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Subdecoherent information encoding in a quantum-dot array
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A potential implementation of quantum-information schemes in semiconductor nanostructures is studied. To
this end, the formal theory of quantum encoding for avoiding errors is recalled and the existence of noiseless
states for model systems is discussed. Based on this theoretical framework, we analyze the possibility of
designing noiseless quantum codes in realistic semiconductor structures. In the specific implementation con-
sidered, information is encoded in the lowest energy sector of charge excitations of a linear array of quantum
dots. The decoherence channel considered is electron-phonon coupling We show that besides the well-known
phonon bottleneck, reducing single-qubit decoherence, suitable many-qubit initial preparation, as well as reg-
ister design may enhance the decoherence time by several orders of magnitude. This behavior stems from the
effective one-dimensional character of the phononic environment in the relevant region of physical parameters.
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I. INTRODUCTION

Devices using unique quantum-mechanical features
perform information processing in a much more efficient—
even unattainable—way than those relying just on class
physics. This fundamental discovery has stimulated in
last few years a large amount of work and scientific deba
in the newborn field of quantum computation.1 From a con-
ceptual point of view these results represent a serious c
lenge to the time-honored notion ofuniversal computationa
schemesindependent of an underlying physical theory: info
mation as well as computation areintrinsically physical. On
the other hand, physical realizations of a quantum comp
~QC! would result in tremendous practical advantages.

The key ingredients which endow QC devices with co
putational capabilities that supersede their classical coun
parts are basically:~i! the linear structure of their state spac
~ii ! the unitary character of their dynamical evolution; a
~iii ! the tensorized form of multiparticle state spaces. T
first two properties allow for a parallel processing of an
bitrary number of data sets, encoded in suitable quan
states. By resorting to quantum interference, between dif
ent computational branches, one can selectively amplify
sired parts of the state vector in order to optimize the pr
ability that a final~i.e., read-out! measurement will give us
the information we were looking for. Point~iii ! represents
another striking departure from classicality: due toentangle-
ment, combining different quantum systems results in an
ponential growth of the available coding space; moreov
the tensor-product structure is at the very basis of many
ficient quantum manipulations.

Unfortunately, all this holds just forclosedquantum sys-
tems. Real systems are unavoidably coupled with envir
mental ~i.e., noncomputational! degrees of freedom. Suc
open character spoils points~i! and ~ii !, eventually turning
PRB 590163-1829/99/59~12!/8170~12!/$15.00
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quantum computing to classical. Different computation
branches get entangled with different~quasiorthogonal!
quantum states of the environment and their interferenc
then no longer observable. From a mathematical point
view, the relevant state space, given by density matrices,
now aconvexstructure and the allowed quantum dynamics
described by CP maps.2 Initial pure preparations are typicall
corrupted on extremely short timescales due to quant
coherence loss that makes them mixed: the initial inform
tion irreversibly leaks out from the system into the hu
number of uncontrollable degrees of freedom of the envir
ment. This phenomenon—the so-called decoherence p
lem in QC ~Ref. 3!—represents the major obstacle for th
experimental realization of any quantum-computing syste
Other challenging requirements are of course given by
necessity of being able to perform on a system, with awell-
definedstate space, long coherent quantum manipulati
~gating!, precise quantum-state synthesis, and detection
well.

A major theoretical achievement has been made by sh
ing that one can, in principle,actively stabilize quantum
states by means of quantum error correction.4 The latter,
built in analogy with its classical counterpart, assumes t
the quantum bits~qubits! are coupled to independent env
ronments. The information is then encoded in a subtle red
dant way that allows, monitoring the systems and conditi
ally carrying on suitable quantum operations, to tolerate
certain~small! amount of decoherence and imperfect gati
as well.5

It is basically the need of dealing with systems suf
ciently decoupled from the external environment that, up
now, has limited the existing realizations to atomic and m
lecular implementations. Furthermore, the extremely
vanced technological state-of-the-art in these fields allo
for the manipulations required in simple QC’s.6 However,
8170 ©1999 The American Physical Society
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PRB 59 8171SUBDECOHERENT INFORMATION ENCODING IN A . . .
any interesting QC would require a large number of quant
gates and qubits as well, and all the present approaches
fer from the problem ofscalability to large, i.e., highly inte-
grated, quantum processors.

One is then naturally led to consider the viability of soli
state implementations. In particular, by resorting to pres
semiconductor technology, one might benefit synergetic
from the recent progress in ultrafast optoelectronics7–9 and in
nanostructure fabrication and characterization.10

The first drawback of such a kind of proposal is that t
typical decoherence timetD in semiconductors is of the or
der of picoseconds. On the other hand, the relevant par
eter is the ratio between the typical time scale of gatingtG
andtD . Roughly speaking,tD /tG represents the number o
elementary~coherent! operations that one could perform o
the system before its coherence being lost.

Loss and DiVincenzo11 have proposed to use nonequili
rium spin dynamics in quantum dots for quantum compu
tion. This exploits the low decoherence of spin degrees
freedom in comparison to the one of charge excitations,
ing the former is much less coupled with the environme
Nevertheless, the required magnetic gating is extremely c
lenging from a technological point of view, and the rat
tD /tG does not allow for the number of gate operatio
within the decoherence time required by concrete QC’s.

Ultrafast laser technology is now able to generate e
tronic excitations on a subpicosecond timescale and to
form on such states a variety of coherent-carrier-con
operations.7 If one can speculate to resort to such a techn
ogy for realizing gating ofchargedegrees of freedom the
coherence times on nano/microsecond scales can be reg
as ‘‘long’’ ones.

In this paper we analyze in a detailed way the recent i
of implementingquantum error avoidingstrategies.12 The
goal here is to suppress decoherence in a quantum reg
realized by the lowest energychargeexcitations of a semi-
conductor quantum-dot array.13 In this case, the noise sourc
is given by electron-phonon scattering, which is recogniz
to be the most efficient decoherence channel in suc
system.8,9

Despite thea priori complexity of the three-dimensiona
~3D! phononic environment, we will show that the underl
ing dynamical symmetry allows, by means of a proper qu
tum encoding, to increase the decoherence time by sev
orders of magnitude with respect to the bulk value. The fo
of the present paper is mostly conceptual and the problem
actual preparation/manipulation of the resulting codewo
will not be addressed.

The paper is organized as follows. In Sec. II the form
theory of subdecoherent quantum encoding is presented
discussed. Section III deals with the application of the p
posed subdecoherence theory to realistic semicondu
based nanostructures. More specifically, we will choose
quantum register an array of semiconductor quantum d
and for this particular system we will study the potent
sources of decoherence. In Sec. IV we shall present a
tailed investigation of decoherence in our quantum-dot ar
In addition to a short-time analysis, we will present tim
dependent simulations corresponding to a numerical solu
of the master equation. They will show that by means o
proper initial many-electron state preparation it is possible
uf-
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extend the carrier-phonon decoherence time up to thems
scale. Finally, in Sec. V we will summarize and draw som
conclusions. The Appendix is devoted to a formal analysis
the so-called circular model, which will turn out to play
major role in the semiconductor-based implementation c
sidered.

II. THEORY OF SUBDECOHERENT QUANTUM
ENCODING

In this section we recall the basics of the theory ofnoise-
less coding12 in the framework of a master equation~ME!
formalism, for the register subdynamics.14 Generally speak-
ing, these strategies for preserving quantum coherence
on the possibility to design an open quantum systemR in
such a way that~i! the environmentE is effectively coupled
only with a subset of the degrees of freedom ofR. Informa-
tion is then encoded in the portionC of Hilbert space spanned
by the remaining~decoupled! degrees of freedom, and~ii !
The environment is coupled to subset of statesC in a state
independent fashion. In both casesE is not able to extract
information fromC: the quantum coherence is thenpassively
stabilized. From the above points it should be clear the fi
and major departure from the error correction paradigm: h
one assumes the environmental noise to be correlated.E is
coupled, in a strongly state-dependent way, with collect
states ofR.

Before embarking in a detailed analysis of subdecoh
ence let us shortly discuss two very simple examples,
show how this notion can come about.

~i! Let us considerN isospectral linear oscillatorsHR
5v( j 51

N bj
†bj coupled with the vacuum fluctuations, i.e

zero temperature, of a bosonic fieldak by a Hamiltonian of
the form HI5( jk(gk jak

†bj1H.c.). Suppose now thatgk j

5gk; j . By introducing the Fourier transformed operato
bq[1/AN ( je

iq jbj ~bosons as well! one immediately sees
that only the zero modes are actually coupled:HI
5b0

†((kgkak)1H.c. and HR5v(qbq
†bq . Therefore, any

state of the~infinite-dimensional! subspace

C5u0&0^ q.0Hq ~1!

will evolve unaffected by the environment in thatHI C
^ u0&E50.

~ii ! Let the system-environment interaction Hamiltoni
be of the form HI5(mRm ^ Em , where XmPEndHX (X
5R,E). Moreover, let us suppose that the HermitianRm’s
are commuting operators, i.e., they span anabelian algebra
A. Let C,HR a simultaneous eigenspace ofA. This means
that

HIuC5(
m

rmEm ~rmPR!. ~2!

In other words, if one restricts himself toC the interaction
with the environment amounts simply to astate-independen
renormalization of HE . It is then clear that—providedC is
invariant under the system self-HamiltonianHR—any initial
preparation inC evolves in a unitary fashion regardless of t
strength of the system-environment coupling and the en
ronment initial state as well. Of course, for all this to b
useful in quantum encoding one must have dimC.1.
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8172 PRB 59PAOLO ZANARDI AND FAUSTO ROSSI
A. Master-equation approach

The system under investigationR is given byN identical
two-level systems (N-qubits quantum register!, representing
our computational degrees of freedom, coupled with an
ternal ~uncontrollable! environment. The registerR will be
described in the spin-1/2 language by means of the u
Pauli spin matrices$s i

z, s i
6% i 51

N generatingN local sl~2! al-
gebras

@s i
1 ,s j

2#52d i j s i
z , @s i

z ,s j
6#56d i j s i

6 . ~3!

The collective spin operatorsSa5( i 51
N s i

a ,(a56,z) span a
sl~2! algebra as well, and it will be referred to as theglobal
sl~2!. The environmentE will be described by a set of non
interacting harmonic oscillators with bosonic field operat
@bk

† ,bk8#5dkk8 .
The total Hamiltonian is assumed to beH5HR1HE

1HI , where HR5ESz and HE5(kvkbk
†bk are, respec-

tively, the register and the environment self-Hamiltonia
Here, E represents the energy spacing between statesu0& i
and u1& i in each qubit. TheR2E interaction is given by

HI5(
ki

~gkibk
†s i

21H.c!. ~4!

Let us now briefly recall the standard Born-Markov sche
for tracing out theE degrees of freedom and obtaining
master equation for the register subdynamics. The Liouvil
von Neumann equation for thetotal density matrix ofR
^E in the interaction picture readsi ] tr̃5@HI ,r̃ #. One as-
sumes a factorized initial conditionr̃(0)5r ^ V. After a
formal time integration one obtains

r̃~ t !5 r̃~0!1E
0

t

dt@HI~t!,r̃~t!#

5 r̃~0!2 i E
0

t

dt@HI~t!,r̃~0!#1~2 i !2

3E
0

t

dtE
0

t

dt8@HI~t!,@HI~t8!,r̃~t8!## . ~5!

Now we setr̃(t8)5r(t8) ^ V(V;e2bHE) and we perform
a partial trace overE in order to get an equation for th
reduced density matrix ofR:r(t)5trE r̃(t). The resulting
ME is of the formṙ5L(r). The Liouvillian superoperator
L is given by the sum of two contributions:Lu representing
the unitary component of the dynamics ruled by the~renor-
malized! register self-Hamiltonian;Ld describing the irre-
versible decoherence/dissipation processes induced by
coupling with the external bath. By denoting withHR the
unperturbed register self-Hamiltonian, one has thatLu(r)
5 i /\@r,HR1dHR# where the environment-induceddHR is
given by

dHR5 (
h56

(
i j 51

N

D i j
~h!s i

2hs j
h. ~6!

These contributions—usually referred to as the Lamb-s
terms—describe a sort of qubit-qubit effective interacti
x-

al

s

.

e

–

the
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mediated by the external environment. The dissipative Li
villian is given byLd5(h56L d

h , where

L d
h~r!5

1

2\ (
i j 51

N

G i j
~h!~@s i

hr,s j
2h#1@s i

h ,rs j
2h#!. ~7!

Here, the termh52(h51) is associated to deexcitatio
~excitation! processes of the qubits by emission~absorption!
of bosonic quanta. The Hermitian matricesG andD are the
input data defining our ME, and their actual form depends
the details of the physical constants (E,$vk%k$gki%, etc.! and
will be given later.

As far as the analysis of this section is concerned it
sufficient to know thatG>0. One can go on with genera
considerations by diagonalizingG(h) in order to obtain the
canonical form for the dissipative part of the Liouvillian15

Ld~r!5
1

2\ (
h56,m51

N

lm
h~@Lm

hr,Lm
2h#1@Lm

h ,rLm
2h#!,

~8!

where $lm
h% are the ~non-negative! eigenvalues ofG(h).

Moreover,Lm
h5( iui

ms i
h ,ui

m denoting the components of th
eigenvectors ofG(s). The Lm

h ’s will be referred to as the
Lindblad operators. The operator~Lie! algebraA spanned by
the Lindblad operators contains the information about
existence of coding spaces stable at least on a short t
scale. The finite-time stability depends on the interplay
tween the dissipative and the unitary components of
Liouvillian in HR .

In order to quantify the efficiency of the environment
destroying quantum coherence it is useful to define a(first-
order) decoherence time (rate)t1(t1

21) by means of the
short-time expansion of thefidelity14 for pure initial state
preparationsuc&

F~ t ![^cur~ t !uc&512
t

t1
1o~ t2!. ~9!

From Eq.~8! one obtains

t1
21@ uc&] 5 (

h56,m51

N

lm
h~ iLm

h uc&i22 z^cuLm
h uc& z2).

~10!

This expression is nothing but a sort of fluctuatio
dissipation relation connecting the dispersion of the Lindb
operatorsLm

h in the initial register state with the rate at whic
quantum coherence is destroyed. It is important to point
that the unitary component of the Liouvillian does not co
tribute to the first-order decoherence time. Ift1

21@ uc&] 50
then the stateuc& will be calledsubdecoherentand a linear
subspaceC,HR will be referred to as asubdecoherent code

In general, the register Hilbert space splits inA-invariant
subspaces,

HR5 % J% r 51
nJ H r

~J! , ~11!

whereJ labels the irreducible representations~irrep! of A,
and the integersnJ are the associated multiplicities@H r

(J)

>H r 8
(J)

#. Thesinglet sectorC of A is the direct sum~possi-
bly empty! of the one-dimensional irreps. In Ref. 14 it ha
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been shown that, for non-AbelianA, the subdecoheren
codes coincide withC. In an equivalent group-theoretic lan
guage one can say that the codeC is the subspace of vector
invariant under the action of groupG5exp (A) generated
~infinitesimally! by the Lindblad operatorsLm . (C is the
trivial G-representation space.! This group acts, of course, o
the general mixed states:r°XrX†,(XPG). The same argu-
ment holds for the subdecoherent~pure! states. WhenC is
invariant under the action ofHR8 ; then the contribution to the
dynamics ofLd vanishes

r5uc&^cu°e2 i tHR8 reitHR8 ~;uc&PC,t>0!. ~12!

The finite-time evolution is unitary, and in this caseC will be
referred to as noiseless code: quantum coherence
preserved—in principle—for an arbitrarily long time. Whe
C is not HR8 invariant the initial preparationuc& on a greater
time scale leaks out from the code and its quantum co
ence will be eventually washed out. For instance, the co
tion @HR8 ,A#50 suffices to have such a noiseless coding
even thatHR8 belonging to theassociativeoperator algebra
Aa generated by theLm’s and the identity operator. Notic
that if C is subdecoherent for theLm’s it is subdecoherent fo
any set of Lindblad operators included inAa .

From a physical point of view, the algebraA of Lindblad
operators represents the set of the register modes tha
incoherently excited by the environment; looking for sta
that are annihilated by as many Linbdlad operators as p
sible is then like looking for states that are ‘‘vacua’’ for th
largest number of such excitations and, therefore, maxim
decoupled with environment.16 It is important to emphasize
that such a decoupling can be achieved thanks to
algebraic-dynamical structure of the model without any
sumptions about the~weakness! of the register-environmen
interaction. Loosely speaking, one can say that for gen
G’s, the Liouvillian is such that, givenany register prepara-
tion, the environment forces the coding system to explore
totality of its Hilbert space so that there is no safe place
storing quantum information. Except for some ‘‘magic’’G
the Lindblad algebra gets smaller allowing just for a limit
probing of the register space of states by the environm
strongly dependent on the initial register data: free room
left for ‘‘hiding’’ quantum information.

Rather interestingly, the problem of analyzing state sta
ity against decoherence can be cast in a Hamiltonian form
observing that, for an initial conditionuc& that is aSz eigen-

state one hast1
215^cuH̃uc& where

H̃5 (
h56,m51

N

lm
hLm

2hLm
h

5 (
i j 51

N

~G i j
~2 !s i

1s j
21G i j

~1 !s i
2s j

1!. ~13!

In other words: the problem of finding decoherence rate
mapped onto the spectral problem for the~positive! operator
~13!. In particular, ‘‘robust’’ states~i.e., the ones with mini-

mal decoherence rates! are ground statesof H̃. Let EN de-

note the lowest eigenvalue ofH̃. EN50 means that there
is
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exist subdecoherent states, and in this caseC[KerH̃ and

dN[dim KerH̃ gives the dimension of the code. The subd
coherence property is stable against small perturbation

the state. Indeed, ifuc&PKerH̃°uc&1udc& then dt1
21

5^dcuHudc&>0.

B. A simple example

To better illustrate the situation let us consider theN52
case. The model~13! is soluble in an elementary way.17 We
assumeG11

(6)5G22
(6)[G (6) and G12

(6)5G21
(6)5G (6)b; more-

over,G (2)>G (1). From positivity it follows thatubu<1. The
spectrum is given by

E1152G~2 !, E0052G~1 !,

Et,s5~G~2 !1G~1 !!~16b!, ~14!

with eigenstates given, respectively, by

u11&,u00&,221/2~ u01&6u10&).

If G (1).0, for ubu<(G (2)2G (1))(G (2)1G (1))21[bc one
has E25E00, for b.bc(b,bc) one finds E05Es(E0

5Et).G
(1)50⇒E25E0050. Finally, for b561 one has

againE250, with eigenstates given byucs,t&. In summary,
subdecoherent states exist in a subset of the boundary o
G manifold. This result is quite general: forgenericG’s one
has EN@G#.0, the subdecoherence conditionEN@G#50 is
fulfilled just in a ‘‘zero-measure’’ set of the Hamiltonia
models~13!. Of course, this is simply due to the fact that
genericG gives rise to a Lindblad algebraA is too large for
admitting a~nontrivial! singlet sector.

Turning back to the generalN case, to exemplify the col-
lective nature of the decoherence-dissipation dynamics le
consider the states (N even!

ucsym&[~S†!N/2u0&,

uDg&[ ^ ~ i , j !PD @ u01&2~21!g~ i , j !u10&] i j , ~15!

whereD is a dimer partition of the qubit array, andg:D
→$0,1%. The first state in Eq.~15! is simply the totally sym-
metric Sz50 state@belonging to the sl~2! multiplet of the
vacuum#, whereas theuDg& ’s are products of singlet or trip
let pair states depending on the signatureg of the register
dimer partitionD. This latter family of states~15! will play
an important role in the following. Notice that, forg50, one
gets global sl~2! singlets corresponding to zero total angu
momentumS2. In terms of Hadamard transformations an
controlled-not operators23 the uDs& ’s can besynthetizedas
follows from a pure product state:

uDg&5 ^ ~ l ,m!PDcnot lmHl ug~ l ,m!11,1& lm . ~16!

With straightforward calculations one finds that the fir
order decoherence rates of states~15! are given, respectively
by (ta /t0)215 f a(G),(a5sym,Dg) in which t0

21

5G0N/2 is the decoherence rate for uncorrelated qubits,

(G̃ i j [G i j /G0)
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f sym511
1

N21
R(

i , j
G̃ i j ,

fDg512
2

N
R (

~ i , j !PD
~21!s~ i , j !G̃ i j , ~17!

whereG05G i i ( i 51, . . . ,N) The f a’s contain the informa-
tion about the degree of many-qubit correlation in the de
process: ifG}I one hasf a51 and the qubits decohere ind
pendently.

III. APPLICATION TO SEMICONDUCTOR
NANOSTRUCTURES

In this section we shall discuss a potential application
the above subdecoherent quantum-encoding strategies t
alistic, i.e., state-of-the-art, semiconductor-based nanost
tures. Since in semiconductors the primary source of de
herence is known to be carrier-phonon scattering, we
consider as prototypical systems quasi-zero-dimensio
~0D! structures, for which the reduced phase space avail
allows for a significant suppression of phonon-induced
ergy relaxation and dephasing.

We will choose as a prototype of quantum register
array of semiconductor quantum dots. In particular, we w
consider as a quantum dot~QD! a GaAs/AlxGa12xAs struc-
ture similar to that studied in Ref. 18. Here, various effe
due to carrier-carrier interaction willnot be considered. This
is, of course, a potential limitation of our analysis, especia
in relation to state preparation/manipulation~not addressed
in this paper!. Indeed, the latter requires a controllable sou
of entanglement, i.e., a qubit-qubit interaction that might
provided by ‘‘switchable’’ Coulomb couplings.19 On the
other hand, our coding states will involvesingle-electronoc-
cupations only; for such states the intradot Coulomb rep
sion is clearly absent, while the interdot one at the distan
relevant for our quantum encoding is found to
negligible.20 Moreover, since the system under considerat
is based on intrinsic III-V materials, carrier-impurity scatte
ing is negligible.

Generally speaking, Hamiltonian modifications will resu
in leakage from the coding subspace only on a longer t
scale with respect to the phonon scattering one, i.e., it d
not affect the stability classification based ont1 ~see Sec. II!.
Finally, we would like to stress that there exists a who
class of interactions leaving the code invariant.12

A. Free-carrier states in the quantum-dot array

The confinement potentialV0D giving rise to the quasi-0D
carrier states in such a QD structure is properly describe
terms of a quantum-well~QW! profile Vi along the growth
direction of the structure plus a 2D parabolic potentialV' in
the normal plane. More specifically, a carrier within thei th
QD structure is described by the following single-partic
Hamiltonian:
y

f
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hi52
\2¹ r

2

2m*
1V0D~r !

5S 2
\2¹ r'

2

2m*
1V'~r'!D 1S 2

\2¹ r i

2

2m*
1Vi

i~r i!D
5H'1H i, ~18!

where

V'~r'!5
1

2
m* v2ur'u2 ~19!

is the 2D harmonic-oscillator potential in the (x,y) plane
perpendicular to the~z! array axis~which coincides with the
growth axis of the QD structure!, while Vi

i(r i) is a 1D

square-well potential centered atr i
i 5 ia ẑ with width d and

infinite walls,21 a being the array periodicity, i.e., the interdo
distance. This choice for the single-particle Hamiltonia
even though not generally valid, well describes the 0D c
rier confinement of the low-energy states in the QD structu
which are the only relevant states for the quantum encod
considered. We would like to point out that the very sam
QD model turned out to be able to explain, in a quantitat
way, the addition spectra reported in Ref. 18.22

The Hamiltonian~18! is elementary soluble, its spectrum
being the sum of the parallel and perpendicular contri
tions:

enn5En
'1En

i 5~nx1ny11!\v1
p2\2n2

2m* d2 . ~20!

The corresponding 3D eigenstates will be factorized acco
ing to

f i ,nn~r !5fnx ,ny

' ~r'!fn
i ~r i2 ia !. ~21!

The total free-carrier Hamiltonian describing our QD arr
can then be expressed in the~second-quantized! form

HR5(
i ,a

eacia
† cia , ~22!

where the fermionic operatorscia
† (cia) create~destroy! an

electron in thei th QD in statea[nxnyn.

B. Carrier-phonon coupling

The Hamiltonian describing the free phonons of a se
conductor crystal is given by24

HE5(
lq

\vlqblq
† blq , ~23!

wherel andq denote, respectively, the phonon mode~e.g.,
acoustic, optical, etc! and the phonon wave vector.

The coupling of phonons with the electrons in the Q
array is described by the following carrier-phonon intera
tion Hamiltonian:

HI5 (
ia,i 8a8;lq

@gia,i 8a8;lqcia
† blqci 8a81H.c.#, ~24!
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where

gia,i 8a8;lq5g̃lqE f ia* ~r !eiq–rf i 8a8~r !dr ~25!

are the matrix elements of the phonon potential between
quasi-0D statesia and i 8a8. The explicit form of the cou-
pling constantg̃lq depends on the particular phonon mod

C. The qubit register

In the proposed information-encoding scheme the sin
qubit is given by the two lowest energy levels of the Q
structure. Since the widthd of the GaAs QW region is typi-
cally of the order of a few nanometers, the energy splitt
due to the quantization along the growth direction is mu
larger than the confinement energy\v induced by the 2D
parabolic potentialV' ~typically of a few meV!. Thus, the
two lowest-energy states—stateu0& and u1&—realizing our
qubit are given by products of the QW ground state times
ground or first excited state of the 2D parabolic potential25

More specifically, they are given by

^r u0& i5f0
'~x!f0

'~y!f i ,0
i ~z!,

^r u1& i5f0
'~x!f1

'~y!f i ,0
i ~z!, ~26!

where

f0
'~x!5C0e2a0x2

, C05~2a0 /p!1/4, a05
m* v

2\
,

f1
'~x!5C1xe2a0x2

, C152a0
3/4~2/p!1/4 ~27!

are, respectively, the ground and first excited states of
harmonic oscillator in the~perpendicular! xy plane, and

f i ,0
i ~z!5Cz cosFpd ~z2 ia !G , Cz5A2/d ~28!

is the ground state of thei th quantum-well potential paralle
to the array axis@f i ,0

i (z)50 for uz2 iau>d/2].
Notice that the only dependence on the QD labeli of the

qubit states is in thez component of the wave function.
Since we are restricting ourselves to the low-energy se

a50,1 in the absence of interdot (iÞ i 8) transitions, the only
relevant fermionic bilinears in Eq.~24! are given byXi

5ci1
† ci0 and their conjugates. Consistently with the comm

tation relations@Xi ,Xj
†#5d i j (ni

12ni
0)[s i j ,s i

z , these bilin-
ears can be described by the spin-1/2 operatorss i

6 . Let
u0&5) i 51

N ci0
† uvac& be the reference state built over the ele

tron vacuum by occupying all theu0& i . Our reducedHilbert
space containing the computational degrees of freedom
then given by

HR5spanH)
i 51

N

Xi
a iu0&ua i50,1J > ^ i 51

N C2. ~29!

Any process inducing transitions out of this subspace w
result in a computational error. LetD be the energy gap
betweenu1& and the higher excited states~in the present case
e

le

g
h

e

e

or

-

-

is

ll

D5\v) and T the environment~i.e., lattice! temperature;
this sort ofleakageerror occurs with low probability as long
asD@kBT.

By denoting withE[e i ,12e i ,05\v the energy spacing
between our two qubit levels, the free-carrier Hamiltoni
~22! for our qubit register, i.e., restricted to the low-ener
sectora50,1, can then be written as

HR5E(
i 51

N

s i
z , ~30!

wheres i
z denotes the usual diagonal Pauli matrix acting

the i th qubit.
Let us now consider again the carrier-phonon interact

Hamiltonian~24!. Within the carrier model considered, wav
functions corresponding to different QD’s do not overla
thus, one hasgia,i 8a8;lq50 for iÞ i 8, i.e., phonons induce
intradot ~intraqubit! transitions only. The coupling constan
associated to the relevant elementary processes in our q
register aregi ,lq[gi1,i0;lq ,ḡi ,lq[gi0,i1;lq . More specifi-
cally, starting from the explicit form of the single-particl
wave functions f in Eq. ~26! one finds gi ,lq

5g̃lqgx(qx)gy(qy)gz(qz ,zi)@q5(qx ,qy ,qz)#, where

gx~qx!5^f0
'ueiqxxuf0

'&5expS 2
qx

2

8a0
D ,

gy~qy!5^f1
'ueiqyyuf0

'&5 i
1

2a0
1/2

qy expS 2
qy

2

8a0
D ,

giz~qz!5^f i ,0
i ueiqzzuf i ,0

i &5
8p2

d3qz

sin~qzd/2!

q0
22qz

2
eiqzzi, ~31!

andq052p/d.
Within these assumptions the carrier-phonon interact

Hamiltonian~24! can be cast in to the form~4!:

HI5(
ki

~gkibk
†s i

21H.c.!, ~32!

where the bosonic labelk now corresponds to the phono
modes of the crystal, i.e.,k[lq.

Following the Born-Markov procedure discussed in S
II, one finds the following result for the matricesG and D
defining our ME~Ref. 27!:

G i j
~6 !52p(

k
gkiḡk j@nk1u~7 !#d~\vk2E!,

D i j
~6 !5P(

k

gkiḡk j

\vk2E
@nk1u~7 !#. ~33!

Here,u is the customary Heaviside function andP denotes
the principal part. From these relations it follows thatG(6)

and D(6) are Hermitian as expected. Furthermore,G(6)>0
andG(2)>G(1). Since for the QD structures considered t
energy splittingE is typically much smaller than the optica
phonon energy~36 mev in GaAs!, the only phonon modes
k5lq involved are the acoustic ones. In this case, by c
sidering carrier-phonon coupling due to deformation pot
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tial, one hasg̃(q)5A\«q2/2rVc, where« is the scalar lat-
tice deformation,r and V the crystal mass density an
volume, whilec is the sound velocity.

Let us now focus on the explicit form of the functionG in
Eq. ~33!, i.e.,

G i j
652p(

q
gi~q!ḡ j~q!@nq1u~6 !#d~vq2v!

5
V

~2p!2E d3q gi~q!ḡ j~q!@nq1u~6 !#d~\cq2\v!.

~34!

Because of the axial symmetry of the problem and the d
function of energy conservation, the three-dimensional in
gral overq in Eq. ~34! is better approached in polar coord
nates: d3q5q2dwd(cosq)dq. One obtains an expressio
proportional to

E
21

1

dteQ2t2/4a
cos~Qtzi j !

@~q/Q!22t2#2

12t2

t2
sin2F pt

q/QG , ~35!

with q5q0 ,a5a0 , and Q5E/\c. Moreover,zi j 5a( i 2 j )
is the distance betweeni th andj th QD’s. The crucial point is
to observe that forQ/a0

1/25l' /l i ,(l i;Q21) is large
enough, and this integral is dominated by contributio
aroundt[cosq51; therefore,

G i j
~6 !5G11

~6 ! cos@Qzi j #. ~36!

Recalling thatl'5a0
21/2 is the typical length scale of carrie

confinement in thex-y plane, this behavior is easily unde
stood: due to the energy-conservation constraints (q'

2 1qz
2

5uqu25Q2), for delocalized in-plane wave functions~with
respect to the length scalel i), the significant fluctuation ofq
in the considered state is small; therefore,qz.Q. In other
words, due to the exponential suppression—in the ove
integral—of the contributions from phononic modes w
nonvanishing in-plane components the system behaves
the presence of a single effective phonon mode along thz
axis resonant with the qubit excitations. As clearly confirm
by our numerical analysis reported in Sec. IV, this is
extremely important feature of the semiconductor mo
considered: in spite of its 3D nature and of the presence
continuum of decoherence-inducing phonon modes, in
regime the carrier subsystem experiences an effectively
coherent environment, that in a good approximation can
described by the circular model~CM! analyzed in the
Appendix.27

This model, parametrized by the dimensionless quan

Q̃[Qa, represents a nontrivial example of a regist
environment coupling that admits a rich structure~as a func-

tion of Q̃) of subdecoherent encodings. From this point
view, it realizes a generalization of the replica symmet
model ~pure collective decoherence! discussed in Ref. 12

that is recovered forQ̃50. Here, we limit ourselves to sum
marize the main result:

Safe quantum encoding are possible for the models s

that eiQ̃ is a fourth root of the unity, the most efficient ca
ta
-

s

p

in

d

l
a

is
D
e

ty

-

f
c

ch

being the pointsQ̃50, modp; when all the register cells
feel the same external coupling the dynamics is maxima
collective due to the full permutational symmetry.

The existence of infinitely many ‘‘magic’’ points is
clearly due to the unphysical nature of the CM that allo
for undamped interactions between objects separated by
bitrary large distances. In realistic systems~as the ones in-
vestigated in this paper! the cosine dependence of theG ma-
trix can only be approximated and the periodicity wi
respect to the cell distance eventually destroyed by so
overimposed decay. In a way, the present situation is v
similar to having a string of~two-level! atoms in a cavity
coupled with a single resonant electromagnetic mode.28

IV. SIMULATION OF SUBDECOHERENT DYNAMICS
IN A QD ARRAY

In this section we will present our numerical analysis
subdecoherent quantum encoding for realistic QD structu

A. Carrier-phonon scattering in a single QD structure

As a starting point, let us discuss the role of carrie
phonon interaction in a single QD structure. Figure 1 sho
the total~emission plus absorption! carrier-phonon scattering
rate at low temperature (T510 K) as a function of the en
ergy spacingE for three different values of the GaAs QW
width (d53, 4, and 5 nm!.26 Since the energy range consid
ered is smaller than the optical-phonon energy~36 meV in
GaAs!, energy-conservation scattering with LO phonons
not allowed. Therefore, the only phonon model that con-
tributes to the rate of Fig. 1 is that of acoustic phono
Again, due to energy conservation, the only phonon wa
vectors involved must satisfyuqu5E/\cs[q,cs being the
GaAs sound velocity. It follows that by increasing the ener
spacingE the wave vectorq is increased, which reduces th
carrier-phonon coupling entering in the electron-phonon
teraction and then the scattering rate. This well-establis
behavior, known as phonon bottleneck,29 is typical of a
quasi-0D structure. As shown in Fig. 1, forE55 meV—a
standard value for many state-of-the-art QD structures—
carrier-phonon scattering rate is already suppressed by
most three orders of magnitude compared to the corresp
ing bulk values.8,9

FIG. 1. Carrier-phonon scattering rate for a single QD struct
as a function of the energy splittingE for different values of the
QW width d at low temperature~see text!.
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In addition to the bottleneck scenario discussed so far,
a given value of the energy spacingE we see that for smal
values ofd we have an increase of the carrier-phonon rate
spite of the reduction of the 3D volume available to t
carrier states, the overall coupling is increased, basically
to the progressive relaxation of momentum conserva
along the growth~z! direction.

B. Short-time analysis

We will now show that by means of a proper informatio
encoding, i.e., a proper choice of the initial multisyste
quantum state, and a proper design of our QD array, we
strongly suppress phonon-induced decoherence proce
thus further improving the above single-dot scenario. To t
end, let us consider a four-QD array, which is the simpl
noiseless qubit register~see the Appendix!. From the short-
time expansion discussed in Sec. II A, we have numeric
evaluated the decoherence rate for such QD array choo
as energy splittingE55 meV and the QW widthd
54 nm ~see Fig. 1!. As the initial state we have chosen th
singlet ucD1 ,0& @see Eq.~15!# defined by the dimer partition

D15$(1,2),(3,4)%. We stress that when the CM approxim
tion ~see the Appendix! is not exactly fulfilled, different sin-
glets have different decoherence rates. Indeed, the large
distancezi j between the pair elements in the dimer coverin
the greater the deviation from the strictly periodic behavi
Thus, from Eq.~17! it follows, for instance, that the single
corresponding to the dimer partitionD25$(1,3)(2,4)% has a
greater decoherence rate thanucD1 ,0&. The decoherence rat
obtained from our numerical calculation is shown as a so
line in Fig. 2~a! as a function of the interdot distancea. The
uncorrelated-dot decoherence rate is also reported a
dashed line for comparison. As suggested by the analys
the circular model presented in the Appendix, in spite of
3D nature of the sum overq entering the calculation of the
function G i i 8

(6) @see Eq.~35!#, the decoherence rate exhibits
periodic behavior over a range comparable to the typical
length scale. In the circular-model approximation~and for
T50) one obtainst1

21@ ucD1
#.2G00

(2)@12cos(Qa)#, from

which it follows that foran52np/Q,(nPn) the considered
state is stable. This effect—which would be natural for a
phonon system—stems from the exponential suppressio
the overlap integral of the contributions of phononic mod
with the nonvanishing in-plane component previously d
cussed. This 1D behavior is extremely important since it
lows, by suitable choice of the interdot distancea, to realize
a symmetric regime in which all the dots experience
samephonon field and, therefore, decohere collectively. F
ure 2~a! shows that for the particular QD structure cons
ered, caseC should correspond to a decoherence-free evo
tion of a singlet state, which is not the case forA andB ~see
symbols in the figure!.

In order to better understand how this sort of effective
behavior depends on the material parameters considered
have repeated the subdecoherence analysis of Fig. 2~a! by
artificially increasing the GaAs effective mass. More spec
cally, Figs. 2~b! and 2~c! present the same decoheren
analysis, respectively, for values of 5 and 10m* . As we can
see, by increasing the effective-mass value the 1D chara
r
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in ~a! is progressively suppressed. This can be clearly und
stood as follows: the increase of the effective mass leads
stronger and stronger localization of the 2D harmon
oscillator wave functions which, in turn, can easily intera
with transverse (xy) phonon modesq.

As far as the unitary component of the Liouvillian is co
cerned, one can easily show that@for any uc& eigenstate of

Sz# F(t)5u^cue2 i tHR8 uc&u2512(t/tU)21o(t3), where

2

tU
2

5^cudHR
2 uc&2^cudHRuc&2. ~37!

Figure 3 showstU
21@ ucD1

# as a function of the interdot dis
tancea.

We find an oscillatory behavior similar to that of Fig
2~a!; it stems from the fact that~for the material parameter
considered! D i j

6.G00
6 sin@Q(i2j)a1w#, with w!p/2. Thus,

for values ofa corresponding to a subdecoherent dynam

FIG. 2. ~a! Phonon-induced decoherence rate for a four-QD
ray ~solid line! as a function of the interdot distancea compared
with the corresponding uncorrelated dot rate~dashed line!; ~b! same
as in~a! but with an artificial effective mass of 5m* ; ~c! same as in
~a! but with an artificial effective mass of 10m* ~see text!.
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@see pointC in Fig. 2~a!#, theD contribution, also known as
the polaronic shift, is negligible as well.

C. Time-dependent solution of the master equation

In order to extend the above short-time analysis, we h
performed a direct numerical integration of the master eq
tion ~see Sec. II A!, thus obtaining the reduced density m
trix r as a function of time. Also the Lamb-shift terms di
cussed in Sec. II have been taken into account. Starting f
the same GaAs QD structure considered so far, we h
simulated the above noiseless encoding for a four-QD ar
Figure 4 shows the fidelity as a function of time as obtain
from our numerical solution of the master equation. In p
ticular, we have performed three different simulations—
the same initial stateucD1 ,0&—corresponding to the differen
values ofa depicted in Fig. 2~a!. Consistently with our short-
time analysis, for case C we find a strong suppression of
decoherence rate, which extends the sub-nanosecond
scale of theB case~corresponding to the uncorrelated d
rate! to the microsecond time scale.

Another quantity that properly describes the environme
induced corruption of information is the linear entrop
d@r#[tr(r2r2). Its production rate is also directly con
nected tot1 ; indeed, for an initial pure preparation we ha
ḋ(t)52t/t11o(t2). The time evolution of the linear en
tropy, as obtained from our numerical solution of the ME,

FIG. 3. tU
21@ ucD1

&] as a function ofa ~see text!.

FIG. 4. FidelityF as a function of time as obtained from a dire
numerical solution of the master equation for the relevant case
four-QD array~see text!.
e
a-

m
ve
y.
d
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e
me
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reported in Fig. 5. We can clearly recognize an initial tra
sient ~of the order oft1) in which the register, getting en
tangled with the environment, decoheres; this is followed
a subsequent slower relaxation dynamics.

The time-dependent analysis of Figs. 4 and 5 confir
that by means of the proposed encoding strategy one
realize a decoherence-free evolution over a time scale c
parable with typical recombination times in semiconduc
materials.8

V. SUMMARY AND CONCLUSIONS

We have investigated a possible semiconductor-ba
implementation of the subdecoherent quantum-encod
strategy, i.e., error avoiding, recently proposed in Ref.
The goal is the suppression of phase-breaking processes
quantum register realized by the lowest energychargeexci-
tations of a semiconductor QD array.13 In this case, the pri-
mary noise source is given by electron-phonon scatter
which is considered to be the most efficient decohere
channel in such a system.8,9

The main result is that, in spite of the 3D nature
carrier-phonon interaction in our QD structure, by means o
proper quantum encoding as well as of a proper tailoring
the semiconductor structure, one can, in principle, incre
the coherence time by several orders of magnitude with
spect to the bulk value. This would allow us to realize
coherent quantum-mechanical evolution on a time sc
longer compared to that of ultrafast optical spectrosco
From this point of view this result might constitute an im
portant step toward a solid-state implementation of quan
computers. On the other hand, it certainly represents a
nontrivial example of a solid-state quantum system for wh
one can apply quantum error-avoiding strategies.

As already discussed in Sec. III, carrier-phonon scatter
is not the only source of decoherence in semiconductors
conventional bulk materials also, carrier-carrier interaction
found to play a crucial role. However, state-of-the-art Q
structures—often referred to as semiconduc
macroatoms10—can be regarded as few-electron systems
sically decoupled from the electronic degrees of freedom
the environment. For the semiconductor QD array cons
ered, the main source of Coulomb-induced ‘‘noise’’ m
a

FIG. 5. Linear entropy as a function of time as obtained from
direct numerical solution of the master equation for the relev
case of a four-QD array~see text!.
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arise from the interdot coupling. However, since such C
lomb coupling vanishes for large values of the QD separa
and since the proposed encoding scheme can be realize
values ofa much larger than the typical Coulomb-correlatio
length ~see Fig. 2!, a proper design of our quantum regist
may rule out such additional decoherence channels.30

The actual implementation of the suggested encoding
lies, of course, on precise quantum-state synthesis and
nipulations. This further step, not addressed in this pa
represents the most challenging open issue concerning
ultimate usefulness of the proposed coding strategy.
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APPENDIX: CIRCULAR-INTERACTION MODEL

This appendix is devoted to the formal analysis of
model with periodic~environment-induced! interactions be-
tween register cells. We setG i j

(6)5G (6) cos@Q(i2j)#; the re-
sulting model will be referred to as the CM. The dimensio
less parameterQ is taken to be given by the product of
characteristic wave vector~corresponding to an effectiv
one-phonon field! times the intercell distance. The effectiv

Hamiltonian~13! takes the formH̃5(a56H (a)(Q), with

HQ
~a!5

1

2
G~a!~SQ

2aS2Q
a 1S2Q

2a SQ
a !, ~A1!

whereSQ
a 5( j 51

N eiQ js j
a(a56,z), are the present Lindblad

operators. They fulfill the following commutation relations

@SQ
6 , SQ8

7
#562SQ1Q8

z ,

@Sz, SQ
6#56SQ

6 . ~A2!

For Q50 mod 2p one recovers the global sl~2! algebra
spanned by theSa’s, to which theSQ

a ’s are connected by the
following unitary transformationsUQ[exp(iQ(j51

N jsj
z). In-

deed, we haveSQ
a 5UaQSaUaQ

† (a56) ~notice that UQ
†

5U2Q). In terms of these unitary transformations and of t
Q50 Hamiltonian H05G (2)S1S21G (2)S2S1 the CM
model ~A1! reads

HQ5221 (
h56

UhQH0UhQ
† . ~A3!

From Eq. ~A2! it follows that, for any generic Q, the two
terms in the above equation do not commute: the mode
nontrivial, i.e., nonintegrable.

Next, the proposition shows that the analytic structure
the CM strongly depends on the input parameterQ, for par-
ticular Q values it is quite simple and its subdecoherent c
ing efficiency is optimal.

Proposition 1.One has the following integrable points.
~i! Q50 mod 2p,⇒H (a)(2p)5G (a)S2aSa, replica

symmetry.
-
n
for

e-
a-
r,
he

C

-

e

is

f

-

~ii ! Q5p mod 2p,⇒H (a)(p)5G (a)S2a(p)Sa(p)
5UpH (a)(2p)Up

† .
~iii ! if Q5p/2,3/2p mod 2p one has G i ,i 12n

(a) 5G (a)

(21)n andG i ,i 12n11
(a) 50. The odd- and even-site sublattice

decouple, and for each sublattice case~ii ! is recovered.
Notice that for cases~i! and~ii ! 2Q50mod 2p; then the

h51 andh52 terms in Eq.~A3! are identical; the mode
is then unitarily equivalent to theQ50 case. The latter is
clearly diagonalized in theS2,Sz eigenbasis and its spectrum
is given byE5(a56E(a)(J,M ,r ), where

E~a!~J,M ,r !5G~a!@J~J11!2M ~M1a!#, ~A4!

J5Jmin , . . . ,N/2;M52J, . . . ,J;r 51, . . . ,n(J,N), in
which Jmin50(Jmin51) for N even ~odd!, and n(J,N) de-
notes the multiplicity of the sl~2! representation labeled byJ
~Ref. 12!

n~J,N!5
N! ~2J11!

~N/21J11!! ~N/22J!!
. ~A5!

If N is even and 0,G (1)<G (2), the lowest eigenvalue is
E050 with degeneracyn(0,N), the ground-state manifold
being thesingletsector of the global sl~2!. At zero tempera-
ture one hasG (1)50; therefore all the lowest-weight sl~2!

vectorsuJ,2J& are ground states ofH̃.
Let us consider theNth roots of the unit~with N even!

ZN5H eiQ j /Qj5
2p j

N
, j 50, . . . ,N21J . ~A6!

This ~multiplicative! group is, of course, isomorphic to th
~additive! group Z/NZ5$0, . . . ,N21%; thus, we shall use
the same notation for both. Here,ZN is considered a sub
group ofSN . The latter as a natural action onHR given by
the linear extension ofp: ^ j 51

N us j&° ^ j 51
N usp( j )&,(pPSN).

The operatorsSm
a [Sa(Qm) satisfy to the commutation

relations @Sm
a ,Sn

b ,#5Kg
abSn1m

g ,Kg
ab are the sl~2! structure

constants. They span the (ZN graded! Lie algebra

AN[span$Sm
a /a5z,6,mPZN%> % i

Nsl~2! i . ~A7!

LetAN
Q be the Lindblad operators algebra for a genericQ.

The following proposition gives a characterization of it wh
Q varies.

Proposition 2.
~i! For a genericQ ~i.e., eiQ¹ZN) one hasAN

Q>AN ,
whereas foreiQPZN one finds

AN
Qn5span$S2pn

z ,Sn~2p11!
6 /pPZN%.

~ii ! AN
0 >AN

p>sl(2).
~iii ! AN

p/25sl(2)e% isl(2)o , where

sl~2!e[spanH (
j 51

N/2

~21! js2 j
a J

a

,

sl~2!o[spanH (
j 50

N/221

~21! js2 j 11
a J

a

. ~A8!

~iv! eiQ jPZN* [ZN2Z4⇒dimAN
Qj53N/2.
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Proof. One can check thatAN
Q5span$S2pQ

z ,SQ(2p11)
6 /p

PZ%. If Q is rationally independent from 2p the numbers
ei2pQ,eiQ(2p11) densely fill the unit circle, from which
AN,AN

Q.31 Points ~ii ! and ~iii ! follow from Proposition 1,
and ~iv! can be checked by a simple calculation.

Notice that eip/pPZN iff N50 mod 2p(p51,2). Re-
membering thatuc&PKer HQ⇔uc& is annihilated byall the
generators ofAN

Q—and then that the smaller is the algeb
the greater is the code—Proposition 2 seems to indicate
the ‘‘magic’’ Q’s possibly relevant for subdecoherent enco
ing are just the ones such thateiQPZN .

Let us now consider theQ dependence of the symmetr
structure of our model.

Lemma.Let GQ the ~maximal! symmetry group ofHQ ,
one has:~i! G0>Gp5SN , ~ii ! Gp/2>G3p/25SN/23SN/2 , and
~iii ! for eiQPS12Z4 one hasGQ5ZN .

Pictorially, one can say that in the CM the register ha
regular polygon topology that for the special pointsQ
50,p(Q5p/2,3/2p) collapses to a point~dimer! gaining in
this way a larger permutational symmetry. This dynami
clustering is associated with a greater subdecoherent co
efficiency.14 The next proposition summarizes in a form
manner the present situation.

Proposition 3.Let N be even.
~i! eiQPZN⇔dN(Q).0.
~ii ! dN(Q0)5dN(QN/2)5n(0,N).
~iii ! If N50 mod 4⇒dN(QN/4)5dN/2(Q0)2.
~iv! eiQ jPZN* ⇒dN(Qj )51.
~v! WheneiQ jPZN* the null space is spanned by the ve

tors

uc j&5 ^ i 51
N/2 ~ u01&2~21! j u10&) i ,i 1N/2 . ~A9!

~vi! Let N be odd thendN(Q)50;Q.
ng

e

o

or
at
-

a

l
ing

Proof. The caseseiQ561 are isomorphic and have bee
previously discussed. Notice that, ifH>0 one has

^cuHuc&50⇔Huc&50. Moreover,uc j&[uD̄,g j&, whereD̄
is the unique dimer partition of the array withu l 2ku5N/2

andg j ( l ,k)5 j (mod 2);( l ,k)PD̄. From the second of Eqs
~17! one finds that

^c j uHQj
uc j&;12

2

N (
l 51

N/2

~21! j cos~p j !50,

from which the sufficiency parts of~i! and ~v! follow. If
eiQ¹ZN from Propositions 2 and 3, one has that ifuc&
PKer HQ then it is in the singlet sector ofAN

Q ~Proposition
2!. Since C2n

is an irreducible~nontrivial! representation
space ofAN , such a sector is empty. Points~ii ! and ~iii !
follow directly from Propositions 2 and 3. Since theS6Q

a ’s
transform according 1DGQ irreps, from representation
theory it follows thatdN(Q) ~i.e., multiplicity of the 1DAN

Q

irrep! is equal to the dimension of an irrep of the symme
group GQ . But for eiQPZN* one hasGQ>ZN , ~abelian!
therefore, its irreps are 1D, from which point~iv! follows.32

Finally, point ~vi! simply stems from the fact that the nece
sary conditionSzuc&50 cannot hold for oddN.

To understand in a more constructive fashion why
uc j& are the~only! subdecoherent states foreiQ jPZN* , let us
consider the following stateuc&PC @C the ~global! sl~2! sin-
glet sector# such that ~i! U2Quc&5uc&. Then UQuc&
5UQ

† uc&5U2Quc&[uc̃&. This means that if uc̃&

Pùa56UaQC it follows that uc̃& is annihilated byS6Q
a

5U6QSaU6Q
† ,(a5z,6), and therefore, byHQ . It is now

easy to check that the statesuc j& of Proposition 4 are just

UQj
uD̄,0&, the dimer partitionD̄ being the only one allowing

for condition ~i! to be fulfilled.
the
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