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Diffuse scattering from decagonal quasicrystals
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Department of Physics, Wuhan University, Wuhan 430072, People’s Republic of China
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General formulas for both thermal and quenched diffuse scattering from quasicrystals are applied to the case
of decagonal quasicrystals from corresponding elasticity theory. Contours of constant diffuse scattering inten-
sity are illustrated. The anisotropic peak shapes vary greatly even for Bragg spots aligned with a given
direction in reciprocal space. Diffuse scattering patterns in the plane perpendicular to a given zone axis are
associated with corresponding specific elastic constants. Quantitative examination of diffuse scattering patterns
may yield numerical values of the elastic constants.@S0163-1829~99!01901-3#
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I. INTRODUCTION

Since the discovery of the icosahedral quasicrystals
Al-Mn alloys,1 several quasicrystals, such as the decagon2

dodecagonal,3 and octagonal phases4 have been reported
Atomic structure and physical properties of such mater
have been the focus of many theoretical and experime
works especially since the discoveries of stable icosahe
phases in Al-Cu-Fe~Ref. 5! and Al-Pd-Mn~Ref. 6! systems
and decagonal phase in Al-Cu-Co~Ref. 7! system. The strik-
ing characteristic of quasicrystals is the existence of sh
Bragg peaks. However, distortion and peak broadening
served in diffraction patterns revealed some systematic
viations from the ideal quasicrystal model.8,9 How strains in
phonon and phason variables or quenched dislocations
lead to these experimental observations has b
discussed.10,11 Furthermore, although the Al-Pd-Mn icosah
dral phase displays very good long-range quasiperiodic
der, it was shown that some diffuse scattering is loca
close to the Bragg reflections.12 Socolar and Wright have
examined the shapes of Bragg spots observed in icosah
phases and reproduced the peak shapes by the superpo
of uniform phason strains.13 Elastic property of icosahedra
quasicrystals has been the object of many theoret
works.14–17 Jaric and Nelson have developed an alterna
theory of diffuse scattering from incommensurate cryst
and quasicrystals due to spatially fluctuating thermal a
quenched strains and applied their derived general form
to a specific case of icosahedral quasicrystals.18 With the
help of this theory, the onset of hydrodynamic instability
icosahedral phases has been discussed;19,20 the diffuse scat-
tering located close to Bragg reflections has been studie
a function of the temperature on a single grain of the
Pd-Mn icosahedral phase using elastic neutron scattering
the ratio of two phason elastic constants was obtained.21,22

Decagonal quasicrystals represent interesting immed
states between icosahedral and crystalline phases with a
tropic physical and mechanical properties. The stable
cagonal phases have been synthesized in many alloy
tems. Elasticity of planar quasicrystals with tenfo
symmetry has been discussed in some papers.23,24 Some in-
vestigators have restricted attention to two-dimensional~2D!
quasicrystals including decagonal quasicrystals.25–27 Based
on the 5D crystallographic symmetry operations listed
PRB 590163-1829/99/59~2!/822~7!/$15.00
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Janssen,28 they have derived all possible point groups of 2
quasicrystals of rank 5 and calculated the numbers of in
pendent forth-rank elastic constants of 2D quasicrystals w
group representation theory. Here and hereafter, a 2D qu
crystal refers not to a real plane but to a 3D solid with 2
quasiperiodic and 1D periodic structure.

In this paper, we would like to discuss diffuse scatteri
from decagonal quasicrystals theoretically. Point grou
Laue classes, and elastic properties of decagonal quasi
tals are summarized in Sec. II. Diffuse scattering from d
cagonal quasicrystals is formulated in Sec. III. Contours
constant diffuse scattering intensity are illustrated and an
sis of the results are given in Sec. IV.

II. POINT GROUPS, LAUE CLASSES, AND ELASTIC
PROPERTIES OF DECAGONAL SYSTEM

In this section we will illustrate the determination of e
plicit forms of invariant terms in the elastic energy and ela
tic constant tensor for decagonal system. We would like
limit the brief description of this method to a minimum ne
essary for the calculation. A more detailed discussion can
found in the literature.24,25,27

If an analytic expression of the elastic free energy is p
sible, it will be quadratic in the special gradients of phon
displacementsui and phason displacementsu' at long wave-
length when it is expanded in terms of the Taylor series
the second order. Since the elastic energy is a scalar qua
each individual term in it must be invariant under all of th
point group operations of the structure. In order to constr
these quadratic invariants, we can invoke the group repre
tation theory. As an example, we consider the point gro
10mm~D10! generated by a tenfold rotationa and a mirrorb,
which can be represented by

G~a!5F 0
1

21
0
0

0
1
0

21
0

0
1
0
0
0

21
1
0
0
0

0
0
0
0
1

G ,
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G~b!5F 0
0
0
1
0

0
0
1
0
0

0
1
0
0
0

1
0
0
0
0

0
0
0
0
1

G . ~2.1!

The coordinate systems which we use for decagonal qua
rystals are the same as those described in Refs. 29 an
The matrix representationG reduces to

G5G51G11G7 . ~2.2!

It follows that ui transforms underG51G1 and u' trans-
forms underG7 . Therefore, the displacement gradients] jui

i

( i , j 51,2,3) and] jui
' ( i 51,2, j 51,2,3) transform accord

ing to their respective direct product representation. It sho
be noted thatui is a three-component vector whileu' a
two-component vector, and both of them are the functions
the position vector in the physical space only. For the p
non field, the nine components of] jui

i transform under

~G51G1!3~G51G1!52G112G51G21G6 . ~2.3!

Among them the antisymmetric components]1u2
i
2]2u1

i ,
]2u3

i
2]3u2

i , ]3u1
i
2]1u3

i transform underG51G2 corre-
sponding to rigid rotations, which do not change the ela
energy. The symmetric components]1u1

i
1]2u2

i and ]3u3
i

transform underG1 ~the identity representation!, from which
it follows that there are three quadratic invariants:

~E111E22!
2, E33

2 , ~E111E22!E33, ~2.4!

where Ei j 5
1
2 (] jui

i
1] iuj

i) is used. The pairs (]1u1
i

2]2u2
i , ]1u2

i
1]2u1

i ) and (]3u1
i
1]1u3

i , ]3u2
i
1]2u3

i ) span
the 2D irreducible representationsG6 and G5 , respectively.
Since G1 occurs once and only once in the productsG6
3G6 andG53G5 , it is obvious that

~E112E22!
21~2E12!

2, E13
2 1E23

2 ~2.5!

are two invariants. From Eqs.~2.4! and~2.5!, it follows that
associated with the phonon field there are five quadratic
variants and five independent elastic constants

C11,C12,C13,C33,C44, C665
1

2
~C112C12!. ~2.6!

For the phason field six components of] jui
' transform under

~G51G1!3G75G61G81G7 . ~2.7!

Three pairs (]1u1
'1]2u2

' , ]1u2
'2]2u1

'), (]1u1
'

2]2u2
' , ]1u2

'1]2u1
') and (]3u1

' , ]3u2
') span three differ-

ent representationsG6 , G8 , andG7 , respectively. Thus we
can obtain three quadratic invariants

~]1u1
'1]2u2

'!21~]1u2
'2]2u1

'!2,

~]1u1
'2]2u2

'!21~]1u2
'1]2u1

'!2, ~]3u1
'!21~]3u2

'!2.
~2.8!

and three independent elastic constants. Nonvanishing el
constants are

K11115K22225K12125K21215K1 ,
ic-
30.

ld

f
-

ic

-

tic

K11225K221152K122152K21125K2 , K13135K23235K4 .
~2.9!

Moreover, notice that the irreducible representationG6 oc-
curs in both of the reduction equations~2.3! and ~2.7!. This
means that there exists an invariant

~E112E22!~]1u1
'1]2u2

'!12E12~]1u2
'2]2u1

'!
~2.10!

couplingui andu'. The nonvanishing elastic constant is

R11115R112252R221152R22225R1221

5R212152R121252R21125R1 . ~2.11!

Therefore, it can be seen that there are nine quadratic inv
ants and hence nine independent elastic constants for 10
Among them five elastic constants are associated with
phonon field, three with the phason field and one with
phonon-phason coupling.

In the same way we can find all invariants and indep
dent elastic constants for 10~C10! symmetry. There are ten
quadratic invariants and hence ten independent elastic
stants. Among them nine elastic constants are the sam
those for 10mm; another nonvanishing phonon-phason c
pling elastic constant is

R111252R112152R22125R22215R1211

5R21115R12225R21225R2 . ~2.12!

Decagonal system has seven point groups divided
two Laue classes which we term Laue classes 13 and
respectively. Laue class 13 includes 10,10, 10/m while Laue
class 14 includes 10mm, 1022,10m2, 10/mmm. Elastic
properties possess an inherent centrosymmetry. There
all point groups belonging to the same Laue class posses
same elastic properties.

III. FORMULAS FOR DIFFUSE SCATTERING
FROM DECAGONAL QUASICRYSTALS

Following the method given by Jaric and Nelson,18 and
Ishii,20 we will present the generalized theory of diffuse sc
tering from quasicrystals within the framework of the hydr
dynamic theory. The formulas derived here are modificatio
of those originally put forward by Jaric and Nelson.18 Such
modified formulas have a clear advantage, i.e., the formu
appropriate for the case of quenched phasons can be a
matically evolved into those appropriate for the case of th
mal phasons. Moreover, the expressions here are not lim
to simple quasilattice18 and may be used for any quasicry
tals.

The structure of quasilattice can be constructed by cut
a d-dimensional crystal. The density of a perfect quasilatt
can be represented by

r i~xi!5r~xi,x'50!, ~3.1!

wherei and' denote the physical and complementary su
spaces, respectively;r is a periodic density in the hyper
space. Explicitly,
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r~x!5(
R

d~x2R!* rc~x!, ~3.2!

whereR is a hyperlattice point,* means convolution, and
rc(x) denotes density distribution in a unit hypercell. T
Fourier transform ofr(x) is

F~q!5E r~x!e2 iq•xddx5(
R

e2 iq•RF~q!

5
~2p!d

nc
(
Q

d~q2Q!F~Q!,

~3.3!

wherenc is the volume of unit hypercell,Q is the reciprocal
hyperlattice vector, and

F~q!5E rc~x!e2 iq•xddx ~3.4!

is the structure factor of unit hypercell. Since the Four
transform of a cut is equal to a projection of a Fourier tra
form, the scattering amplitude of a perfect quasicrystal
be given by

F i~qi!5E F~q!dd23q'5
~2p!d

nc
(
Q

d i~qi2Qi!F~Q!.

~3.5!

It can also be written in the form

F i~qi!5E (
R

e2 ik•RF~k!d i~qi2ki!ddk ~3.6!

which facilitates extending to the case of disordered qu
crystals.

The elastic free energy of a disordered quasicrysta
volume V can be written in terms of the Fourier transfor
u(pi) of displacementsu,

E5
~2p!3

2 E u~2pi!•~pi
•M•pi!•u~pi!d3pi, ~3.7!

or in terms of phonon, phason and phonon-phason coup
contributions,

E5Ephon@ui#1Ephas@u'#1Ecoup@ui,u'#, ~3.8!

whereM is the elastic modulus tensor.
If the unit hypercell is displaced by a vectoru(Ri) from

its proper positionR, then Eq.~3.6! should be replaced by

F i~qi!5E (
R

e2 ik•@R1u~Ri !#F~k!d i~qi2ki!ddk.

~3.9!

The scattering intensity must be averaged over a distribu
P@u# of u. Therefore, it can be written as
r
-
n

i-

f

g

n

I ~qi!5uF i~qi!u2

5 (
R1R2

E E eik2•R22 ik1•R1f F~k1!

3F* ~k2!d i~qi2k1
i
!d i~qi2k2

i
!ddk1ddk2 ,

~3.10!

wheref denotes the average

f 5E D~u!eik2•u~R2
i
!2 ik1•u~R1

i
!P@u#. ~3.11!

P@u# is a Boltzmann distribution associated with the elas
energy given by Eq.~3.7!,

P@u#}expF2
~2p!3

2kBT E u~2pi!•~pi
•M•pi!•u~pi!d3piG ,

~3.12!

whereT is temperature andkB is the Boltzmann constant.
Following the derivation given by Jaric and Nelson,18 the

scattering intensity can be written as an expansion

I ~qi!5I 0~qi!1I 1~qi!1¯ , ~3.13!

whose first two terms are the Bragg scattering

I 0~qi!5
V

~2p!3

~2p!2d

nc
2 (

Q
d i~qi2Qi!uF~Q!u2e22W~Q!,

~3.14!

and the lowest-order diffuse scattering

I 1~qi!5
VkBT

~2p!6

~2p!2d

nc
2 (

Q
~qiQ'!•A21~qi2Qi!•S qi

Q' D
3uF~qi,Q'!u2e22W~qi,Q'!, ~3.15!

where

e22W~q!5expF2
kBT

~2p!3 E q•A21~pi!•qd3piG
~3.16!

is the Debye-Waller factor.
Near a particular Bragg spotQ the scattering intensity can

be written as

I ~Qi1pi!'
V

~2p!3

~2p!2d

nc
2 uF~Q!u2

3e22W~Q!Fd i~pi!1
kBT

~2p!3 Q•A21~pi!•QG .
~3.17!

The hydrodynamic matrixA(pi) is related to the elastic
modulus tensorM of the quasicrystal. If the temperature
high enough, then phasons, as well as phonons, are ther
ized; the matrixA(pi) can be given by

Am,n~pi!5pj
iMm, j ;n,l pl

i . ~3.18!
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Obviously, it can be divided into four blocksAi ,i(pi),
Ai ,'(pi), A',i(pi) andA','(pi):

@Ai ,i~pi!# ik5pj
iCi jkl pl

i , ~3.19!

@A','~pi!# ik5pj
iKi jkl pl

i , ~3.20!

and

@Ai ,'~pi!# ik5@A',i~pi!#ki5pj
iRi jkl pl

i . ~3.21!

If phasons drop out of thermal equilibrium at an eleva
temperatureTq , then at a lower temperatureT phonons will
equilibrate in the presence of a quenched phason displ
ment fielduq

' . Therefore, the average in Eq.~3.11! will re-
quire two steps. The first step is the same as describe
Jaric and Nelson.18 The second step is associated withuq

' .
Since there exists coupling betweenuq

i and uq
' at Tq , the

ensemble average must be averaged overuq using the Bolt-
zmann distributionPq@uq#,

Pq@uq#}expF2
Eq

kBTq
G , ~3.22!

where elastic free energy atTq is

Eq5Ephon@uq
i
#1Ephas@uq

'#1Ecoup@uq
i ,uq

'#. ~3.23!
,
e

u
si
n
e

d

e-

by

It can be verified thatAi ,i(pi), Ai ,'(pi), andA',i(pi) blocks
can still be given by Eqs.~3.19! and ~3.21! but A','(pi)
block should be modified by

A','~pi!5
T

Tq
$Aq

','~pi!2Aq
',i~pi!•@Aq

i ,i~pi!#21
•Aq

i ,'~pi!%

1A',i~pi!•@Ai ,i~pi!#21
•Ai ,'~pi!, ~3.24!

where the subscriptq means that the values of the elas
constants atTq should be used. It should be emphasized t
matrix A(pi) is associated not only with phonon an
phonon-phason coupling elastic constantsCi jkl (T), Ri jkl (T)
at T, but also with all of the elastic constantsCi jkl (Tq),
Ki jkl (Tq) andRi jkl (Tq) at Tq . Obviously, Eq.~3.24! will be
reduced to Eq.~3.20! if T5Tq , which is physically reason-
able.

It has been pointed out in Sec. II that all point grou
belonging to the same Laue class possess the same e
properties due to the inherent centrosymmetry of ela
properties. Therefore, matrixA(pi) is identical for all point
groups belonging to the same Laue class. From elastic p
erties of decagonal quasicrystals, explicit expressions
Ai ,i(pi), A','(pi), andAi ,'(pi) blocks for each Laue clas
of decagonal system can be easily obtained.

For Laue class 13,Ai ,i(pi), A','(pi), and Ai ,'(pi)
blocks are given by
Ai ,i~pi!5FC11p1
i21C66p2

i21C44p3
i2

~C112C66!p1
i p2

i

~C441C13!p1
i p3

i

~C112C66!p1
i p2

i

C66p1
i21C11p2

i21C44p3
i2

~C441C13!p2
i p3

i

~C441C13!p1
i p3

i

~C441C13!p2
i p3

i

C44~p1
i21p2

i2!1C33p3
i2
G , ~3.25!

A','~pi!5FK1~p1
i21p2

i2!1K4p3
i2

0

0
K1~p1

i21p2
i2!1K4p3

i2G , ~3.26!

and

Ai ,'~pi!5FR1~p1
i22p2

i2!12R2p1
i p2

i

R2~p1
i22p2

i2!22R1p1
i p2

i

0

2R2~p1
i22p2

i2!12R1p1
i p2

i

R1~p1
i22p2

i2!12R2p1
i p2

i

0
G . ~3.27!
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For Laue class 14,Ai ,i(pi) andA','(pi) blocks take the
same forms as Eqs.~3.25! and~3.26!, respectively. However
in this case elastic constantR2 vanishes compared with Lau
class 13. ConsequentlyAi ,'(pi) block is

Ai ,'~pi!5FR1~p1
i22p2

i2!

22R1p1
i p2

i

0

2R1p1
i p2

i

R1~p1
i22p2

i2!

0
G . ~3.28!

IV. CONTOURS OF CONSTANT DIFFUSE
SCATTERING INTENSITY

Using the formulas derived above, we calculated conto
of constant diffuse scattering intensity for decagonal qua
rystals. In calculation, we use the ratios of elastic consta
because peak shapes are determined by the relative valu
rs
c-
ts
s of

elastic constants but not the absolute values of them. La
constants are taken asai53.7 Å, i 51,2,...,4 and a5
54.5 Å.

Point groups 10/m, 10/mmm represent symmetries
Laue classes 13 and 14, respectively. Figure 1 represen
plane perpendicular to the periodic direction with quench
phason displacements for the case of Laue class 13.
assumed that phason quench temperatureTq53T. The dif-
fuse scattering patterns in this plane show tenfold rotat
symmetry which is consistent with point group 10/m.

Figures 2 and 3 give the results for the case of Laue c
14 which we would like to discuss in detail. Figures 2~a! and
2~b! illustrate diffuse scattering patterns in the plane perp
dicular to the periodic direction for quenched phasons co
sponding to two sets of different ratios of elastic constants
is still assumed thatTq53T. It is obvious that the contou
shapes around the same Bragg spots are quite differen



e

e
stic

tion
the

at-

o ex-
nts
ral

e

a
o
ar

826 PRB 59LEI, WANG, HU, AND DING
FIG. 1. Contours of constant diffuse scattering intensity in
plane perpendicular to the periodic axis with quenched phas
when T5

1
3 Tq for the case of Laue class 13. Elastic constants

taken asC11(T)51.0, C13(T)520.1, C33(T)50.3, C44(T)50.2,
C66(T)50.4, R1(T)50.1, R2(T)50.15, C11(Tq)50.9, C13(Tq)
520.2, C33(Tq)50.2, C44(Tq)50.2, C66(Tq)50.5, R1(Tq)
50.12,R2(Tq)50.1, K1(Tq)50.9, andK4(Tq)50.6.
Figs. 2~a! and 2~b!. Figure 2~c! represents the same plan
provided that phasons are thermalized atT. Therefore, only
elastic constants atT are involved in calculation. We take th
same values of phonon and phonon-phason coupling ela
constants as those in Fig. 2~a!. Compared with Fig. 2~a!, the
diffuse scattering decreased accompanied by slight varia
of contour shapes around the same Bragg spots due to
reduced contribution of phason disorder. If the diffuse sc
tering patterns like those in Figs. 2~a!–2~c! could be detected
and measured precisely, one could use these patterns t
tract information about elastic constants. Such experime
have been done on a single grain of Al-Pd-Mn icosahed
phase using elastic neutron scattering.21,22 It should be noted
that information about elastic constantK2 cannot be inferred
from any diffuse scattering pattern becauseK2 does not ap-
pear in matrixA(pi). It follows from Eqs.~3.25! and~3.26!
that terms containing elastic constantsC13, C33, and K4

vanish in matrixA(pi) if the diffuse scattering patterns ar

ns
e

r to

aken as
FIG. 2. Isointensity contours in planes for the case of Laue class 14.~a!, ~d!, and~e! correspond, respectively, to planes perpendicula
tenfold, A2P, and A2D axes with quenched phasons whenT5

1
3 Tq . Elastic constants are taken asC11(T)51.0, C13(T)520.1, C33(T)

50.3, C44(T)50.2, C66(T)50.4, R1(T)50.1, C11(Tq)50.9, C13(Tq)520.2, C33(Tq)50.2, C44(Tq)50.2, C66(Tq)50.5, R1(Tq)50.12,
K1(Tq)50.9, andK4(Tq)50.6. ~b! Similar to ~a! except that elastic constants are taken asC11(T)51.0, C13(T)50.2, C33(T)50.5,
C44(T)50.6, C66(T)50.8, R1(T)520.2, C11(Tq)50.9, C13(Tq)50.3, C33(Tq)50.4, C44(Tq)50.5, C66(Tq)50.6, R1(Tq)520.15,
K1(Tq)51.5, andK4(Tq)50.3. ~c! The same as~a! except that phasons are assumed thermalized. Phason elastic constants are t
K1(T)50.7, andK4(T)50.5.
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FIG. 3. Comparisons of stereoscopic contours around Bragg spots~21 21 0 1 1! and ~0 21 1 21 0! with quenched phasons whenT
5

1
3 Tq for the case of Laue class 14. Phonon-phason coupling elastic constants are taken asR1(T)50.1 andR1(Tq)50.15. The other

parameters are taken as follows:~a! C11(T)51.0, C13(T)520.3, C33(T)50.3, C44(T)50.5, C66(T)50.2, C11(Tq)50.9, C13(Tq)
520.2, C33(Tq)50.3, C44(Tq)50.4, C66(Tq)50.3, K1(Tq)50.6, and K4(Tq)51.2; ~b! C11(T)51.0, C13(T)520.1, C33(T)50.9,
C44(T)50.8, C66(T)50.7, C11(Tq)50.9, C13(Tq)520.1, C33(Tq)50.7, C44(Tq)50.6, C66(Tq)50.5 and the same phason elastic co
stants as those in~a!; ~c! the same phonon elastic constants as those in~a! andK1(Tq)51.2, K4(Tq)50.9.
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measured in the plane perpendicular to the periodic direc
as Figs. 2~a!–2~c! so that such patterns are insufficient
acquire these elastic constants. Figures 2~d! and 2~e! show
patterns perpendicular, respectively, to twofold axes A
which is along the direction of arbitrary basis vector in qu
siperiodic plane or its equivalent direction, and A2D whi
is along a bisector between any of these basis vectors an
neighboring equivalent direction with the same conditions
for Fig. 2~a! and they may be used to give information abo
the other elastic constants that Figs. 2~a!–2~c! cannot
present.

The symmetries of diffuse scattering patterns shown
Fig. 2 are consistent with point group 10/mmm. There
two kinds of mirrors in Figs. 2~a!–2~c! besides a tenfold
rotation axis along the periodic direction. One is perpendi
lar to A2P and the other perpendicular to A2D.

As shown in figures above, in comparison with ordina
crystals, anisotropic contour shapes of quasicrystals
n

P
-

its
s
t

n
e

-

re

much more complicated and the contour shapes vary f
spot to spot, even for collinear Bragg spots.

Figure 3 presents comparisons of stereoscopic contou
constant diffuse scattering intensity around Bragg spots~21
21 0 1 1! and ~0 21 1 21 0! for quenched phasons whe
T5 1

3 Tq . In calculation, we consider three sets of elastic co
stants. Only phonon elastic constants in Fig. 3~b! and phason
elastic constants in Fig. 3~c! are changed with respect t
those in Fig. 3~a!. It is evident that the shape of isointensi
contour around reflection~0 21 1 21 0! which has largeQ'

component varies greatly in Fig. 3~c! but slightly in Fig. 3~b!
in comparison with that in Fig. 3~a! while the very reverse
results can be found for reflection~21 21 0 1 1! which has
large Qi component. The fact that peak shapes of Bra
spots with largeQ' component are dominated by phas
elastic constants can be accounted for by special phason
grees of freedom in quasicrystals which also give rise to
variation of peak shapes among collinear Bragg spots.
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Diffuse scattering from Al-Cu-Co decagonal quasicryst
was observed in transmission x-ray Laue pattern31 and syn-
chrotron x-ray diffraction experiment.32,33 In these experi-
ments, structural defects, i.e., short-range atomic correla
give rise to the diffuse scattering, which cannot be accoun
for by the theory of thermal diffuse scattering from decag
nal quasicrystals presented here.

V. CONCLUSIONS

Explicit formulas for diffuse scattering from decagon
quasicrystals have been derived in terms of the elastic c
stants. Contours of constant diffuse scattering intensity w
calculated to examine the effect of phonon and phason
e

a

s

f.

an

ce

.
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n-
re
is-

orders on diffuse scattering from decagonal quasicryst
The symmetries of diffuse scattering patterns are consis
with corresponding point groups. Unlike ordinary crysta
the anisotropic peak shapes of decagonal quasicrystals
greatly even for Bragg spots aligned with a given direction
reciprocal space due to the additional phason degrees of
dom. Analysis of peak shapes can be used to acquire num
cal values of elastic constants if diffuse scattering patte
can be measured precisely.
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