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Diffuse scattering from decagonal quasicrystals
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General formulas for both thermal and quenched diffuse scattering from quasicrystals are applied to the case
of decagonal quasicrystals from corresponding elasticity theory. Contours of constant diffuse scattering inten-
sity are illustrated. The anisotropic peak shapes vary greatly even for Bragg spots aligned with a given
direction in reciprocal space. Diffuse scattering patterns in the plane perpendicular to a given zone axis are
associated with corresponding specific elastic constants. Quantitative examination of diffuse scattering patterns
may yield numerical values of the elastic constaff163-182@99)01901-3

[. INTRODUCTION JansseR® they have derived all possible point groups of 2D
quasicrystals of rank 5 and calculated the numbers of inde-
Since the discovery of the icosahedral quasicrystals ipendent forth-rank elastic constants of 2D quasicrystals with
Al-Mn alloys! several quasicrystals, such as the decagonalgroup representation theory. Here and hereafter, a 2D quasi-
dodecagonal, and octagonal phasksiave been reported. crystal refers not to a real plane but to a 3D solid with 2D
Atomic structure and physical properties of such materialgjuasiperiodic and 1D periodic structure.
have been the focus of many theoretical and experimental In this paper, we would like to discuss diffuse scattering
works especially since the discoveries of stable icosahedrffom decagonal quasicrystals theoretically. Point groups,
phases in Al-Cu-FéRef. 5 and Al-Pd-Mn(Ref. 6 systems  Laue classes, and elastic properties of decagonal quasicrys-
and decagonal phase in Al-Cu-CRef. 7) system. The strik-  tals are summarized in Sec. Il. Diffuse scattering from de-
ing characteristic of quasicrystals is the existence of sharpagonal quasicrystals is formulated in Sec. Ill. Contours of

Bragg peaks. However, distortion and peak broadening olxonstant diffuse scattering intensity are illustrated and analy-
served in diffraction patterns revealed some systematic desis of the results are given in Sec. IV.

viations from the ideal quasicrystal modé How strains in
phonon and phason variables or quenched dislocations can
lead to these experimental observations has been
discussed®! Furthermore, although the Al-Pd-Mn icosahe-
dral phase displays very good long-range quasiperiodic or-
der, it was shown that some diffuse scattering is located ) ) o o
close to the Bragg reflectiodd.Socolar and Wright have .I.n this section we will |Ilust_rate the de_termlnatlon of ex-
examined the shapes of Bragg spots observed in icosahedicit forms of invariant terms in the elastic energy and elas-
phases and reproduced the peak shapes by the superpositﬂfhconstant tensor for decagonal system. We would like to
of uniform phason strain® Elastic property of icosahedral limit the brief description of this method to a minimum nec-
quasicrystals has been the object of many theoreticagssary for the calculation. A more detailed discussion can be
works#~ Jaric and Nelson have developed an alternativdound in the literaturé*2>2’

theory of diffuse scattering from incommensurate crystals If an analytic expression of the elastic free energy is pos-
and quasicrystals due to spatially fluctuating thermal andible, it will be quadratic in the special gradients of phonon
quenched strains and applied their derived general formulagisplacements' and phason displacements at long wave-

to a specific case of icosahedral quasicrystal/ith the  |ength when it is expanded in terms of the Taylor series to
help of this theory, the onset of hydrodynamic instability of the second order. Since the elastic energy is a scalar quantity,
icosahedral phases has been discus$&tthe diffuse scat- each individual term in it must be invariant under all of the
tering located close to Bragg reflections has been studied agint group operations of the structure. In order to construct
a function of the temperature on a single grain of the Al-yese quadratic invariants, we can invoke the group represen-
Pd-Mn icosahedral phase using elastic neutron scattering aRg;ion theory. As an example, we consider the point group

the ratio of two pha_son elastic constants was pbta_?ﬁ'é%j. . 10mm(D;g) generated by a tenfold rotatianand a mirrorg,
Decagonal quasicrystals represent interesting immediatgyich can be represented by

states between icosahedral and crystalline phases with aniso-
tropic physical and mechanical properties. The stable de-
cagonal phases have been synthesized in many alloy sys- 0

Il. POINT GROUPS, LAUE CLASSES, AND ELASTIC
PROPERTIES OF DECAGONAL SYSTEM

tems. Elasticity of planar quasicrystals with tenfold 0 0 10
symmetry has been discussed in some papéfsSome in- 11110
vestigators have restricted attention to two-dimensi¢2a) ()= -1 0 0 0 0},
quasicrystals including decagonal quasicrystals’ Based 0 -1 0 0 O
on the 5D crystallographic symmetry operations listed by 0 0O 0 0 1
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0 0010 K127 K2211= —K122:= = K117 Kz, Kig137 Kogas=Ky.
0O 01 0O (2.9
r=(0 1 0 0 0] (2.1 Moreover, notice that the irreducible representatignoc-
100 00 curs in both of the reduction equatiof®3) and(2.7). This
0O 0 0 0 1 means that there exists an invariant

The coordinate systems which we use for decagonal quasic-
rystals are the same as those described in Refs. 29 and 30.
The matrix representatioli reduces to

(E11—E2)(d1U7 + 35Uz ) + 2E 15 91Uz — dpU7)

(2.10
[=Tg+T,+T;. 2.2 couplingu' andu*. The nonvanishing elastic constant is
It follows that u' transforms undel’s+I'; and u* trans-
forms under’;. Therefore, the displacement gradiesifa] (2.0
(i,j=1,2,3) andg;u; (i=1,2,j=1,2,3) transform accord- '
ing to their respective direct product representation. It shouldrherefore, it can be seen that there are nine quadratic invari-
be noted thaw' is a three-component vector while" a  ants and hence nine independent elastic constants for 10mm.
two-component vector, and both of them are the functions oAmong them five elastic constants are associated with the
the position vector in the physical space only. For the phophonon field, three with the phason field and one with the

R1111= R112= —R2211= — Roo= Ri221

=R2121= —Ri2157= =Rz11~Ry.

non field, the nine components 6fu; transform under
(F5+F1)X(F5+F1):2F1+2F5+F2+F6 (23)

Among them the antisymmetric componenitgul— d,ul ,
duy—dgub, dzul—ad,ul transform underT's+T', corre-

sponding to rigid rotations, which do not change the elasti

energy. The symmetric componentgu} + d,ub and d;u
transform undef’; (the identity representatipnfrom which
it follows that there are three quadratic invariants:

(EntEp)?, (E1ntEx)Eass,
where Ej;=3(duj+du) is used. The pairs du)
— AUl dub+apul) and @sul+dquly, dzub+a,ul) span
the 2D irreducible representatiothg andI's, respectively.
Since I'; occurs once and only once in the produttg
XT'g andI'sXT'g, it is obvious that

E3,, (2.4

(E11—E)?+(2E1p)?, Ef+Ej; (2.9

are two invariants. From Eq§2.4) and(2.5), it follows that

associated with the phonon field there are five quadratic in-

variants and five independent elastic constants

1
C11,C12,C43,C33,Cyy, C66=§(011—C12). (2.6

For the phason field six components&qnﬁﬁ transform under

(2.7

Three  pairs  §,uy+doUp, diUy —doug), (AU
—doUy , 91Uz +dou7) and (@sug , dauy) span three differ-
ent representationsg, I'g, andI';, respectively. Thus we
can obtain three quadratic invariants

(1—‘5+ Fl)XF7=F6+F8+ 1—‘7.

(91ug + duz) %+ (94U — douy)?,

(93uy)?+(d3uz)?.
(2.8

(91Uy — doUp )2+ (91u5 + dpuy)?,

phonon-phason coupling.

In the same way we can find all invariants and indepen-
dent elastic constants for AC;;) symmetry. There are ten
guadratic invariants and hence ten independent elastic con-
stants. Among them nine elastic constants are the same as

5hose for 10mm; another nonvanishing phonon-phason cou-

pling elastic constant is

R1117 = R1121= — Ro215= Ro201= Rio11

=R21117 Ri22= Ro12~ Ro. (212

Decagonal system has seven point groups divided into
two Laue classes which we term Laue classes 13 and 14,
respectively. Laue class 13 includes 10, 10/m while Laue
class 14 includes 10mm, 10220m2, 10/mmm. Elastic
properties possess an inherent centrosymmetry. Therefore,
all point groups belonging to the same Laue class possess the
same elastic properties.

IlI. FORMULAS FOR DIFFUSE SCATTERING
FROM DECAGONAL QUASICRYSTALS

Following the method given by Jaric and Nels&rand
Ishii,° we will present the generalized theory of diffuse scat-
tering from quasicrystals within the framework of the hydro-
dynamic theory. The formulas derived here are modifications
of those originally put forward by Jaric and NelsthSuch
modified formulas have a clear advantage, i.e., the formulas
appropriate for the case of quenched phasons can be auto-
matically evolved into those appropriate for the case of ther-
mal phasons. Moreover, the expressions here are not limited
to simple quasilattic€ and may be used for any quasicrys-
tals.

The structure of quasilattice can be constructed by cutting
a d-dimensional crystal. The density of a perfect quasilattice
can be represented by

p'(X)=p(x',x"=0), 3.9

and three independent elastic constants. Nonvanishing elastic

constants are

K11117 K2200= K217 K121 K,

wherell and L denote the physical and complementary sub-
spaces, respectively; is a periodic density in the hyper-
space. Explicitly,
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p()=3 S(x=R)*pe(x), (3.2 @) =lear
_ _ . _ — 2 J’ J'eikz-szikl»leF(kl)
whereR is a hyperlgttlcg ppmt.yr means cqnvoluuon, and RiR2
;;%(J(r)ie(:??ao;gfsordn?r;s%t(yx)d|iztr|butlon in a unit hypercell. The XF*(kz)é"(q“—kl) 8(q'—kb)d, d%,
(3.10
(D(q):f p(x)eﬂq.xddng e 19RE(q) wheref denotes the average
(2m)° f:f D(u)e'ke uRe) ki uRD P y], (3.1

% 8(q-Q)F(Q),

- 14
¢ P[u] is a Boltzmann distribution associated with the elastic
(3.9 energy given by Eq(3.7),

wherew, is the volume of unit hypercell is the reciprocal (2m)3
hyperlattice vector, and P[U]MEXL{ ST J u(—p"H-(p'-M-p)- u(p')d3p”},
B
(3.12
F(Q)ZJ pc(x)e”"4d% (34 whereT is temperature ankig is the Boltzmann constant.

Following the derivation given by Jaric and NelsGrthe

is the structure factor of unit hypercell. Since the Fourierscattering intensity can be written as an expansion
transform of a cut is equal to a projection of a Fourier trans-

form, the scattering amplitude of a perfect quasicrystal can 1(q)=1o(q)+12(q)+---, (3.13
be given by whose first two terms are the Bragg scattering
_ (2m)¢ V(272
qjl\(qll):f (I)(q)dd BqL:_ 2 gl(q\\_QH)F(Q)_ |0(q”)= 3 ( 772) 2 5\I(qH_QH)|F(Q)|2e*2W(Q),
Ve Q (27) Vg o)
(3.5 (3.19
It can also be written in the form and the lowest-order diffuse scattering

VkgT (27)%d - q
<I>”(q”)=J Y e PRk -Khdk (36 Il(qH):(Z:)GT% (q'Q")-A 1(q—Q")~(QL)

C

I oL
which facilitates extending to the case of disordered quasi- X|F(d',Q")[Pe 2T, (3.19
crystals. where
The elastic free energy of a disordered quasicrystal of
volumeV can be written in terms of the Fourier transform kgT
u(p'") of displacementsi, ezw(q)ZeXF{— 2m) f q-Al(p)-qd3p}
(3.19

(2m)°
3 f u(—=p"-(p'-M-p"-u(p")d®p', (3.7 s the Debye-Waller factor.

Near a particular Bragg sp@ the scattering intensity can
Be written as

E:

or in terms of phonon, phason and phonon-phason couplin
contributions,

VvV (2m)™
1Q+p)~ 53— [FQI?
E=Epnof U]+ Eppaf U ]+ Egoud Ul U], (3.8 (2m)*  ve
whereM is the elastic modulus tensor. X e 2WQ)| 5i(pl)+ ﬂg Q-A Y(p"-Q|.
If the unit hypercell is displaced by a vecto(R') from (27)
its proper positiorR, then Eq.(3.6) should be replaced by (3.17

o I The hydrodynamic matriA(p') is related to the elastic
‘Du(ql‘):f ER: e W IRTURIIE (k) 8'(g'— k') d%. modulus tensoM of the quasicrystal. If the temperature is
3.9 high enough, then phasons, as well as phonons, are thermal-
' ized; the matrixA(p') can be given by

The scattering intensity must be averaged over a distribution | | |
P[u] of u. Therefore, it can be written as AL (P)=PM by - (3.18
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Obviously, it can be divided into four block&!'(p'), It can be verified thaA''(p"), Al*(p"), andA*!(p") blocks
Al+(ply, A+ I(p") and A+ (ph): can still be given by Egs(3.19 and (3.21) but A+ (p)
block should be modified by

[AM(p") Jic=P{CijuiPi (3.19 -
LA () o= pKiapl @29 APD= T AT DA LA (DT A (D)
and +AL’H(pH)~[AH’”(pH)]_1~AH’L(pH), (3_24)
[A\\,L(pl\)]ik:[AL,H(pII)]ki:plleijkI P‘l‘- (3.21) where the subscripj means that the values of the elastic

constants al, should be used. It should be emphasized that

If phasons drop out of thermal equilibrium at an elevatedmatrix A(p”) is associated not only with phonon and
temperaturel,, then at a lower temperatufiephonons will ~ Phonon-phason coupling elastic consta@ig, (T), Rij (T)
equilibrate in the presence of a quenched phason d|splacéI T, but also with all of the elastic constan@y(T).
ment fieldu; . Therefore, the average in E(.11) will re-  Kijui(Tq) andRyj (To) atT ObVI_OUS_W, Eq.(3.24) will be
quire two steps. The first step is the same as described Wduced to Eq(3.20 if T=T,, which is physically reason-
Jaric and Nelsof? The second step is associated wit}. able.

Since there exists coupling betvveeb andut at T,, the It ha_ls been pointed out in Sec. Il that all point groups .
ensemble average must be averaged u\gemsqing thqe Bolt- belonging to the same Laue class possess the same elastic

S roperties due to the inherent centrosymmetry of elastic
zmann distributiorP [ u,], prop y y

properties. Therefore, matri&k(p') is identical for all point

E groups belonging to the same Laue class. From elastic prop-
Pq[Uq]‘xeXF{ - ﬁ} (3.22  erties of decagonal quasicrystals, explicit expressions of
Bla All(ph), At+(p"y, andAl (p') blocks for each Laue class
where elastic free energy @, is of decagonal system can be easily obtained.

For Laue class 13A"M(p"), At*(p"), and Al (p")
Eq=Epnod Ug] T EpnabUg 1+ Ecou Ug U] (3:23  plocks are given by

C1ipy+ Cegpy + C44F"|2 (C11— Cee)P1Ph (Cast C13)pulpg
All(ply= (C11— Ceo)P1Pb CosP1°+ C11p% + Cagp¥’ (CaatC1a)P5p5 , (3.29
(Caqt+Cia)P1P5 (Caqt+ C13)P5P5 Caa P2+ p5) + Caap¥
K1(py*+p5’) +Kapg’ 0
Loyl —
A-(p)= 0 Kl(pulz-l- pgz)_l_ K4p”2 (3.26

and

Ry(PY —p5’)+2Ropip;  —Ra(Py'—p5’) +2Rypip;
Al (phy=| Ry(p?—p¥) —2R;piph  Ru(py—ph)+2R,piph |. (3.27
0 0

For Laue class 147" (p") and A*+(p') blocks take the elastic constants but not the absolute values of them. Lattice

same forms as Eq$3.25 and(3.26), respectively. However, constants are taken ag;=3.7A, i=1,2,..,4 andas
in this case elastic constaRt vanishes compared with Laue =4.5 A.
class 13. Consequentd'* (p") block is Point groups 10/m, 10/mmm represent symmetries of
Laue classes 13 and 14, respectively. Figure 1 represents a
Ry(p2—pl2) 2R, p!pb plane perpendicular to the periodic direction with quencheq
All(phy=| —2R;plpl  Ry(pl2— uz) 3.2 phason displacements for the case of Laue class 13. It is
(P) 1P1P2 1{P1 (328 4ssumed that phason quench temperafyre3T. The dif-
0 0 fuse scattering patterns in this plane show tenfold rotation
symmetry which is consistent with point group 10/m.
IV. CONTOURS OF CONSTANT DIFFUSE Figures 2 and 3 give the results for the case of Laue class

14 which we would like to discuss in detail. Figurgg)2and

2(b) illustrate diffuse scattering patterns in the plane perpen-
Using the formulas derived above, we calculated contourslicular to the periodic direction for quenched phasons corre-

of constant diffuse scattering intensity for decagonal quasicsponding to two sets of different ratios of elastic constants. It

rystals. In calculation, we use the ratios of elastic constantss still assumed thal,=3T. It is obvious that the contour

because peak shapes are determined by the relative valuesstfapes around the same Bragg spots are quite different in

SCATTERING INTENSITY
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o o © Figs. 4a) and 2b). Figure Zc) represents the same plane
0 ©° DO o0 o provided that phasons are thermalizedrafrherefore, only
0 . %OOOQOOOQ%OC? o Q elastic constants dtare involved in calculation. We take the
0 OOOO OOOOO QOQO 5 same values of phqnon_ and phonon-phaspn c;oupllng elastic
QOO OOOOOOOQ -0 cpnstants as those in Fig(@. Compared _W|th F|g.. @), the_ .
O o Do 09 0Od o(Jo O diffuse scattering decreased accompanied by slight variation
e OOOOOOOO 0 of contour shapes around the same Bragg spots due to the
© OOOQ OOO0 OOOO 0 reduced contribution of phason disorder. If the diffuse scat-
s ° g% S o ¢ 8% ‘0 tering patterns like those in Figs(@-2(c) could be detected
o © ° %3 L o and measured precisely, one could use these patterns to ex-
o o O tract information about elastic constants. Such experiments

have been done on a single grain of Al-Pd-Mn icosahedral
FIG. 1. Contours of constant diffuse scattering intensity in aphase using elastic neutron scatter’rh@z. It should be noted
plane perpendicular to the periodic axis with quenched phasong, ,; information about elastic constdgs cannot be inferred
whenT=3T, for the case of Laue class 13. Elastic constants ar : ; ]
men 52C,{7)_ L0, Co(1 - 01,1 03 Cum-0z. 1o Y A2 satero patern becsusedocs o
Ceo(T)=0.4, Ry(T)=0.1, Ry(T)=0.15, C1(Ty)=0.9, Cy(T,) ph P i as.(s. |
=-02, CyfT)=02, CyT)=02, CeT)=05, Ry(Ty) that terms containing elastic constar@g;, Csz, and K,

=0.12,Ry(Tg) =0.1,K1(T¢) =0.9, andK o(T,) =0.6. vanish in matrixA(p') if the diffuse scattering patterns are
@ o o o ®©) o o o
o o OO o o o e OO0 o o
o) %OOO 209 QOOOO 0 o o OOOO OoOOoooo o
(o] (=] [~ Q Pa‘ o o o o O [
0 é)ooo O%}%O DOO% o o 00% 06%0 Co0 o
(0] O e} (@] 0.0 o 00,0 0.0
o? 0°%°°%:°%°0 %o
Oo%ooooo %9080 O_Aip— o o Qe 00 0o o o O
o OsCoPaC Cp 0% ©6%00%:° %
0 OOOD OoOoO oOOO 0 o oooo Ooooo oooo [S]
o QO o o OO0 o ©o Q0O o o 0Q o
O OLOLSOL O O 04005°p0C0°  ©
[N o QO o o o] o OO0 o ()
o o O o o o
(©) o o o @
© o 00 o © 0 o O © O o0 O
0 0°%0%:°%00c% o
o Q0 o o 00 ©°
O o
0 00% 000 «“oo o © 0 o o
Ooo OOOOOOOO oOO
0 0o Oo 00 00 00 o 0 0o 00O Oo o
ooo OOOOOOOO OOO
9 005 O0. 00 0,00 0
o
o Ooo ° o ooo o 0 o] O ° O O 0
O 0,00,0,00.,0 ©
Q o OO0 o (= O O O o O O O

(e)
0000 000000

0000 00 00 0000
0o Oo o0 0o oo 0
0000 00 - 00 o0 0O

0000 0000 D00

FIG. 2. Isointensity contours in planes for the case of Laue clas&@l4d), and(e) correspond, respectively, to planes perpendicular to
tenfold, A2P, and A2D axes with quenched phasons w‘her‘éTq. Elastic constants are taken @3,(T)=1.0, C15(T)=—0.1, C34(T)
= 03, C44(T) = 02, C66(T) = 04, Rl(T) = 01, Cll(Tq) = 09, C13(Tq) = 02, C33(Tq) = 02, C44(Tq) = 02, CGG(Tq) = 05, Rl(Tq) = 012,
K1(T4)=0.9, andK,(T,4)=0.6. (b) Similar to (a) except that elastic constants are takenCag(T)=1.0, C15(T)=0.2, C34(T)=0.5,
C44(T) = 06, CG6(T) = 08, Rl(T) = - 02, Cll(Tq) = 09, C13(Tq) = 03, C33(Tq) = 04, C44(Tq) = 05, C66(Tq) = 06, Rl(Tq) = - 015,
K1(Tg)=1.5, andK,(T4)=0.3. (c) The same aga) except that phasons are assumed thermalized. Phason elastic constants are taken as
K(T)=0.7, andK,(T)=0.5.
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(-1-1011) (0-11-10)

(a) F
W
=t
. ) -
! \\“u ({/ ; am
S E / e
g
© i

ISAREEE NN

FIG. 3. Comparisons of stereoscopic contours around Bragg 6pats-1 0 1 1) and(0 —1 1 —1 0) with quenched phasons whén
= %Tq for the case of Laue class 14. Phonon-phason coupling elastic constants are takgi)as0.1 andR,(T,)=0.15. The other
parameters are taken as follows(@) Cq4(T)=1.0, C15(T)=—0.3, C35(T)=0.3, Cyy(T)=0.5, Cs(T)=0.2, C14(T)=0.9, C15(Ty)
= _02, C33(Tq) 203, C44(Tq) :04, CGB(TC]) 203, Kl(Tq) :06, and K4(Tq) = 12, (b) Cll(T) = 10, C13(T) = _01, C33(T) :09,
C1iT)=0.8, Ceg(T)=0.7, C15(T4)=0.9, C15(Tg) = —0.1, C35(T) =0.7, Cyy(T) = 0.6, Cg¢(T4)=0.5 and the same phason elastic con-
stants as those if@); (c) the same phonon elastic constants as thoga)iandK,(T,)=1.2,K,(T,)=0.9.

measured in the plane perpendicular to the periodic directiomuch more complicated and the contour shapes vary from
as Figs. 2a)-2(c) so that such patterns are insufficient to spot to spot, even for collinear Bragg spots.
acquire these elastic constants. Figuréd) 2and 2e) show Figure 3 presents comparisons of stereoscopic contours of
patterns perpendicular, respectively, to twofold axes A2Rconstant diffuse scattering intensity around Bragg spets
which is along the direction of arbitrary basis vector in qua-—1 0 1 2) and (0 —1 1 —1 0) for quenched phasons when
siperiodic plane or its equivalent direction, and A2D which T=3T,. In calculation, we consider three sets of elastic con-
is along a bisector between any of these basis vectors and ig¢ants. Only phonon elastic constants in Fidp) &nd phason
neighboring equivalent direction with the same conditions a®lastic constants in Fig.(§ are changed with respect to
for Fig. 2(a) and they may be used to give information aboutthose in Fig. 8a). It is evident that the shape of isointensity
the other elastic constants that Figs(@22(c) cannot contour around reflectio® —1 1 —1 0) which has largeQ*
present. component varies greatly in Fig(@ but slightly in Fig. 3b)

The symmetries of diffuse scattering patterns shown irin comparison with that in Fig. (& while the very reverse
Fig. 2 are consistent with point group 10/mmm. There aregesults can be found for reflectidr-1 —1 0 1 1) which has
two kinds of mirrors in Figs. @—-2(c) besides a tenfold large Q' component. The fact that peak shapes of Bragg
rotation axis along the periodic direction. One is perpendicuspots with largeQ* component are dominated by phason
lar to A2P and the other perpendicular to A2D. elastic constants can be accounted for by special phason de-

As shown in figures above, in comparison with ordinarygrees of freedom in quasicrystals which also give rise to the
crystals, anisotropic contour shapes of quasicrystals areariation of peak shapes among collinear Bragg spots.
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Diffuse scattering from Al-Cu-Co decagonal quasicrystalsorders on diffuse scattering from decagonal quasicrystals.
was observed in transmission x-ray Laue pafteamd syn- The symmetries of diffuse scattering patterns are consistent
chrotron x-ray diffraction experimerit:>® In these experi- with corresponding point groups. Unlike ordinary crystals,
ments, structural defects, i.e., short-range atomic correlatiorthe anisotropic peak shapes of decagonal quasicrystals vary
give rise to the diffuse scattering, which cannot be accountedreatly even for Bragg spots aligned with a given direction in
for by the theory of thermal diffuse scattering from decago-reciprocal space due to the additional phason degrees of free-

nal quasicrystals presented here. dom. Analysis of peak shapes can be used to acquire numeri-
cal values of elastic constants if diffuse scattering patterns
V. CONCLUSIONS can be measured precisely.

Explicit formulas for diffuse scattering from decagonal
guasicrystals have been derived in terms of the elastic con-
stants. Contours of constant diffuse scattering intensity were This work was supported by the National Natural Science
calculated to examine the effect of phonon and phason did-oundation of China.
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