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Ensemble density-functional approach to charge-spin textures
in inhomogeneous quantum Hall systems

O. Heinonen*
Department of Physics, University of Central Florida, Florida 32816-2385

J. M. Kinaret
Department of Applied Physics, Go¨teborg University, S-412 96 Go¨teborg, Sweden

and Chalmers University of Technology, S-412 96 Go¨teborg, Sweden

M. D. Johnson
Department of Physics, University of Central Florida, Florida 32816-2385
~Received 11 February 1998; revised manuscript received 7 October 1998!

We extend our ensemble density-functional approach to quantum Hall systems to include noncollinear spins
to study charge-spin textures in inhomogeneous quantum Hall systems. We have studied the edge reconstruc-
tion in quantum dots at unit bulk filling factor and at 1/3 bulk filling factor as a function of the stiffness of an
external confining potential. For soft enough edges, these systems reconstruct to a state in which the electron
spins rotate gently as the edge is approached, with a nontrivial spin-charge texture at the edge of the system.
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I. INTRODUCTION

It has recently become clear that the spin degree of f
dom plays a significant role near ferromagnetic fillings in t
quantum Hall effect~QHE!.1–3 This is because of the low
ratio of the Zeeman energyEZ5g* mBB to the Coulomb
energyEC5e2/(e0l B). Here,g* is the Lande´ g factor, mB

the Bohr magneton,B the applied magnetic field strength,e0

the static dielectric constant, andl B5A\c/eB the magnetic
length. For GaAs systems, the low values of the Lande´ factor

and of the electron effective massm* conspire to makeg̃
5EZ /EC'EZ /(\vc)&0.02 for fields in the range of a few
to approximately 10 T. Here,vc5eB/(m* c) is the cyclo-
tron frequency. Nonetheless, single-particle spin-flip exc
tions still cost a large amount of energy, because of the
of exchange energy associated with a spin flip. This me
that the spin degree of freedom is controlled by the intere
tron Coulomb energy, and not by the Zeeman energy. O
consequence is that if a single spin is reversed, it beco
energetically favorable for the system to smoothly rotate
magnetization direction to restore it over some distance fr
the reversed spin. Due to the connection between flux
charge density in incompressible ferromagnetic QHE gro
states, such spin textures also acquire a charge density
the resulting spin-charge textures are commonly ca
‘‘skyrmions.’’ ~More accurately, skyrmions are the particul
type of spin-charge textures that show up in certain c
tinuum models, such as the nonlinears model.4! There is
now ample theoretical2,5,6and experimental work7–9 suggest-
ing that such skyrmions are indeed the low-energy char
excitations, at least near filling factorn51. This is, for ex-
ample, manifested in the rapid destruction of the grou
state polarization observed experimentally7 as the filling fac-
tor is varied away from unity. Recent theoretical work10–13

has also indicated that the edge reconstruction of ferrom
netic QHE systems may acquire nontrivial spin textures~or
charge-density waves! as the edge confinement is softene
PRB 590163-1829/99/59~12!/8073~11!/$15.00
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This may radically alter our understanding of edges in Q
systems, and, concomitantly, our interpretations of exp
ments that probe the gapless edge modes. This is at
present best understood for edges ofn51 systems. One
question we wish to address here is whether similar cha
spin textures can occur at the edges of systems in regime
the ferromagnetic fractional quantum Hall effect~FQHE!
~such asn51/3), where not just electron exchange but a
correlations are important.

We have previously developed an ensemble dens
functional approach for spin-polarized systems,14,15 and sub-
sequently generalized that approach to include the elec
spin, but with the spin quantization axis constrained to
parallel to the external magnetic field.16 We present here a
further extension that is able to deal with a rotating sp
quantization axis. Advantages of our DFT approach are
it includes electron interactions beyond exchange, and th
can be applied to large inhomogeneous fractional QHE s
tems. This makes our ensemble spin DFT approach the
available method that can be applied to general inhomo
neous QHE systems, spanning regimes from the FQHE
the semiclassical, and which includes the spin degree of f
dom and Landau-level mixing. We have used this appro
to study the edge reconstruction of circularly symmet
quantum dots. Our results show that as the edge confinem
is softened, the system goes from a spin-polarized sharp e
to a softer edge with a nontrivial spin texture, in agreem
with results obtained by other groups using the Hartree-F
approximation ~at integer filling! or field-theoretical
models.10 A new result here is to show how the reconstru
tion to a spin-charge textured edge can also happen
FQHE systems.

This paper is organized as follows. In Sec. II, we pres
the general ensemble density-functional theory for nonc
linear spins. Section III presents some technical details of
theory, including an extension of previously used exchan
correlation energies for QHE systems to include both hig
Landau levels and electron spin. In Sec. IV we present
8073 ©1999 The American Physical Society
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sults from numerical calculations of quantum dots at u
bulk filling factor and at 1/3 bulk filling factor. Finally, Sec
V contains conclusions and a discussion.

II. ENSEMBLE SPIN-DENSITY-FUNCTIONAL THEORY
FOR NONCOLLINEAR SPINS

In its most general formulation, spin-density-function
theory, as developed by von Barth and Hedin,17 allows for
noncollinear spins. This is based on a generalization of
Hohenberg-Kohn18 theorem in which the electron densi
n(r ) is replaced by the single-particle density mat
rs,s8(r )[^0uĉs

†(r )ĉs8(r )u0&, whereĉs(r ) „ĉs
†(r )… is the

usual electron annihilation~creation! operator for an electron
of spin s at positionr , andu0& is the ground state. We wil
use notations in whichs561 or s5↑,↓, with up spin (↑)
corresponding tos521. A computationally useful approac
is then constructed in the usual way by considering an a
iliary noninteracting system in some effective external pot
tial vs(r ) chosen so that this system has the same grou
state single-particle density matrixrs,s8(r ) as the interacting
system at hand. A variational principle associated with
generalized Hohenberg-Kohn theorem then yields Ko
Sham~KS! equations,19 which now include spin-dependen
exchange-correlation potentials

Vxc,ss8~r ![
dExc@rs,s8~r !#

drs,s8~r !
. ~1!

A difficulty is that one does not usually have reliable a
proximations for the exchange-correlation potenti
Vxc,ss8(r ), not even in the local-density approximatio
~LDA !. Consequently, the density matrix is usually assum
to be diagonal for allr , which means that the direction of th
magnetization is assumed to be constant, and that directi
then conveniently chosen as the spin quantization axis. T
only up- and down-spin densities enter into the KS eq
tions, and for the LDA~or extensions including generalize
gradient approximations!, one only needs to know th
exchange-correlation energyExc(n,j) of a uniform system
of density n5n↑1n↓ and polarizationj[(n↑1n↓)/(n↑
2n↓). There exist now very accurate calculations
Exc(n,j) for two- and three-dimensional electron gases~in
zero magnetic field!.20,21

However, the approximation of constant magnetizat
direction obviously does not work in systems for which it
known that the magnetization direction changes in spa
Examples of such systems are Mn3Sn,22 g-Fe,23 U3Pt4 ,24

and QHE systems near unit filling. For such systems the
single-particle density matrix has to be used, and the pr
lem then arises as to how one should construct a LDA.
will here follow an approach developed by Ku¨bler et al.,25

Sticht, Höck, and Kübler,22 and Sandratskii,26 and extend
their approach to an ensemble DFT appropriate for Q
systems. The basic idea is to locally rotate the spin qua
zation axis to obtain a representation that locally diagon
izes the single-particle density matrix. The advantage of
procedure is that in order to construct a LDA, one then o
needs the exchange-correlation energy as a function
spin-up and spin-down densities~or total density and polar
ization!, for which approximations exist. The price one h
it

l

e

x-
-
d-

e
-

-
s

d

is
s,
-

f

n

e.

ll
b-
e

E
ti-
l-
is
y
of

to pay is to introduce local spin rotation anglesu(r ) and
w(r ), which complicates the KS equations. This approa
has given good results in applications to materials such
g-Fe,23 U3Pt4 ,24 and a-Fe2O3.27 It can also give the spin
stiffness important in studying spin-charge textures in
QHE. That this can happen in the LDA is not immediate
obvious—in field-theoretical approaches the spin stiffn
enters via a gradient of magnetization, and such gradients
neglected in the LDA. We will show in Sec. III that the LDA
does give a spin stiffness, although formally its origin a
pears a bit different.

We now proceed to review the LDA approach of Ku¨bler
et al.25 Sticht, Höck, and Kübler.22 We begin by writing the
ground-state energy as a functional of the single-particle d
sity matrix for a two-dimensional system in a constant ext
nal magnetic fieldB5Bẑ:

E@rs,s8~r !#5Ts@rs,s8~r !#

1E n~rW !next~rW !d3r

1g* mBB (
s,s8

sds,s8E rs,s8~r !d2r

1
1

2E E n~r !vH~r2r 8!n~r 8!d2r d2r 8

1Exc@rs,s8~r !#. ~2!

Here,Ts@rs,s8(r )# is the kinetic energy functional of nonin
teracting electrons, which in our case includes the exte
magnetic field B. The particle density is n(r )
5Tr rs,s8(r ), vH(r ) is the Hartree potential, and
Exc@rs,s8(r )# is the exchange-correlation energy, which d
pends parametrically on the magnetic field~for ease of nota-
tion we omit this parametric dependence!. Using the varia-
tional principle of the Hohenberg-Kohn theorem, Eq.~2!
leads to Kohn-Sham equations of the form

FTs~r ! Î1VH~r ! Î1next~r ! Î1gmBBS 1 0

0 21D
1S Vxc,↑↑~r ! Vxc,↑↓~r !

Vxc,↓↑~r ! Vxc,↓↓~r !
D G S c i ,↑~r !

c i ,↓~r !
D 5e i S c i ,↑~r !

c i ,↓~r !
D
~3!

for single-particle spinorsc i5(c i ,↑ ,c i ,↓) ~here, Î is the
232 identity matrix!. The problem with Eq.~3! is the spin-
dependent exchange-correlation potentialVxc,ab(r ). The ap-
proach taken by Ku¨bler and co-workers is to locally find a
representation in which the single-particle density matrix
diagonal with diagonal elementsn↑(r ) and n↓(r ). We can
then just use the chain rule and write

Vxc,ab5
dExc@n↑ ,n↓#

dn↑

]n↑
]rab

1
dExc@n↑ ,n↓#

dn↓

]n↓
]rab

. ~4!

The advantage is that wecan find approximations for
dExc /dns by calculating the ground-state energy of ahomo-
geneoussystem of spin densitiesn↑ and n↓ , respectively.
The price we pay is the derivatives]n↑ /]rab and
]n↓ /]rab , which introduce the local spin rotation angle
u(r ) andw(r ). Note that this method involves a change
variables in the exchange-correlation energy, andnot a local
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rotation of the spinors. Such a rotation would lead to co
plicated terms in the kinetic energy, similar to those enco
tered in a field theory with local gauge transformations.

To actually perform the change of variables, we calcul
at each pointr an SU(2) matrix U(r ) that locally diagonal-
izesrs,s8(r ):

(
s,s8

Ua,s~r !rs,s8~r !Us8,b
* ~r !5da,bna~r !, ~5!

with na(r ) the eigenvalues ofrs,s8(r ). We writeU(r ) in the
standard form,

U~r !5S e~ i /2!w~r ! cos
u~r !

2
e2~ i /2!w~r ! sin

u~r !

2

2e~ i /2!w~r ! sin
u~r !

2
e2~ i /2!w~r ! cos

u~r !

2

D , ~6!

wherew(r ) andu(r ) are the local azimuthal and polar angl
of the magnetization density relative to a fixed coordin
system. The requirement thatU(r ) diagonalizesrs,s8(r )
then yields

tan w~r !52
Im r↑,↓~r !

Rer↑,↓~r !
~7!

and

tan u~r !5
2$@Rer↑,↓~r !#21@ Im r↑,↓~r !#2%1/2

@r↑,↑~r !2r↓,↓~r !#
, ~8!

with Re(z) and Im(z) denoting the real and imaginary par
of a complex numberz. Equation~5! gives

n↑~r !5r↑,↑ cos2
u~r !

2
1 1

2 r↑,↓~r !eiw~r ! sin u~r !

1 1
2 r↑,↓* ~r !e2 iw~r ! sin u~r !1r↓,↓ sin2

u~r !

2

n↓~r !5r↑,↑ sin2
u~r !

2
2 1

2 r↑,↓~r !eiw~r ! sin u~r !

2 1
2 r↑,↓* ~r !e2 iw~r ! sin u~r !1r↓,↓ cos2

u~r !

2
. ~9!

Equation ~9! then gives us a representation in whi
rs,s8(r ) is locally diagonal, so that in the LDA we only nee
to know the exchange-correlation energyExc(n,j) as a func-
tion of total density and polarization, or, equivalently,n↑ and
n↓ . By using theSU(2) transformation, and by expressin
the single-particle density matrix in terms of occupied K
orbitalsc i ,s(r ) we can then write the KS equations as

Tsc i ,↑~r !1v0~r !c i ,↑~r !1Dv~r !@cosu~r !c i ,↑~r !

1sin u~r !eiw~r !c i ,↓~r !#5e ic i ,↑

Tsc i ,↓~r !1v0~r !c i ,↓~r !1Dv~r !@sin u~r !e2 iw~r !c i ,↑~r !

2cosu~r !c i ,↓~r !#5e ic i ,↓ , ~10!

for each single-particle spinorsc i(r )5@c i ,↑(r ),c i ,↓(r )#.
Here,

v0~r !5vext~r !1vH~r !1 1
2 @vxc,↑~r !1vxc,↓~r !#, ~11!
-
-

e

e

and

Dv~r !5 1
2 @vxc,↑~r !2vxc,↓~r !#, ~12!

with

vxc,s5
dExc@n↑~r !,n↓~r !#

dns~r !
. ~13!

In the KS equations~10! there is a coupling between up- an
down-spin components, so that in general the KS orbitals
now two-component spinors with both up- and down-sp
components. Note that in an angular momentum represe
tion Eqs. ~10! couplez components of orbital angular mo
mentumLz1m\, with m an integer, and spin angular mo
mentumSz5

1
2 \ to (Lz ,Sz52 1

2 \). This coupling will also
provide the mechanism for spin-charge textures in QHE s
tems in the same way as the Hartree-Fock equations by
tig et al. do.2 In the LDA, we write

Exc5E d2r n~r !exc@n~r !,j~r !#, ~14!

whereexc@n,j# is the exchange-correlation energy per p
ticle in an infinite, homogeneous system of filling factorn
and polarizationj5(n↑2n↓)/n, andn(r )52p l B

2n(r ) is the
density expressed as local filling factor. Then

vxc,↑~r !5F ]

]n
1

1

n
~12j!

]

]jG@nexc~n,j!#,

~15!

vxc,↓~r !5F ]

]n
2

1

n
~11j!

]

]jG@nexc~n,j!#,

with the derivatives evaluated atn5n(r ) and j5j(r ), so
that

v0~r !5vext~r !1vH~r !1
]

]n
@nexc~n,j!#2j

]

]j
exc~n,j!,

~16!

Dv~r !5
]

]j
exc~n,j!.

Equations~10! with v0(r ) andDv(r ) given by Eq.~16! are
the KS equations that result from the approach by Ku¨bler
et al.25 and Sticht, Ho¨ck, and Kübler.22 Here they are written
in a form appropriate for the QHE. We now make the exte
sion to an ensemble DFT by introducing occupation numb
f i for each spinori, and by taking

rs,s8~r !5(
i

f ic i
†~r !Ŝs

†Ŝs8c i~r !, ~17!

whereŜs projects out thes component of the spinorc i(r ).
In ordinary DFT the occupanciesf i are zero or one. In our
ensemble DFT calculations, we obtain fractional occupat
numbers using a method of running averages describe
our earlier work.14,15

III. FORMAL RESULTS AND NUMERICAL
APPROXIMATIONS

The usefulness of the LDA equations~10!, ~16!, and~17!
ultimately depends on the availability of good approxim
tions for exc(n,j), the exchange-correlation energy per pa
ticle of a homogeneous system of filling factorn and polar-
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izationj. We have previously16 described our first attempt a
constructing an approximate energy surface for the QHE
this section, we will describe in some detail our work
improve on that approximation. In particular, we have e
tended the exchange-correlation energy to the rangen.1
and also better incorporated electron-hole symmetry.

We start, as in our earlier work,16 by approximating
exc(n,j) as

exc~n,j!5exc
s ~n!1dexc~n! f ~j!1eC~n!. ~18!

Here,exc
s (n) is a smooth interpolation formula for the groun

state energy of polarized QHE systems,eC(n) gives the
cusps at the FQHE fractions,f (j) is an interpolation formula
obtained from considering only exchange in two dimensio

f ~j!5
~11j!3/21~12j!3/222A2

222A2
, ~19!

and dexc(n) is the difference in energy between the ful
polarized and the completely unpolarized (j50) system at
filling factor n. Some values for this latter quantity can b
obtained from the literature,28–30 and the value fordexc(n
51) will be fixed later in this section using the spin stif
ness. We then use a spline fit to tie all these values ofdxc(n)
together to a continuous function. We found earlier16 that the
interpolation formula for exc

s (n) given by Fano and
Ortolani31 together with our approximation foreC(n) gave
excellent agreement between our DFT approach and num
cal diagonalizations32 for small spin-polarized systems
However, this interpolation formula was given only forn
<1. To extend it ton.1, we have performed extensive n
merical diagonalizations for toroidal spin-polarized syste
of eight, nine, ten, and eleven particles in the two low
Landau levels.33 The data obtained from these calculatio
reveal a cusp in the exchange-correlation energy atn51.
This cusp is due to the fact that the exchange-correla
energy per particle added to the second Landau level, a
the lowest Landau level has filled up, is different from t
exchange-correlation energy per particle for the filled low
Landau level. We have confirmed this with analytical calc
lations~below!, and constructed a simple analytical model
fit the numerical data. Figure 1 depicts the data from
numerical diagonalizations and the analytical fit.

We now briefly present the analytical calculation of t
cusp in the exchange-correlation energy atn51 for spin-
polarized systems. We will do the calculation in a trunca
Hilbert space, and take the state atn51 to be a Slater deter
minant of the lowest Landau level single-particle wave fun
tions. This is the exact ground state of the system restric
to the lowest Landau level, and the interaction energy isE0

5Nelexc(n51,j51)52NelA(p/8)(e2/e0l B), where Nel is
the number of electrons. ForNel11 particle we consider
only states withNel particles occupying a filled lowest Lan
dau level plus one particle in then51 Landau level. The
lowest-energy state consisting ofNel11 particles is then a
linear combination of these degenerate Slater determin
with a uniform density. The direct~Hartree! energy of this
state is canceled by a uniform positive background cha
density. We can calculate the exact energy of the low
lying state~exact in the reduced Hilbert space used here! by
considering the exchange interaction between a single
In

-
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ri-

s
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n
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t
-

e

d

-
d

ts

e
t-

r-

ticle in Landau leveln51 at momentumk050 and a particle
of momentumk in the lowest Landau leveln50. This en-
ergy is ~using the Landau gauge!

e1~k!52E E d2r d2r 8
1

Ly
2p ł B

2e2~1/2l B
2

!~x2xk!2
e2 iky

3e2~1/2l B
2

!x82 H1~x8/ l B!

A2
V~r2r 8!

H1~x/ l B!

A2

3e2~1/2l B
2

!x2
eiky8e2~1/2l B

2
!~x82xk!2

. ~20!

Here,Ly is the length of the system~taken to infinity at the
end of the calculation!, Hn is the nth Hermite polynomial,
V(r )5e2/(e0ur2r 8u) the Coulomb interaction, andxk5 l B

2k
is the centerpoint of the harmonic oscillator of momentumk.
The integrals in Eq.~20! can be evaluated to give the resu

e1~k!52
e2

2Lye0
e2k2l B

2 /4
k2l B

2

4
@K0~k2l B

2/4!1K1~k2l B
2/4!#,

~21!

whereKn is the modified Bessel function of ordern. We then
finally integrate over all statesk in the lowest Landau leve
and obtain

e152
1

2
Ap

8

e2

e l B
. ~22!

The cusp in ground-state energy atn51 comes from the fact
that the exchange energy of adding one particle to a sys
with a full lowest Landau levele1 is different from the ex-
change energy per particle in the lowest Landau level. T
cusp gives rise to a discontinuity in the chemical potentia
n51, which we need to evaluate. The chemical potentia
n512 is 2Ap/2e2/(e0l B), and the chemical potential atn
511 is

FIG. 1. Exchange-correlation energy vs filling factor for a sp
polarized QHE system. The diamonds are results from numer
diagonalizations in the two lowest Landau levels, and the solid
for n.1 is our analytical fit, Eq.~25!.
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m~n511!5
]E

]Nel
U

n511

5E~Nel11!2E~Nel!

5@Nelexc~n51,j51!1e1#

2Nelexc~n51,j51!

5e152
1

2
Ap

8

e2

e0l B
. ~23!

Therefore, the discontinuity in chemical potential atn51,j
51 is

Dm5
3

2
Ap

8

e2

e0l B
. ~24!

Since the exchange-correlation potential for a polarized s
tem is Vxc(n)5]@nexc(n,j51)#/(]n)5m(n) this disconti-
nuity also appears in the exchange-correlation potentia
n51.

In order to construct an exchange-correlation energy
face exc(n,j) that gives a workable approximation for
<n<2 and 0<j<1 we first construct an analytic approx
mation for the exchange-correlation energy atn.1 and j
51. We use a simple model in which we write

exc~n.1,j51!5a
n21

n
exc~n21,j51!1

c

n
1b. ~25!

This model is motivated by the fact that, as a first appro
mation, the interaction energy of a system with a full lowe
Landau level andN1 particles in then51 Landau level is
approximately equal to the interaction energy of the full lo
est Landau level plus the interaction energy ofN1 electrons
-

-
th
n

w
n
c

e
b

s-

at

r-

i-
t

-

in the lowest Landau level. The constantsb andc then fix the
slope and value of the exchange-correlation energy an
511 and j51, anda is used to adjust this model to th
numerical data. Fixing slope and value gives

b5 3
2 exc~n51,j51! ~26!

and

c52 1
2 exc~n51,j51!, ~27!

respectively. A good fit to the numerical data is given bya
52.

Finally, we consider the exhange-correlation energy aj
50. When the system is restricted to the lowest Land
level, particle-hole symmetry yields

nexc~n,j!2nexc~n51,j51!

5~22n!exc@22n,~n↑2n↓!/~22n!#

2~22n!exc~n51,j51!, ~28!

where

n5n↑1n↓.1 ~29!

and

j5
n↑2n↓
n↑1n↓

. ~30!

When the restriction of the system to the lowest Landau le
is lifted, this symmetry is no longer exact because of int
Landau-level quantum fluctuations. However, we assu
that it is only slightly violated, and constructdexc(n) so that
exc(n,j) respects this symmetry atj50. Using the form Eq.
~18! and Eq.~28! at j50 andn.1 then yields
dexc~n!5
@22n#@exc

s ~22n!1eC~22n!1dexc~22n!#22~12n!exc~n51,j51!

n
2exc

s ~n!2eC~n! ~31!
the

s

en-
d
p-

ally

st in
uses
for n.1. Furthermore, atj50 the exchange-correlation en
ergy per particle has a continuous derivative atn51, which
gives

d„dexc~n!…

dn U
n51

52exc~n51,j51!2dexc~n51!.

~32!

Equations~18!, ~19!, ~25!, ~31!, and ~32!, together with the
data points fordexc(n) for n<1, then define our exchange
correlation energy surface. A F90 subroutine package
evaluates the exchange-correlation energy and the excha
correlation potentials for given (n↑ ,n↓) is available from the
authors. In this package, used in our calculations,
dropped the termseC for n.1. This is of no consequence i
our calculations presented here in which the total filling fa
tor was never much greater than unity.

To conclude this section, we show that the LDA do
indeed give a spin stiffness; requiring this stiffness to
at
ge-

e

-

s
e

correct helps constraindexc(n51). We start by considering
the total exchange-correlation energy of the system in
LDA,

Exc5E n~r !exc@n~r !,j~r !#d2r , ~33!

wheren(r ) andj(r ) are obtained from the local eigenvalue
n↑(r ) and n↓(r ) of the single-particle density matrix.22 We
calculate in the LDA the change in exchange-correlation
ergy of an initially infinite, homogeneous, fully polarize
system atn51 in response to a gentle spin twist. The a
plied spin twist changes the local eigenvaluesns(r ) of the
single-particle density matrix, and thusn(r ) and j(r ). For
systems confined to the lowest Landau level, a spati
varying spin twist necessarily results inj(r ),1.34 In the
local-density approximation used here this produces a co
exchange-correlation energy that, as we show here, ca
the spin stiffness. We write

n~r !511dn~r !, j~r !511dj~r !. ~34!
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The change in exhange-correlation energy is then@with
n(r )5n(r )/(2p l B

2)]

DExc5E F 1

2p
1dn~r !Gexc@11dn~r !,11dj~r !#d2r

2
1

2pE exc~1,1!d2r . ~35!

From the work of Moonet al.,35 we know that the density
variation is of second order in the gradient of the sp
rotation angle. Furthermore, general symmetry consid
ations give

dj~r !}@¹V~r !#2, ~36!

whereV(r )5 ẑ3m(r ) is the angle through which the spi
density is rotated, andm(r ) is a unit vector parallel to the
local spin density. We then expandDExc in powers ofu¹Vu,
and obtain to second order inu¹Vu

DExc5E dn~r !exc~1,1!d2r

1
1

2pE dn~r !
]exc

]n U
n51,j51

d2r

1
1

2pE dj~r !
]exc

]j U
n51,j51

d2r . ~37!

The point here is that an LDA inn(r ) and j(r ) contains
spatially varying polarizationj(r ), and this corresponds t
gradients in the magnetization density according to Eq.~36!.
The first two terms on the left-hand side describe a chang
Exc due a change in the density. For the spin twist we
consideringdn(r ) @and dn(r )] integrates to zero since n
net charge is added to the system. The last term in Eq.~37!
describes the change inExc due to a change in the polariza
tion. This term gives the spin stiffness. In general, the s
stiffnessrs is defined by the leading term in an expansion
the energy in gradients of the magnetization angleV:
-
r-

in
e

n
f

Es5
1
2 rsE @¹V~r !#2 d2r . ~38!

We obtain from Eqs.~36! and ~37!

DExc}
1

2p

]exc

]j U
n51,j51

E @¹V~r !#2 d2r . ~39!

By comparing Eqs. ~38! and ~39! we see that rs
}(]exc /]j), and it remains to work out the constant of pr
portionality. To this end, we consider a system of sp
polarized electrons confined to the lowest Landau level.
use the Landau gaugeA(r )5(0,Bx,0) in which the single-
particle basis functions are

ck~x,y!5eikyfk~x!5
eikye2~1/2l B

2
!~x2xk!2

ALyAAp l B

, ~40!

where

xk5 l B
2k, k52pn/Ly , n50,61,62, . . . . ~41!

In the initial state, all single-particle spinors are

S ck~x,y!

0 D . ~42!

We take the spinors of the spin-rotated state to be

S cos
uk

2
ck~x,y!

sin
uk

2
ck2Dk~x,y!

D , ~43!

whereDk52p Dn/Ly , with Dn a fixed integer. This state is
the rectangular analogue of a rotationally symmetric sk
mion. In order to calculate the exchange-correlation ene
of this state within the LDA, we then need to find the eige
values of the single-particle density matrix
rs,s8~r !5S (
k

cos2
uk

2
uck~x,y!u2 (

k
sin

uk

2
cos

uk

2
ck~x,y!ck2Dk* ~x,y!

(
k

sin
uk

2
cos

uk

2
ck* ~x,y!ck2Dk~x,y! (

k
sin2

uk

2
uck2Dk~x,y!u2 D . ~44!
The eigenvalues are then readily obtained as

n↑,↓~x!5F(
k

cos2
uk

2
fk

2~x!1(
k

sin2
uk

2
fk2Dk

2 G
6

1

2H F(k
cos2

uk

2
fk

2~x!2(
k

sin2
uk

2
fk2Dk

2 G2

1F4(
k

sin
uk

2
cos

uk

2
fk~x!fk2Dk~x!G2J 1/2

. ~45!
To continue, we will make use of the following results:

(
k

fk
2~x!5

1

2p l B
2 ,

(
k

~x2xk!
2fk

2~x!5
1

2p l B
2

l B
2

2
5

1

4p
~46!

and also the Taylor expansion
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fk~x!fk2Dk~x!'fk~x!Ffk~x!2Dk
]fk~x!

]k

1
1

2
~Dk!2

]2fk~x!

]k2 G . ~47!

The second term on the right-hand side of Eq.~47! then
vanishes when integrated overk. The third term contains

~Dk!25S 2p

Ly
D 2

~Dn!2, ~48!

which vanishes in the thermodynamic limit for fixedDn
Þ0. Therefore, we can approximate

(
k

fk~x!fk2Dk~x!'(
k

fk
2~x!5

1

2p l B
2 . ~49!

Next, we assume thatuk is slowly varying as a function ofk.
This means that in expressions such as

(
k

cos2
uk

2
fk

2~x!5
Ly

2pE dk
cos2 u~k!

2
fk~x!, ~50!

wherefk(x) as a function ofk is sharply peaked aboutk
5x/ l B

2 , we can expand to the trigonometric function as
function of k to second order ink about k5x/ l B

2 . When
integrated overk, all first-order terms containingdu/dk then
vanish. Using Eq.~46! and d2u/dk25 l B

4 d2u/(dx2) we ob-
tain, after a little algebra,

n↑,↓5
1

2

1

2p l B
2

6
1

2

1

2p l B
2F12

l B
2

4 S du

dxD
2G . ~51!

From the definition of the polarizationj(r ) we then finally
have

dj~r !52
2n↓~r !

n↑~r !2n↓~r !
52

l B
2

4 S du

dxD
2

. ~52!

Inserting this into Eq.~37! yields

DExc52
1

4p

]exc

]j U
n51,j51

1

2E S du

dxD
2

d2r . ~53!

By comparing Eq.~38! and Eq.~53! we then obtain for the
spin stiffness

rs52
1

4p

]exc

]j U
n51,j51

. ~54!

In fact, the calculation is readily generalized to an arbitra
spin-polarized filling factorn0 , so in general we have

rs52
n0

4p

]exc~n,j!

]j U
n5n0 ,j51

. ~55!

In our approximation for the exchange-correlation ener
we can then fixdexc(n51) ~for which there is no known
value! by requiring that the LDA spin stiffness Eq.~54!
equals the known value35 for the spin stiffness atn51,

rs5
1

16

1

A2p

e2

e0l B
. ~56!
y

,

This yields

dexc~n51!5Ap

8

22A2

3

e2

e0l B
'0.1224

e2

e0l B
. ~57!

As an indicator how good this value is fordexc(n51), we
consider the state atn51,j50 in an approximation in which
the spin-up and spin-down particles are completely unco
lated. In this case the energy per particle of that state is
same as the ground-state energy per particle atn5 1

2 ,j51,
which is approximately31 20.469 e2/(e0l B). Neglecting the
correlations between spin-up and spin-down particles sho
lead to an overestimate of the energy per particle. This
proximation yields a difference in energy per particle b
tween n51,j50 and n51,j51 of dexc(n51)
50.1577 e2/(e0l B). In view of the fact that this is mos
likely an overestimate of the energy per particle atn51,j
50, we can conclude that the valuedexc(n51)
50.1224e2/(e0l B) obtained from the spin stiffness is ver
reasonable. The valuedexc(n51)50.1224e2/(e0l B) is the
one we used in our calculations.

IV. EDGE RECONSTRUCTIONS OF QHE DOTS

We have applied the ensemble spin DFT approach to
cularly symmetric QHE dots and studied the edge rec
structions of such systems as a function of edge stiffness.
use a model in which the confining potential is supplied b
uniform positive background charge density. The edge
modeled by a ‘‘graded edge’’ in which the positive bac
ground charge density goes to zero linearly as a function
radial coordinater over a distancew. The total integrated
positive charge is fixed and equal to the total electron cha
this then determines the radial distance at which the posi
charge density starts to decrease. Even though concerns
been raised that this particular confinement is nongeneric12 it
is the one that has been studied the most, and we chose
a model confinement for comparisons with other work.

It is known from Hartree-Fock calculations10 of n51 Hall
bars with a similar graded edge that for a sharp edgew
small enough!, the electron gas is completely polarized a
its density falls to zero abruptly near the edge. However
the edge confinement softens, the electron gas develop
instability to a spin-textured edge for smaller values ofg̃
~the ratio of Zeeman to Coulomb energy!, or a charge-
density wave11,12 for larger values ofg̃, with the density
modulated along the edge. Both instabilities break the tra
lational invariance along the edge: in the spin-textured e
the spin density is modulated along the edge while the t
charge density is constant; in the charge-density wave e
the spin density is constant along the edge while the t
charge density is modulated. For Hall bars at bulk fillingn
51/3, an effective field calculation10 ~here, Hartree-Fock
calculations are obviously not applicable! also shows an in-
stability to a spin-textured edge as the confinement is s
ened.

We would expect the analogous instabilities to occur
the circular dots. For stiff confinements, the electron den
forms a so-called maximum density droplet~MDD!, in
which the electron gas is completely polarized with a fillin
factor that is unity in the bulk and that rapidly falls to zero
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the edge~the MDD is the minimum angular momentum sta
for a spin-polarized system in the lowest Landau level!. As
the confinement is softened, the edge should develop a s
textured or charge-density wave instability. Indeed, our p
vious spin DFT calculations,16 in which the magnetization
direction was constrained to be fixed parallel to the exter
magnetic field, revealed that the MDD becomes unstable
wards the formation of a partially polarized edge as the c
finement was softened. This gave a variational bound~within
the LDA! showing that the spin-polarized edge is not t
ground state when the confinement is soft. The phase bo
aries of the MDD that we obtained were in good qualitat
agreement with Hartree-Fock calculations for Hall bars,10 al-
though the obtained values ofg̃ at which the polarization
was destroyed were much smaller than those from
Hartree-Fock calculation for Hall bars. We speculated t
this difference is due to the different geometries or ed
confinements. Our results were in rather good agreem
with numerical diagonalizations using parabo
confinement.32 The calculations presented here support
argument that the differences were due to the different c
finements used.

We have now extended our ensemble DFT calculation
include spin-textured edges both for the MDD and forn
51/3 droplets. Our new results show that when the e
becomes partially polarized, a spin-textured edge has lo
energy than one with constant direction of the spin dens
In the calculations presented here, we have only consid
states that do not break cylindrical symmetry of the cha
density, and for which the azimuthal angle of the spin dir
tion changes at most by 2p along any simple closed path
This excludes charge-density-wave instabilities and spin
tures with topological charge greater than6e, but imposing
these symmetries simplifies the calculations a great deal.
example, the Hartree potential is easy to calculate for cir
larly symmetric charge densities, but considerably more
dious if that symmetry is broken. Nevertheless, the calcu
tions we have performed satisfy the two most import
criteria we wanted to establish: to demonstrate the useful
of the spin ensemble DFT approach to general QHE fillin
and to establish through a variational bound~within the
LDA ! that for softer edges, the spin-polarized edge or
edge with constant spin quantization axis has higher ene
than a spin-textured system in which the spin quantiza
axis is tumbling.

We start with the ensemble spin KS equations Eq.~10!
with the potentialsv0(r ) andDv(r ) given by Eqs.~16!, and
the single-particle density matrix found self-consistently
ing Eq. ~17!. We now make the simplifying assumption th
the polar angleu(r ) of the spin density is a function of th
radial coordinate alone,u(r )5u(r ), and that the azimutha
anglew(r ) is of the form

w~r !5vf~r !, ~58!

wherev is an integer andf(r ) is the azimuthal angle ofr in
a planar polar coordinate system. In other words, we w
restrict the modulation of the spin density along the edge
have a single Fourier component along the edge. With
~58! inserted into the expressions Eq.~10! for v0(r ) and
Dv(r ) the spin-diagonal coupling conserves orbital angu
momentum, while the spin off-diagonal coupling couples u
in-
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spin statescm1v,↑ with angular momentum\(m1v) to
down-spin statescm,↓ with angular momentum\m:

E cosu~r !cm,↓* ~r !Dv~r !e2 ivfcm1v,↑~r ! d2r . ~59!

This coupling is of the same form as that in the Hartree-Fo
equations studied first by Fertiget al.2 However, in the
Hartree-Fock equations the off-diagonal coupling was p
vided by an exchange integral, while our Eq.~59! also in-
cludes correlation effects within the LDA. Since the spi
diagonal coupling conserves angular momentum,
diagonal elements of the single-particle density matrix
circularly symmetric so that the total density is circular
symmetric. We would like to point out that lifting the restric
tion Eq.~58! allows for the possibility of breaking the circu
lar symmetry of the charge density, which allows for charg
density waves in addition to spin-charge structures.

We have solved the KS equations by expanding the s
tial parts of each spinorc i(r ) in the single-particle angula
momentum basis functions

cm,n~r !5
1

A2p l B

A n!

~n1m!!
Lm

n S r 2

2l B
Deimf, ~60!

for the cylindrical gaugeA(r )5 1
2 B(xŷ2yx̂) with Lm

n the
associated Laguerre polynomials. We kept up to then54
Landau level in our calculations, and up to 120 angular m
mentum states~up to 1200 single-particle states!. For then
51 system we performed calculations of 40 and 70 partic
in a magnetic field of 3.5 T with the bare Lande´ factor g*
varying from 0.1 to 1.5 (g̃ then varied from about 0.002 to
0.036, encompassing experimentally accessible values!. The
reason for keeping the magnetic field relatively low, but s
at an experimentally realistic value, was to fully include t
effects of Landau-level mixing typical in experimental sy
tem. We performed the calculations forv50,61. The results
can be summarized as follows: For small values ofw, i.e.,
stiff confinement, the edge is spin polarized. Asw increases,
the v50 channel becomes partially polarized. However,
the same value ofw, thev51 channel attains a lower energ
with a nontrivial spin-charge texture. For the system siz
studied here, the value ofw at which the instability occurred
is w'7l B . This is in quite good agreement with the Hartre
Fock calculations of Karlhedeet al.10 For a semi-infinite
Hall bar, they found the onset to a charge-spin textured e
occurring at aboutw'7l B–8l B in the range ofg̃ from zero
to about 0.03. As illustrations, Figs. 2 and 3 depict cha
densities and spin rotation angles forw58l B and g51.00.
The v50 channel~Fig. 2! has a small minority-spin densit
near the edge of the system, in qualitative agreement w
our earlier calculations~the bump in density at the edge
characterisic of all confined QHE systems for which the co
fining potential is not macroscopically smooth!. However,
the v51 channel~Fig. 3!, which has lower energy, has
locally ~nearly! polarized spin density everywhere and a no
trivial spin texture, with the spin rotation angleu(r ) rising
from 0 to aboutp/2 at the edge of the system. Note that f
a bounded system there is no topological constraint on
spin rotation angle, as there is in an infinite system where
Pontryagin index has to be an integer.
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We have also studied a FQHE droplet at bulk filling
1/3. While we are quite confident about our exchan
correlation energy for spin-polarized FQHE systems, it is
clear to us how good it is for arbitrary polarizations in t
FQHE regime. For example, if we use the published va
obtained from four-electron numerical diagonalizations28 for
dexc(n51/3) of 0.0017 e2/(e0l B), the spin-stiffness in our
model is 1.15531024e2/(e0l B), compared to the value o
9.2331024e2/(e0l B) obtained from hypernetted-chai
calculations.35 It is not clear if the discrepancy between the

FIG. 2. Local filling factorsn↑(r ), n↓(r ), and n(r )5n↑(r )
1n↓(r ) in the v50 channel for a 70-electron dot. The magnet
field strength is 3.5 T,g* 51.0, and the edge width isw58l B .
Here, the edge region is only partially polarized with a sm
minority-spin density.

FIG. 3. The local total filling factor and spin rotation angleu(r )
for the v51 channel of the same parameters as in Fig. 2. T
channel has a lower energy than thev50 channel, and is locally
nearly completely polarized with a nontrivial spin texture. That
at any pointr the spin density is nearly polarized, but the sp
direction is changing with position.~In agreement with the genera
properties of the lowest Landau level, as described in the text,
polarization in fact deviates slightly from unity by an amount
order (du/dr)2. This is too small here to show up in the figures!
-
t

e

two is mostly due to finite-size effects in the numerical d
agonalizations, or our model Eqs.~18! and ~19! of the
exchange-correlation energy. We have also performed
merical diagonalizations of six electrons atn51/3. For six
electrons, we obtaindexc(n51/3)50.004 65e2/(e0l B)—an
increase of almost a factor of three from the four-electr
result. This clearly shows that the energy per particle at to
spin zero is much more sensitive to system size than
energy of the polarized ground state. Encouraged by our
merical results, we then fixed dexc(n51/3) to
0.0136e2/(e0l B) in order to have a simple model that gives
spin stiffness in agreement with the hypernetted chain ca
lations. We performed the calculation with 40 particles a
the four lowest Landau levels, and up to 170 single-parti
angular momentum states, both for the choice of confinem
discussed earlier and parabolic confinement.

Our calculations indicate that for a confinement provid
by the positive background charge density, the system ha
instability from a spin-polarized edge to a spin-textured ed
at an edge width ofw'4l B . Again, this compares rathe
well with the results of Karlhedeet al.10 Using effective-field
theories, they found an instability to a spin-textured edge
approximatelyw53.0l B for g̃50.04. Note that the effective
field theory tends to underestimate the value ofw for which
there is an onset to spin-textured edges.10 We also want to
emphasize that in contrast to the effective-field~and Hartree-
Fock! theory, our ensemble spin DFT is applicable to gene
inhomogeneous QHE system and includes the effects
Landau-level mixings. As an example of our results,
show in Figs. 4 and 5 charge densities and spin rota
angles for a system with an edge width ofw54 and Lande´

factor of g* 51.00 in a magnetic field of 12 T (g̃'0.04).
The bump in total filling factor in the bulk of thev50 chan-
nel ~Fig. 4! occurs quite generically for FQHE droplets, bo
for the choice of confinement discussed here and for p
bolic confinement. In the case here, the system tries to
advantage of correlation energy atn51/3 andn52/5 to as
large an extent as possible as the edge is made wider. It

l

is

,

e

FIG. 4. The local filling factor for thev50 channel of a 40-
electron dot in the FQHE regime. The external magnetic-fi
strength is 12 T,g* 51.0, andw54l B . In this case, the electron
system is polarized.



ha
f
tro
m
is
le

lly
th
c
p
th

e
er

oa

ea

we
DA

E
ons
ld

ta-
in-
ized
ili-

c-
tum
lly

ur

ood
ap-

ar-
to
eral
ach

ons

.U.
by
s-
ts
ac-
to

ira-
F

ke
of
i-
ed,
ive

his
via

8082 PRB 59O. HEINONEN, J. M. KINARET, AND M. D. JOHNSON
so by making the edge of the electron density sharper t
that of the background charge, and making regions on
51/3 larger than what is needed to accomodate all elec
charge. The residual electron charge is piled up in a bu
reachingn52/5. Thev51 channel, on the other hand,
locally nearly completely polarized with a spin rotation ang
similar to then51 andw58 system forv51.

We have also performed calculations for parabolica
confined systems in the FQHE regime. The results are in
case more difficult to interpret with more complicated stru
tures in the electron density and spin textures. For exam
we have found that for some values of the magnetic field
v50 channel can be an51/3 droplet with a large bump in
density at the edge, while thev51 channel develops a hol
with reversed spin density at the center and has lower en
for a small range of magnetic field.

V. CONCLUSIONS AND SUMMARY

We have here presented an ensemble spin DFT appr
to general inhomogeneous QHE systems. This approach
cludes the spin degree of freedom, including noncollin

FIG. 5. Thev51 channel for the same system as in Fig. 4. T
channel is also nearly completely polarized, but has a nontri
spin texture and lower energy than thev50 channel.
s

in
o

n

n
p

is
-
le,
e

gy

ch
in-
r

spins, as well as Landau-level mixing. On a formal level,
have demonstrated that our ensemble spin DFT in the L
can give the correct spin stiffness atn51. We have per-
formed model calculations for circularly symmetric QH
dots in the integer and FQHE regime. These calculati
show, in agreement with Hartree-Fock and effective-fie
calculations,10–12that the polarized system develops an ins
bility as the confinement is softened and that the sp
textured edge attains a lower energy than the spin-polar
one. We have not included in our calculations the possib
ties of charge-density waves, which may occur11,12instead of
the spin-textured edges at larger values ofg̃. Preliminary
calculations of parabolic dots show a surprisingly rich stru
ture in spin and charge densities. This indicates that quan
dots in the FQHE regime is a rich subject yet to be fu
explored.

We have spent a great deal of effort on improving o
approximation for the exchange-correlation energyexc(n,j).
At the present, we are confident that we have a very g
approximation for spin-polarized systems, and a good
proximation for aribitrary polarizations andn'1. We are
less confident about our exchange-correlation energy for
bitrary polarizations in the FQHE regime. Work needs still
be done to refine the exchange-correlation energy for gen
FQHE systems. However, we are confident that the appro
itself is robust and accurate provided good approximati
for the exchange-correlation energy exist.
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