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Electronic and magnetic properties of ribbon-shaped nanographite systems with zigzag and armchair edges
in a magnetic field are investigated by using a tight-binding model. One of the most remarkable features of
these systems is the appearance of edge states, strongly localized near zigzag edges. The edge state in a
magnetic field, generating a rational fraction of the magnetic fltix /q) in each hexagonal plaquette of the
graphite plane, behaves like a zero-field edge stateqititernal degrees of freedom. The orbital diamagnetic
susceptibility strongly depends on the edge shapes. The reason is found in the analysis of the ring currents,
which are very sensitive to the lattice topology near the edge. Moreover, the orbital diamagnetic susceptibility
is scaled as a function of the temperature, Fermi energy, and ribbon width. Because the edge states lead to a
sharp peak in the density of states at the Fermi level, the graphite ribbons with zigzag edges show Curie-like
temperature dependence of the Pauli paramagnetic susceptibility. Hence, there is a crossover from high-
temperature diamagnetic to low-temperature paramagnetic behavior in the magnetic susceptibility of nan-
ographite ribbons with zigzag edg¢$0163-182€09)02111-9

[. INTRODUCTION tion does not induce a lattice distortion because of the non-
bonding character of the edge staté®n the other hand, the
Nanographites are nanometer-sized graphite fragmentdectron-electron interaction on the level of an unrestricted
that represent a new class of a mesoscopic system intermelartree-Fock approximatiofHFA) yields a ferrimagnetic
diate between aromatic molecules and extended graphitpin polarization at the zigzag edges and an energy gap at the
sheets. In these systems the boundary regions play an impdfermi level* The effect of long-range Coulomb interaction
tant role so that edge effects may influence strongly then the edge state was examined using the Par-Parier-Pople
mr-electron states near the Fermi energy. A useful and simpleodel with the restricted HFA which does not allow any
system to investigate the electronic states of nanographites #pin polarization. The conclusion was that long-range Cou-
provided by ribbon-shaped graphite sheets. The study of themb interaction does not destroy the edge state as well as
electronic states of graphite ribbons based on the tightthe flat bands. This result was further confirmed by first
binding model reveals that the edge shape — we distinguishrinciple calculations based on local density approximation.
betweenzigzagand armchair edges(see Fig. 1 — leads to The stability of the edge states has been extensively in-
strikingly different properties of the states near the Fermivestigated from various points of view. One remaining prob-
level. The ribbons with zigzag edges possess partly flalem is the influence of an external magnetic field. How are
bands at the Fermi level corresponding to electronic statethie edge states affected? Is their NBMO character preserved?
localized in the near vicinity of the edge. These localizedThe answers to these questions will be important for future
stateq“edge states’) correspond to the nonbonding molecu- studies of the electronic, magnetic, and transport properties
lar orbital (NBMO) as can be seen examining the analyticof nanographites. For this purpose we investigate here the
solution for semi-infinite graphite with a zigzag eddfeln ~ magnetic properties, especially magnetic susceptibility, for
contrast, localized edge states and the corresponding flthte case of noninteracting electrons.
bands are completely absent for ribbons with armchair edges. The observed magnetic susceptibilityis the sum of four
The localized edge states are of special interest in narcomponents(1) localized spin susceptibilitypin, (2) dia-
ographite physics, because of their relatively large contribumagnetic susceptibility due to the core electrang e, (3)
tion to the density of statd®09) at the Fermi energy. There Pauli paramagnetic susceptibility,, and (4) orbital dia-
is a tendency towards a Fermi surface instability that is immagnetic susceptibility,,, due to the cyclotron motion of
portant to examine. Previously, it was reported that based othe itinerant electrons.
the Su-Schrieffer-Hegger model the electron-phonon interac- Since we neglect electron-electron interaction throughout
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important tool to distinguish the magnitude of the two com-
ponents.

II. ELECTRONIC STRUCTURE OF GRAPHITE RIBBONS
IN MAGNETIC FIELD

A. Harper equation

In this paper, we use a single-orbital nearest-neighbor
tight-binding model in order to study the electronic states of
nanographite ribbons. This model has been successfully used
for the calculation of electronic states of fullerene molecules,
carbon nanotubes, and other carbon-related matéfiaite
Hamiltonian is written as

H:E tijCiTCj y (21)
(LD

where the operatar] creates an electron on the site(i,j)
denotes the summation over the nearest-neighbor sites. Here,
we neglect spin indices for simplicity. In this model, the
magnetic fieldB perpendicular to the graphite plane is incor-
porated in the transfer integrg} by means of the Peierls
phase defined as

tij—>tijei2ﬂ—¢i:j, (22)

wheredg; ; is given by the line integral of the vector potential
from i site toj site,

e (i

(b)

The magnetic flux through the are&in units of the flux
FIG. 1. The structure of graphite ribbons wii#) zigzag edges quantume¢,=ch/e is
and (b) armchair edges. The rectangle with the dashed line is the
unit cell.

1 e
%JdS-B=EdeI-A= > by (2.4)

arounds
this paper xspin can be neglected. Furthermopg,, is un-
important for us, because it is small and basically tempera- The structure of graphite ribbons with zigzag and arm-
ture independent. On the other hand, the Pauli paramagnetihair edges are shown in Fig. 1, where we assume that all
susceptibility is related to the DOS at the Fermi level, whichedge sites are terminated by hydrogen atoms. The ribbon
represents an important component in zigzag nanographiteidth N is defined by the number of zigzag lines for the
ribbons where an enhanced density of states appears at thigizag ribbon and by the number of dimer lines for the arm-
Fermi level. Note thajp is negligible in armchair ribbons, chair ribbons. Since a hexagonal lattice can be divided by
aromatic molecules, and graphite sheets, because their D@®o sublattices, we call the (B)-sublattice on theith zigzag
is suppressed at the Fermi level. We will see below that ther dimer line as the nAnB) site. We assume Landau gauge
fact that the DOS introduced by the edge states is sharplwith A=(0,Bx,0), where we define the translational invari-
peaked at the Fermi energw,p introduces a very pro- ant direction of each ribbon as tiyeaxis, and thex axis lies
nounced temperature dependence, which is nearly Curie-likgerpendicular toy axis. In this gauge, the unit cell of each
The diamagnetic contribution to the susceptibility is veryribbon could be taken as the rectangle shown in Fig. 1.
familiar from the magnetic properties of graphite sheets. Itis It should be noted that the same numbigior both zigzag
due to the orbital cyclotron motion of the electrons in a fieldand armchair ribbons does not give the same ribbon width,
with a finite component perpendicular to the plane. Natuwhen the ribbons are measured by the same unit of length.
rally, this diamagnetic response is very anisotropic and onlyi herefore, when we compare physical quantities of zigzag
weakly temperature dependent. From this we can concludand armchair ribbons with a same widtt§ we will use the
that in nanographite ribbons with zigzag edges the susceptfoellowing definition:
bility should consist mainly of these two competing contri-

butions xp and xo,. - Hence, a crossover occurs from a V3 . .
high-temperature diamagnetic to a low-temperature para- 7Na—aEWZ zigzag ribbons
magnetic regime, where the characteristic temperature de- W= (2.5
pends on the width of the ribbon and of the orientation of the V3

3 .
) : . . SRR (N—1)—-a=W, armchair ribbons,
external field. It is worth noting that the field direction is an 2
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I | e‘ymB:\I’(erl)A—{_ éZw(m/Z)qS\I,mA_l_ e—i277(m/2)¢\1,mA’

::> Eq,mA:\I,(m_l)B_,_eizw(m/z)(f;\I,mB_,_e—i2w<m/2)¢q,mB,
(2.8

FIG. 2. The transformation from hexagonal lattice to brick-type
lattice, which does not change the lattice topology.

eV mi1a=VYmet E'ZW(m/ZW‘I’(mH)B*‘ e_lzv(mlz)(b‘l’(ml)s .

Eliminating the A-sublattice sites, we obtain the difference

. equation,
wherea is the C-C bond length.

Next, let us apply Eq(2.1) to the graphite lattice and
derive the so-called Harper equations. In order to apply Eq. NW,(ky) =a, W+ 1(Ky) + by ¥ (k) +am— 1 ¥ m-1(Ky),
(2.1 to the graphite lattice and simplify the formulation, we 2.9
introduce the lattice transformation as shown in Fig. 2, which |
does not change the lattice topology. For convenience wwhere A=e?—3, an(k,)=2 cosk,/2+mm ), by(k,)=2
will use this brick-type lattice structure whenever we per-Cosk,+2mm¢), and¥ g was replaced by¥,. Therefore,
form real calculations. our problem was reduced to a one-dimensional tight- binding
The Peierls phase for the graphite ribbons is easily calcunodel with a superlattice potential of period for a rational
lated from Eq.(2.3). The Peierls phase of graphite ribbons flux ¢=p/g. Note that this equation does not include any
with (a) zigzag andb) armchair ribbons is shown in Fig. 3. boundary conditions yet. It may be applied to both graphite
For both cases, the Peierls phase is given dygna ribbons and sheets by imposing the appropriate boundary
=1/2m¢S,,,, Where ¢ is the magnetic flux through a conditions. In the following calculations, the factorm¢
plaquette in units of a quantum flux. will be replaced by (N—1)/2-m+1]m¢ to keep the en-
Now, let us derive the Harper equation, which possess thergy band symmetric about=0 for arbitrary magnetic flux.
translational symmetry along the zigzag axis. In order to apThis replacement means that the origin of #axis is set to
ply Eq. (2.1) to zigzag ribbons, we define a new operatorthe center of the ribbons.

c,(i), which creates an electron on the site the unit cell The spectrum is confined to valuesjobetween—6 and
a. The momentum representation of this operator inythe +6, i.e., =3<e<+3. A close inspection shows that the
direction is defined by following translations do not change the energy spectrum;

e——¢€ and ¢— ¢+n, wheren is an arbitrary integer. For
rational flux $=p/q, a,, is a function with period g and
1 _ b, is a function with periodg. In addition, we must pay
c (i)=—=2, &ay (i), (2.6  attention to the following symmetry of the energy bands in
VL the Brillouin zone,

wherer , represents the position of the unit cell Here we

also define a one-particle state 27
6( Ky+ Fn) =e(ky). (2.10
_ T T Here we should again note that these arguments do not de-
|\1’(k)>—% [ ma(K) Yma(K) + ¥ me(K) vmp(k)1]0). pend on the boundary conditions.
(2.7) Similarly, we can also derive the Harper equations, which

includes the translational symmetry along the armchair axis.

Inserting this one-particle state into the Salinger equation In the same way as E¢2.9), the following equation is ob-
H|¥)=¢|¥), we can easily obtain the following four eigen- tained,
value equations for the sitesB, mA, and (m+1)A,

)\‘Pm(ky) :\I,m+2(ky) +anVm, 1(ky)
+am\mel(ky)+\I’m72(ky)i (2-11)

where

A=€?—3, any(k,)=2 cogk,/2+(m—1/2)w¢ple” ("D?,

It is easy to confirm that the same symmetry properties as
for Eq. (2.9 apply here too. Similarly, the facta,, will
be replaced by ay(ky)=2codk,/2+[(N—1)/2—2m

FIG. 3. The Peierls phase for Landau gauge(@rzigzag rib-  +3]mé}e '™ in order to obtain the symmetric energy band
bons andb) armchair ribbons. structure abouk=0 for arbitrary magnetic flux.
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FIG. 4. The energy band structure of graphite sheet projected to
(a) zigzag axis andb) armchair axis in the absence of the magnetic

field. netic flux is getting larger, these levels form the Landau sub-

bands because of the Harper broadening. As we pointed out
in the previous subsection, for the rational flgx=p/q, we
) ) i ) can see B subbands with a reflection symmetry abaut

In this subsection, we consider the electronic structures ot o 5 abouté=1/2. Interestingly, the degeneracy at
a graphite sheet in a magnetic field. This will afterwards_ 5 ayits for arbitrary flux, which confirms that thé-point
become the basis to discuss the electronic structures of NaRageneracy will not be destroyed.
ographite ribbons. As we have seen in the previous subsec- 5q 4p example of the energy band structure in a strong
tion, the tight-binding model of the graphite lattice could be 5 netic field, we show the case of the graphite sheet pro-
reducgd to a tight-binding model with superlattice pOtem'aljected to the(a) zigzag axis andb) armchair axis fore
of period 2. In order to calculate the energy spectrum of the_ 1/4 (Fig. 6). In a strong magnetic field, the Landau levels
graphite shee.t, we must treat the _eigenvalue Pmb'e.”.‘ of 8hange to X 4 subbands due to Harper’broadening and the
2029 -T?;“X with the periodic-boundary - condition et of the lattice structure gets more important, so that
Waq1 =€y, when the Brillouin zone is reduced to the g5ch subband has the basic structure of the zero-field case.
Qagnetlc Brillouin zone— w/2q<k,<m/2q and — 7<Kk, Furthermore, we find the symmetrye[k,+ (2m/q)n]
=1TT. ==

At the beginning, we consider the zero-field energy band e(ky).
of the graphite sheet. By setting=0 in Egs. (2.9 and
(2.11), the zero-field spectrum is easily obtained. From Eqg. C. Graphite ribbon
(2.9, we find for the graphite sheet with translational sym-
metry along the zigzag axis,

B. Graphite sheet

The energy band structures of graphite ribbons are ob-
tained in terms of the Harper equation by imposing open
boundary conditions. In the case of zigzag ribbons with
width N, the boundary condition iy, ,;=%,=0. How-
cogky). (212  ever, we need a more careful treatment of the Harper equa-
tion at the edge site. In Eg&.9), it was not considered that

k
€=+ \/3+2005{ky)+4 cog<§y

Similarly, from Eg. (2.1, the zero-field spectrum of

graphites with translational symmetry along the armchair 3 — 3

axis is —
Ky S S S 2O ESaS———

e==* \/3+2cog2k,)+4co > cogk,). (2.13 1
A e e I\
The energy band structures for both E@s12 and(2.13 0 NN 0 -
are shown in Fig. 4, wherk, is replaced by and we have | |
superposed ak, values in the spectrum. We can find the > o ] i

degeneracy at=0 in both figures, which originates from
the K-point degeneracy of the band structure of the graphite
sheet:?

The spectrum of the graphite sheet in a magnetic field is '?Ln
shown in Fig. 5, which was first calculated by Ramtalve @)
can easily find that the spectrum has the fine recursive struc-
ture of the Hofstadter butterffi In the weak-magnetic-field FIG. 6. The energy band structure of the graphite sheet pro-
limit, we can clearly see the Landau levels. When the magjected to(a) zigzag axis andb) armchair axis forp=1/4.

o
a

|
a
o
a
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FIG. 7. The energy band structures of zigzag ribbon with FIG. 8. The energy band structures of armchair ribbon Wwith
=50 for (a) $=0, (b) $=1/500,(c) ¢=1/100, andd) ¢=1/4 for =50 for (a) $=0, (b) »=1/500,(c) ¢=1/100, andd) ¢=1/4 for
¢$=1/4. The dashed line itb) is the energy structure at=0 for ¢=1/4. The dashed line itb) is the energy structure at=0 for

comparison. comparison.
there would be no A(B) and N+ 1)A(B) site. Including In the case ofj=N, the Landau levels are not perfectly
this fact, only form=1 andN, the Eq.(2.9) has to be rewrit-  formed and the band structure ét=0 is almost unchanged,
ten as because the edges interrupt the cyclotron motion of the elec-
tron[Fig. 7 (b)]. Forg<N, where the ribbon width is suffi-
AV (k) =a. K ciently wide compared with the cyclotron radius, the Landau
m(Ky)=anT - 1(ky) levels are nearly developdéig. 7 (c)].
+ (b= 1)V n(ky)=+an_1¥mn-1(ky). As an example fog<N and higher commensurates, we

2.14 show the energy band structure éf=1/4 in Fig. 1d). The

' 2X 4 Landau subbands are formed. Between the Landau sub-
Therefore, we must replad®g (by) by b;—1(by—1) in Eq.  bands, we can see the additional dispersion. The states of
(2.9 in order to include the condition that theAOand (N these dispersions are also localized at the &4 which
+ 1)A sites do not exist. Similarly, for the armchair ribbons, originate from the cyclotron motion of electrons and not for
the boundary condition &y, ,=%,=0, where we must topological reason. It should be noted that the partly flat
replaceb;(by) by b;—1(by—1) in order to include the con- bands are formed &=0 again.
dition that the &\ and (N+ 1)A sites do not exist. Next, we show the energy band structures of the armchair

We show the energy band structures of the zigzag ribbomibbon with N=50 for ¢=0,1/500,1/100,1/4 in Figs.(8—

with N=50 for ¢=0,1/500,1/100,1/4 in Figs.(@—7(d).  8(d). For ¢=0, the profile of the band structure is almost
For ¢=0, the profile of band structure has almost the samédentical to the one of the graphite shéEtg. 5 (a)]. Here,
structure as in the case of the graphite sheet as shown in Figie cannot see partly flat bandsEst 0.
4(a). However, we can see partly flat bandsEat 0, which In the case ofj=N, the Landau levels are not perfectly
do not appear in the energy band of the graphite sheet. THermed and the band structure &t 0 does not change. For
electronic states corresponding to partly flat bands are thg<N, where the ribbon width is sufficiently wide compared
strongly localized states near the zigzag edges, called “edgeith the cyclotron radius, the Landau levels are again almost
states.” Analytical properties will be discussed in the nextformed as shown in Fig. 8. For the casege&€N and higher
section. commensurate fluxes, we show the energy bands structure of
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¢=1/4 in Fig. 8d). We also find that despite the additional
dispersion between Landau subbands, no partly flat bands,
may occur in zigzag ribbons, are presenEat0 even in a
magnetic field.

Ill. EDGE STATE

The states corresponding to the partly flat bands are ang
lytically derived by Fujita and co-workers for the semi-
infinite graphite sheet with a zigzag edtfelt can be under-
stood as localized states near the zigzag edge. It is als
possible to find the edge states by solving the Harper E
(2.9.

At the beginning, let us rewrite the E(.9) to the trans- (a)
fer matrix form,

5
go

1 - an_
(«ymH) —(\=by) ;“ ! ( v,
= m m

v, 0

| e
1 0

m—-1

whereb,, is b,,— 1 for m=1, N andb,, for others. Let us
take open boundary conditions, i.e,

o)l

and we impose the conditios=0. One can obtain,

ove
o
o’o’o&c’o

0
VYV
AL

(b) (d

FIG. 9. The charge density of the edge statéapk= 7, (b) k
=8m/9, (¢) k=7#/9, and(d) k=2#/3, where the radius of the
circle means the magnitude of the charge density.

v,=Dpt, (3.3

where D, is —2 cos§). Then the convergence condition

|ID\|=<1 is required, because otherwise the wave functionhare

would diverge in the semi-infinite graphite sheet. This con-

vergence condition defines the region/3<k=, where

the partly flat bands exist. The charge density is shown in A =TI, Dy (i). (3.7

Fig. 9 at(a) k=1, (b) 87/9, (c) 7#/9, and(d) 27/3. At

k=1, the charge is perfectly localized at the zigzag edgeThus, the edge states are modified in the presence of a mag-

When the wave number deviates frdke 7r, the electron netic field. The condition of the convergence of the wave

gradually penetrates towards the inner sites. Finally, the eledunction becomes\, <1, which then defines the region of

tron states completely extend ket 27/ 3. the flat band. Note that, hasq internal degrees of freedom.
Similarly, the case of finite magnetic field, using Egs.In other words, there arg solutions, which give the same

(3.1 and(3.2) under the condition oé= 0, we can derive the value of A,. For example, in the case ¢f=1/4, there are

wave function on theith zigzag line as four wave numbers, which givé\,=0, i.e, k==*3/4s7,

+1/44r, the charge density corresponding to each wave num-
ber is depicted in Fig. 10. The charge density does not pen-
etrate to the inner sites farther than up to the 1)-th zigzag
chain, and there are four kinds of localized modes corre-
sponding to the four internal degrees of freedomAqgf.

Thus, the edge states in a magnetic field behave as the zero-

k N-2i+1 i~ field edge states with internal degrees of freedom.
Dy(i)= —2co 57 quﬁ (i=2) (3.5) Next, we discuss the DOS of the edge state in the absence
of a magnetic field, which will be used in the calculation of
1 (i=1). the Pauli susceptibility of zigzag ribbons in the later section.

For the rational flux¢=p/q, there is a relation oD (i As we .have seen in this section, the edge state penetrate to

+q)=D,(i), so that in the case of semi-infinite graphite Eq.INner sites when the wave number changes froto 2/3r.

(3.4) might be rewritten as If we consllder the graphite rlbb.ons with widith two edge
states, which come from both sides of the edge, will overlap
with each other and develop the bonding and antibonding

Wog= (A", (3.6 configurations. Since the magnitude of the overlap becomes

=11, Dy(i), 3.9

where
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0 Ty\(Cy C, 3
= . A
T« 0/\c,) e, (319
By diagonalization of this Hamiltonian matrix, we find the
energy spectrum

N—1 k
Ex=—2tND, *| —2t+2tco 3] (3.12

From this equation, arounkl=7r, the spectrum is given by
E~kN.

Therefore, the DOS related to the edge states has the
form,

ok 1

P(f)zgwﬁfcﬂ (3.13

wherea=1/N—1. Note that this DOS has a power-law de-
pendence, which is different from the ordinary van Hove
singularity ofp~ 1/\/E observed in the one-dimensional sys-
tem. It is also found that the renormalized DOS is inversely
proportional to the ribbon width, which has been already
confirmed by numerical calculation.

IV. ORBITAL DIAMAGNETISM OF GRAPHITE RIBBONS

(b)

FIG. 10. The charge density of the edge state(at k= It is well known that graphite shows a large anisotropic
—3/4m, (b) k=—1/4m, (¢) k=1/4w, and(d) k=23/4m, where the diamagnetic susceptibility, while aromatic molecules show

radius of the circle denotes the magnitude of the charge density. ONly weak diamagnetism. This fact tells us that the orbital
diamagnetic susceptibility is sensitive to the size of graphite
larger when the wave number approachesr2/e band gap fragments. Therefore, we woul_d like to cIe_xrify th(_a size and
between the bonding and antibonding state formed by th@dge shape effect on the orbital susceptibility, in order to
two edge states gets larger towdee 2/37. Therefore, the undgrstand the'magnetlc properties of nano.graphlte r|.bl.).ons.
partly flat bands have a slight dispersion, which depends ofimilar calculations of the orbital diamagnetic susceptibility
the ribbon widthN. In order to calculate the DOS, we first On carbon nanotubes have been done by several adthirs.
have to derive the precise energy dispersion for the edg&hey found that there are universal scaling rules in the or-
states. The energy dispersion is calculated by the overlappirgftal susceptibility as a function of the Fermi energy, the
of two edge states. From E¢B.9), the amplitude of the edge t€mperature, and the size of the nanotubes. Since it is also

state, which penetrates from the first zigzag line, is given bygxpected that graphite ribbons have such scaling rules, we
study the scaling properties of the orbital susceptibility and

the dependence on the edge shape.
v,=D} =v,, (3.8 In this section, the orbital diamagnetic susceptibijty,
of graphite ribbons is calculated in terms of the 2nd deriva-

which is I_ocated only on th& sublattic_e. On the other hand, tive of the free energf (H,T) with respect to the magnetic
the amplitude of the edge state, which penetrates from thﬁeld. The free energy is given by

Nth zigzag line, is given by

— n—lE 1
Wy-n=Dy Vg, 3.9 F(H’T):MN_B_WJ’ dkE |n{1+e_5[5k,n(H)_ﬂ]}'
which is located only on thB sublattice. By using the tight- Bz m 4.1)
binding Hamiltonian, the overlapping of two edge states is '

easily calculated, whereB=1/kgT andu is the chemical potential angl ,(H)

(n is the band indexis the energy spectrum of the graphite
<\IfA|H|‘IfB>=ND,’Q‘fl(—Zt—tDk)sz, (3.10 ribbons in the magnetic field, as calculated in the previous
section. Then the magnetic momelt(H) and magnetic
whereD = —2 cosk/2). Therefore, the energy spectrum of susceptibility x(H) per site for finite temperature and arbi-
the edge states is given by the following eigenvalue problemtrary magnetic fieldH become
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1 e FIG. 12. The texture of the ring currents f@) zigzag ribbon
k,n

) (4.3 (N=10) and armchair ribbons db) N=18, (c) N=19, and(d)
eflekn= w41 gH? N=20. In zigzag ribbon, because of the symmetry of the lattice, the
ring currents along the vertical bonds are zero. In armchair ribbons
of N=18 and 19, the KekUllpattern is clear.

The zero-field magnetic susceptibilify(T) for finite tem-

perature is given by metallic or insulating depending aiv. On the other hand, no
oscillations occur for zigzag ribbons, as they are metallic for
all W.
1/ S)\2 occ. 1 /azek The difference of the slope iRy, andM,y, is related to
x(T)=— N (—) f dkz = 2‘” , the more microscopic and configurational aspect of the rib-
e\ o 7 ek 1| oH bons. An important point to take into account is the ring

(4.4) current susceptibility in the equilibrium state, because the
magnetic moments and ring currents are related in the fol-

where S is the area of a hexagonal rindy, is the electron lowing way

number in the system.

The width dependence of the orbital susceptibijity, at
T=0 is shown in Fig. 11. Analogous to the graphite sheets, .
the aromatic molecules or the carbon nanotubes, the graphite M= EJ dvrxij, (4.5
ribbons exhibit diamagnetism. The magnitude xf.,(T ) . )
~0) grows linearly with increasingV in accordance with Wherer is the position and is the current operatdf. [dV
the fact thaty,, of the graphite sheet diverges in the zero-Means yolume integral. The currents described on each
temperature limit. A remarkable point is the different slopePond @.j) by
in the W dependence ok, for armchair and zigzag rib-
bons. Actually, the difference between the susceptibilities of et .
the two types of ribbons increases for largdr At a first Jij =i%(e'2”¢‘iCiTC,——H-C-) (4.6)
glance, this result may seem unphysical, because one might
attribute the difference to an edge effect, which should di-The ring currents also contribute to the linear response for
minish for wider ribbons. The origin of this discrepancy, weak magnetic fields. It is straightforward to calculate them
however, is based on topological properties as we will showand the corresponding susceptibility. The pattern of the ring
shortly. We would like also to mention the aspect thal,  currents for(a) a zigzag ribbon oN= 10, and armchair rib-
for the armchair ribbons shows some oscillations as a funcbons of(b) N=18, (c) N=19, and(d) N=20 are shown in
tion of W. This is due to the fact that armchair ribbons areFigs. 12a)—12d), respectively. The magnitudé the units
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FIG. 13. Current flow and magnitude near the edge(&rzig-

zag ribbon N=50) and armchair ribborN=50). FIG. 14. Schematic picture of ring-current flow generated by the

interference.

of Jo(=et/#)] and directions of the ring current near the
graphite edge is further given in detail in Fig 13. We canPower-law decay. These facts further emphasize that the
easily find that the current flow is symmetric with respect toedge-shape effect is significant in nanographites.
x=0 and the total current in thg direction vanishes, be-  Next we show the Fermi energy dependencg &f. Ac-
cause we consider an equilibrium state. The pattern of théually in real graphite materials, a small change in the carrier
current flow is strikingly different for the zigzag and the density from the half filling is possible and can even be
armchair ribbons. In zigzag ribbons, due to the lattice symcontrolled by substrate properties. The calculated Fermi en-
metry, the currents along the vertical bonds are exactly zer®rdy dependence is shown in Fig. 16, where it is found that
The currents flow only along the horizontal bonds, whoseXors/W is @ universal function ot W. We normalizey
directions are antisymmetric with respectxte:0. For arm- by dividing it by W, since it is proportional tW (Fig. 11).
chair ribbons, the current distribution is quite different, be-Furthermore, we multiphfeg by W, because the direct gap at
cause currents flow also on vertically oriented bonds, an&=0 is proportional to the W atk=0 for armchair ribbons
exhibit a clear Kekuldype of pattern. Note that the Kekule and atk=2m/3 for zigzag ribbons as is demonstrated in the
pattern is more pronounced wheN#3M—1 (M  Appendix.
=1,2,3; - -), which corresponds to the semiconducting arm- As a final point in this section, we show the temperature
chair ribbon, whereas it is less distinct for the metallic casedependence of,, in Fig. 17, which is important from the
N=3M-1(M=1,2,3;--), where almost no currents are Viewpoint of experiments on nanographites. In all cases the
found close to the ribbon center. The reason can be attributeétiagnitude ofy,, decreases with increasing temperature. It
to the interference effect between the current flows assosis also found that the temperature dependenceff/W
ated with the two edges. As shown in Fig.(i8 the currents ~ scales as a function @8W, because the energy gap is pro-
are stronger along the cispolyacetylene, which is separateeprtional to the W. Our calculation also demonstrates that
by one dimer lines. FON#3M —1 andN=3M —1, thering  the edge effect becomes more significant with lower tem-
current patterns are depicted schematically in Figé)lahd  perature.
14(b), where thick bold lines denote dominant right-going
currents while thick shaded lines are for the left-going cur-
rents. It is easy to find that fod # 3M — 1 both types of lines
tend to avoid each other and form a Kekplattern around In the previous section, we have seen that the orbital dia-
the center of the ribbons. However, whél+3M —1, the  magnetic susceptibility depends on the edge shape in nan-
lines lie perfectly on top of each other so that the left- andographite ribbons, especially, the topology of the lattice
right-going currents cancel each other around the center aftrongly affects the flow of diamagnetic ring currents. Here
ribbon. Thus, the effect of the lattice topology near graphitewe discuss another important component of the magnetic
edge drastically changes the ring current flow in the wholesusceptibility, Pauli paramagnetic susceptibijfty, because
sample. zigzag ribbons have a sharp peak of DOS at the Fermi level.
In Fig. 15, the magnitude of the ring-current susceptibility The width of the peak of DOS at the Fermi level has the
Jis plotted as a function of/W with a fixed positiony for ~ order of meV, which is comparable to the temperature scale
(a) zigzag ribbons,(b) armchair ribbons with N#3M of room temperature. Therefore, it is expected that the Pauli
—1), and(c) armchair ribbons withl{=3M —1). Interest-  susceptibility of zigzag ribbons might be sensitive to tem-
ingly, each graphite ribbon has a scaling behavior as a fungerature, although the Pauli susceptibility of other usual met-
tion of x/W and the magnitude of the ring currents has aals is temperature independent. On the other hand, since the

V. PAULI PARAMAGNETISM OF GRAPHITE RIBBONS
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FIG. 15. The position dependence of magnitude of the ring current@faigzag ribbons(b) armchair ribbons#3M —1), and(c)

armchair ribbons{=3M —1).

DOS of armchair ribbons at=0 is zero or very tiny, we can

It is possible to clarify the contribution of the edge states

neglect the effect of the Pauli paramagnetism in armchaito yp. As we have seen in Sec. lll, the DOS due to the edge
states is given by Eq3.13. After the substitution of Eq.

ribbons.

The magnetic moment by the Zeeman effect is

M :Iu‘B(nT_nl)!

(5.2

(3.13 into Eq. (5.3, we replace thek integration by the
energy integration. Then we can obtain the contribution

due to the edge states as,

where ug is Bohr magneton and,(n;) means the electron

density with up-spin(down-spin). The electron density at 1

arbitrary temperature for each spin is given by

1
nO':_
T J 1stBZ

ceptibility yp per site is given by

> | dk

’7TNe n

n 1+ eBenk—ousH)’

1
cosh{Ben )’

(5.2

(5.3

where B=1/kgT. Room temperature T(~300 K) corre-

sponds tg3~0.25. We numerically calculated the finite tem-
perature Pauli susceptibility of graphite ribbons using thi

equation up to room temperature.

'
[y

a1 Zigzag
..-|<U Kbx,“
"o \!\;‘i. iy
g ', armchair(N=3m-1)
B b
% 3 armchair(N=3m)
3 |
=
41 b
\armchair(N=3m+1)

2 0
EW (units of t-a)

Xa

XP_NeN,B“f

dx coshx+1

1_|_a
N )

(5.9

wherex is B¢, and a is 1IN— 1. Interestingly,xp has the
Curie-like temperature dependence, although in normal met-
als yp is basically constant in the temperature. The exponent
o _ of xp depends on the ribbon width through WhenN be-
whereo(=T,]) means spin index. Therefore, the Pauli sus-comes infinite, the exponent approches-1 andyp show

the Curie-law. However, in this limit, the contribution gf

is diminished by a factor N in Eq.

(5.4).

Numerical results of the Pauli susceptibilipy of zigzag
ribbons up to room temperature are shown in Fig. 18 for
various values oN. As expected, because of the edge states,
xp Shows Curie-like temperature dependence. In the inset of

Swith the line of 1N—1.

-1

Fig. 18, we plotted thé\ dependence o&, which was cal-
culated by the least-square method and has a good agreement

oo
o Lt

e R
b 5
|
o 3|
E ; armchair(N=3m-1)
> )
N armchair(N=3m)

armchair(N=3m+1)

et

1 >
W/B (eV-a)

FIG. 16. The Fermi energy dependence of the orbital magnetic FIG. 17. The temperature dependencexgf,, where x,, iS

momentsy,,, of graphite ribbons at=0.

scaled by W and B is scaled byw.
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FIG. 18. The temperature dependence f for N
=10,2Q...,50 up taroom temperature. In the inset, the exponet is
plotted on the widtiN and show a good agreement with the line of

UN=1. Pauli susceptibility in zigzag ribbons has been studied, where

o ) we found that the zigzag ribbons with nanometer size show

The observed susceptibiliy is essentially the sum of the  he Cuyrie-like temperature dependence of the Pauli suscepti-
orbital xor, and the Pauli susceptibilityp . The temperature  pjity in contrast to usual metals. From this significant contri-
dependence of the total susceptibilifyis shown in Fig. 19.  pytion of the Pauli susceptibility, it is found that the ob-
The tptal susceptibilityy sh_ows the dlamagnetlc.behawor. iN served susceptibility (= xp+ xorp) Of Zigzag ribbons show
the high-temperature regime and paramagnetic behavior igiamagnetic behavior at high temperature and paramagnetic
the low temperature. In the inset, the width dependence gfcnavior at low temperature.
the crossing temperature, i.&.=0, is plotted, which is well Here we introduce an interesting experimental result,
fitted by 1/3=10>*20x N =184 _ which might be connected with our theoretical results. Some

Here we should remind you that both aromatic moleculegyyaphite-related materials consisting of nanographites, e.g.,
and bulk graphite show diamagnetic behavior, however, nangctivated carbon fiberéACF), amorphous carbons, carbon
ographite with zigzag edges have a remarkable paramagnetigacks, defective carbon nanotubes, etc., show actually
behavior because of the edge state. If this paramagnetic bgnomalous behaviors in the magnetic susceptibility. While
havior is experimentally detected, it will be an indirect evi- |k graphite has a large diamagnetic and anisotropic sus-

dence of the existence of the edge state. ceptibility, a certain type of ACF with a huge specific surface
area up to 3008%/g (believed to consist of an assembly of
VI. SUMMARY AND DISCUSSION minute graphite fragments with a dimension ofx220 A)

exhibits a paramagnetic response at room temperature and a
In this manuscript, we discussed the electronic and magstrong Curie-like behavior in low temperatuf&This kind of

netic properties of nanographite in magnetic field, by usinganomalous behavior of the susceptibility is also observed in
the single orbital tight binding model with Peierls phase.many amorphous carbons and defective carpet-rolled carbon
Deriving the Harper equation for the graphite lattice, wenanotubes?® Although zigzag and armchair edges coexist in
studied the energy spectrum and dispersion in a magneti@al carbon material, this behavior of magnetic susceptibility
field. At ¢=0, it is found that zigzag ribbons have partly flat is consistent with our results. Although the sample produc-
bands at the Fermi level, which is attributed to the edgeaion of graphite-related materials has still insufficient influ-
localized states having nonbonding character. In terms of thence on size and edge shapes, recently there are some experi-
Harper equation, the edge state can be analytically describeflental attempts to synthesize and nanographite systems and
even in the presence of a magnetic field. We also studiegb control the size and edge shapes. One is “graphitization”
orbital diamagnetic properties of the nanographite ribbonsof diamond powder with grain sizes 4®0 A. Another
where we found that the diamagnetic susceptibijity, is  method to produce nanographites is epitaxial growth on sub-
very sensitive to the size and edge shapes of graphite ritstrates with step edgé$.Therefore, we expect that in the
bons. It is emphasized that the flow of the orbital diamagnear future the magnetic properties of nanographites will be
netic ring currents significantly depend on the lattice topol-observable so that the influence of the edge states on mag-
ogy near the graphite edges. Especially, in the case afetic properties can be tested in a controlled way.
armchair ribbons, the pattern of the ring currents has drasti-
cally changed because of the interference effect of two ACKNOWLEDGMENTS
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APPENDIX: ENERGY GAP

In this appendix, we analytically show that both the direct

gapA, atk=0 of sufficiently wide armchair ribbons and the
direct gapA, at k=2m/3 of sufficiently wide zigzag ribbons
are inversely proportional to the width of graphite ribbah
This result supports that the,,, /W is scaled as a function
of the uW (u is chemical potential

First, we examine the energy gap atk=0 of armchair
ribbons. It is easy to find that at tHe=0 the Hamiltonian
can be rewritten as

N 2
H= —tJEl 21 (af ,aj 1, +H.c)+al @+ He|,
< | &
(A1)

which is equivalent to the tight-binding model for the two-
leg ladder lattice havingyl rungs® The site indicesj(1) and
(j,2) correspond to thpA(B) andjB(A) sites, respectively,
whenj is everfodd. The eigenvalues are evaluated &5
—2tcosnm/(N+1)xt (n=1,2,... N). It should be noted
that the system is metallic only whe¥=3m—1, because
et and e~ become zero fon=m and 2m, respectively.
Therefore,A, are 0 forN=3m—1,2(2t cog[m/(3m+1)]x}
—t) for N=3m and (2t cog[(m+1)/(3m+1)]7}—t) for N
=3m+1, respectively. After the elimination &f in terms of
W=(N-23)y3/2+3 and the Taylor expansion under the
condition of 1X¥V<1, we can obtain the following results

WAKABAYASHI, FUJITA, AJIKI, AND SIGRIST
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(0 N=3M-1
n
J3 N=3M
Aa~{ W+ — (A2)
2
— N=3M+1.
W

\

Thus, theA, is inversely proportional to the ribbon width.

Similarly, we can obtain the energy gap atk=2/3 of
zigzag ribbons. The Hamiltonian of zigzag ribbons lat
=2/3 is rewritten as

2N

H=—t__21 (ala;,,+H.c), (A3)

which is equivalent to the tight binding model for the one-
dimensional lattice having® sites. The site indek corre-
sponds tdA, if i is an odd number, and I8, if i is an even
number. The eigenvalues are evaluated as=
—2tcosnm/(2N+1) (n=1,2,...N). Therefore, A, is
4(2t coq[(N+1)/(2N+1)]7}). After the elimination ofN in
terms ofW= y3N/2— 1 and Taylor expansion under the con-
dition of 1MW<1, we can obtain the following results.

A (A4)

Thus, theA, is also inversely proportional to the ribbon
width.
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