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Beyond paired quantum Hall states: Parafermions and incompressible states
in the first excited Landau level
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The Pfaffian quantum Hall states, which can be viewed as involving pairing either of spin-polarized elec-
trons or of composite fermions, are generalized by finding the exact ground states of certain Hamiltonians with
k11-body interactions, for all integersk>1. The remarkably simple wave functions of these states involve
clusters ofk particles, and are related to correlators of parafermion currents in two-dimensional conformal field
theory. Thek52 case is the Pfaffian. Fork>2, the quasiparticle excitations of these systems are expected to
possess non-Abelian statistics, like those of the Pfaffian. Fork53, these ground states have large overlaps with
the ground states of the~two-body! Coulomb-interaction Hamiltonian for electrons in the first excited Landau
level at total filling factorsn5213/5,212/5. @S0163-1829~99!06911-8#
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I. INTRODUCTION

Trial wave functions for fluid states with all the particle
in a single Landau level~LL ! have played a paradigmati
role in the fractional quantum Hall effect~FQHE! ~Ref. 1!
since the work of Laughlin.2 The Laughlin states were ex
tended to other filling factors using the hierarchy approach3,4

which can also be used to generate trial wave functio
though these are not as elegant or unique as Laughlin’
different motivation for extensions of the Laughlin wav
functions to yield other filling factors is the composite fe
mion approach,5 which generates wave functions that a
simple, but again not quite unique for each filling factor.
some cases, trial wave functions are also energy eigens
of lowest energy for some Hamiltonian. In the FQHE, the
Hamiltonians have usually been found to annihilate the
propriate trial states, and whether this is so can be es
lished without much difficulty. Some early examples are
Refs. 3,6.

However, these distinct trial wave functions at a giv
filling factor do not necessarily correspond to distinct pha
of matter. Phases of matter should be characterized by
ground-state quantum numbers~including filling factor or
Hall conductance!, types of long-range order, ground-sta
degeneracy~if any!, and properties of excitations such
whether or not there is an energy gap, and the quantum n
bers of theelementaryexcitations that serve as buildin
blocks for all others. In brief, these characteristics invo
universal aspects of theasymptotic low-energy, long-
distance physics, and not details of microscopic wave fu
tions, either trial ones or exact energy eigenstates of a r
istic Hamiltonian. One usually tries to argue that the mo
Hamiltonian for which the trial ground and some excit
states are exact eigenstates yields properties that are ch
teristic of a phase. If it is true that the energy spectrum ha
PRB 590163-1829/99/59~12!/8084~9!/$15.00
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gap, and hence that the fluids in question are incompress
then the universal properties should be insensitive to per
bations of the Hamiltonian, and the properties found fro
the trial states do typify a phase. However, the existence
gap is hard to establish for the model Hamiltonians, sinc
involves eigenstates of nonzero energy, which are not kno
exactly. For the Laughlin state and the pseudopoten
Hamiltonian of Haldane,3 the arguments are fairly convinc
ing. ~We note that there are also compressible liquids7,8

which we believe also to be distinct phases, but for wh
there are so far no Hamiltonians for which exact eigensta
are known. The same comment applies to crystalline phas!

In the lowest~or N50) Landau level~LLL ! in single-
layer systems, the picture that has emerged is that the inc
pressible fluids are in the phases typified by the Laughlin
hierarchy states, or by the composite fermion approach, th
two approaches yielding the same phase for each filling
tor with an odd denominator.9,10 ~There are complications
involving spin,11 which we will not discuss here.! In higher
LL’s, the pseudopotentials,3 which characterize the interac
tions within the highest partially filled LL, are different, an
the ground states must be reconsidered~the relative impor-
tance of the Zeeman energy may also change, but will no
considered in this paper!. For example, the quantized Ha
plateau ~i.e., incompressible fluid! observed atn55/252
11/2,12 where the LLL is filled with electrons of both spi
components, and the 1/2 is the filling of the first excited~or
N51) LL, does not correspond to a hierarchy state; no c
responding plateau is seen atn51/2 in the LLL. A trial state
in which the spins of the electrons in theN51 LL were
unpolarized was proposed,6 however, recent work sugges
that the true ground state may be polarized.13,14 Moreover,
even for simple fractions such as 211/3, the ground state fo
the Coulomb-interaction values of the pseudopotentials
8084 ©1999 The American Physical Society
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PRB 59 8085BEYOND PAIRED QUANTUM HALL STATES: . . .
theN51 LL is on the borderline between compressible a
incompressible states, and the Laughlin state does not
such a good overlap with the exact ground state, even w
the V1 pseudopotential has been increased so as to ente
incompressible region.3

It is clear that the study of other trial wave functions, th
are hopefully representative of distinct phases from the h
archy, could still be of further use in understanding inco
pressible fluids in higher LL’s. One class of these is t
paired states, in which one attempts to form Laughlin sta
of pairs of electrons, in some sense.15,6,16,17In particular, the
so-called Pfaffian state was introduced and related to co
lation functions in two-dimensional conformal field theo
~CFT! by Moore and Read.16 This state occurs for filling of
the topmost LL ofn51/q, for q even for fermions, the
physical case. Using this correspondence, they argued
this incompressible fluid phase has fractionally charged
citations of charge 1/2q in electron units, and that these po
sess non-Abelian statistics, a generalization of fractional
tistics that we will discuss later. Also, there are neut
fermion excitations; the fluid ground state can be viewed a
Bardeen-Cooper-Schrieffer paired state of these neutra
composite fermions, and the fermion excitations are crea
by breaking pairs. The Pfaffian ground state is an exact, z
energy eigenstate of a certain Hamiltonian containing
three-body interaction,17,18 The claims about the statistic
were reinforced by later work, which exhibited the gaple
fermion excitations at the edge,19,20 and the degeneracy o
the quasihole states, for the three-body Hamiltonian.21,18 In
the recent work,13,14 the true ground state for the Coulom
interaction in theN51 LL was found to have a sizable ove
lap with the Pfaffian state, which can be increased to la
values~97%! asV1 or V3 are varied about their Coulombi
values. ~Morf13 also found a large overlap with anoth
paired state.! Therefore it is possible that the state observ
at n55/2 is in the phase described by the Pfaffian, as fi
suggested in Ref. 17.

In this paper we obtain a class of trial wave functions
a direct generalization of ideas that are valid for the Pfaffi
state, namely, the zero-energy eigenstates of ak11-body
d-function interaction, wherek is an integer. The existenc
of the states is established by arguments using operator p
uct expansions~ope’s! in CFT,22 and the explicit form of the
wave functions is obtained and proved to give the grou
states. The states involve clusters ofk particles, generalizing
the pairs in the Pfaffian state. Further analysis gives pre
tions about the quasihole states and non-Abelian statis
which we partially confirm by solving the special Hamilto
nians numerically. Then, in Sec. III we analyze the grou
state of the Coulomb interaction in theN51 LL for n52
13/5, and compare it with our state at the same filling fact
excellent agreement is found, indicating that our functio
are serious contenders to describe the phases in higher L
at least in some cases. Further discussion is given in
Conclusion. Some of our results appeared in an earlier
published work.23

II. SOLUTION OF SPECIAL k1ONE-BODY
INTERACTION HAMILTONIANS

In this section, we show how to solve certain interacti
Hamiltonians, in the sense of finding the zero-energy eig
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states, with the help of operator product expansions~ope’s!
in CFT.22 We first reinterpret the Pfaffian state in this ligh
then discuss our Hamiltonians. Then we analyze the qu
hole states, and discuss non-Abelian statistics and the n
ber of sectors of edge states.

A. Notation and Hamiltonians

We will first define some notation for a system of pa
ticles in the lowest Landau level~LLL ! on the sphere3 ~it was
used previously in Ref. 18!. The magnetic field is radial and
uniform with a total ofNf flux through the surface, and in
the lowest Landau level~LLL ! each particle has orbital an
gular momentumNf/2. The LLL wave functions on a spher
are usually written~in a certain gauge3! in terms of ‘‘spinor’’
~or ‘‘homogeneous’’! coordinatesui andv i for each particle
i 51, . . . ,N, with ui5eif i /2cosui/2,v i5e2 if i /2sinui/2, where
u i ,f i are the spherical polar coordinates on the sphere. S
these imply thatui ,v i are not independent complex numbe
it is often more convenient, and will simplify the writing, t
use a nonredundant parametrization of the sphere by a s
complex variable. This is done by stereographic projecti
which gives the definitionzi52Rv i /ui , whereR is the ra-
dius of the sphere. Single-particle basis states in the L
then take the formzi

m/(11uzi u2/4R2)11Nf/2, where theLz

angular momentum quantum number isLz5Nf/22m, so
m<Nf . Many-particle states can thus be written as

C5C̃)
i

~11uzi u2/4R2!2~11Nf/2! ~2.1!

andC̃ must be a polynomial of degree no higher thanNf in
eachzi . Therefore, in the following we need specify onlyC̃

in order to describe a state. The functionC̃ for a ground state
on the sphere can also be used to construct a wave func
suitable for a corresponding disk-shaped ground state on
plane, by multiplying by exp(21

4(iuziu2).
The Pfaffian state is defined as16

C̃Pf~z1 , . . . ,zN!5PfS 1

zi2zj
D)

i , j
~zi2zj !

q. ~2.2!

The Pfaffian

Pf Mi j 5@2N/2~N/2!! #21(
P

sgnP)
r 51

N/2

M P~2r 21!P~2r !

~2.3!

of an antisymmetricN3N matrix M (N even! is the antisym-
metrized sum over all pairings (zi2zj )

21 ~the analogous
pairing in the spin-singlet case appears in the Halda
Rezayi state6!. The filling factor of the state isn5N/Nf
→1/q asN→` @sinceNf5q(N21)21], andq is odd for a
boson state and even for fermions.

The Pfaffian state forq51,q52 is the ground state of a
three-body Hamiltonian.17,18 For these cases, the Hami
tonian penalizes the closest approach of any three part
allowed by the statistics. Thus forq51, where the particles
are bosons~note that we reserve the term ‘‘particles’’ for th
underlying particles, which are either charged bosons
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8086 PRB 59N. READ AND E. REZAYI
charged fermions@electrons#, and not for composite par
ticles!, the Hamiltonian can be taken to be17

H5V (
i , j ,k

d2~zi2zj !d
2~zi2zk!, ~2.4!

where the sum is over distinct triples of particles.24 For nu-
merical purposes on the sphere, it is more convenien
work with a projection operator form of the three-bod
Hamiltonian, instead of thed functions in Eq.~2.4!. The
closest approach of three particles on the sphere corresp
to the state of maximum possible total angular moment
for the three. If the particles are bosons, the largest poss
total angular momentum is 3Nf/2 ~recall that each particle
has angular momentumNf/2). Then, for theq51 case, the
Hamiltonian may be taken as proportional to the project
operator onto the~unique! multiplet of maximum angular
momentum for each triple of bosons:

H5 (
i , j ,k

VPi jk~3Nf/2!. ~2.5!

The same trick works for the three-body interaction of f
mions giving theq52 case; in this case, the maximum tot
angular momentum of three particles is 3Nf/223. On the
plane, the latter Hamiltonian corresponds to derivatives od
functions. For these two cases, the Pfaffian state on
sphere is the unique energy eigenstate of zero energy a
statedNf value.~We will refer to such states as zero-ener
states hereafter.! For larger q, these Hamiltonians can b
generalized, in such a way that the zero-energy states
obtained from those forq51 by multiplying by )(zi
2zj )

q21 ~it is assumed that forq odd, we are discussing
bosons, and forq even, fermions!. The presence of the latte
factor implies that they are all zero-energy eigenstates of
projection operators for any two particles onto relative an
lar momentum M50,2, . . . , q23(q odd), or M
51,3, . . . ,q23 (q even! @or the corresponding total angu
lar momentaNf ,Nf22, . . . ,Nf2q13, (q odd!, etc.#. The
space of states annihilated by such projections is in one
one correspondence with the full space of states of thq
51 case, and the desired three-body projection oper
@onto angular momentum 3Nf/223(q21)] is the unique
one that corresponds under this mapping to that already m
tioned for q51. For eachq, the Hamiltonian can then b
taken to be the sum of the three-body and all of these t
body projection operators. A very similar approach works
the other Hamiltonians studied in this paper, so that res
for higher n21 can be deduced easily from those for t
minimal n21 for each type of state. These Hamiltonians c
also be written in terms ofd functions and their derivatives
so as to arrive at a form suitable for use in geometries o
than the sphere.

The goal of this paper can now be stated: we wish
generalize the solution for the zero-energy states of the th
body Hamiltonian~2.4! or ~2.5! to k11-body Hamiltonians
of the same closest approach form, for everyk ~note that for
k51, we can consider the solutions to be the Laugh
ground and quasihole states3!. We will demonstrate the exis
tence of an elegant solution to this problem by using con
mal field theory, construct the ground-state wave functio
to
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explicitly, and then compare the states with solutions for
Coulomb interaction in the second LL.

B. Ope’s and the Pfaffian state

First we will reconsider the Pfaffian state and show h
its property of being the unique zero-energy state for a c
tain Hamiltonian, that is, of vanishing as three particles co
to the same point, is related to operator product expans
in the corresponding CFT. We then generalize this to find
solutions to the simplest examples ofk11-body Hamilto-
nians, for eachk. The use of CFT leads to an existence pro
for these wave functions, and, in principle, determines
wave functions uniquely.

The basic idea of Ref. 16 is that thewave functionof our
two space-, 1 time-dimensional system can be related
correlator of a certain conformal field theory. Here we a
not interested in the simple Laughlin-Jastrow factors, bu
the other parts that may produce non-Abelian statistics.
the Pfaffian case, this part is the theory of free mass
Majorana Fermi fields in two Euclidean spacetim
dimensions:16

C̃Pf5^c~z1!•••c~zN!&)
i , j

~zi2zj !
q, ~2.6!

in which the correlator can be evaluated using Wick’s the
rem and ^c(z)c(w)&52^c(w)c(z)&5(z2w)21. The
Fermi fields can also be characterized by the operator p
uct expansions~ope’s! that hold inside correlators22

c~z!c~w!;~z2w!21@ I 12~z2w!2T~w!1•••#,
~2.7!

c~z!I ~w!;c~w!1~z2w!]c~w!1•••, ~2.8!

as z→w, whereI is the identity~which is a constant!, and
T(z)52 1

2 c]c is the stress tensor. Throughout,]f(z) will
mean]f(z)/]z and dots••• will denote higher-order, less
singular terms. While the correlator of Majorana fermio
can be found by Wick’s theorem, the use of ope’s is mo
general and can be applied in a vast number of situati
where there is no simple Wick’s theorem.

We now show how the ope for the fermions guarante
that the state is a zero-energy eigenstate for the three-b
interaction of Greiter, Wen, and Wilczek.17 This can be seen
directly17 from the explicit wave function~2.2!, however, the
ope’s provide ageneral argument that can be usedeven
when the wave functions are unknown, if the function is a
correlator of fields with known ope’s. Suppose that in t
correlator~without loss of generality! first z2→z1 , then z3
→z1 , and take the most singular term of each product. T
first limit @using Eq.~2.7!# gives (z12z2)21I , and the sec-
ond @using Eq.~2.8!# then gives (z22z1)21c(z1). Multiply-
ing by the Laughlin-Jastrow factorC̃LJ5) i , j (zi2zj ) we
find that C̃Pf for q51 vanishes as (z32z1)(z32z2), i.e.,
quadratically. Hence for the short-range interaction amo
bosons in Eq.~2.4! we obtain zero energy.17 Furthermore it
is the densest such state.17,20,18 The same argument applie
for q.1 by construction.
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C. Parafermion states

We next generalize the ideas to solve Hamiltonians w
k11-body interactions. The simplest such Hamiltonia
which will give the highest density such state for eachk,
which is always a state for bosons, is ad-function interaction
between thek11 particles:

H5V (
i 1, i 2,•••,i k11

d2~zi 1
2zi 2

!d2~zi 2
2zi 3

!•••

3d2~zi k
2zi k11

!. ~2.9!

As we will see, the wave functions involve dividing the pa
ticles into clusters ofk each. To generalize the approach ju
described for the Pfaffian, we will consider a natural gen
alization of the ope algebra of Majorana fermions, which
the algebra ofZk parafermions.25 This consists of a set o
fields c l (z),l 51, . . . ,k21 with ope’s@c l

† (z)5ck2l (z)#

c l ~z!c l 8~z8!;cl ,l 8~z2z8!2~D l 1D l 82D l 1l 8!

3@c l 1l 8~z8!1•••# ~ l 1l 8,k!,

~2.10!

c l ~z!c l 8
†

~z8!;cl ,k2l 8~z2z8!2~D l 1D l 82D l 2l 8!

3@c l 2l 8~z8!1•••# ~ l 8,l !,

~2.11!

c l ~z!c l
† ~z8!;~z2z8!22D l S I 1

2D l

c
~z2z8!2T~z8!1••• D ,

~2.12!

T~z!c l ~z8!;
D l

~z2z8!2
c l ~z8!1

1

z2z8
]c l ~z8!1•••.

~2.13!

The consistency of the algebra puts conditions on the c
formal weightsD l of the c l ’s. The simplest solution to the
conditions isD l 5l (k2l )/k, and with this choice the val
ues of the central chargec52(k21)/(k12) and the nu-
merical coefficientscl ,l 8 are then uniquely determined b
consistency. With these choices, we obtain the algebra
ally known asZk parafermions.~Other solutions for theD l

are listed in Ref. 25, and some are studied further. In th
cases the other parameters are not uniquely determi
These other algebras will not be needed here, but may
relevant in other FQHE problems. The procedure below w
generate wave functions in all cases, but these may no
ways be solutions to simple Hamiltonians.! For k52,c1
5c is a Majorana fermion, and the ope’s are the same
Eqs.~2.7,2.8! above.

Consider the function

C̃para
~m! ~z1 , . . . ,zN!5^c1~z1!•••c1~zN!&C̃LJ

M12/k ,
~2.14!

where N is divisible by k and M>0 is an integer. The
C̃LJ

M12/k factor renders Eq.~2.14! nonsingular;(zi2zj )
M as

any zi→zj , according to Eq.~2.10! with D l 1D l 82D l 1l 8
52l l 8/k, which gives 2/k for l 5l 851.C̃para is totally
h
,

t
r-
s

n-

u-

se
d.

be
ll
al-

s

symmetric for M even, antisymmetric forM odd, so de-
scribes bosons or fermions, respectively. As anyzi→`, the
correlator;zi

22D1 , because the separations among the ot
N21c1’s are then relatively small, and the ope’s imply th
they ‘‘fuse’’ to form a singlec1

† . HenceC̃para is a polyno-
mial of degree Nf5n21N2(M12), where n5k/(Mk
12) is the filling factor.

Taking now theM50 case, we can show that the fun
tion vanishes quadratically as anyk11 particles come to the
same point, sayz2 , . . . ,zk11 approachz1 one by one, by a
similar argument based on the ope’s as for the Pfaffian.
the first k21 particles approachz1 , the most singular~or
most slowly vanishing! terms must give the same result
theN5k case ofC̃para, which is a constant;25 one additional
particle givesc1(zk11)I;c1(z1), and the LJ factors give
(zk112z1)2. Hence like the Pfaffian state withq5M11
51, this state is a zero-energy state for thek11-body
d-function interaction of bosons, and this fact again exten
to M.0. This shows that the desired wave functions ex
provided the CFT correlators do; but the parafermion th
ries are well studied and can be constructed from other w
understood theories,25,26 so correlators with the propertie
specified by the ope’s do exist. Notice that, had we chose
use a different parafermion operatorc l (l <k/2) in place of
all thec1’s, we would have obtained a polynomial that va
ishes more rapidly whenk11 zi ’s coincide, and a lower
filling factor.

Explicit functions can be obtained using the idea
grouping particles into clusters ofk.15 The following proce-
dure gives a symmetricC̃para

(0) of the correct degree, which i
the Laughlin state fork51, and the Pfaffian state fork52:
Divide the particles into clusters ofk. For each pair of dis-
tinct groups, sayz1 , . . . ,zk and zk11 , . . . ,z2k , we define
factorsx by ~for k>2)

x~z1 , . . . ,zk ;zk11 , . . . ,z2k!

5~z12zk11!~z12zk12!~z22zk12!

3~z22zk13!•••~zk2z2k!~zk2zk11!,

~2.15!

that is, each member of a cluster is connected with only t
members of the other cluster, by a factorzi2zj . For k51,
we would havex5(z12z2)2. Now we multiply these for all
distinct pairs of clusters, and symmetrize the whole expr
sion, to obtain

C̃para
~0! 5 (

PPSN

8 )
0<r ,s,N/k

x~zP~kr11! , . . . ,zP„k~r 11!… ;

3zP~ks11! , . . . ,zP„k~s11!…!, ~2.16!

where SN is the permutation group onN objects, and the
prime on the sum denotes that the summation can be
stricted to permutations obeyingP(1),P(k),•••,P(N
2k11), which eliminates redundant permutations of t
clusters; otherwise each term would appear (N/k)! times ~in
the expression for the Pfaffian above, we instead summ
over all permutations but divided by the number of tim
each distinct product appeared!. Hence this function is totally
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8088 PRB 59N. READ AND E. REZAYI
symmetric, even with this restriction. To obtain largerM

.0, we must multiply byC̃LJ
M . The degree of the function in

each zi is then Nf5M (N21)12(N/k21)5n21N2(M
12), as for the parafermion correlator times LJ fac
above.

Next we show that our function~for M50) vanishes qua-
dratically whenever anyk11 particles come to the sam
point. It is sufficient to consider each term in the sum ov
permutations separately. Clearly, we must then cons
many possibilities, in which thek11 particles are distributed
among different clusters, ranging from all but one in t
same cluster, to each in distinct clusters. We will organ
our proof in the following way. First we show that each ter
vanishes ifk particles come to the same point, except in t
case of allk in the same cluster. Then we use the evident f
that for k particles in one cluster, one in another, the te
vanishes~this follows directly from the definition ofx itself!.

We must considerk distinctzi ’s, chosen in any way from
up to k distinct clusters. We may label these by the cor
sponding position in a cluster~from 1 to k), and the label
~like r ,s) for the cluster that appears inside the permutat
operatorP. These determine when the product ofx ’s van-
ishes. Put another way, it is sufficient to consider the te
where P is the identity. Now consider the values for th
position within a cluster as arranged on a circle~or clock
face!, with the numbers increasing clockwise untilk is
reached, which is followed by 1, so that 1 is adjacent to
andk, 2 is adjacent to 1 and 3, and so on. Thex ’s containing
any two selectedzi ’s vanish only in two cases:~i! if mem-
bers of distinct clusters occur at the same place on the cl
~ii ! if members of distinct clusters occur at adjacent po
tions, but only if the position of the later cluster is arrived
by moving clockwise from the earlier by one step~see the
definition of x). We can then describe the structure of t
term containing any set ofk zi ’s by labeling positions on the
clock face with the numbers of the clusters in which thezi ’s
appear. Members of the same cluster must be at diffe
clock positions because they are distinctzi ’s. Clearly, if a
term is to have any possibility of not vanishing, we mu
choose all the clock positions to be distinct. We then hav
single number of a cluster assigned to each clock posit
We will now show that it is not possible to arrange these
such a way that the term does not vanish, except by choo
all the zi ’s from a single cluster. We can view the clock
divided into regions~possibly consisting of positions that a
not all adjacent! that have been labeled~or ‘‘colored’’ ! with
a single cluster number. To avoid a vanishing factor,
numbers of the clusters must decrease as one moves c
wise from one region to another. But the clock is not simp
connected, and so this cannot be done all the way around
clock, unless there is only a single region~or cluster! in-
volved. In the latter case, consideration of any one othezi
shows that the term vanishes, as mentioned before. Th
fore, we have shown that the function vanishes at least
early, but since it is totally symmetric after summing ov
permutations, it will actually vanish quadratically as anyk
11 particles come to the same point.

We have shown that this vanishing property follows fro
the parafermion ope’s, which should determine the functi
however, the vanishing property alone may be only a nec
r
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sary and not a sufficient condition to determine that the fu
tion is the parafermion correlator timesC̃LJ

M . Nonetheless,
since we have demonstrated it for an explicit function, a
since this function seems to be unique, on the basis at lea
numerical verification fork53,4 ~discussed further below!,
we conjecture that the parafermion correlators for allk are
given by this construction~by dividing C̃para

(0) by C̃LJ
2/k ). It

should be possible to prove or disprove this statement
studying the properties of our function as various combi
tions of zi ’s coincide, and comparing these with the ope
This was done for various paired states in Ref. 27, but
will not consider it further.

D. Quasihole states and non-Abelian statistics

In this subsection, we argue that states containing qu
holes@carrying charge 1/(Mk12) each# for the parafermion
states withk.2 can be constructed in analogy with th
Pfaffian case, and that non-Abelian statistics are expecte
all cases. The arguments go as follows. We will again be
with the Pfaffian state.

The two-quasihole wave function proposed in Ref. 16 w

C̃Pf12qh~z1 , . . . ;w1 ,w2!5PfS f ~zi ,zj ;w1 ,w2!

zi2zj
D C̃LJ

q ,

~2.17!

where f (zi ,zj ;w1 ,w2)5(zi2w1)(zj2w2)1(zi2w2)(zj
2w1). It can be interpreted as the insertion of two spin fie
s(w):

C̃Pf12qh}^c~z1!•••c~zN!s~w1!s~w2!&

3C̃LJ
q )

i
~zi2w1!1/2~zi2w2!1/2. ~2.18!

The spin fields induce square-root branch singularities in
Fermi fields, described by the ope’s22

c~z!s~w!;~z2w!21/2s~w!1•••. ~2.19!

The branch singularities are cancelled by the explicit squ
roots, to ensure that the wave functions are single valu
This fixes the charge of each quasihole to be 1/2q. We note16

that quasiholes can be created only in pairs.
In Ref. 16 it was proposed to extend this by defining wa

functions for 2n quasiholes by inserting 2n spin fields. Since
the ope’s, by definition, describe short-distance propertie
correlators independently of what other fields are pres
our argument above implies thatthe quasihole wave func
tions so obtained will all be zero-energy eigenstates of
appropriate H3 ~this can again be seen explicitly in then
51 case above!. This is analogous to the Laughlin state
where for a suitable pseudopotential Hamiltonian the grou
state and states with quasiholes added are zero-en
states.3 However, for the present case, there is not jus
unique state for each set of quasihole positions. Instead t
are 2n21 linearly independent functions~conformal blocks!
of the zi ’s for 2n spin fields. This number follows from the
ope of the spin fields:22

s~z!s~w!;~z2w!21/8I 1const~z2w!3/8c~w!1•••.
~2.20!
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Here the higher-order terms fall into two families since t
behavior of each term asz→w differs from that of one of the
first two terms by an integer power of (z2w). Then in a
correlator containing s(w1)s(w2)•••, as w1→w2 ,w3
→w4 , etc. we can choose a member of either set of terms
each pair ofs ’s, which would give 2n terms, except that the
total number ofc ’s in the correlator must be even, so we g
2n21 blocks, forN ~the number ofc insertions! odd or even.
In principle, the ope’s can be used to fix the actual form
the correlators for 2n>4. In practice, it was more convenien
to find all the zero-energy states by explicit construction, a
it was shown that for fixed positions of the quasiholes,
number of states is 2n21.21,18Thus the results for the Pfaffia
are in complete agreement with these predictions base
CFT ope’s.

These degenerate spaces of quasihole states are the
for the non-Abelian statistics properties of the quasiho
~and similar properties are expected for quasielectrons, o
combinations of quasiholes and quasielectrons!. As the loca-
tionswi of the spin fields are exchangedby analytic continu-
ation, the conformal blocks are mapped to linear combin
tions of each other~monodromy!.22 The conjecture of Ref.
16 was that when the quasiholes are exchangedadiabatically
as in Ref. 28, these functions exhibit non-Abelian statist
meaning that the effect on members of the space is a lin
transformation, which can be described by a 2n2132n21

matrix by choosing a basis, and that this is the same as
matrix obtained by analytic continuation. This replaces
usual Berry phase that describes ordinary~Abelian! frac-
tional statistics; matrices representing distinct exchanges
not usually commute, hence the term ‘‘non-Abelian.’’ Th
existence of many blocks is thus a necessary but not s
cient condition for non-Abelian statistics~the adiabatic ex-
change has not yet been calculated explicitly!.29

We now discuss the extension of these results to the p
fermion states fork.2. In place of the spin fields for the
Majorana fermion, the parafermion system has ‘‘fields’’~chi-
ral vertex operators! Fm

l ,25,26 where l 50,1, . . . ,k, while m
is a periodic variable with period 2k, so m50,1, . . . ,2k
21, and furtherl 2m50 ~mod2!. In the ope’s ofFm

l , the
m’s add mod2k, however, there are also identifications th
imply that Fk1m

k2 l 5Fm
l are the same operator, so the valu

of m can be restricted so as to get each of thek(k11)/2
distinct fields once; a convenient way to do this is by restr
ing 2 l ,m< l . In this notation,F0

05Fk
k5I and F2l 2k

k

5F2l
0 5c l . The special casess l5F l

l ,l 51, . . . ,k,(sk

5I ), are called primary fields for the parafermion algeb
s1 in a sense generates the whole set by repeated ope
products, and is a natural analogue fors, to which it reduces
for k52. We propose to insert a numbernk of s1’s into the
correlator of parafermion currents to obtain the basic qu
hole states; these are zero-energy states for our sp
Hamiltonians by the preceding argument. We uses1 because
this leads to the minimal charge for the quasiholes. Thus
proposal for quasihole states is to use

üC̃para1qh
~M ! ~z1 , . . . ;w1 , . . . ,wnk!

5^c1~z1!•••c1~zN!s1~w1!•••s1~wnk!&

3C̃LJ
M12/k)

i 51

N

)
p51

nk

~zi2wp!1/k. ~2.21!
or
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In these states,Nf5n21N2(M12)1n. Once again, this
will in general define a whole set of states~conformal
blocks!, not a unique state. In the last factor, the expon
1/k is chosen to cancel the branch singularity as anyc1
approaches anys1 , which is determined by the ope,

c1~z!F1
1~0!;z21/kF3

1~0!1••• ~2.22!

~see Refs. 25 and 26!. This is the weakest singularity for an
of theFm

l , so gives the smallest charge for a quasihole. T
charge on the quasiholes is determined entirely by
Laughlin-like part of the wave function, not the conform
block of the parafermions, so the usual plasma argum
shows that the charge~number of particles missing from th
vicinity of wp) is n/k51/(Mk12) ~use of the other spin
fields s l in general give chargesn l /k, and by including ad-
ditional Laughlin quasihole factors we can add integer m
tiples of n to these charges!. Mk12 is the denominator of
n5k/(Mk12); however,k andMk12 have a common fac
tor if and only if k is even, and this factor is just 2~e.g., for
the Pfaffian,k52). Therefore, whenk is even, the charge is
fractionalized compared with the usual value in a Laugh
or hierarchy state for a spin-polarized single component s
tem at the same filling factor, which is always 1/q for filling
factor p/q, wherep,q have no common factors. The ne
nontrivial example isk54, where withM51 for fermions
we obtain an52/3 state, orn51/3 by particle-hole inver-
sion, with charge61/6 excitations.

The explicit function forn51, that isk quasiholes, is the
same asC̃para

(0) , except that a factor of the form

G~z1 , . . . ,zk ;w1 , . . . ,wk!5)
i

~zi2wi ! ~2.23!

for each cluster ofk particles is inserted inside the sum o
permutationsP in Eq. ~2.16!; the permutations act only on
thezi ’s, not thewp . This generalizes the functionf above for
the Pfaffian, except that once again the symmetrization
now done all at once by the sum overP, which can still be
restricted as before. The resulting function is also symme
in the wp’s.

For more quasiholes, we do not have the explicit fun
tions in general, but we can count the number of zero-ene
states for fixed positions of the quasiholes in the above c
struction, using the CFT, in a similar way as for the Pfaffi
state above; we will considerk53 explicitly. We require the
ope’s of the fieldsFm

l , which are given in Ref. 26 for allk,
and will not be written down explicitly here. Using the ope
one finds, by repeatedly taking ope’s withs1 , that the num-
ber of conformal blocks in the parafermion theory fork53
for 3n quasiholes is a Fibonacci number,F3n22 , where we
defineF151, F252, F353, F455, andFm5Fm211Fm22
in general.30 Thus, the number of linearly independent zer
energy states for our Hamiltonian is also~at least! F3n22 for
fixed positions of 3n quasiholes, in thek53 case, provided
N is sufficiently large. For largen, this number approache
;(21A5)n. As k increases, the expressions for then depen-
dence for the parafermion cases will become progressiv
more complex than that for the Pfaffian (k52) case, which
was 2n21.
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The results for the quasiholes can be compared with
merical results for the four-body Hamiltonian. The results
the total number of zero-energy states~compare Ref. 18 for
results on the Pfaffian state!, were calculated forN56, 9,
and 12 fermions atn53/5, but should be independent ofM.
First, the ground state at the statedNf is unique, and for
small sizes was verified to be given by the explicit polyn
mial above. For one flux added (n51), that is, three quasi
holes, the number of states was

S N/313

3 D ,

as one would expect for three bosons inN/311 orbitals, or
from the explicit wave functions above. Forn52 flux added,
that is, six quasiholes, the numbers of states were in ag
ment with the formula

S N/316

6 D 13S N/315

6 D 1S N/314

6 D , ~2.24!

which is similar in form to those found for the Pfaffia
state.18 Assuming this works for all largerN, and dividing by
the first term which is the value of the positional degener
that would be expected if the quasiholes obeyed Abe
statistics,18 we obtain the ratio 5 in the thermodynamic lim
which agrees with the number expected from conformal fi
theory. Similarly, for nine quasiholes (n53), the results
agree with the formula

S N/319

9 D 110S N/318

9 D 110S N/317

9 D ~2.25!

and so we expect the ratio to be 21 in the thermodyna
limit, as expected for fixed positions of the quasiholes. F
more quasiholes, because of size limitations we have
been able to obtain any such formulas. Thus we find a sa
fying agreement with our prediction, which tends to confi
that all the zero-energy quasihole states are obtained by
sertings1’s in the parafermion correlator.

We have not obtained results for the four-body Ham
tonian ground states on the torus, or the edge excitat
~compare Refs. 20 and 18!, either analytically or numeri-
cally. However, we expect that these calculations would l
in general to the conclusion that the number of sectors
edge states, or ground states on the torus, is (k11)(Mk
12)/2 ~notice that this integer is divisible by the denomin
tor of the filling factor in all cases, as required by Ref. 3!.
This result is based on a natural structure for the CFT,
cluding the U~1! charge sector as well as the parafermi
sector. Our analysis of this theory, which we will not discu
in detail here, also indicates that while fork52 there are
neutral fermion excitations, both at nonzero energy in
bulk and as gapless excitations at the edge,16,17,20 for k.2
the analogous parafermionc1 excitations carry charge 2n/k
plus multiples ofn. The excitation containing ac1 and
charge 1 is identified with the physical hole, as usual, and
the CFT interpretation that applies~for example! to the CFT
of edge excitations, it generates the chiral algebra, as in
Pfaffian case.16,20 There are, however, neutral parafermi
excitations fork even that containck/2 . These can be viewed
as being made fromk/2 particles and (Mk12)/2 flux. These
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are simply fermions fork/2 odd, bosons fork/2 even, and are
like the usual composite particles. Also, for allk, there are
nontrivial neutral excitations originating from the spin field
F0

l 5Fk
k2 l in the earlier notation. Fork53, the latter,F0

2 , is
the only field other than the parafermionsc l and the spin
fieldss l . These have no analogues either in the hierarchy
the Pfaffian (k52) states, though they do in the generaliz
hierarchy states, such as the 331 state.20 We further note
some isomorphisms of the algebraic structures. ForM50,
the full chiral algebra, including the U~1! charge sector, is
the levelk SU~2! Kac-Moody current algebra, with represe
tations ~sectors! labeled by ‘‘spin’’ j 5 l /250,1/2, . . . ,k/2
~this spin is of course not the physical spin, which is alwa
polarized!. For M51, the chiral algebra is the so-calledN
52 superconformal algebra in the antiperiodic sector, a
the representations for eachk make up the known discret
seriesk51,2, . . . , forthis algebra.32 In these cases, we hav
simply recovered known constructions of these algebras
representations from the parafermions.25,33 The special cases
k51 ~the Laughlin state! and k52 ~the Pfaffian state! of
these were mentioned earlier,16,20 and the SU~2! k52,M
50 case was used in a recent paper.34

III. COULOMB INTERACTION IN THE FIRST EXCITED
LANDAU LEVEL

We next turn to finite-size calculations. We have nume
cally constructed the wave functions of parafermion sta
for n53/5(k53,M51), andn52/3(k54,M51) for small
sizes on the sphere and have confirmed that thek11-body
Hamiltonians possess unique zero-energy ground state
the given flux Nf . For k53, we have also obtained th
excitation spectrum, both for the modelk11-body interac-
tion and the Coulomb potential in theN51 Landau level,
and have studied the overlaps of the Coulomb ground s
with our state as well as with the usual hierarchy states as
pseudopotentialV1 is varied about the (N51) Coulombic
value. Below we describe these results.

Figure 1 shows the low-lying spectrum forN515 andn
53/5 for the four-body Hamiltonian. The ground state is
L50, zero energy. The low-lying spectrum bears some
semblance to the ‘‘hanging chain’’ shape seen in paired s
tems.

In Fig. 2 we show the pair-correlation function for th
same state but for theN518 size system, plotted as a LL
wave function, which describes the correlations of t
guiding-center coordinates of the particles. Again, t

FIG. 1. The low-lying spectrum for the four-body Hamiltonia
for N515 electrons. The ground state is atL50,DE50.
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‘‘shoulder’’ at smallr appears to be a characteristic of sta
in which the particles form clusters, such as pairs, and is
present for the Pfaffian state.18,35 In addition, the large-
distance oscillations are strongly damped. This feature in
cates that the state is incompressible.

We have also compared these states with the ground
obtained by diagonalizing the Coulomb potential for theN
51 Landau level. In the LLL, the hierarchy states are m
stable and these new ones will not be competitive. The
excited Landau level may be quite a different matter sinceV1

is reduced compared toV3 ~see, e.g., Ref. 3!. Some typical
values for V1 ,V3 , and V5 at Nf522 areN50: 0.4681,
0.2998, 0.2422, andN51: 0.4716, 0.3711, 0.2800. For th
N51 Coulomb interaction ground state, the hierarchy st
has small overlap squared, whereas parafermionic states
very large ones.@The hierarchy state was obtained as t
ground state of a model pseudopotential consisting only
nonzeroV1 . We caution that these two states occur at d
ferent values ofNf because of the finite shifts on the sphe
(Nf55N/311 for the hierarchy!.# For thek53 parafermion
state we find 97% forN515 ~where there are 36 states in th
L50 Hilbert space! and 88% forN518 (319L50 states!,
compared to at best 1 or 2 % for the hierarchy 3/5 state. T
is noteworthy since for these sizes we are very close t
Laughlin 2/3 state~i.e., the Laughlin 1/3 state of holes!, be-
cause of the finite shifts in theN–Nf relations on the sphere
For N515 theNf for our state coincides with that of a sing
quasiparticle excitation of then52/3 fluid while forN518 it
is at the same flux as the 2/3 condensate itself. This is a c
disadvantage for the parafermion states particularly if we
to vary the short-range component of the Haldane pseud
tential V1 . Not surprisingly, increasingV1 by a few percent
seems to favor the Laughlin state. However, one would
pect the hierarchyn53/5 state, against which our state w
be ultimately competing for large sizes, to show a slower r
of stabilization upon increasingV1 away from its second
Landau level value.

To study this issue we compare the overlap squared of
ground state ofH5HCoul,N511dV1 with both our state and
the hierarchy 3/5 state. Figure 3 shows these overlaps
function of dV1 for the N512 ~52 L50 states! hierarchy
andN515 parafermion state.~The sharp drop in the parafe
mion curve atdV1 about 0.03 is due to a level crossing: f
largerdV1 , the ground state hasL52). It appears that ou
state remains stable for increases ofdV1 of up to 7 –8 %
from the Coulomb value. Note, however, that the hierarc
state is not fully stabilized untilV1 is increased by 20% of its
Coulomb value. For large sizes there will be less interfere

FIG. 2. Pair-correlation function of then53/5 parafermion state
for N518 electrons on the sphere.r is the great-circle distance.
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from n52/3 and the stability domain for our state may e
tend well beyond 7 –8 %.

Finally, in Fig. 4 we show the low-lying spectrum for th
pure Coulomb case forN515. Again one finds some simi
larity with that of the four-body Hamiltonian~Fig. 1!, al-
though in neither case is there a clear gap to a continuum
excited states. We defer precise gap estimations incorpo
ing finite layer thickness and other effects that modify t
gap values, as well as detailed studies of the quasipartic
to future work.

IV. CONCLUSION

To conclude, we have obtained the ground-state w
functions for thek11-body Hamiltonians, and for the cas
k53 we have counted quasihole states, and~for M51)
found excellent overlaps with the ground state of the C
lomb interaction for spin-polarized electrons in the first e
cited (N51) LL, at total filling factor n5213/5; by a
particle-hole transformation, this also applies atn5212/5.

Our parafermion states contain clusters ofk particles. For
the Pfaffian state (k52) atn51/2, it has been suggested13,14

that it may be favored in theN51 LL, because of this fea-
ture. That is, the correlation hole around each particle tha
obtained by the Laughlin-style correlations, as a result
attachingq vortices to each particle~for filling factor of the
topmost LL equal to 1/q),36 may not be sufficient to obtain

FIG. 3. Overlap squared of the two reference states, thn
53/5 parafermion state (N515) and then53/5 hierarchy state
(N512), with the state obtained by diagonalizing theN51 Cou-
lomb potential with an addeddV1 component.

FIG. 4. Same as Fig. 1 but for theN51 Coulomb potential. The
ground-state energy has been subtracted in the spectrum.
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8092 PRB 59N. READ AND E. REZAYI
the lowest energy in higher LL’s, because of the ‘‘form fa
tor’’ associated with these LL’s—the real-space wave fu
tion does not vanish when particles coincide.13 However, by
forming a cluster of two or more particles, the energy gain
from the larger correlation hole surrounding the cluster m
outweigh that lost within the cluster itself. Very simila
physics is suggested by recent work motivated by the fo
of the pseudopotential interaction in higher LL’s; the lat
are also a consequence of the form factors. These w
consider the formation of crystalline phases in which
particles are clustered, so there is more than one per
cell.37 If this idea is correct, then liquids containing cluste
might also be expected to occur in higher LL’s, possibly
intermediate phases between the crystals and the usual
archy states~if we consider varying the short-range part
the interaction away from its physical value, at fixedn). As
the LL indexN increases, larger clusters withk;N are ex-
pected to be favored.37 It is very interesting that recent ex
perimental work38 has observed highly resistive, highly a
isotropic behavior, with nonlinear current-voltage charact
istics, at total filling factors greater than 4, that is, in t
n
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y

r
ks
e
nit

s
ier-

r-

rangeN52 to about 6. This behavior, seen around the cen
of each LL for each spin component, appears consisten
principle with the notion of a uniaxial or ‘‘striped’’ crysta
phase, which was also predicted in Ref. 37 in this region~the
triaxial crystals of clusters were predicted forn away from
1/2), and thus may support these physical pictures. Ther
clearly much still to be done to understand the physics in
regime, in which we hope that the parafermion liquid sta
will play a role.
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