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The Pfaffian quantum Hall states, which can be viewed as involving pairing either of spin-polarized elec-
trons or of composite fermions, are generalized by finding the exact ground states of certain Hamiltonians with
k+1-body interactions, for all integets=1. The remarkably simple wave functions of these states involve
clusters ofk particles, and are related to correlators of parafermion currents in two-dimensional conformal field
theory. Thek=2 case is the Pfaffian. F&=2, the quasiparticle excitations of these systems are expected to
possess non-Abelian statistics, like those of the PfaffiankE®, these ground states have large overlaps with
the ground states of thgwo-body Coulomb-interaction Hamiltonian for electrons in the first excited Landau
level at total filling factorsy=2+3/5,2+2/5.[S0163-182609)06911-9

I. INTRODUCTION gap, and hence that the fluids in question are incompressible,
then the universal properties should be insensitive to pertur-
Trial wave functions for fluid states with all the particles bations of the Hamiltonian, and the properties found from
in a single Landau leve(LL) have played a paradigmatic the trial states do typify a phase. However, the existence of a
role in the fractional quantum Hall effe€FQHE) (Ref. I gap is hard to establish for the model Hamiltonians, since it
since the work of Laughlif.The Laughlin states were ex- inyolves eigenstates of nonzero energy, which are not known
tended to other filling factors using the hierarchy approdth, exactly. For the Laughlin state and the pseudopotential
which can also be used to generate trial wave functionsamiltonian of Haldané, the arguments are fairly convinc-
though these are not as elegant or unique as Laughlin’s. 'ﬁ1g. (We note that there are also compressible ligdi¥is,
different motivation for extensions of the Laughlin wave , hich we believe also to be distinct phases, but for which
functions to yield other filling factors is the composite fer- there are so far no Hamiltonians for which exact eigenstates

Q;ﬁnleapbpurtogcjir\]lvglocth Sﬁgirﬁtejevggrvzagjhn%ﬂ?nns fg;?;ralrﬁ are known. The same comment applies to crystalline phases.
P, g q 9 9 : In the lowest(or N=0) Landau level(LLL) in single-

some cases, trial wave functions are also energy eigenstat%s er svstems. the picture that has emeraed is that the incom-
of lowest energy for some Hamiltonian. In the FQHE, these Yer sy ’ P 9

Hamiltonians have usually been found to annihilate the app.reSSibIe fluids are in the phases typified b_y the Laughlin and
propriate trial states, and whether this is so can be estatierarchy states, or by the composite fermion approach, these
lished without much difficulty. Some early examples are intWO approaches yielding the same phase for each filling fac-
Refs. 3.6. tor with an odd denominatdri® (There are complications
However, these distinct trial wave functions at a giveninvolving spin;* which we will not discuss hergln higher
filing factor do not necessarily correspond to distinct phase&L’s. the pseudopotentiafswhich characterize the interac-
of matter. Phases of matter should be characterized by thefions within the highest partially filled LL, are different, and
ground-state quantum numbefimicluding filling factor or  the ground states must be reconsidefte relative impor-
Hall conductancg types of long-range order, ground-state tance of the Zeeman energy may also change, but will not be
degeneracy(if any), and properties of excitations such as considered in this paperFor example, the quantized Hall
whether or not there is an energy gap, and the quantum nunplateau (i.e., incompressible fluidobserved atv=5/2=2
bers of theelementaryexcitations that serve as building +1/2,” where the LLL is filled with electrons of both spin
blocks for all others. In brief, these characteristics involvecomponents, and the 1/2 is the filling of the first excited
universal aspects of theasymptotic low-energy, long- N=1) LL, does not correspond to a hierarchy state; no cor-
distance physics, and not details of microscopic wave funcresponding plateau is seenat 1/2 in the LLL. A trial state
tions, either trial ones or exact energy eigenstates of a reain which the spins of the electrons in th€=1 LL were
istic Hamiltonian. One usually tries to argue that the modelunpolarized was propos€dhowever, recent work suggests
Hamiltonian for which the trial ground and some excitedthat the true ground state may be polarizét Moreover,
states are exact eigenstates yields properties that are charawen for simple fractions such as-2/3, the ground state for
teristic of a phase. If it is true that the energy spectrum has the Coulomb-interaction values of the pseudopotentials in
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the /=1 LL is on the borderline between compressible andstates, with the help of operator product expansi@pe's
incompressible states, and the Laughlin state does not hawe CFT?* We first reinterpret the Pfaffian state in this light,
such a good overlap with the exact ground state, even whettien discuss our Hamiltonians. Then we analyze the quasi-
the V; pseudopotential has been increased so as to enter thele states, and discuss non-Abelian statistics and the num-
incompressible regioh. ber of sectors of edge states.

It is clear that the study of other trial wave functions, that
are hopefully representative of distinct phases from the hier-
archy, could still be of further use in understanding incom-
pressible fluids in higher LL’s. One class of these is the We will first define some notation for a system of par-
paired states, in which one attempts to form Laughlin stateticles in the lowest Landau levélLL ) on the spher¥(it was
of pairs of electrons, in some sersé&:1%In particular, the ~ used previously in Ref. 38The magnetic field is radial and
so-called Pfaffian state was introduced and related to corrgniform with a total ofN,, flux through the surface, and in
lation functions in two-dimensional conformal field theory the lowest Landau leveLLL ) each particle has orbital an-
(CFT) by Moore and Reatf This state occurs for filling of gular momentunN ,/2. The LLL wave functions on a sphere
the topmost LL of»=1/q, for q even for fermions, the are usually writteriin a certain gaugg in terms of “spinor”
physical case. Using this correspondence, they argued th&ar “homogeneous) coordinatess; andv; for each particle
this incompressible fluid phase has fractionally charged ext=1, . .. N, with u;=¢€'%"*cos/2,v;=e'*'%sing/2, where
citations of charge 1£2in electron units, and that these pos- 6;,#; are the spherical polar coordinates on the sphere. Since
sess non-Abelian statistics, a generalization of fractional stathese imply that; ,v; are not independent complex numbers,
tistics that we will discuss later. Also, there are neutralit is often more convenient, and will simplify the writing, to
fermion excitations; the fluid ground state can be viewed as &se a nonredundant parametrization of the sphere by a single
Bardeen-Cooper-Schrieffer paired state of these neutral gtomplex variable. This is done by stereographic projection,
composite fermions, and the fermion excitations are createwhich gives the definitiorz;=2Rv; /u;, whereR is the ra-
by breaking pairs. The Pfaffian ground state is an exact, zeralius of the sphere. Single-particle basis states in the LLL
energy eigenstate of a certain Hamiltonian containing ahen take the fornz["/(1+|z]%4R?)1*N+/2, where thel,
three-body interactioh'® The claims about the statistics angular momentum quantum number Lis=N4/2—m, so
were reinforced by later work, which exhibited the gaplessm<N,. Many-particle states can thus be written as
fermion excitations at the edd&?° and the degeneracy of
the quasihole states, for the three-body HamiltoAfdf.In ~ 21— (14N 2)
the recent work3>!* the true ground state for the Coulomb ‘I’Z‘I’H (1+]z]%14R?) =1+ Ny (2.1
interaction in the\/=1 LL was found to have a sizable over-

lap with the Pfaffian state, which can be increased to Iarg%ndq, must be a polynomial of degree no higher tgin
values(97% asV; or V3 are varied about their Coulombic . ) . ~
eachz; . Therefore, in the following we need specify only

values. (Morf'® also found a large overlap with another .

paired statg. Therefore it is possible that the state observedn order to describe a state. The functimfor a ground state

at v=>5/2 is in the phase described by the Pfaffian, as firsPn the sphere can also be used to construct a wave function

suggested in Ref. 17. suitable for a corresponding disk-shaped ground state on the
In this paper we obtain a class of trial wave functions byPlane, by multiplying by exp¢ 33z?).

a direct generalization of ideas that are valid for the Pfaffian The Pfaffian state is defined-ds

state, namely, the zero-energy eigenstates &Hd -body

S-function interaction, wheré is an integer. The existence I — pf

of the states is established by arguments using operator prod- pZe, - 2N =

uct expansiongope’s in CFT 22 and the explicit form of the

wave functions is obtained and proved to give the groundrhe Pfaffian

states. The states involve clusterskgdarticles, generalizing

the pairs in the Pfaffian state. Further analysis gives predic- N/2

tions about the quasihole states and non-Abelian statistics, PfMij=[2N/z(N/2)!]*12 sgnPH Mp(2r—1)p(2r)

which we partially confirm by solving the special Hamilto- P r=1

nians numerically. Then, in Sec. lll we analyze the ground 2.3

state of the Coulomb interaction in theé=1 LL for v=2 4t an antisymmetrit\x N matrix M(N even is the antisym-
+3/5, and compare it with our state at the same filling factoryatrized sum over all pairingsz(— Zj)—l (the analogous

excellent agreement is found, indicating that our functionspairing in the spin-singlet case appears in the Haldane-
are serious contenders to describe the phases in higher LL’F%ezayi stat®. The filling factor of the state is’=N/N

at least in some cases. Further discussion is given in thil/q asN— [sinceN ,=q(N—1)—1], andq s odd for a
Conclusion. Some of our results appeared in an earlier Unsoson state and even ?or fermions. ’

published work® The Pfaffian state fog=1,q=2 is the ground state of a
three-body Hamiltoniah’'® For these cases, the Hamil-
tonian penalizes the closest approach of any three particles
allowed by the statistics. Thus for=1, where the particles

In this section, we show how to solve certain interactionare bosongnote that we reserve the term “particles” for the
Hamiltonians, in the sense of finding the zero-energy eigenunderlying particles, which are either charged bosons or

A. Notation and Hamiltonians

)H (Zi_Zj)q. (22)

4= Zj)i<]

Il. SOLUTION OF SPECIAL k+ONE-BODY
INTERACTION HAMILTONIANS
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charged fermiondelectrong, and not for composite par- explicitly, and then compare the states with solutions for the

ticles), the Hamiltonian can be taken toe Coulomb interaction in the second LL.
H=V E 5%(z _21)52(Zi -2, (2.4 B. Ope’s and the Pfaffian state
i<j<k

First we will reconsider the Pfaffian state and show how
where the sum is over distinct triples of particiészor nu-  its property of being the unique zero-energy state for a cer-
merical purposes on the Sphere1 it is more convenient tgﬂln Hamlltonlan, that IS, of Van|Sh|ng as three par“CIeS come
work with a projection operator form of the three-body to the same point, is related to operator product expansions
Hamiltonian, instead of theS functions in Eq.(2.4). The N the corresponding CFT. We then generalize this to find the
closest approach of three particles on the sphere correspon@alutions to the simplest examples lof-1-body Hamilto-

to the state of maximum possible total angular momentunilians, for eactk. The use of CFT leads to an existence proof
for the three. If the particles are bosons, the largest possibf@r these wave functions, and, in principle, determines the
total angular momentum isN8,/2 (recall that each particle Wave functions uniquely. .

has angu|ar momentum¢/2)_ Then, for tha:l: 1 case, the The basic idea of Ref. 16 is that t&ve functiorof our
Hamiltonian may be taken as proportional to the projectiofWO space-, 1 time-dimensional system can be related to a

Operator onto the(ur“que mu'“p'et of maximum angular correlator of a certain conformal field theOI’y. Here we are
momentum for each triple of bosons: not interested in the simple Laughlin-Jastrow factors, but in

the other parts that may produce non-Abelian statistics. For
the Pfaffian case, this part is the theory of free massless
H= > VP(3Ny/2). (25  Majorana Fermi fields in two Euclidean spacetime
=ik dimensions®
The same trick works for the three-body interaction of fer-
mions giving theq=2 case; in this case, the maximum total =
angular momentum of three particles il #2—3. On the Vo= {(z1)-- w(ZN»iﬂj (zi—z)%, (26
plane, the latter Hamiltonian corresponds to derivatives of
functions. For these two cases, the Pfaffian state on thg which the correlator can be evaluated using Wick’s theo-
sphere is the unique energy eigenstate of zero energy at them and (W(2) (W) =—((W) (2))=(z—w) . The
statedN,, value.(We will refer to such states as zero-energy Fermi fields can also be characterized by the operator prod-
states hereaftgr.For largerq, these Hamiltonians can be yct expansiongope’s that hold inside correlato$
generalized, in such a way that the zero-energy states are
obtained from those forg=1 by multiplying by II(z e (7— )~ 1 w2 L
—zj)Q*l (it is assumed that fog odd, we are discussing WD YW~ (zmw) T I+ 2(z=w) W)+ -, 2.7
bosons, and foq even, fermions The presence of the latter
factor implies that they are all zero-energy eigenstates of the
projection operators for any two particles onto relative angu- PN W)~ (W) +(Z=wW)dp(w)+ - -+, 2.8
lar momentum  M=0,2,..., q—3(q odd), or M
=1,3,...09—3 (g even [or the corresponding total angu-
lar momentaN,,,N,—2,... Ny—q+3, (q odd, etc]. The
space of states annihilated by such projections is in one-t
one correspondence with the full space of states ofcthe
=1 case, and the desired three-body projection operat
[onto angular momentumNB,/2—3(q—1)] is the unique

one that corresponds under this mapping to that already me .
P bpIng y We now show how the ope for the fermions guarantees

tioned forg=1. For eachq, the Hamiltonian can then be ) .
taken to be the sum of the three-body and all of these twofEhat the state is a zero-energy eigenstate for the three-body

body projection operators. A very simiiar approach works for|nteract|0n of Greiter, Wen, and Wilczék This can be seen

the other Hamiltonians studied in this paper, so that resultg're,Ctlyl frq(rjn the eXpI'CI't wave fu?ﬁﬂofz'z) ' ht())wevi;,j/the
for higher »~! can be deduced easily from those for theOP€ S provide ageneralargument that can be usetven
when the wave functions are unkngwhthe function is a

minimal v~ ! for each type of state. These Hamiltonians Cancorrelator of fields with known ope’s. Suppose that in the

also be written in terms o functions and their derivatives, orrelator(without loss of eneralliat)yfir.st Zp_p>z then z

S0 as to arrive at a form suitable for use in geometries othef 9 27 3
—2z;, and take the most singular term of each product. The

than the sphere. oL . . 1
The goal of this paper can now be stated: we wish to]cIrSt limit [using Eq.(2.7)] gives (,—2,) 1, and the sec-

generalize the solution for the zero-energy states of the threé)-nd [using Eq.(2.8)]- then gives 22_51) “(21). Multiply-
body Hamiltonian(2.4) or (2.5) to k+ 1-body Hamiltonians iNg by the Laughlin-Jastrow facto¥,=II;-(zi—zj) we

of the same closest approach form, for evieifypote that for  find that W for q=1 vanishes asz;—z,)(z3—2,), i.e.,
k=1, we can consider the solutions to be the Laughlinquadratically. Hence for the short-range interaction among
ground and quasihole statgsWe will demonstrate the exis- bosons in Eq(2.4) we obtain zero energy. Furthermore it
tence of an elegant solution to this problem by using conforis the densest such state?®!8The same argument applies
mal field theory, construct the ground-state wave functiongor g>1 by construction.

asz—w, wherel is the identity(which is a constant and
T(2)=—3¢dy is the stress tensor. Throughoutp(z) will
d"peana¢>(z)/(?z and dots- - - will denote higher-order, less-
singular terms. While the correlator of Majorana fermions
gan be found by Wick's theorem, the use of ope’s is more
general and can be applied in a vast number of situations
H\[here there is no simple Wick’s theorem.
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C. Parafermion states symmetric forM even, antisymmetric foM odd, so de-

We next generalize the ideas to solve Hamiltonians withSCriP€s bOSOE\ZSA?r fermions, respectively. As apy=, the

k+1-body interactions. The simplest such Hamiltonian,correlator~z “**, because the separations among the other
which will give the highest density such state for edch N—1¢;’s are then relatively small, and the ope’s imply that
which is always a state for bosons, igdunction interaction  they “fuse” to form a singled;{. Henceq’parais a polyno-

between the+ 1 particles: mial of degreeN,=v !N—(M+2), where v=k/(Mk
+2) is the filling factor.
H=V z 82z —2,)6%z.—7 ) - Taking now theM =0 case, we can show that the func-
i1<ip< ket 12 2 3 tion vanishes quadratically as aky- 1 particles come to the
X8z -7 ) 2.9 same point, say,, ... ,Zx+, approachz; one by one, by a
e Sgens ' similar argument based on the ope’s as for the Pfaffian. As

As we will see, the wave functions involve dividing the par- the firstk—1 particles approact,, the most singulafor
ticles into clusters ok each. To generalize the approach justMost slowly vanishingterms must give the same result as
described for the Pfaffian, we will consider a natural generthe N=k case of¥’ ,,.,, which is a constartt; one additional
alization of the ope algebra of Majorana fermions, which isparticle givesy;(z, 1)l ~#1(z;), and the LJ factors give
the algebra oz, parafermion$® This consists of a set of (Z1—21)°. Hence like the Pfaffian state with=M+1

fields ¢ ,(z),/=1, ... k—1 with ope's[z//}(z)z e (2)] =1, this state is a zero-energy state for tke 1-body
S-function interaction of bosons, and this fact again extends
b2, (2)~Cp p(z—2") BrtAr=Brisn to M>0. This shows that the desired wave functions exist,
, o provided the CFT correlators do; but the parafermion theo-
X[re (@) -0] (/+77<Kk), ries are well studied and can be constructed from other well-

(2.10  understood theories;? so correlators with the properties
specified by the ope’s do exist. Notice that, had we chosen to

WA (Z)~Cppp(z—2) " BrrAs A use a different parafermion operaigy (/' <k/2) in place of
‘ all the ¢1's, we would have obtained a polynomial that van-
X[, p(2)+---]  (/'<0), ishes more rapidly whek+1 z's coincide, and a lower

(2.11) filling factor.
Explicit functions can be obtained using the idea of
grouping particles into clusters &f*° The following proce-

2A
T \—2A, 4 12 ’ -
VA2 (2)~(2=2") |1+ ——(2=2)"T(Z)+-- ], dure gives a symmetri# () of the correct degree, which is

(2.12 the Laughlin state fok=1, and the Pfaffian state fde=2:
Divide the particles into clusters & For each pair of dis-

A, 1 tinct groups, sayzy, ...,z andzg, 4, ... ,Z5, we define
TP A2~ —— 5y () + —— 3 (2)) +- - . factorsy by (for k=2)
(z—2") z—Z
(213 X(le e sz;zk+1! EEE !sz)

The consistency of the algebra puts conditions on the con- (24— Ze 1)(Zo= Zis o) (Zo— Zis )
formal weightsA , of the ¢,’s. The simplest solution to the TSk tRo Skr2/if2 Sk2
conditions isA =/ (k—/)/k, and with this choice the val- X(Zy= 24 3) -+ (Zk—Z21) (Zk— Zi 1 1)
ues of the central charge=2(k—1)/(k+2) and the nu- (2.19
merical coefficient, ., are then uniquely determined by ’
consistency. With these choices, we obtain the algebra uskhat is, each member of a cluster is connected with only two
ally known asz, parafermions(Other solutions for thé,  members of the other cluster, by a facmrz;. Fork=1,
are listed in Ref. 25, and some are studied further. In thesge would havey = (z,—z,)2. Now we multiply these for all
cases the other parameters are not uniquely determinegistinct pairs of clusters, and symmetrize the whole expres-
These other algebras will not be needed here, but may bgon, to obtain
relevant in other FQHE problems. The procedure below will
generate wave functions in all cases, but these may not al- _ ,
ways be solutions to simple Hamiltoniangzor k=24, ‘I’E)%)rf 2 H X(Zp(kr+1)s - - - ZP(k(r+1));
=14 is a Majorana fermion, and the ope’s are the same as PesSy 0=r=s<N/k
Egs.(2.7,2.9 above. XZpkst1)s - - - ZP(k(s+1) (2.16
Consider the function
where Sy is the permutation group oN objects, and the
T2y, ...z =(Wa(z1) - - a(20)) T2, prime on the sum denotes that the summation can be re-
(2.149 stricted to permutations obeyinB(1)<P(k)<---<P(N
—k+1), which eliminates redundant permutations of the
) clusters; otherwise each term would appesfl()! times(in
factor renders Eq2.14 nonsingular~(z,—z)" @ the expression for the Pfaffian above, we instead summed
any z—z;, according to Eq(2.10 with A,+A, —A .~ over all permutations but divided by the number of times
=2//"Ik, which gives X for /= /’=1.{‘prara is totally  each distinct product appeajetience this function is totally

where N is divisible by k and M=0 is an integer. The
q,lli/]]+21k
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symmetric, even with this restriction. To obtain largdr  sary and not a sufficient condition to determine that the func-

>0, we must multiply by ;. The degree of the function in tion is the parafermion correlator timékM . Nonetheless,
each z; is then Ny=M(N—1)+2(N/k—1)=v"N—(M since we have demonstrated it for an explicit function, and
+2), as for the parafermion correlator times LJ factorsince this function seems to be unique, on the basis at least of
above. numerical verification fok=3,4 (discussed further belgw
Next we show that our functioffor M =0) vanishes qua- We conjecture that the parafermion cgrrelatorsjorkadire
dratically whenever ank+1 particles come to the same given by this constructioriby dividing ¥ (%), by ¥7). It
point. It is sufficient to consider each term in the sum overshould be possible to prove or disprove this statement by
permutations separately. Clearly, we must then considegtudying the properties of our function as various combina-
many possibilities, in which thle+ 1 particles are distributed tions of z's coincide, and comparing these with the ope’s.
among different clusters, ranging from all but one in theThis was done for various paired states in Ref. 27, but we
same cluster, to each in distinct clusters. We will organize/ill not consider it further.
our proof in the following way. First we show that each term
vanishes ifk particles come to the same point, except in the D. Quasihole states and non-Abelian statistics
case of alkin the same cluster. Then we use the evident fact |n this subsection, we argue that states containing quasi-
that for k particles in one cluster, one in another, the termholes[carrying charge 1N1k+2) each for the parafermion
vanishegthis follows directly from the definition of itself). states withk>2 can be constructed in analogy with the
We must considek distinctz;’s, chosen in any way from Pfaffian case, and that non-Abelian statistics are expected in
up to k distinct clusters. We may label these by the corre-all cases. The arguments go as follows. We will again begin
sponding position in a clustdfrom 1 to k), and the label with the Pfaffian state.
(like r,s) for the cluster that appears inside the permutation The two-quasihole wave function proposed in Ref. 16 was
operatorP. These determine when the productdé van- _
ishes. Put another way, it is sufficient to consider the term g (7 . W2)=Pf< f(zi,z 'Wl’WZ)){I‘,q
where P is the identity. Now consider the values for the TRy zi—z L
position within a cluster as arranged on a cirée clock (2.1
face, with the _numbers increasing clockvylse .untql IS where f(z 2 W1, Wo) = (2~ W) (2~ W) + (2~ W) (2
reached, which is followed by 1, so that 1 is adjacent to 2_,y y |t can be interpreted as the insertion of two spin fields
andk, 2 is adjacent to 1 and 3, and so on. Tfie containing o(W):
any two selected;’s vanish only in two casedi) if mem-
b_fers_, of distinct clusters_ occur at the same place on the cIoc_:k; ‘I’pf+zqh°<<¢(21)- - l(zy) o (Wp) (W)
(i) if members of distinct clusters occur at adjacent posi-
tions, but only if the position of the later cluster is arrived at < q 12 12
by moving clockwise from the earlier by one stégee the X‘I’LJH (Zi—wp) " zi—wp) ™ (2.18
definition of y). We can then describe the structure of the
term containing any set d&f z's by labeling positions on the The spin fields induce square-root branch singularities in the
clock face with the numbers of the clusters in which zie  Fermi fields, described by the op&s
appear. Members of the same cluster must be at different _12
clock positions because they are distiags. Clearly, if a P(2)o(w)~(z=w) Fo(w)+-- . (2.19
term is to have any possibility of not vanishing, we mustThe branch singularities are cancelled by the explicit square
choose all the clock positions to be distinct. We then have doots, to ensure that the wave functions are sing|e valued.
Single number of a cluster aSSigned to each clock pOSlthﬂTms fixes the Charge of each quasiho|e to be]lWe notéG
We will now show that it is not possible to arrange these inthat quasiholes can be created only in pairs.
such a way that the term does not vanish, except by choosing |n Ref. 16 it was proposed to extend this by defining wave
all the z's from a single cluster. We can view the clock as functions for zn quasiholes by insertingr2spin fields. Since
divided into regiongpossibly consisting of positions that are the ope’s, by definition, describe short-distance properties of
not all adjacentthat have been labelgdr “colored”) with  correlators independently of what other fields are present,
a single cluster number. To avoid a vanishing factor, theour argument above implies thttte quasihole wave func-
numbers of the clusters must decrease as one moves clogkons so obtained will all be zero-energy eigenstates of the
wise from one region to another. But the clock is not SimPWappropriate H; (this can again be seen explicitly in tme
connected, and so this cannot be done all the way around the| ¢ase above This is analogous to the Laughlin states,
clock, unless there is only a single regi¢or clustey in-  where for a suitable pseudopotential Hamiltonian the ground
volved. In the latter case, consideration of any one Oﬂﬂer state and states with quasiho|es added are zero-energy
shows that the term vanishes, as mentioned before. Thergtates However, for the present case, there is not just a
fore, we have shown that the function vanishes at least linynjque state for each set of quasihole positions. Instead there
early, but since it is totally symmetric after summing over gre 2-1 |inearly independent function&onformal block

permutations, it will actually vanish quadratically as &y of the z's for 2n spin fields. This number follows from the
+1 particles come to the same point. ope of the spin field%?

We have shown that this vanishing property follows from
the parafermion ope’s, which should determine the function; o (z)o(w)~(z—w) Y8 + constz—w)¥8y(w)+ - - -.
however, the vanishing property alone may be only a neces- (2.20
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Here the higher-order terms fall into two families since theln these statesN,= v IN—(M+2)+n. Once again, this
behavior of each term as—w differs from that of one of the will in general define a whole set of staté¢sonformal
first two terms by an integer power ozt w). Then in a blockg, not a unique state. In the last factor, the exponent
correlator containing o(wy)o(wy)---, as w;—W,,W3; 1/ is chosen to cancel the branch singularity as any

—W,, etc. we can choose a member of either set of terms fospproaches any;, which is determined by the ope,
each pair ofo’s, which would give 2 terms, except that the

total number of’'s in the correlator must be even, so we get 100) — 7 kgl o
2"~ 1 plocks, forN (the number ofy insertions odd or even. Y1(2)®1(0)~2zd5(0) + (222

In principle, the ope’s can be u_sed fo fix the actual for_m Of(see Refs. 25 and 26This is the weakest singularity for any
the correlators for @=4. In practice, it was more convenient

| . .
to find all the zero-energy states by explicit construction, an ;theCI)m, sohglves th.?] slmall_estdchargg fo;a qu_aS||hoI§. T?]e
it was shown that for fixed positions of the quasiholes, thetharge on the quasiholes 'is ete_rmme entirely by the
number of states is"? *. 2118 Thus the results for the Pfaffian Laughlin-like part of the wave function, not the conformal

are in complete agreement with these predictions based d}Ock of the parafermions, so the usual plasma argument
CFT ope’s. shows that the charg@umber of particles missing from the
These degenerate spaces of quasihole states are the badgnity of wp) is v/k=1/(Mk+2) (use of the other spin
for the non-Abelian statistics properties of the quasiholedields o in general give chargesl/k, and by including ad-
(and similar properties are expected for quasielectrons, or fatitional Laughlin quasihole factors we can add integer mul-
combinations of quasiholes and quasielectyoAs the loca- tiples of v to these chargesMk+ 2 is the denominator of
tionsw; of the spin fields are exchangbg analytic continu- v=k/(Mk+2); howeverk andMk+ 2 have a common fac-
ation, the conformal blocks are mapped to linear combina+tor if and only ifk is even, and this factor is just(®.g., for
tions of each othefmonodromy.” The conjecture of Ref. the Pfaffiank=2). Therefore, whek is even, the charge is
16 was that when the quasiholes are excharegiabatically  fractionalized compared with the usual value in a Laughlin
as in Ref. 28, these functions exhibit non-Abelian StatiStiCSOr hierarchy state for a Spin_po|arized Sing|e component sys-
meaning that the effect on members of the space is a lineqem at the same filling factor, which is always) br filling
transformation, which can be described by & 2<2""*  factor p/q, wherep,q have no common factors. The next
matrix by choosing a basis, and that this is the same as thgontrivial example isk=4, where withM =1 for fermions
matrix obtained by analytic continuation. This replaces theye obtain av=2/3 state, orv=1/3 by particle-hole inver-
usual Berry phase that describes ordingfpelian frac-  sjon, with charger 1/6 excitations.
tional statistics; matrices representing distinct exchanges do The explicit function fom=1, that isk quasiholes, is the

not usually commute, hen_ce the term “non-Abelian.” The same asP(©)_ except that a factor of the form

existence of many blocks is thus a necessary but not suffi- p

cient condition for non-Abelian statistigshe adiabatic ex-

change has not yet been calculated expligithy L(z1, ... zaWe ... wo=11 z—w) (223
I

We now discuss the extension of these results to the para-
fermion states fok>2. In place of the spin fields for the
Majorana fermion, the parafermion system has “fieldshi-  for each cluster ok particles is inserted inside the sum on
ral vertex operatojsd,?>?® wherel=0,1, ... k, while m  permutationsP in Eg. (2.16; the permutations act only on
is a periodic variable with period k2 so m=0,1, ...,k thez’s, not thew, . This generalizes the functidrabove for
—1, and furthed —m=0 (mod2. In the ope’s ofd! , the the Pfaffian, except that once again the symmetrization is

m’s add modX, however, there are also identifications that"oW done all at once by the sum ovey which can still be
imply that(DE;' —d' are the same operator, so the valuesrestricted as before. The resulting function is also symmetric
m m ’ .

of m can be restricted so as to get each of Kfe+1)/2 N thewy's.

distinct fields once; a convenient way to do this is by restrict-. FOr more quasiholes, we do not have the explicit func-
ing —l<m=lI. In this notation, ®%=®=1 and ®%, tions in general, but we can count the number of zero-energy
=I. » E0T kT 2/ -k

=q>2/= #,. The special caseszr,z@l 1=1,.. k(o states for fixed positions of the quasiholes in the above con-

—1)" are called primary fields for the parafermion aIgebra.StrUCtlon’ using the CFT, in a similar way as for the Pfaffian

. state above; we will considér=3 explicitly. We require the
o, in a sense generates the whole set by repeated operator plcitly q

y . | . . .
products, and is a natural analogue dgrto which it reduces ope's .Of the fleldgbm, which are given in Ref. .26 for ak ,
for k=2. We propose to insert a numhek of o-,’s into the and will not be written down explicitly here. Using the ope’s
=2. 1

correlator of parafermion currents to obtain the basic quasi9ne finds, by repeatedly Fakmg ope's W&.H’ that the num-
er of conformal blocks in the parafermion theory for 3

hole states; these are zero-energy states for our specitf%l)r 3n quasiholes is a Fibonacei nUmber where we
Hamiltonians by the preceding argument. We agdecause 9 3n—2»

this leads to the minimal charge for the quasiholes. Thus queflneFl?)ol, F2=2,F3=3,F4=5, andFn=Fn_,+Fn-»
proposal for quasihole states is to use in generaf” Thus, the number of linearly independent zero-

energy states for our Hamiltonian is al&d least F,_, for

U{I,E)’\élr)akqh(zb oUW, . W) fixed positions of & quasiholes, in th&=3 case, provided
N is sufficiently large. For larg®e, this number approaches
=(1(z1) - - 1(zZn) o1 (W1) - - - 1 (Wiy)) ~(2+5)". Askincreases, the expressions for thdepen-
N nk dence for the parafermion cases will become progressively

X{I',%u/kl:[l pﬂl (Zi_wp)llk. (2.21) Vrcg;echlmplex than that for the Pfaffiak=2) case, which
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The results for the quasiholes can be compared with nu- 109 - _=-==szz==_=
merical results for the four-body Hamiltonian. The results for - T ==z __ZzZZ=EE=Z°=
the total number of zero-energy statesmpare Ref. 18 for 081 AE_ B --=-°¢ SZ=Z-=:
results on the Pfaffian statewere calculated foN=6, 9, Y =-S=_--°--
and 12 fermions at=3/5, but should be independent idf. ’ TI-=Z==---"
First, the ground state at the stathig, is unique, and for 04 - "7 - -
small sizes was verified to be given by the explicit polyno- - -
mial above. For one flux addedi€1), that is, three quasi- 0.2+ - - 4-Body Potential
holes, the number of states was 00 N=15

N/3+3 0 4 8 L 112
3 ' FIG. 1. The low-lying spectrum for the four-body Hamiltonian

as one would expect for three bosonsNf8+ 1 orbitals, or for N=15 electrons. The ground state islat 0 AE=0.

from the explicit wave functions above. Fo 2 flux added,
that is, six quasiholes, the numbers of states were in agre
ment with the formula

are simply fermions fok/2 odd, bosons fok/2 even, and are
fike the usual composite particles. Also, for &llthere are
nontrivial neutral excitations originating from the spin fields,
N/3+6 N/3+5\  /N/3+4 ®L=d; " in the earlier notation. Fdt=3, the latter®3, is
, (2.24  the only field other than the parafermiogis and the spin
6 6 6 fields oy . These have no analogues either in the hierarchy or
which is similar in form to those found for the Pfaffian the Pfaffian k=2) states, though they do in the generalized
state'® Assuming this works for all largeX, and dividing by ~ hierarchy states, such as the 331 stt@ve further note
the first term which is the value of the positional degeneracygome isomorphisms of the algebraic structures. Hor 0,
that would be expected if the quasiholes obeyed Abeliarthe full chiral algebra, including the () charge sector, is
statistics'® we obtain the ratio 5 in the thermodynamic limit, the levelk SU(2) Kac-Moody current algebra, with represen-
which agrees with the number expected from conformal fieldations (sector$ labeled by “spin” j=1/2=0,1/2 ... k/2
theory. Similarly, for nine quasiholesn&3), the results  (this spin is of course not the physical spin, which is always
agree with the formula polarized. For M =1, the chiral algebra is the so-calléd
=2 superconformal algebra in the antiperiodic sector, and
N/3+9 N/3+7 the representations for eaghmake up the known discrete
9 9 (229 geriesk=1,2, ..., forthis algebra? In these cases, we have
simply recovered known constructions of these algebras and
and so we expect the ratio to be 21 in the thermodynamigepresentations from the parafermidns® The special cases
limit, as expected for fixed positions of the quasiholes. Fork=1 (the Laughlin stateand k=2 (the Pfaffian stateof

more quasiholes, because of size limitations we have nghese were mentioned earlé®® and the SKR2) k=2M
been able to obtain any such formulas. Thus we find a satis= 9 case was used in a recent pajfer.

fying agreement with our prediction, which tends to confirm
that_ all the zero-energy qugsihole states are obtained by inm_ COULOMB INTERACTION IN THE EIRST EXCITED
sertingo,’s in the parafermion correlator. LANDAU LEVEL

We have not obtained results for the four-body Hamil-
tonian ground states on the torus, or the edge excitations We next turn to finite-size calculations. We have numeri-
(compare Refs. 20 and L8either analytically or numeri- cally constructed the wave functions of parafermion states
cally. However, we expect that these calculations would leador v=3/5(k=3M=1), andv=2/3(k=4M=1) for small
in general to the conclusion that the number of sectors o$izes on the sphere and have confirmed thatkthd -body
edge states, or ground states on the torus,kis 1) (Mk Hamiltonians possess unique zero-energy ground states at
+2)/2 (notice that this integer is divisible by the denomina-the given fluxN,. For k=3, we have also obtained the
tor of the filling factor in all cases, as required by Ref).31 excitation spectrum, both for the mode# 1-body interac-
This result is based on a natural structure for the CFT, intion and the Coulomb potential in th&'=1 Landau level,
cluding the W1) charge sector as well as the parafermionand have studied the overlaps of the Coulomb ground state
sector. Our analysis of this theory, which we will not discusswith our state as well as with the usual hierarchy states as the
in detail here, also indicates that while fke=2 there are pseudopotentiaV/, is varied about the /=1) Coulombic
neutral fermion excitations, both at nonzero energy in thesalue. Below we describe these results.
bulk and as gapless excitations at the etfgé?°for k>2 Figure 1 shows the low-lying spectrum fdr=15 andv
the analogous parafermiafy, excitations carry chargeizk =3/5 for the four-body Hamiltonian. The ground state is at
plus multiples ofv. The excitation containing @, and L=0, zero energy. The low-lying spectrum bears some re-
charge 1 is identified with the physical hole, as usual, and irsemblance to the “hanging chain” shape seen in paired sys-
the CFT interpretation that appli€¢®r example to the CFT  tems.
of edge excitations, it generates the chiral algebra, as in the In Fig. 2 we show the pair-correlation function for this
Pfaffian casé®? There are, however, neutral parafermionsame state but for the= 18 size system, plotted as a LLL
excitations fork even that contai,,, . These can be viewed wave function, which describes the correlations of the
as being made frork/2 particles and Mk+2)/2 flux. These guiding-center coordinates of the particles. Again, the

+3 +

N/3+8

+10] +10
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1.24
21 g(r) 2
1.0 -====-- EEE 1 I<q'[exact|lpmode|>l
0.8 1.04
0.6 1 ]
0.4] 0.8 Parafermion Hierarchy 3/5
0.2 3/5 state
0.0 . 0.6 1
4 2 4 6 8 10 12 |
r
) . . . 0.41
FIG. 2. Pair-correlation function of the= 3/5 parafermion state ]
for N=18 electrons on the sphereis the great-circle distance. 0.24
. - 5V,
“shoulder” at smallr appears to be a characteristic of states ¢.g v '

T v T T T v T T T ]
in which the particles form clusters, such as pairs, and is also -0.10 -0.05 0.00 005 0.10 0.15

: 25 e
p.resent for .the. Pfaffian staté™ In addltlon,.the Iarge.— . FIG. 3. Overlap squared of the two reference states, ithe
distance oscnlatlons. are strongly (_damped. This feature indi— 55 parafermion stateN=15) and thev=3/5 hierarchy state
cates that the state is incompressible. (N=12), with the state obtained by diagonalizing tNe=1 Cou-

We have also compared these states with the ground stafgnb potential with an addedV, component.
obtained by diagonalizing the Coulomb potential for thie
=1 Landau level. In the LLL, the hierarchy states are mosfrom »=2/3 and the stability domain for our state may ex-
stable and these new ones will not be competitive. The firstend well beyond 7-8 %.
excited Landau level may be quite a different matter siice Finally, in Fig. 4 we show the low-lying spectrum for the
is reduced compared td; (see, e.g., Ref.)3Some typical pure Coulomb case fak=15. Again one finds some simi-
values forV;,Vs, and Vs at N,=22 are V=0: 0.4681, larity with that of the four-body HamiltoniartFig. 1), al-
0.2998, 0.2422, and/=1: 0.4716, 0.3711, 0.2800. For the though in neither case is there a clear gap to a continuum of
N=1 Coulomb interaction ground state, the hierarchy stat@xcited states. We defer precise gap estimations incorporat-
has small overlap squared, whereas parafermionic states haV@ finite layer thickness and other effects that modify the
very large ones[The hierarchy state was obtained as thegap values, as well as detailed studies of the quasiparticles,
ground state of a model pseudopotential consisting only ofo future work.
nonzeroV;. We caution that these two states occur at dif-
ferent values oN, because of the finite shifts on the sphere V. CONCLUSION
(N,=5N/3+1 for the hierarchy] For thek=3 parafermion .
state we find 97% foN = 15 (where there are 36 states in the 10 conclude, we have obtained the ground-state wave
L=0 Hilbert spacgand 88% forN=18 (319L=0 state} functions for thek+ 1-body Ha_m|lton|ans, and for the case
compared to at best 1 or 2% for the hierarchy 3/5 state. Thi§=3 We have counted quasihole states, dfat M=1)
is noteworthy since for these sizes we are very close to fund excellent overlaps with the ground state of the Cou-
Laughlin 2/3 statdi.e., the Laughlin 1/3 state of holese- Iqmb interaction for spln—po_la_mzed electrons in the first ex-
cause of the finite shifts in tHé—N , relations on the sphere. Cited (V=1) LL, at total filling factor v=2+3/5; by a
ForN=15 theN, for our state coincides with that of a single Particle-hole transformation, this also appliesvat2+2/5.
quasiparticle excitation of the=2/3 fluid while forN=18 it Our parafermion states contain clustersgfarticles. Far
is at the same flux as the 2/3 condensate itself. This is a cledpe Pfaffian state=2) atv=1/2, it has been sugge;ﬂéd
disadvantage for the parafermion states particularly if we tnfhat it may be favored in th&/=1 LL, because of this fea-
to vary the short-range component of the Haldane pseudop(t)ure- That is, the correlation hole around each particle that is

tential V,. Not surprisingly, increasiny, by a few percent obtaingd by th_e Laughlin-style_correle_lti_ons, as a result of
seems to favor the Laughlin state. However, one would exattachingqg vortices to each particléor filling factor of the

pect the hierarchy=3/5 state, against which our state will ©oPmost LL equal to 1), may not be sufficient to obtain

be ultimately competing for large sizes, to show a slower rate

of stabilization upon increasiny, away from its second 0081 - -

Landau level value. AE -
To study this issue we compare the overlap squared of the o061 _ ="

ground state o =Hc y—1+ 6V, with both our state and -— -

the hierarchy 3/5 state. Figure 3 shows these overlaps as a 0.04-

function of 6V, for the N=12 (52 L=0 state} hierarchy -

andN=15 parafermion stat€The sharp drop in the parafer- 0024 ~ -

mion curve atéV; about 0.03 is due to a level crossing: for - -

larger 6V4, the ground state hds=2). It appears that our 0.00 . .

state remains stable for increasesf, of up to 7-8 % 0 4 L 12

from the Coulomb value. Note, however, that the hierarchy

state is not fully stabilized untW, is increased by 20% of its FIG. 4. Same as Fig. 1 but for thié=1 Coulomb potential. The

Coulomb value. For large sizes there will be less interferencground-state energy has been subtracted in the spectrum.

— N =1, Coulomb
N=15

o -
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the lowest energy in higher LL'’s, because of the “form fac- rangeA/'=2 to about 6. This behavior, seen around the center
tor” associated with these LL's—the real-space wave funcof each LL for each spin component, appears consistent in
tion does not vanish when particles coincidedowever, by  principle with the notion of a uniaxial or “striped” crystal
forming a cluster of two or more particles, the energy gainethase, which was also predicted in Ref. 37 in this regiba
from the Iarger correlation hole surrounding the cluster Madriaxial crystals of clusters were predicted feraway from
outweigh that lost within the cluster itself. Very similar 1/2), and thus may support these physical pictures. There is
physics is suggested by recent work motivated by the fornglearly much still to be done to understand the physics in this

of the pseudopotential interaction in higher LL's; the latterregime, in which we hope that the parafermion liquid states
are also a consequence of the form factors. These workgill play a role.

consider the formation of crystalline phases in which the
particles are clustered, so there is more than one per unit
cell 3" If this idea is correct, then liquids containing clusters
might also be expected to occur in higher LL’s, possibly as We thank A. Ludwig, G. Moore, R.H. Morf, and K.
intermediate phases between the crystals and the usual hi@ehoutens for helpful discussions. We also thank the Insti-
archy stategif we consider varying the short-range part of tute for Theoretical Physics, UCSB, program “Disorder and
the interaction away from its physical value, at fixéd As  Interactions in Quantum Hall and Mesoscopic Systems” for
the LL index increases, larger clusters wiki~ A are ex- a stimulating environment in which this work was com-
pected to be favored. It is very interesting that recent ex- pleted. This work was supported by NSF Grants Nos. DMR-
perimental worR® has observed highly resistive, highly an- 9157484(N.R.), DMR-9420560(E.R), and at the ITP by
isotropic behavior, with nonlinear current-voltage characterNSF-PHY94-07194. E. R. is also grateful to ITP for financial
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