphite-related materials consisting of nanographites, e
activated carbon fibers~ACF!, amorphous carbons, carbo
blacks, defective carbon nanotubes, etc., show actu
anomalous behaviors in the magnetic susceptibility. Wh
bulk graphite has a large diamagnetic and anisotropic s
ceptibility, a certain type of ACF with a huge specific surfa
area up to 3000m2/g ~believed to consist of an assembly
minute graphite fragments with a dimension of 20320 Å)
exhibits a paramagnetic response at room temperature a
strong Curie-like behavior in low temperature.18 This kind of
anomalous behavior of the susceptibility is also observed
many amorphous carbons and defective carpet-rolled ca
nanotubes.19 Although zigzag and armchair edges coexist
real carbon material, this behavior of magnetic susceptibi
is consistent with our results. Although the sample prod
tion of graphite-related materials has still insufficient infl
ence on size and edge shapes, recently there are some e
mental attempts to synthesize and nanographite systems
to control the size and edge shapes. One is ‘‘graphitizatio
of diamond powder with grain sizes 40250 Å. Another
method to produce nanographites is epitaxial growth on s
strates with step edges.20 Therefore, we expect that in th
near future the magnetic properties of nanographites will
observable so that the influence of the edge states on m
netic properties can be tested in a controlled way.
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APPENDIX: ENERGY GAP

In this appendix, we analytically show that both the dire
gapDa at k50 of sufficiently wide armchair ribbons and th
direct gapDz at k52p/3 of sufficiently wide zigzag ribbons
are inversely proportional to the width of graphite ribbonW.
This result supports that thexorb /W is scaled as a function
of the mW (m is chemical potential!.

First, we examine the energy gapDa at k50 of armchair
ribbons. It is easy to find that at thek50 the Hamiltonian
can be rewritten as

H52t(
j 51

N F (
m51

2

~aj ,m
† aj 11,m1H.c.!1aj ,1

† aj ,21H.c.G ,

~A1!

which is equivalent to the tight-binding model for the tw
leg ladder lattice havingN rungs.1 The site indices (j ,1) and
( j ,2) correspond to thejA(B) and jB(A) sites, respectively
when j is even~odd!. The eigenvalues are evaluated ase6

522tcosnp/(N11)6t (n51,2, . . . ,N). It should be noted
that the system is metallic only whenN53m21, because
e1 and e2 become zero forn5m and 2m, respectively.
Therefore,Da are 0 forN53m21,2„2t cos$@m/(3m11)#p%
2t… for N53m and „2t cos$@(m11)/(3m11)#p%2t… for N
53m11, respectively. After the elimination ofN in terms of
W5(N23)A3/21A3 and the Taylor expansion under th
condition of 1/W!1, we can obtain the following results
t

Da;5
0 N53M21

p

W1
A3

2

N53M

p

W
N53M11.

~A2!

Thus, theDa is inversely proportional to the ribbon width.
Similarly, we can obtain the energy gapDz at k52p/3 of

zigzag ribbons. The Hamiltonian of zigzag ribbons atk
52p/3 is rewritten as

H52t(
i 51

2N

~ai
†ai 111H.c.!, ~A3!

which is equivalent to the tight binding model for the one
dimensional lattice having 2N sites. The site indexi corre-
sponds toiA, if i is an odd number, and toiB, if i is an even
number. The eigenvalues are evaluated ase5
22t cosnp/(2N11) (n51,2, . . . ,N). Therefore, Dz is
4„2t cos$@(N11)/(2N11)#p%…. After the elimination ofN in
terms ofW5A3N/221 and Taylor expansion under the con
dition of 1/W!1, we can obtain the following results.

Dz;
p

W
. ~A4!

Thus, theDa is also inversely proportional to the ribbon
width.
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