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Subdecoherent information encoding in a quantum-dot array
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A potential implementation of quantum-information schemes in semiconductor nanostructures is studied. To
this end, the formal theory of quantum encoding for avoiding errors is recalled and the existence of noiseless
states for model systems is discussed. Based on this theoretical framework, we analyze the possibility of
designing noiseless quantum codes in realistic semiconductor structures. In the specific implementation con-
sidered, information is encoded in the lowest energy sector of charge excitations of a linear array of quantum
dots. The decoherence channel considered is electron-phonon coupling We show that besides the well-known
phonon bottleneck, reducing single-qubit decoherence, suitable many-qubit initial preparation, as well as reg-
ister design may enhance the decoherence time by several orders of magnitude. This behavior stems from the
effective one-dimensional character of the phononic environment in the relevant region of physical parameters.
[S0163-18209)07607-9

[. INTRODUCTION quantum computing to classical. Different computational
branches get entangled with differefguasiorthogonal
Devices using unique quantum-mechanical features caquantum states of the environment and their interference is
perform information processing in a much more efficient—orthen no longer observable. From a mathematical point of
even unattainable—way than those relying just on classicaliew, the relevant state space, given by density matrices, has
physics. This fundamental discovery has stimulated in th@ow aconvexstructure and the allowed quantum dynamics is
last few years a large amount of work and scientific debatedescribed by CP magdnitial pure preparations are typically
in the newborn field of quantum computatibffrom a con-  corrupted on extremely short timescales due to quantum-
ceptual point of view these results represent a serious chatoherence loss that makes them mixed: the initial informa-
lenge to the time-honored notion ohiversal computational tion irreversibly leaks out from the system into the huge
scheme#dependent of an underlying physical theory: infor- number of uncontrollable degrees of freedom of the environ-
mation as well as computation airgrinsically physical. On  ment. This phenomenon—the so-called decoherence prob-
the other hand, physical realizations of a quantum computdem in QC (Ref. 3—represents the major obstacle for the
(QC) would result in tremendous practical advantages. experimental realization of any quantum-computing system.
The key ingredients which endow QC devices with com-Other challenging requirements are of course given by the
putational capabilities that supersede their classical countenecessity of being able to perform on a system, withiedi-
parts are basicallyi) the linear structure of their state space; definedstate space, long coherent quantum manipulations
(i) the unitary character of their dynamical evolution; and(gating), precise quantum-state synthesis, and detection as
(iif) the tensorized form of multiparticle state spaces. Thewell.
first two properties allow for a parallel processing of an ar- A major theoretical achievement has been made by show-
bitrary number of data sets, encoded in suitable quanturing that one can, in principleactively stabilize quantum
states. By resorting to quantum interference, between differstates by means of quantum error correcfiofhe latter,
ent computational branches, one can selectively amplify debuilt in analogy with its classical counterpart, assumes that
sired parts of the state vector in order to optimize the probthe quantum bit§qubitg are coupled to independent envi-
ability that a final(i.e., read-oyt measurement will give us ronments. The information is then encoded in a subtle redun-
the information we were looking for. Poirtlii) represents dant way that allows, monitoring the systems and condition-
another striking departure from classicality: dueetdangle-  ally carrying on suitable quantum operations, to tolerate a
ment combining different quantum systems results in an ex<ertain(small) amount of decoherence and imperfect gating
ponential growth of the available coding space; moreoveras well®
the tensor-product structure is at the very basis of many ef- It is basically the need of dealing with systems suffi-
ficient quantum manipulations. ciently decoupled from the external environment that, up to
Unfortunately, all this holds just foclosedquantum sys- now, has limited the existing realizations to atomic and mo-
tems. Real systems are unavoidably coupled with environlecular implementations. Furthermore, the extremely ad-
mental (i.e., noncomputationaldegrees of freedom. Such vanced technological state-of-the-art in these fields allows
open character spoils points and (i), eventually turning for the manipulations required in simple QC¢dowever,
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any interesting QC would require a large number of quantunextend the carrier-phonon decoherence time up totke
gates and qubits as well, and all the present approaches sieale. Finally, in Sec. V we will summarize and draw some
fer from the problem oBcalabilityto large, i.e., highly inte- conclusions. The Appendix is devoted to a formal analysis of
grated, quantum processors. the so-called circular model, which will turn out to play a
One is then naturally led to consider the viability of solid- major role in the semiconductor-based implementation con-
state implementations. In particular, by resorting to presensidered.
semiconductor technology, one might benefit synergetically
from the recent progress in ultrafast optoelectrohitand in Il. THEORY OF SUBDECOHERENT QUANTUM
nanostructure fabrication and characterizafion. ENCODING
The first drawback of such a kind of proposal is that the
typical decoherence timep in semiconductors is of the or-
der of picoseconds. On the other hand, the relevant para
eter is the ratio between the typical time scale of gating
and 7p . Roughly speakingrp / 7 represents the number of

elementary(coherenk operations that one could perform on such a way thafi) the environment is effectively coupled

the system before its coherence being lost. .
g .. only with a subset of the degrees of freedonffInforma-
Loss and Divincenzl have proposed to use nonequilib tion is then encoded in the portighof Hilbert space spanned

rium spin dynamics in quantum dots for quantum computas - .
tion. This exploits the low decoherence of spin degrees o y the r(_amalmng((_jecoupleai degrees of freedo_m, and)
he environment is coupled to subset of staids a state

freedom in comparison to the one of charge excitations, be- q dent fashi In both casés t able t tract
ing the former is much less coupled with the environment/N@€PeNAent fashion. in both casess not avble 1o extrac

Nevertheless, the required magnetic gating is extremely cha|9f°f_”_‘a“°” fromC: the quantum coherence is thpassively .
lenging from a technological point of view, and the ratio stabilized. From the above points it should be clear the first

75/76 does not allow for the number of gate operationsand major departure from the error correction paradigm: here

within the decoherence time required by concrete QC’s. one assumes the environmental noise to be cc_)rrela‘twl. .
Ultrafast laser technology is now able to generate electoupled, in a strongly state-dependent way, with collective

: A f : tates ofRR.
tronic excitations on a subpicosecond timescale and to pef L . .
b b Before embarking in a detailed analysis of subdecoher-

form on such states a variety of coherent-carrier-control . .
operations. If one can speculate to resort to such a technol€NCe let us §hort|y discuss wo very simple examples, that
ogy for realizing gating othargedegrees of freedom then sho_vv how this notl.on can come abou_t. .
coherence times on nano/microsecond scales can be regarded(') NLet Tus consider !sospectral linear oscnlgtorHR_
as “long” ones. =w2j=lbj b; coupled with the vacuum fluctqatlops, ie.,
In this paper we analyze in a detailed way the recent ideg®re temperature, of aTbOSO”'C fiead by a Hamiltonian of
of implementingquantum error avoidingstrategies? The  the form Hy=2;(gy;acb;+H.c.). Suppose now thagy;
goal here is to suppress decoherence in a quantum registerdxVj. By introducing the Fourier transformed operators
realized by the lowest energhargeexcitations of a semi- by,=1/\/N =;e'%b; (bosons as wellone immediately sees
conductor quantum-dot arrdyIn this case, the noise source that only the zero modes are actually coupled;
is given by electron-phonon scattering, which is recognized= bg(Ekgkak)wLH.c. and HR=w2qbgbq. Therefore, any
to be the most efficient decoherence channel in such atate of the(infinite-dimensional subspace
systent®
Despite thea priori complexity of the three-dimensional C= |0>0®q>0Hq @)
(3D) phononic environment, we will show that the underly- | evolve unaffected by the environment in that; C
ing dynamical symmetry allows, by means of a proper quant | 0),=0.
tum encoding, to increase the decoherence time by several (ji) | et the system-environment interaction Hamiltonian
orders of magnitude with respect to the bulk value. The focuge of the formH,= 2,R,®E,, where X, eEndH, (X
of the present paper is mostly conceptual and the problem ot <) Moreover, let us suppose that the HermitRp's
actual preparation/manipulation of the resulting codeword$yre commuting operators, i.e., they spanabelian algebra

will not be addressed. A. Let CCHz a simultaneous eigenspace.4f This means
The paper is organized as follows. In Sec. Il the formaly, 5+

theory of subdecoherent quantum encoding is presented and

discussed. Section Ill deals with the application of the pro-

posed subdecoherence theory to realistic semiconductor- HI|CZE PuEu  (pueR). @)
based nanostructures. More specifically, we will choose as .

guantum register an array of semiconductor quantum dott other words, if one restricts himself © the interaction
and for this particular system we will study the potential with the environment amounts simply tcstate-independent
sources of decoherence. In Sec. IV we shall present a deenormalization of H. It is then clear that—provided is
tailed investigation of decoherence in our quantum-dot arrayinvariant under the system self-Hamiltoniblz—any initial

In addition to a short-time analysis, we will present time-preparation irC evolves in a unitary fashion regardless of the
dependent simulations corresponding to a numerical solutioatrength of the system-environment coupling and the envi-
of the master equation. They will show that by means of aonment initial state as well. Of course, for all this to be
proper initial many-electron state preparation it is possible tauseful in quantum encoding one must have @ini.

In this section we recall the basics of the theorynofse-
less codind? in the framework of a master equatiéME)
rl;‘lormalism, for the register subdynami®sGenerally speak-
ing, these strategies for preserving quantum coherence rely
on the possibility to design an open quantum sysfenn
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A. Master-equation approach mediated by the external environment. The dissipative Liou-

The system under investigatio is given byN identical  Villian is given by £4=%,_. L, where
two-level systemsN-qubits quantum registgrrepresenting 1 N
our computational degrees of freedom, coupled with an ex- o\ D[ Tl o— 7 7 -7
ternal (ur?controllable gnvironment. The regiSteVE will be Ldp) 2h 2 Loty It Lot poy D). ()
described in the spin-1/2 language by means of the usu
Pauli spin matrice§o?, o}, generating\ local sl(2) al-
gebras

illere, the termyp= — (= +) is associated to deexcitation
(excitation processes of the qubits by emissi@bsorption

of bosonic quanta. The Hermitian matricEsand A are the
input data defining our ME, and their actual form depends on
the details of the physical constants,{w}{9.i}, etc) and
The collective spin operato&'=3N ,¢%,(a=+,z) spana Wil be given later. . _ o o
sl(2) algebra as well, and it will be referred to as tiebal As far as the analysis of this section is concerned it is
sl(2). The environmen€ will be described by a set of non- Sufficient to know thad’>=0. One can go on with general
interacting harmonic oscillators with bosonic field operatorsconsiderations by diagonalizin(” in order to obtain the

[O'iJr,of]=25ija'iz, [Uiz,a'ji]ziéijo'ii. (3

(b by 1= S - canonical form for the dissipative part of the Liouvillfan
The total Hamiltonian is assumed to Bé¢=Hp+H, 1 N

+H;, where H,=ES and Hg:Ekwkblbk are, respec- Ly(p)=— 2 N([L7p,L "]+[L7,pL "))

tively, the register and the environment self-Hamiltonians. PIm2n By P wP

Here, E represents the energy spacing between stfgs )

and|1); in each qubit. TheR — ¢ interaction is given by where {)‘Z} are the (non-negative eigenvalues ofl(").
Moreover,L /= Z;uf*a{",uf* denoting the components of the

Hr=>, (gbio; +H.0). (4)  eigenvectors off (). The L’s will be referred to as the
ki Lindblad operators. The operatdie) algebrad spanned by

Let us now briefly recall the standard Born-Markov schemeh€ Lindblad operators contains the information about the
for tracing out the& degrees of freedom and obtaining a €Xistence of coding spaces stable at least on a short time-

master equation for the register subdynamics. The LiouvilleSc@l€- The finite-time stability depends on the interplay be-

von Neumann equation for thtotal density matrix of R tween .the.dissipative and the unitary components of the
£in the interacti ict d9.5=H. 31 O Liouvillian in Hy,.

®€ in the interaction picture readgp=[H;.p]. One as- In order to quantify the efficiency of the environment in

sumes a factorized initial conditiop(0)=p® (). After a  destroying quantum coherence it is useful to defirérat-

formal time integration one obtains order) decoherence time (ratej;(r; ) by means of the
. short-time expansion of thédelity'* for pure initial state
B(t)=}3(0)+J dr{HA7),p(7)] preparations i)
0
t
- t - F(t)= (O] g)=1— —+o0o(t?). 9
=501 [ drHn 5O+ (-1)? (O=leOl) =12
0

From Eq.(8) one obtains

t T
X | dr | dr'[Hg(7),[H(7"),p(7)]].  (5) N
] = X AL KAL),
Now we sefp(7')=p(7')©Q(Q~e "¢ and we perform ’ (10

a partial trace ove€ in order to get an equation for the This expression is nothing but a sort of fluctuation-

reduced density matrix oR:p(t)=1r® p(t). The resulting dissipation relation connecting the dispersion of the Lindblad
ME is of the formp=L(p). The Liouvillian superoperator operatord. in the initial register state with the rate at which
L is given by the sum of two contributiong, representing quantum coherence is destroyed. It is important to point out
the unitary component of the dynamics ruled by thenor-  that the unitary component of the Liouvillian does not con-
malized register self-HamiltonianLy describing the irre-  tribute to the first-order decoherence time.7{f'[| )] =0
versible decoherence/dissipation processes induced by thigen the statéy) will be called subdecoherenand a linear
coupling with the external bath. By denoting witlh; the  subspac€C 1y, will be referred to as aubdecoherent code.

unperturbed register self-Hamiltonian, one has thigfp) In general, the register Hilbert space splits4rinvariant
=ili[p,Hr+ 6Hz] where the environment-inducet ; is subspaces,
given by
N Hr=,02 HY, (11
SHr= 2 X Aa; o). (6)  whereJ labels the irreducible representatiofisep) of A,
== ij=1

and the integers; are the associated multiplicitigs+ "
These contributions—usually referred to as the Lamb-shiftEHEJ,)]. The singlet sectolC of A is the direct sun{possi-

terms—describe a sort of qubit-qubit effective interactionbly empty of the one-dimensional irreps. In Ref. 14 it has
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been shown that, for non-Abelianl, the subdecoherent eyist subdecoherent states, and in this a&s&erH and

codes coincide witl€. In an equivalent group-theoretic lan- = _ . ~ . :
guage one can say that the calless the subspace of vectors dy=dim KerH gives t_he d|men3|on_ of the code. The S.Ubde'
invariant under the action of groug=exp (4) generated coherence property is stable against small perturbations of

(infinitesimally) by the Lindblad operators ,. (C is the the state. Indeed, ify)eKerH—|i)+[5y) then syt
trivial G-representation spag¢eThis group acts, of course, on ={8¥|H|&¥)=0.

the general mixed stateg=>XpX",(X e G). The same argu-

ment holds for the subdecoherdipure states. Whert is B. A simple example

invariant under the action ¢, ; then the contribution to the

. . To better illustrate the situation let us consider Mwe 2
dynamics ofLy4 vanishes

case. The modelL3) is soluble in an elementary way We
! assumel'{7=T)=r® andr{;)=r5=1r®)g; more-
p=ly)yl—>eMrpe™r  (V|y)eCt=0). (120  over, V=T, From positivity it follows thai 8| <1. The

o o . — . spectrum is given b
The finite-time evolution is unitary, and in this ca3wvill be P g y

referred to as noiseless code: quantum coherence is E.=2T(-)  E.—27)
preserved—in principle—for an arbitrarily long time. When 1 r T ’
C is notHy, invariant the initial preparatiopy) on a greater _
time scale leaks out from the code and its quantum coher- ELS:(F( HTHA=p), (14

ence will be eventua_llly washed out. For ingtance, the _Condi\'/vith eigenstates given, respectively, by

tion [H% ,.A]=0 suffices to have such a noiseless coding or

even thatH;, belonging to theassociativeoperator algebra |11),|00),2~Y2(|01) + |10)).

A, generated by thé ,’s and the identity operator. Notice

that if C is subdecoherent for tHe,’s it is subdecoherent for  If T(*)>0, for |g|<(I'") =T M) (I )+ 1) "1=p_ one

any set of Lindblad operators included 4y, . has E,=Ey, for B8>B.(B8<B:) one finds Ey=E4(E,

From a physical point of view, the algebrhof Lindblad ~ =E,).I'")=0=E,=Ey=0. Finally, for 8=+1 one has
operators represents the set of the register modes that aagainE,=0, with eigenstates given byj,). In summary,
incoherently excited by the environment; looking for statessubdecoherent states exist in a subset of the boundary of the
that are annihilated by as many Linbdlad operators as pod” manifold. This result is quite general: fgenericI”s one
sible is then like looking for states that are “vacua” for the has E\[T']>0, the subdecoherence conditi&R[I']=0 is
largest number of such excitations and, therefore, maximallyulfilled just in a “zero-measure” set of the Hamiltonian
decoupled with environmen?.It is important to emphasize models(13). Of course, this is simply due to the fact that a
that such a decoupling can be achieved thanks to thgenericI” gives rise to a Lindblad algebtd is too large for
algebraic-dynamical structure of the model without any asadmitting a(nontrivial) singlet sector.
sumptions about théwveakneskof the register-environment Turning back to the generdl case, to exemplify the col-
interaction. Loosely speaking, one can say that for generitective nature of the decoherence-dissipation dynamics let us
I'’s, the Liouvillian is such that, giveany register prepara- consider the states\( even
tion, the environment forces the coding system to explore the

totality of its Hilbert space so that there is no safe place for |¢Sym>E(ST)N/2|o>,

storing quantum information. Except for some “magi&”

the Lindblad algebra gets smaller allowing just for a limited |D7>E®(- ep []02)—(— 1)y(i,j)|10>]__ (15)
1,])e i

probing of the register space of states by the environment
strongly dependent on the initial register data: free room isyhere D is a dimer partition of the qubit array, angtD
left for “hiding” quantum information. —{0,1}. The first state in Eq(15) is simply the totally sym-
Rather interestingly, the problem of analyzing state stabilmetric S?=0 state[belonging to the $B) multiplet of the
ity against decoherence can be cast in a Hamiltonian form byacyuni, whereas th¢Dy)'s are products of singlet or trip-
observing that, for an initial conditiopy) that is aS* eigen-  |et pair states depending on the signatyref the register
state one has; *=(y|H|y) where dimer partitionD. This latter family of state$15) will play
an important role in the following. Notice that, fer=0, one
gets global €P) singlets corresponding to zero total angular
AL Ly momentumS?. In terms of Hadamard transformations and
1 controlled-not operatof the | Da)’s can besynthetizedas
follows from a pure product state:

N
H= X
n=*,un

N
=2 (I ol oy +T oy o). (13
=1 |Dy)=® 1 mepcnot jmH [y(1,m+1,D,. (16)

In other words: the problem of finding decoherence rates igvith straightforward calculations one finds that the first-

mapped onto the spectral problem for tpesitive) operator  order decoherence rates of statts) are given, respectively,
(13). In particular, “robust” stategi.e., the ones with mini- py (7 /75)"1=f (I),(a=symDy) in which 75!

mal decoherence rateare ground statesf H. Let Ey de-  =TgN/2 is the decoherence rate for uncorrelated qubits, and
note the lowest eigenvalue ¢f. Exy=0 means that there (I'j;=T;/T’y)
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~ thZ
foym=1+ —R2, i, —_ 't 1 \/0D
sym N—1 2 ] h; py_— +VH(r)
( h2v? hv? ”
2 o =| - HVEr) [+ = o + Vi
fp,=1-® > (-7, ap 2me 2me
(i,j)eD
=H'+HI, (18)
wherel',=T; (i=1,... N) Thef,’s contain the informa- Where
tion about the degree of many-qubit correlation in the decay 1
process: ifl'«| one hasf,=1 and the qubits decohere inde- Vi(r))= Em* w?|r, |? (19
pendently.
is the 2D harmonic-oscillator potential in the,{) plane
perpendicular to thé€z) array axis(which coincides with the
Ill. APPLICATION TO SEMICONDUCTOR growth axis of the QD structuye while V‘i‘(r”) is a 1D
NANOSTRUCTURES square-well potential centered gt=iaz with width d and

In this section we shall discuss a potential application Oiin_finite Wa"S'z_l a be“f‘g the array pgriodicity,_i.e., the if‘te“?'O‘
stance. This choice for the single-particle Hamiltonian,

the above subdecoherent quantum-encoding strategies to |%' . !
o . even though not generally valid, well describes the OD car-
alistic, i.e., state-of-the-art, semiconductor-based nanostruc-

. ) . . fier confinement of the low-energy states in the QD structure,
tures. Since in semiconductors the primary source of dec 9y Q

Qwhich are the only relevant states for the quantum encoding

herence is known to be carrier-phonon scattering, we WIIIconsidered. We would like to point out that the very same

consider as prototypical systems quasi-zero-dimensionghn mogel turned out to be able to explain, in a quantitative
(0D) structures, for which the reduced phase space availabkﬁay the addition spectra reported in Ref.228.
allows for a significant suppression of phonon-induced en- Tpe Hamiltonian(18) is elementary soluble, its spectrum

ergy relaxation and dephasing. _ being the sum of the parallel and perpendicular contribu-
We will choose as a prototype of quantum register anijons:

array of semiconductor quantum dots. In particular, we will
consider as a quantum d@®D) a GaAs/AlGa, _,As struc-
ture similar to that studied in Ref. 18. Here, various effects
due to carrier-carrier interaction witiot be considered. This . . . :

is, of course, a potential limitation of our analysis, especiall The corresponding 3D eigenstates will be factorized accord-
in relation to state preparation/manipulatigmot addressed gfto
in this papey). Indeed, the latter requires a controllable source ) _ gl (P

of enta?ng?ement, ie.,a qubit—qugit interaction that might be PinA1)=Fnn (1) ST =12). @)
provided by “switchable” Coulomb couplings. On the  The total free-carrier Hamiltonian describing our QD array
other hand, our coding states will involgengle-electroroc-  can then be expressed in tteecond-quantizedorm
cupations only; for such states the intradot Coulomb repul-

sion is clearly absent, while the interdot one at the distances He=> e.clcia, (22)
relevant for our quantum encoding is found to be ia

negligible?® Moreover, since the system under consideration here the fermmioni tors te(dest
is based on intrinsic 11I-V materials, carrier-impurity scatter- WNEre the fermionic opera OK5,(Ci) Create(destroy an
ing is negligible. electron in theth QD in statea=n,n,v.

2h2v2

gz (20

€, =E:+El=(n+n+ Do+

Generally speaking, Hamiltonian modifications will result
in leakage from the coding subspace only on a longer time B. Carrier-phonon coupling
scale with respect to the phonon scattering one, i.e., it does The Hamiltonian describing the free phonons of a semi-
not affect the stability classification based on(see Sec. I conductor crystal is given B§
Finally, we would like to stress that there exists a whole
class of interactions leaving the code invaritnt.

Hg=; fiwygbl b (23)
q
A. Free-carrier states in the quantum-dot array where\ andq denote, respectively, the phonon mdeeg.,

The confinement potential® giving rise to the quasi-op &coustic, optical, ejcand the phonon wave vector.
carrier states in such a QD structure is properly described in 1€ coupling of phonons with the electrons in the QD
terms of a quantum-wellQW) profile vl along the growth array is qlesc_rlbed by the following carrier-phonon interac-
direction of the structure plus a 2D parabolic potentalin  tion Hamiltonian:
the normal plane. More specifically, a carrier within fltle
QD structure is described by the following single-particle H,= 2 [gia‘i,a,;}\qcfabchi,aﬁH.c.], (24
Hamiltonian: ia,i’a’;\q
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where

gia,i’a’;)\qza)\qJ Cbi*a(r)eiq.rd’i'a'(r)dr (25)

are the matrix elements of the phonon potential between th

quasi-0D statesa andi’a’. The explicit form of the cou-
pling constanf;m depends on the particular phonon mode.

C. The qubit register

In the proposed information-encoding scheme the single

qubit is given by the two lowest energy levels of the QD
structure. Since the widttl of the GaAs QW region is typi-

lly of the order of a few nanometers, the ener littin e o . .
cally of the order of a few nanometers, the energy split gl.{—|am|lton|an(24). Within the carrier model considered, wave
u

due to the quantization along the growth direction is muc

larger than the confinement enerfjyw induced by the 2D

parabolic potentiaV* (typically of a few meV. Thus, the

two lowest-energy states—state) and |1)—realizing our

qubit are given by products of the QW ground state times th

ground or first excited state of the 2D parabolic poterifial.
More specifically, they are given by

(r|0Yi= s () d5(Y) ¢l (2),

(rl1)i= () 1 (Y) ¢|i|,0(z), (26)
where
¢$(X):Coe_aoxz, Co=(2ay/m), ao_mzhw.
¢i(x):ClXefaox2, C1:2a(3)/4(2/77)1/4 (27)
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A=%w) and T the environmenti.e., lattice temperature;
this sort ofleakageerror occurs with low probability as long
asA>kgT.

By denoting withE=e¢; ;— ¢ p=7% w the energy spacing
etween our two qubit levels, the free-carrier Hamiltonian
2) for our qubit register, i.e., restricted to the low-energy

sectora=0,1, can then be written as

N
Hr=E>, of, (30)

=1
where of denotes the usual diagonal Pauli matrix acting on
theith qubit.
Let us now consider again the carrier-phonon interaction

nctions corresponding to different QD’s do not overlap;
thus, one hagj,, ,.2q=0 for i#i’, i.e., phonons induce
intradot (intraqubi transitions only. The coupling constants

gssociated to the relevant elementary processes in our qubit

register areg; \q=0i1ionq %ixg=Yioi1ng- More specifi-
cally, starting from the explicit form of the single-particle
wave functions ¢ in Egq. (26) one finds g;,q

:a)\qu(qx) gy(qy)gz(qz ,Z)[q=(ax 1Oy ,dz)], where
o
8a0

Ox(0x) = <¢é|eiqxx| ¢é> = EX[{ -

%
8a,

| 1
gy(ay) =(p1|e'W|pg) =i ;(1)/2%' ex‘{

: 8
A (¢l |92 gl y=""_
glz(qz) <¢|,Ole |¢|,O> d3q

z

sin(q,d/2)
——F¢

2 2

0 Mz

92z (31)

are, respectively, the ground and first excited states of the

harmonic oscillator in théperpendicularxy plane, and

, C= \/%

is the ground state of theh quantum-well potential parallel
to the array axig d)L‘vo(z):O for |z—ia|=d/2].

Notice that the only dependence on the QD labaf the
qubit states is in tha component of the wave function.

(28)

<I—'>|i|,o(2)=CZ cos{g(z—ia)

Since we are restricting ourselves to the low-energy sectoyj

andqy=27/d.
Within these assumptions the carrier-phonon interaction
Hamiltonian(24) can be cast in to the forr#):

szé (gkiblo +H.c), (32
where the bosonic labéd now corresponds to the phonon
modes of the crystal, i.ek=\q.

Following the Born-Markov procedure discussed in Sec.
one finds the following result for the matricds and A

a=0,1 in the absence of interdat£i’) transitions, the only defining our ME(Ref. 27:

relevant fermionic bilinears in Eq24) are given byX;

=ciTlci0 and their conjugates. Consistently with the commu-

tation relationg X; ,X[]= &;(n{ —nP)=0y;,07, these bilin-
ears can be described by the spin-1/2 operatqgrs Let

|0y=TIN_,c/y|vac be the reference state built over the elec-

tron vacuum by occupying all th@); . Our reducedHilbert
space containing the computational degrees of freedom
then given by

N

iljl X 0)|e;=0,1=®L,C% (29

Hr= spar{

Fi(jt):2772k gkia(j[nk"' 0(¥F)]8(hw—E),

(33

ngk,- _
ﬁa)k— E[nk+ 0(+)]

Aff)=7>2
is k
Here, 6 is the customary Heaviside function afiddenotes
the principal part. From these relations it follows tH&t")
and A®) are Hermitian as expected. Furthermdfé™)=0
andI'7)=1()_ Since for the QD structures considered the
energy splittingke is typically much smaller than the optical-

Any process inducing transitions out of this subspace willphonon energy36 mev in GaAg the only phonon modes

result in a computational error. LeY be the energy gap
between|1) and the higher excited statée the present case

k=g involved are the acoustic ones. In this case, by con-
sidering carrier-phonon coupling due to deformation poten-
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tial, one hagy(q) = V%eq%2pVc, wheree is the scalar lat-
tice deformation,p and V the crystal mass density and

volume, whilec is the sound velocity.
Let us now focus on the explicit form of the functidhin
Eq. (33), i.e.,

Fﬁ=2w§ 9i(a)g;(Q[Ng+ 6(£)18(wg— w)

B V
(2m)?

J d3q gi(@)gj(A[Ng+ 8(*)]8(fcq—fiw).

(34
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Because of the axial symmetry of the problem and the delta g, 1. carrier-phonon scattering rate for a single QD structure
function of energy conservation, the three-dimensional inteas a function of the energy splittin for different values of the

gral overq in Eq. (34) is better approached in polar coordi-
nates: dq=g%ded(cosd)dg. One obtains an expression
proportional to

Jl deQ’t4a cogQtz;) s ot
-1 [(q/Q)%—t?]? t? a/Q
with g=qg,a=ay, and Q=E/%ic. Moreover,z;=a(i—])

is the distance betweéth andjth QD’s. The crucial point is
to observe that forQ/aj?=x, /\j,(\~Q?Y) is large

_ 2
- t"inz[

} (39

QW width d at low temperaturésee text

being the pointY =0, mods; when all the register cells
feel the same external coupling the dynamics is maximally
collective due to the full permutational symmetry.

The existence of infinitely many “magic” points is
clearly due to the unphysical nature of the CM that allows
for undamped interactions between objects separated by ar-
bitrary large distances. In realistic systefas the ones in-
vestigated in this papethe cosine dependence of thema-

enough, and this integral is dominated by contributionstrix can only be approximated and the periodicity with

aroundt=cosd=1; therefore,

I"=T{7 co§Qz]. (36)
Recalling thain |, =a, 12is the typical length scale of carrier
confinement in the-y plane, this behavior is easily under-
stood: due to the energy-conservation constraiq§s+(q§
=|q|?=Q?), for delocalized in-plane wave functioriwith
respect to the length scalg), the significant fluctuation af
in the considered state is small; therefoge=Q. In other

respect to the cell distance eventually destroyed by some
overimposed decay. In a way, the present situation is very
similar to having a string oftwo-level) atoms in a cavity
coupled with a single resonant electromagnetic nf3de.

IV. SIMULATION OF SUBDECOHERENT DYNAMICS
IN A QD ARRAY

In this section we will present our numerical analysis of
subdecoherent quantum encoding for realistic QD structures.

words, due to the exponential suppression—in the overlap
integral—of the contributions from phononic modes with
nonvanishing in-plane components the system behaves as in As a starting point, let us discuss the role of carrier-
the presence of a single effective phonon mode alongthe phonon interaction in a single QD structure. Figure 1 shows
axis resonant with the qubit excitations. As clearly confirmedthe total(emission plus absorptiprarrier-phonon scattering
by our numerical analysis reported in Sec. 1V, this is anrate at low temperatureT=10 K) as a function of the en-
extremely important feature of the semiconductor modekrgy spacinge for three different values of the GaAs QW
considered: in spite of its 3D nature and of the presence of @idth (d=3, 4, and 5 n?® Since the energy range consid-
continuum of decoherence-inducing phonon modes, in thigred is smaller than the optical-phonon enefg§ meV in
regime the carrier subsystem experiences an effectively 1i@aAs, energy-conservation scattering with LO phonons is
coherent environment, that in a good approximation can b@ot allowed. Therefore, the only phonon moxehat con-
described by the circular modelCM) analyzed in the tributes to the rate of Fig. 1 is that of acoustic phonons.
Appendix?’ Again, due to energy conservation, the only phonon wave
_ This model, parametrized by the dimensionless quantityectors involved must satisfig|=E/%cs=q,c, being the
Q=Qa, represents a nontrivial example of a register-GaAs sound velocity. It follows that by increasing the energy
environment coupling that admits a rich struct(ae a func- ~ spacingk the wave vectoq is increased, which reduces the

tion of 6) of subdecoherent encodings. From this point Ofcarrie_r-phonon coupling enteripg in the elgctron—phonon in-
view, it realizes a generalization of the replica symmetricteracnon and then the scattering rate. This well-established

model (pure collective decoherenceliscussed in Ref, 12, Pehavior, known as phonon bottlenétkis typical of a

, ~ e quasi-0D structure. As shown in Fig. 1, fe&r=5 meV—a
that is recovered fo@=0. Here, we limit ourselves to SUM-  giandard value for many state-of-the-art QD structures—the
marize the main result:

, , carrier-phonon scattering rate is already suppressed by al-
Safe quantum encoding are possible for the models such,os; three orders of magnitude compared to the correspond-

thate'© is a fourth root of the unity, the most efficient case ing bulk value$®

A. Carrier-phonon scattering in a single QD structure
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In addition to the bottleneck scenario discussed so far, for

a given value of the energy spaciigwe see that for small 20r @1
values ofd we have an increase of the carrier-phonon rate. In
spite of the reduction of the 3D volume available to the 15 - .

carrier states, the overall coupling is increased, basically due
to the progressive relaxation of momentum conservation

B A
along the growthz) direction.
5 L -
B. Short-time analysis BC

We will now show that by means of a proper information

e
o

rate (1/ns)

encoding, i.e., a proper choice of the initial multisystem

: 100 | ]
quantum state, and a proper design of our QD array, we can ®)
strongly suppress phonon-induced decoherence processes, 80 L i
thus further improving the above single-dot scenario. To this
end, let us consider a four-QD array, which is the simplest B 60 L i
noiseless qubit registdsee the Appendjx From the short- =
time expansion discussed in Sec. Il A, we have numerically 2 a0 L i
evaluated the decoherence rate for such QD array choosing -
as energy splittingE=5 meV and the QW widthd 20 | i
=4 nm(see Fig. 1 As the initial state we have chosen the
singlet|4,//Dl,0> [see Eq.15)] defined by the dimer partition
D,1={(1,2),(3,4}. We stress that when the CM approxima- . . '
tion (see the Appendixis not exactly fulfilled, different sin- 200 L © |
glets have different decoherence rates. Indeed, the larger the
distancez;; between the pair elements in the dimer covering,
the greater the deviation from the strictly periodic behavior. g 10T
Thus, from Eq.(17) it follows, for instance, that the singlet =
corresponding to the dimer partitidd,={(1,3)(2,4} has a £ 100 -

greater decoherence rate tH@’%,o)- The decoherence rate

obtained from our numerical calculation is shown as a solid 50 | -
line in Fig. Aa) as a function of the interdot distanee The
uncorrelated-dot decoherence rate is also reported as a L L ! L
dashed line for comparison. As suggested by the analysis of 0 3 6 9 12 15
the circular model presented in the Appendix, in spite of the distance (nm)

3D nature of the sum over entering the calculation of the g, 2. (@) Phonon-induced decoherence rate for a four-QD ar-
function Fi(i_,) [see Eq(35)], the decoherence rate exhibits a ray (solid line) as a function of the interdot distaneecompared
periodic behavior over a range comparable to the typical QDvith the corresponding uncorrelated dot r&dashed ling (b) same
length scale. In the circular-model approximatitand for  as in(a) but with an artificial effective mass ofr6*; (c) same as in
T=0) one obtainsr; ol '/fDl]:zrg)o)[l_ cosQa)], from (& but with an artificial effective mass of i (see text

which it follows that fora,,=2n=/Q,(nen) the considered . _ ) )

state is stable. This effect—which would be natural for a 10\ (& iS progressively suppressed. This can be clearly under-

phonon system—stems from the exponential suppression iﬁtood as follows: the increase of the effective mass leads to a

the overlap integral of the contributions of phononic modes>onger and stronger localization of the 2D harmonic-
with the nonvanishing in-plane component previously dis_o§C|IIator wave functions which, in turn, can easily interact
cussed. This 1D behavior is extremely important since it alWith transversexy) phonon modes. o
lows, by suitable choice of the interdot distareo realize As far as the unitary component of the Liouvillian is con-
a symmetric regime in which all the dots experience the*erned, one can e‘:"s'ly show tiéar any[4) eigenstate of
samephonon field and, therefore, decohere collectively. Fig-S7] F(t)=|{#|e ™ "Mr|)|?=1— (t/7y) >+ o(t3), where
ure Za) shows that for the particular QD structure consid-
ered, cas€ should correspond to a decoherence-free evolu- 2
tion of a singlet state, which is not the case foandB (see — =(¥] SHZ|y) — (| SHz| 92 (37
symbols in the figure Tu

In order to better understand how this sort of effective 1D _ 1 ) ) )
behavior depends on the material parameters considered, Jddure 3 showsr;“[[4p,] as a function of the interdot dis-
have repeated the subdecoherence analysis of Fay.bg  tancea.
artificially increasing the GaAs effective mass. More specifi- We find an oscillatory behavior similar to that of Fig.
cally, Figs. Zb) and 2c) present the same decoherence2(a); it stems from the fact thafor the material parameters
analysis, respectively, for values of 5 and#Q As we can  considerefl Aﬁ:Fgosir’[Q(i—j)aJr o], with ¢<7/2. Thus,
see, by increasing the effective-mass value the 1D charactéor values ofa corresponding to a subdecoherent dynamics
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FIG. 5. Linear entropy as a function of time as obtained from a
direct numerical solution of the master equation for the relevant
[see pointC in Fig. 2a)], the A contribution, also known as case of a four-QD arraisee text
the polaronic shift, is negligible as well.

FIG. 3. Tﬂl[|l//7>1>] as a function ofa (see text

reported in Fig. 5. We can clearly recognize an initial tran-

sient (of the order ofr;) in which the register, getting en-

tangled with the environment, decoheres; this is followed by
In order to extend the above short-time analysis, we havg subsequent slower relaxation dynamics.

performed a direct numerical integration of the master equa- The time-dependent analysis of Figs. 4 and 5 confirms

tion (see Sec. Il A, thus obtaining the reduced density ma-that by means of the proposed encoding strategy one can

trix p as a function of time. Also the Lamb-shift terms dis- realize a decoherence-free evolution over a time scale com-

cussed in Sec. Il have been taken into account. Starting frofgarable with typical recombination times in semiconductor

the same GaAs QD structure considered so far, we havgaterial

simulated the above noiseless encoding for a four-QD array.

Figure 4 shows the fidelity as a function of time as obtained

from our numerical solution of the master equation. In par-

ticular, we hr_;\ve performed three diffen_ent simulati_ons—for We have investigated a possible semiconductor-based

the same initial statpyp, o)—corresponding to the different jojementation of the subdecoherent quantum-encoding

values ofa depicted in Fig. 2a). Consistently with our short-  strategy, i.e., error avoiding, recently proposed in Ref. 12.

time analysis, for case C we find a strong suppression of thghe goal is the suppression of phase-breaking processes in a

decoherence rate, which extends the sub-nanosecond tirg@antum register realized by the lowest enechgrgeexci-

scale of theB case(corresponding to the uncorrelated dot tations of a semiconductor QD arr&yIn this case, the pri-

rate) to the microsecond time scale. mary noise source is given by electron-phonon scattering,
Another quantity that properly describes the environmentwhich is considered to be the most efficient decoherence

induced corruption of information is the linear entropy channel in such a systef.

Slpl=tr(p—p?). Its production rate is also directly con-  The main result is that, in spite of the 3D nature of

nected tor, ; indeed, for an initial pure preparation we have carrier-phonon interaction in our QD structure, by means of a

S(t)=2t/7,+0(t?). The time evolution of the linear en- proper quantum encoding as well as of a proper tailoring of

tropy, as obtained from our numerical solution of the ME, isthe semiconductor structure, one can, in principle, increase
the coherence time by several orders of magnitude with re-

spect to the bulk value. This would allow us to realize a
coherent quantum-mechanical evolution on a time scale

C. Time-dependent solution of the master equation

V. SUMMARY AND CONCLUSIONS

fidelity
o ©
(2] 0]

e
~

o
(M

time (ns)

longer compared to that of ultrafast optical spectroscopy.
From this point of view this result might constitute an im-
portant step toward a solid-state implementation of quantum
computers. On the other hand, it certainly represents a first
nontrivial example of a solid-state quantum system for which
one can apply quantum error-avoiding strategies.

As already discussed in Sec. lll, carrier-phonon scattering
is not the only source of decoherence in semiconductors. In
conventional bulk materials also, carrier-carrier interaction is
found to play a crucial role. However, state-of-the-art QD
structures—often referred to as  semiconductor
macroatom®—can be regarded as few-electron systems ba-

FIG. 4. FidelityF as a function of time as obtained from a direct Sically decoupled from the electronic degrees of freedom of
numerical solution of the master equation for the relevant case of the environment. For the semiconductor QD array consid-

four-QD array(see texk

ered, the main source of Coulomb-induced “noise” may
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arise from the interdot coupling. However, since such Cou- (ii) Q=mmod 2m,=H @ (7) =T (IS %(7)S*(7)
lomb coupling vanishes for large values of the QD separation= UWH(“)(ZW)UL.
and since the proposed encoding scheme can be realized for (jii) if Q=/2,3/2r mod 27 one has ., =r

values ofa much larger than the typical Coulomb-correlation , _ 1) andl“-(?“)ﬂnﬂzo The odd- and even-site sublattices
. . . i,i .

length (see Fig. 2, a proper design of our quantum register yoqyple, and for each sublattice céispis recovered.

may rule out such additional decoherence chariiels. Notice that for case§) and(ii) 2Q=0mod 2 then the

The actual implementation of the suggested encoding re; _ and 7=— terms in Eq.(A3) are identical: the model
l'es’ Of. course, on precise quantum-state synt_heS|§ and mge then unitarily equivalent to th®=0 case. The latter is
nipulations. This further step,' not addrgssed in this paperclearly diagonalized in th&?,S? eigenbasis and its spectrum
represents the most challenging open issue concerning thg given byE=S E@(J,M,r), where

ultimate usefulness of the proposed coding strategy. !
E@I,M,N=TYJJ+1)-M(M+a)], (A4

I=duims . N2ZM==3, ... Jir=1,...n(I,N),  in

We are grateful to M. Rasetti for stimulating and fruitful Which Jpi,=0(Jmi,=1) for N even(odd, andn(J,N) de-
discussions. This paper was supported in part by the E®@otes the multiplicity of the §2) representation labeled ky
Commission through the TMR Network “ULTRAFAST.” (Ref. 12
P.Z. thanks Elsag-Bailey for financial support.
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A5
APPENDIX: CIRCULAR-INTERACTION MODEL (A%
If N is even and &T'(")<T'(7), the lowest eigenvalue is
Eo,=0 with degeneracyn(0O,N), the ground-state manifold
being thesingletsector of the global §2). At zero tempera-
ture one had (")=0; therefore all the lowest-weight(8)

This appendix is devoted to the formal analysis of a
model with periodic(environment-inducedinteractions be-
tween register cells. We s&{;”)=T") co§Q(i—j)]; the re-
sulting model will be referred to as the CM. The dimension- ~
less paramete® is taken to be given by the product of a vectors|J, —J) are ground states of.
characteristic wave vectofcorresponding to an effective ~ Let us consider th&th roots of the unifwith N even
one-phonon fieldtimes the intercell distance. The effective 2]

Hamiltonian(13) takes the formH =3, _ . H(®(Q), with Zy= eiQi/QJ:T,j =0,...N—1}. (AB)

This (multiplicative) group is, of course, isomorphic to the
(additive groupZ/NZ={0, ... N—1}; thus, we shall use
. the same notation for both. Her&, is considered a sub-
whereSg==1 U0 (a=*,2), are the present Lindblad group of Sy . The latter as a natural action Gt given by
operators. They fulfill the following commutation relations: the linear extension qf):®}\‘=1|01>H®}\‘=1|0pm>,(pESN)_
. = , The operatorsS;,=S“(Q,,) satisfy to the commutation

[Sq . Sor1=*25q.q: relations[ Sy, Sf,1=K%PSY, . K3# are the g) structure

constants. They span th& graded Lie algebra

1
(o) - “1T(0)(q-aqa —a g
HEY =5 T (S8 o +5-5Sg), (A1)

[, S5l=*S5 - (A2)
Ay=spaiSi/a=z,+,me Z}=alsl(2);. (A7)
For Q=0 mod 27 one recovers the global (8) algebra
spanned by th&"s, to which theSj’s are connected by the LetAﬁ be the Lindblad operators algebra for a gené€¥ic
following unitary transformationd) QEEXDQQEJN:ljo'jZ). In-  The f(_)llowing proposition gives a characterization of it when
deed, we haveS§=U,oS"Ulo(a==) (notice thatU},  Qvaries.
=U_g). In terms of these unitary transformations and of the Proposition 2.

Q=0 Hamiltonian Hy=T(7)S*S™+T'(7)S"S* the CM (i) For a genericQ (i.e., e%¢ Zy) one hasAg=Ay,
model (A1) reads whereas fore'? € Zy one finds
Aﬁ”=spaf{5§ Snizp+1)/P € Zn}-
Ho=2"1 2 U,oHoU}e. (A3) P
(e (i) AR=AJ=sl(2).
From Eq.(A2) it follows that, for any generic Q the two (i) AG?=sl(2)e@isl(2),, where
terms in the above equation do not commute: the model is N/2
nontrivial, i.e., nonintegrable. si(2).=span S (—1)io®
Next, the proposition shows that the analytic structure of e=SP = 25 >

the CM strongly depends on the input param&efor par-

ticular Q values it is quite simple and its subdecoherent cod- N/2—1

ing efficiency is optimal. sl(2),=s ar{ > (-1)io% ] ) (A8)
Proposition 1.0ne has the following integrable points. o=P j=0 2t .
(i) Q=0 mod 27, =H®(27)=T®Ws *S*,  replica '

symmetry. (iv) € e Z}=Zy— Z;=dimAJ=3N/2.
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Proof. One can check thaﬂﬁ=spar{$§pQ,SS(2p+l)/p Proof. The case®'?= =+ 1 are isomorphic and have been
e Z}. If Q is rationally independent from the numbers ~previously discussed. Notice that, iH=0 one has
e'?PQ,e!%P 1) densely fill the unit circle, from which (y|H|4)=0«H|y)=0. Moreover,|¢;)=|D,v;), whereD
ANC AR.3 Points (ii) and (iii) follow from Proposition 1, is the unique dimer partition of the array with—k|=N/2
and(iv) can be checked by a simple calculation. and y;(1,k)=j(mod 2)¥ (I k) e D. From the second of Egs.

Notice thate'™Pe 2y iff N=0 mod 2p(p=1,2). Re- (17) one finds that
membering thaty) e Ker Hoe | 4) is annihilated byall the
generators omﬁ—and then that the smaller is the algebra
the greater is the code—Proposition 2 seems to indicate that
the “magic” Q’s possibly relevant for subdecoherent encod-
ing are just the ones such thelf e 2.

Let us now consider th® dependence of the symmetry
structure of our model.

N/2

2 .
(HlHo ) ~1- 5 2 (—1)) cogmj)=0,

from which the sufficiency parts ofi) and (v) follow. If
e'Q¢ 2, from Propositions 2 and 3, one has that]if)
e Ker Hq then it is in the singlet sector ool (Proposition

Lemma.Let G, the (maxima) symmetry group oHg, 2). Sinc(fafzn is i?.]n irreducib_le(nontriviaFI)) _represegta_\_t_ion
one hasti) Go=G, =S, (i) G1z=Garz= SuX Sz, and  SHACE OLAN, SUCh 8 SOCIO 18 Pl Fo A
(iii ) for e'Qesl—Z4 one ha§Q=ZN. ollow directly from Propositions 2 an . Since t G0 S

dransform according 1DGq irreps, from representation
theory it follows thatdy(Q) (i.e., multiplicity of the 1DAS
irrep) is equal to the dimension of an irrep of the symmetry
group Go. But for e 2 one hasGo=Zy, (abelian
erefore, its irreps are 1D, from which poifit) follows 32
nally, point(vi) simply stems from the fact that the neces-
sary conditionS*|#)=0 cannot hold for odd\.

To understand in a more constructive fashion why the
|4;) are the(only) subdecoherent states feRie 2%, letus

Pictorially, one can say that in the CM the register has
regular polygon topology that for the special poings
=0,m(Q=/2,3/2) collapses to a poinfdimen gaining in
this way a larger permutational symmetry. This dynamica
clustering is associated with a greater subdecoherent codirig
efficiency’* The next proposition summarizes in a formal
manner the present situation.

Proposition 3.Let N be even.

(i) Qe Zyedy(Q)>0.

-- _ _ consider the following statgy) e C [C the (globa)) sl(2) sin-
E::i))dlfN(l\lQi)O rggt(ﬂag%N(nQ(Sj;l):.dN/g(Qo)Z. glet sectol such that (i) Upgl¢)=|y). Then Ugly)
(iv) €Qie Z=dy(Q))=1. =Udly=U_olv)=|v). This means that if |¢)
(v) Whene'Qi e Z§ the null space is spanned by the vec- e Na=+U,C it follows that |¢) is annihilated bySS,
tors =U.oSWlg, (a=2%), ansﬁtherefore, b . It is now
N/2 . easy to check that the statpg;) of Proposition 4 are just
Mj)z ®i:/1(|01>_(_ DI04 A9 UQ_|5,O), the dimer partitioriBJbeing the only one allowing
(vi) Let N be odd therdy(Q)=0VQ. forjcondition(i) to be fulfilled.
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