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Mean-field calculations for the two-dimensional electron gas in a large magnetic field with a partially filled
Landau level with indexN=2 consistently yield “stripe-ordered” charge-density wave ground states, for
much the same reason that frustrated phase separation leads to stripe-ordered states in doped Mott insulators.
We have studied the effects of quantum and thermal fluctuations about such a state and show that they can lead
to a set of electronic liquid crystalline states, particularly a stripe-nematic phase, which is stabie€at
Recent measurements of the longitudinal resistivity of a set of quantum Hall devices have revealed that these
systems spontaneously develop, at low temperatures, a very large anisotropy. We interpret these experiments as
evidence for a stripe nematic phase, and propose a general phase diagram for this system.
[S0163-18209)06711-9

There are many condensed matter systems in which theodic modulation of the local Hall conductance between the
charge degrees of freedom form regular spatial patterns conguantized values2e’/h and (2N+ 1)e?/h.
monly known as “stripes.” These structures are typically the In this paper, we present a theoretical description of the
result of the competition between short-range attractiv? DEG in a moderately large magnetic field, and show that
forces, which give rise to a condens@gsually insulating  this system actually behaves like a set of dynamical conduct-
phase, and the largely unscreened, long-range Coulomb ifng stripes. We have recenflydeveloped a theory of the
teractions. Specifically, in the condensed phase, and in thehase diagram of fluctuating conducting stripes for doped
absence of long-range repulsive forces between like chargeblott insulators. In the present context, the “edge states” at
the charge degrees of freedom have a tendency to forrhe interface between two regions of differently quantized
clumps, that is to phase separate. This tendency to phastall conductance play the same role as the conducting
separation is frustrated by the long-range repulsive Coulombtripes. However, there are two important differences be-
interactions and the result is the spontaneous organization ofveen these edge states and the fluctuating stripes we studied
the charge degrees of freedom in low-dimensionalin the context of doped Mott insulator§) because of the
structures. In a large class of quasi-two-dimensional high-magnetic field, the edge states are intrinsically chiral
strongly correlated materials, i.e., doped Mott insulators sucliwith alternating chirality, as shown in Fig,),2and (ii) the
as the copper oxides, the nickelates, and the manganatdsgh-temperature phase has fu1) rotational symmetry,
stripe phases have recently been observed experimehtally.as opposed to the discrete rotatiof@dint-group symmetry
However, these structures should not be peculiar to dopefbund in doped insulators. We will show here that the
Mott insulators, but should also arise in other electronic sysquantum-mechanical fluctuations about the Hartree-Fock
tems in which the same sort of competition is present. It hastate of Refs. 4 and 5 lead to a variety of new phases. Based
been realized for some time that there is a strong tendenayn these results, we propose the qualitafive0 phase dia-
for the two-dimensional electron ga@DEG) in a high-  gram in the absence of disorder shown in Fig. 1.
magnetic field to condense into incompressible quantum Hall This phase diagram includes the followietgctronic lig-
liguid states with quantized “filling factor’v. Thus, in the uid crystallineand true crystalline phases:
presence of long-range Coulomb interactions, at electron 1. A quantum smectjavhich has charge-density wave or-
densities intermediate between two quantized values it igler, which breaks translational and rotational symmetry, but
natural to expect the system to form an inhomogeneous state which the liquid-like(metallic) behavior of the chiral edge
with a periodic array of stripes of the two incompressiblestates is preserved.
liguids. Indeed, some time ago Kulakov, Fogler, and 2. A quantum nematjdn which quantum fluctuations of
Shklovskif and Moessner and ChalReshowed that a two- the stripe order are sufficiently strong to restore translational
dimensional electron gas in a perpendicular magnetic fieldymmetry, i.e., to melt the CDW order, but still small enough
can have a stripe or charge-density wa@DW) ground that local orientational order of the stripes persists, thus
state in which the charge density in a partially-filled high breaking rotational symmetry.
Landau level exhibits periodic oscillations along one spatial 3. A quantum isotropic fluid phasen which the 2DEG is
direction. According to these calculations, which are basedhvariant under both rotations and translations.
on a Hartree-Fock approach, the electrons in a partially oc- 4. An insulating stripe-crystalphase is also possible,
cupiedNth Landau level form stripes in which the Landau when the partially filled Landau level is not half filléde., is
level is alternately full or empty. The stripe pattern is a pe-not particle-hole symmetric This phase is characterized by
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mectic have taken the filling factor somewhere between9/2 andv=4.
Crystal a The system is compressible with the fraction of the sample with
-------------------------------------------------------------- filling fraction v=5 decreasing with increasing magnetic field. As
this progresses, nearby pairs of edge states become strongly coupled
(M+1/2)” (filling factor)™ M~ and the result is a stripésmectig phase of nonchiral Luttinger

liquids separating regions with=4. This phase exists only at

FIG. 1. QualitativeT=0 phase diagram for a clean 2DEG. The =0.
vertical axis measures the strength of the quantum fluctuations ) . )
(which is roughly inversely proportional to the Landau level index, Order is destroyed by thermal fluctuations in the standaid
N) and the horizontal axis is the inverse filling factover a range ~Melting fashion, i.e., either there is a single, first-order melt-
in which the partial filling of the highest spin-polarized Landau iNg transition, or a sequence of two continuous transitions
level varies betweeM and M +1/2, whereM=2N or M=2N and an intermediate temperature “hexatic” phase, with
+1. Linesa, b, ¢, andd are three realizations for increasing the short-range positional and sixfold orientational quasi-long-
strength of the quantum fluctuations. The smectic and nematic areange ordef. The stripe-crystal order is destroyed in a simi-
compressible while the isotropic phase may either be compressiblar fashion, although the intermediate state phase in this case
or incompressible. The stripe crystal and the Wigner crystal phases a “biatic,” which from a symmetry point of view is in-
are insulating and exhibit plateau behavior with the same quantizedistinguishable from the finite temperature nemdtee Fig.
Hall conductanceg,,=e’M/h. 3)

The paper is organized as follows. In Sec. |, we summa-
the same CDW order perpendicular to the stripe direction agze the main results of the mean-field theory of Refs. 4 and
the smectic, but in addition the density-wave fluctuationss. Here we argue that this state should be viewed as an
along neighboring stripes phase lock to each other, forming alectron smectic. In Sec. I, we discuss in detail the effects of
true, insulating, two-dimensional electron crystal. quantum fluctuations and their implications for tfie=0

5. A Wigner Crystalphase is also expected, especially atphase diagram. We focus on two main effects: fluctuations of
partial filling of the Landau level near 0 or 1. This phase isthe geometryor shapg of the stripes and intrastripe charge-
also insulating, but differs from the insulating stripe crystaldensity fluctuations. We show that intrastripe fluctuations
in its crystal structure, and its degree of isotropy. alone always produce an instability of the smectic to a stripe-

The smectic and the nematic phases both break rotationatystal phase. In contrast, small shape fluctuations tend to
symmetry; because of the conducting character of the chiratabilize the smecti€. Furthermore, we argue that large
edge states, both liquid crystalline phases possess highly aghape fluctuations lead to a two stage quantum melting of the
isotropic conductivity tensors, with principal axes parallel tosmectic through an intermediate nematic phase into an iso-
(* x direction”) and perpendicular t¢' y direction”) the pre-  tropic electron fluid. In this section, we also characterize the
ferred stripe orientational direction. Both phases are comvarious phases in the phase diagram. In Sec. lll, we discuss
pressible and have a nonquantized Hall conductance. Thie effects of thermal fluctuations and the fate of The0
stripe and Wigner crystal phases are “insulating,” since thephases. In Sec. IV, we discuss on general grounds the ex-
crystals are easily pinned by impurities or boundary effectspected behavior of the conductivity tensor in the various
Of course, what this means is that the full conductivity tensomphases, especially its behavior and anisotropies at low tem-
at low temperature is that of the lower-lying, full Landau peratures. Section V contains a brief and highly incomplete
levels, so these states are actually quantized Hall states. Thiéscussion of the effects of quenched randomridisordey
isotropic fluid is actually a set of phases, including the frac-on the principal findings of this paper. Finally, in Sec. VI we
tional quantum Hall and compressible Hall metal phasesliscuss the relation between this theoretical picture and the
which are familiar from previous studies. recent experiments of Lilly, Cooper, Eisenstein, Pfeiffer, and

Becauseal=3 is the lower critical dimension for smectic West?
order! the electron smectic only exists @t=0; at finite
temperature, it is indistinguishable from the nematic. Ther- |. MEAN-FIELD THEORY AND THE SMECTIC PHASE
mal fluctuations also eliminate true long-ranged orientational
nematic order, but quasi-long-ranggmbwer-law order sur- We take as our starting point a mean-field state, which
vive up to a finite temperature transition. Wigner crystallineconsists of alternating stripes with filling fraction=M and
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v=M+1 as shown in Fig. 2 for the casd =4. Here, we that v varies betweeM +1/2=v=M, the ratio of areas of
have assumed, for simplicity, that the cyclotron and Zeemathe two locally coexisting quantum Hall liquids varies from O
energies are sufficiently large that electrons sequentially filto 1. (The rangeM +1=v=M+1/2 is related to the range
individual spin-polarized Landau levels Bsdecreases, and M +1/2=v=M by particle-hole symmetryIf we denote by
M=2N or 2N+1 depending on whether the partially filled Dy the width of each strip ofv=M, then the ratio of
spin-polarized level is spin up or spin down. The striped-PDm/Dw+1 is determined by the filling fraction according to
CDW state is characterized by an order paramatgpy,

which describes a charge-density modulation with wave- v—(M+E): Dy—Dwm+1 o
length \. In the Hartree-Fock description of Refs. 4 and 5, 2/ Dmu+Duir’

the single-particle states in théth Landau level near the ) _

“crest” of the CDW are filled while those near the “trough” The length scalé =Dy +Dy ., is determined by the com-
are empty. The wavelength of the CDW is of the order of petition between the short- and long-range pieces of the Cou-
R., the cyclotron radius in thélth Landau levelx =AR, lomb potential, and so depends on the details of the short-

—A/ 4N, where/,= Jic/eB is the magnetic length. Here distance screening—in the schematic phase diagram in Fig.

A is a constant determined by the details of the interactioriL.’ they axis signifies ap_propria_te chan_ges in the short-range
and A increases smoothly as the interactions become pr viece of the Coulomb interaction, which on a phenomeno-

gressively screened. Foé>1, the Fermi wavelength . is ogicgl level we roughly associate with changes in Landau-
' ’ F level indexN.
small, A\<R..

It follows from general hydrodynamic principles that In the next section, we will consider the effects of inter-

: tions between the edge states.:As decreased fronv
there exist gapless edge states at the boundary between 76 . . . :
regions of differently quantized Hall conductari€e!?In the +1/2, the edge statesf opposite chiralitieson either side

case of a boundary between two integer quantized Haﬁ)f eachv=M +1 stripe begin to appm"?“’h each ot .., .
states, these hydrodynamic edge modes can be simply COﬂc_ecreases. Consequently, the interactions between these pairs

structed as particle-hole excitations, which propagate with %)f edg_esdg;fow sE[ronger a]?d éhe mterac'E[logsbamong the elec-
velocity, v = CEgq4¢/B, Which is proportional to the strength rons in different pairs of edge&eparated byDy) grow

of the electric field at the edg&,qqe. Thus, in the absence weaker. For filling fractions’# M + 3, rather then thinking

of interactions between edges, these excitations fmiral of individual, chiral edges, we should consider the excita-
Fermi liquids and intraedge electron-electron interactionst°"S of an array of nonchiral one-dimensional structures,

only renormalize the velocity. In an ordered stripe phase, ea;f: Cgposig%ezrf;?r?eai'];g;_cfh;glS?Sgs_gﬁt:rse' d states have
there are two such chiral edge states per unit cell with oppo- - Z nperature, n e Ipe-or v
; e - a stripe spacing that varies continuously withso they are
site chirality, as shown in Fig. 2. .
clearly compressible. They spontaneously break &)

However, there is an important distinction between the

edge states that occur on the boundaries of quantum Har“)tatlonal invariance of the 2DEG as well as translation in-

devices, which lie along equal potential contours defined b))/quancg along one d|rept|on. Thus, these states h_ave both
an externally applied gate voltage, and the internal edggrler?tat!or!al and translational _Iong-range orerone direc-
states in a stripe phase where the edges are self-consisten? n); this is anelectron smectlgAs a consequen-c.e, we ex-
generated. In the latter case, in addition to the intraedge e ctoy,~nedB to be _unquantlzed, analxx>_ ayy; indeed,
citations described above, there is a second class of lowY® ZShOW belov_v that, in the absef.‘ce of disordef,= Tyx
energy excitations associated with deformations of the effec= & */N: oxx diverges, andr,, vanishes a3 —0. In addi-
tive potential itself, or in other words with the “shapgsnd 10N, at preciselyy=M+ 3, where the system has an exact
even topology of the stripe structure. Formally, the Hartree- Particle-hole symmetryin the half-filled spin-polarized Lan-
Fock state can be thought of as a saddle-point solution of afiaV 1evel, this discreteZ, symmetry is also spontaneously
imaginary time-path integral in which an effective potential Proken-

has been introduced as a Hubbard-Stratonovich field,

Acpw(r.t), which is just the local CDW order parameter. Il. EFFECTS OF QUANTUM FLUCTUATIONS
The intraedge excitations occur with fixédpw(r,t), while So far we have ignored the effects of quantum and ther-
the shape excitations involve deformations A§pw(r,t), mal fluctuations around the mean-field state. Two distinct

itself. A uniform order parametekp,y defines an ordered sorts of quantum fluctuation effects can fundamentally
CDW state with wavelength.. Because this is a state of change the character of the ground staig:fluctuations of
spontaneously broken symmetry, the transverse excitatiortbe interacting one-dimensional metallic intraedge degrees of
are Goldstone modes, and hence gapless. These are the stipedom(induced by electron-electron interactipnand (2)
deformations referred to abovét is sometimes useful to shape fluctuations in the positions, and ultimately even the
think of the intraedge excitations as the “quasi-Goldstoneconnectivity, of the edges themselVes.
modes” associated with an almost broken translational sym- The fluctuations of the metallic edge degrees of freedom
metry, i.e., the quasi-long-range order along the stripecan be described most simply using standard bosonization
direction®®) methods. Atv=M+3, the low-energy-charged degrees of
Whenv=M + 1/2, the system is particle-hole symmetric, freedom that are active in the smectic phase are the fluctua-
which means that exactly half of the area is occupied bytions of the “edge states,” which are described by an array
regions ofr=M and half by regions ob=M+1 integer (with alternating chiralities of Fermi liquids, i.e., chiral
guantum Hall liquid. As the magnetic field is increased sobosons with unit compactification radigser Luttinger pa-
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ramete). Well away fromy=M + 1, the charged degrees of OJ-T(X)OJ-+1(x)—>(’);‘(x)(’),-+1(x)exp{i2k§ffAjL(x)} (6)
freedom of eactpair of close-by edges form aonchiral

Luttinger liquidwith a Luttinger parametek <1, which is a i the expression fotc,,;, whereL;(x) is the arc length to
smooth function of the strength of the intrapair COU|0mbpositionx measured along thigh stripe. Here, we have de-
repulsion, which is in turn a function of the mean separatiorineqg AL(X)=L;(x)—L;+1(x). In Ref. 6, we showed that
between the edges in a given pair, i.e.,Bf; for v<M  thjs sort of fluctuation renders the coupling between CDW
+1/2. Noté that for K<1, the zero-temperature density fiyctuations on neighboring stripes irrelevant, and this pro-
fluctuations associated with an isolated pair of edges exhibijyces a first-order transition as a function of the magnitude

quasi-long-range order, of the shape fluctuations from an insulating stripe-crystal
+ off K phase for small fluctuations to a conducting smectic phase
(0(x)0;(0))~cog 2kg '+ o)/ |x|**, (2 for larger ones. Naturally, the smallkr or equivalently the

. eff - 14 closerv is to M + 1/2, the more sensitive the CDW ordering
where©; is the &g piece of the charge-den perator is to small amplitude shape fluctuations. As a consequence,

on thejth stripe (i.e., thejth pair of edge states Conse- -

) . L9 we generally expect the smectic phase to be more stable for
quenttly t_|r_1e |8trapa|r CDW susceptibility diverges as the tem-, nearM + 1/2 and the stripe-crystal phase to be more stable
peraturel—0 as away from this value.

So far, we have only considered the case in which the

Xcow~T 24759, 3 ; i
shape fluctuations are sufficiently small that they do not
where the CDW has a period determined by an effectivélamage the basic stripe order of the mean-field ground state.
value of When the shape fluctuations grow in magnitude to be com-
parable to the spacing between edges, backscattering interac-
okeff=p., /1 /2 (4) tions assisted by nonlinear retarded shape fluctuations induce
F MIZ0-

operators that break up the stripes. In other words, these
Direct electron tunneling, and even pair tunneling betweeroperators generatdislocationsin the smectic stripe order.
pairs of ideal straight edges are forbidden by momentunThese operators are irrelevant at weak coupling. The strength
conservation. However, for not too close toM +1/2, the  of this coupling is a measure of the effects of quantum fluc-
Coulomb interactions between neighboring pairs of edgetuations on the stripe structure and it decreases with increas-
couples the intrapair CDW fluctuations; schematically, thising stripe rigidity’ When these operators become relevant,

makes a contribution to the Hamiltonian density the system undergoescuantum phase transitiofrom the
smecticstate to thenematicstate in which dislocations pro-
HCoul:v{OJT(x)OHl(x)jLH,c,}_ (50 liferate. In this state rotational long-range order is still

present but translation invariance is restored. Since this

The scaling dimension of the operathfz,,, Which repre- phase is far from the mean-field state from which we started,
sents the coupling of thek®'" CDW order parameters on our knowledge of its properties is less certain. However, be-
neighboring stripes islcpw=2K. For repulsive Coulomb cause in two spatial dimensions, the smectic to nematic
interactions K<1, yxcpw diverges anddcpw<2. In the phase transition is expected, from Landau theory, to be con-
renormalization group sense, this coupling is relevant. It protinuous, we can imagine that substantial local stripe order
duces an instability of the smectic phase, analogous to ongersists well into the nematic phase. As a consequence we
that is commonly encountered guastone-dimensional ma- expect this phase to be compressible, to posses a nonquan-
terials, toward the formation of an insulating, stripe crystaltized Hall conductance, and an anisotropic longitudinal con-
phase with long-range CDW order both along and transverseuctivity with o> oy, .
to the stripe direction. A schematicT=0 phase diagram that summarizes the

This is not the whole story, since, as discussed above, thabove considerations is shown in Fig. 1. Here, thexis is
stripes are spontaneously generated, so 8tepesare also  the partial filling of the highest occupied spin-polarized Lan-
dynamically fluctuating low-energy degrees of freedom. dau level and thg axis is a microscopic quantum parameter,
Moreover, the couplings between these geometric degrees oflated to the strength of the short-range piece of the Cou-
freedom and th€bosonized charge fluctuations are nonlin- lomb interaction, which determines the typical magnitude of
ear and involve many derivativéslt is somewhat technical shape fluctuations in units of the stripe widttiRoughly,
but nevertheless possible to sH8what backscattering pro- since fluctuations about the mean-field state are thought to
cesses assisted by weak-shape fluctuations of the stripegcome less severe with increasing Landau indexe have
leads only to further renormalizations of the Luttinger pa-identified this coordinate with I, with shape fluctuations
rameter. Where even weak-shape fluctuations can be qualif the stripes being increasingly important the largey.)/
tatively important is through their effect on the CDW fluc-  The general structure of the phase diagram along its edges
tuations on neighboring pairs of edges. Since the fluctuatings completely determined by general principles and the above
CDW order oscillates with an effective Fermi wavelengthconsiderations. In the vicinity of the=M axis, the system
)\F=27r/2k§” along thelocally definedstripe direction, the can be thought of as consisting of dilute quasiparticles,
slightly different geometries defined by neighboring stripeswhich thus necessarily form a triangular lattice quasiparticle
means that the CDW fluctuations on those stripes are gedigner crystalt’ This is separated by a line of first-order
metrically dephased when the arc lengths differ by artransitions from the various phases discussed in this paper.
amount of ordei . Formally, these fluctuations induce an The instability of the smectic phase to stripe-crystal order in
additional phase factor, the absence of shape fluctuations means that alongakis,
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the system is always crystalline; a stripe crystal fonear  dimension for smectic ordérThis is even true in the pres-
M+1/2 and a Wigner crystal for smaller. For =M ence of long-range Coulomb interactidhis.
+1/2, the smectic phase is marginally stable, due to particle- A nematic phase, with power-law orientational order, sur-
hole symmetry, or equivalently, due to the fact that the edgeives to finite temperature. Indeed, we expect that every-
states here are chiral Fermi liquids. However, as the quantunvhere in theT=0 phase diagram where smectic or nematic
fluctuations become more severe, the smectic phase melwrder exists, quasi-long-ranged orientational order will sur-
first to form a stripe nematic and then an isotropic liquidvive for smallT>0. In addition, by analogy with the theory
phase. Presumably, for=M + 1/2, this isotropic state is the of hexatic phases in two dimensiohthere should be a finite
famous Hall metal. Finally, for large quantum parameter andemperature phase transition to a fully isotropic 2DEG me-
variable v, the system is dominated by the familiar liquid diated by unbinding of disclinations. Above this temperature,
states, including various Hall metal and fractional quanturrall tensor quantities, such as the conductivity, should be iso-
Hall liquid states; we group all these states into one region ofropic, while below it, anisotropies will develop which will
the phase diagram labeled “isotropic.” Within these con-grow with decreasing temperature.
straints, we have used artistic license to complete the sche- Both crystalline phases will melt at finite by one of the
matic phase diagram in a consistent manner. The resultingnore or less standard routes for two-dimensional melting,
phase diagram bears strong similarities with the phase didhat is either via a first order transition, or by a sequence of
gram we constructed previously for doped antiferromaghetstwo transitions. In the latter case, there will be a low-
Associated with the various broken continuous symmeiemperature solid phase with power-law positional and ori-
tries of theT=0 phases are a set of Goldstone modes whosentational order, and a nonvanishing shear modulus. This
character can be deduced from general principles. Detectingplid phase melts via a dislocation unbinding transition to an
these modes may, ultimately, be the most direct way of unintermediate(liquid crystalling state with power-law orien-
ambiguously identifying the various broken symmetrytational and short-range positional order. In the case of the
phases experimentally. melting of the stripe crystal, this “biatic” phase is not fun-
The existence of Goldstone modes follows directly fromdamentally distinct from the finite temperature nematic phase
the generalized elastic theory of the electron liquid-crystadiscussed above, although in practice, the melted crystal may
phases. However, since the magnetic-field affects the dynanstill be fairly insulating, whereas the nematic is moderately
ics of charge motion, the modes studied here have quite difsonducting. In the case of the Wigner crystal, the intermedi-
ferent character than those of the corresponding phases ate phase is a “hexatic,” in which the power-law orienta-
zero magnetic field. Moreover, because of the high density ofional order has a sixfold rotational symmetry, rather than the
low-energy charge excitations associated with the edgéwofold symmetry of the nematic. As indicated above, these
states, dissipation may play a significant role in the dynamicintermediate phases give way to a fully isotropic high-
of the Goldstone modes. temperature phase via a continuous disclination unbinding
We expect the Goldstone modes of the crystalline phaseisansition.
to be fairly standard. In particular, the Wigner crystal phase In all critical phases, which is to say all the finite tempera-
has been extensively studied in the literattf@he stripe- ture phases described above, the effects of symmetry break-
crystal phase should be analogous except for differences diieg fields are particularly dramatic. At low temperatures, and
to the different point group symmetries of the two crystallinein the absence of such symmetry breaking fields, there is no
structures. true broken symmetry and no order parameter. In these
The liguid-crystal phases have not been studied so faphases the system is actually in a critical region terminating
The transverse fluctuations of the CDW structure are theit a Kosterlitz-Thouless phase transition at a critical tempera-
Goldstone modes. These modes per se do not couple directiyre T.. Naturally, this phase transition is rounded by a
to charge fluctuations. However, the locus of the nodes of theymmetry-breaking field. However, beloly, even a small
CDW modulate the local charge density profile and througtsymmetry-breaking fieldh produces a large response. This
it they determine the local structure of the edge states. Thegstuition is made precise in the sense that the exporment
two sets of low-energy modes, local fluctuations of the>1 where
stripes and charge fluctuations along each stripe, govern the
low-energy physics of the smectic phase. In a separate pub- 1/s
lication we will m~[h[*, ™
present a theory of these modes.

wherem s the value of the order parameter. For instance, for

Il. FINITE TEMPERATURE EFFECTS the nematic phase, we can defime= o,,— oyy/owt oy,
o ] ) and h then is a dimensionless measure of the underlying
At finite temperature, continuous symmetries cannot beynisotropy of the substrate. Near the critical temperatare,
broken in two dimensions, so both translation Symmetryapproaches the universal value 15, ahdiverges as — 0.
(which is spontaneously broken &t=0 in the smectic and g a function of temperature, this exponent can be computed
the two crystalline phasgsnd rotational symmetryin all exactly in terms of the anomalous dimensignof the XY

liquid crystalline and true crystalline phagese clearly re-  moqel(or, with the same result, from a self-consistent pho-
stored for T>0. However, quasi-long-range order is pos-non approximation

sible, even at finite temperature, so phases can still be distin-
guished according to what power-law order they possess.
The smectic phase is destroyed at finite temperature due 4 _ 2mk(T)
. : . oo . " o=——1=——-1, (8)
to a proliferation of dislocations; three is the lower critical 7 T
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where  approaches 1/4 aB—T.. Here,x(T) is the long- edge state. Thus, current is conserved but, in addition to the
wavelength helicity modulus, which approaches a constaritbulk”” Hall current (which is the same as in the other con-
as T—0, and the universal value(T.)=4T./m as T  figuration there is now a currenparallel to the external
—T,. (There is a factor of 4 22 difference here than in the electric field and it is carried entirely by the edge states. At
usualXY model since the vortices in a nematic have half theleast at the mean-field levelr,,~Ce*h where C is the
usual topological chargeAs T— T, & reaches the universal number of edges that make it across the systend so di-
value 5=15. The large values o imply that very small verges with the size of the systgmhile oy, =0. This result
microscopic anisotropies have an enormous orienting effects correct for a clean system and it is robust against quantum
fluctuations provided that they do not destabilize the smectic

hase.
IV. THE CONDUCTIVITY TENSOR P

In this section, we discuss the expected behavior of the B. The nematic phase
conductivity tensor in the various parts of the phase diagram
P, 1 ol drect o e Kubo S, 501079 v, 1 folows that ST-0, =, 0 and o,

9 UPET _ e2)/h. For T>0, since the nematic is a critical phase, the

conductoy associated with th& and w—0 limit, that oy, zero-temperature result is likely to be strongly modified. On
=0y (and, consequently, that,=p,,). This statement is general dimensional grounds, it is reasonable to expegt
true mde_pendent of Whgther or not t_he system is rotatlpnallyv e2/h>ayy, and thato,, is greatest av=M + 1/2, where
symmetric. In general, in a state with a fourfold rotationalipe Luttinger exponenk associated with the edge states is
symmetry (which, of course, includes all isotropic liquid |argest, and drops symmetricaligue to particle-hole sym-
states o= 0y, . Conversely, in any state which is not four- metry) as v is varied from this value. There is no reason to

fold rotationally symmetric and has a finite Hall conduc- gxpectq,, to be strongly temperature dependent.
tance, there is na priori reason to expect this equality to Y

hold, and therefore there is every reason to expect it not to
hold. Thus, in all the crystalline and liquid crystalline states
discussed here, we expeet,+ oy, although for the two Disorder likely eliminates most of the sharp distinctions
crystalline states, since they are insulating, we expect thadetween phases, and hence, turns most of the phase transi-
both diagonal components of the conductivity tensor will betions discussed above into crossovers. However, if the disor-
small at low temperatures. der is sufficiently weak, then the crossovers can be sharply
defined, and important local distinctions between the various
“phases” should be experimentally detectable. Certainly,
neither broken translational nor rotational symmetry survive
At T=0 and in the absence of impurities, the smecticgisorder.
phase is boost invariant in the stripe direction. As a conse- The effects of disorder on the conductivity tensor in the
quence, under conditions in which the electric field is per-tT_ |imit are likely to be severe and nonperturbative; even
pendicular to the stripe direction, it is possible to go to aweak disorder can cause localization. However, at nonvan-
co-moving frame in which the electric field vanishes. Itishing temperatures, we can expect that in the low-disorder
therefore follows that the Hall conductance tracks the changgmit, the conductivity tensor will resemble that of the ideal
in the filling fraction, o, =ve?/h, and thatoy,,=0. On the  gystem. Interesting nonlinear effects, involving pinning of
other hand, because there are a finite denSity of CondUCtiﬂg]e various forms of CDW order, can be expected in the
channels, and because of the irrelevance of all backpresence of disorder. In the stripe-crystal and Wigner crystal
scattering interactions in the smectic phase, the longitudinalases, these effects are well studied previously, but for the
conductivity in the stripe directionr,,, diverges inthe limit  smectic they may have some novel features. Because the
T—0. Impurities will, of course, alter these conclusions, bUtLuttinger exponenkK <1, disorder is a relevant perturbation
for weak disorder and low but nonzero temperature, ongo the one-dimensional edge-state problem in the absence of
would still expecto,,~e’*v/h ando,,>e’/h> o, . stripe shape fluctuations. Thus, disorder is likely to produce
From a microscopic viewpoint, if an external electric field dramatic decreases in the diagonal matrix elements of the
perpendicularto the stripes is applied, every stripe with fill- conductivity tensor at sufficiently low temperatures in both

ing fraction»y, (vy41) has aninduced Hall curreptrallel  electronic liquid crystalline phases. In general, the effects of
to the direction of the stripe and the Hall conductance of thajveak disorder on electronic liquid crystals is an area for

stripe isayy(M) [0y (M+1)]. Notice that in this configu-  future study.

ration the current of the edge states separating each pair of

nearby stripes is part of the Hall current. The Hall current VI. RELATION TO EXPERIMENTS

changes continuously and no longitudinal current is induced

in this configuration. However, if the external electric fieldis  The study undertaken in the present paper was originally
applied parallel to the stripes, the induced Hall current in motivated by some very recent and remarkable experiments
each stripe is nowerpendicularto the stripes(Recall that done by Lilly, Cooper, Eisenstein, Pfeiffer, and West
nearest neighboring stripes have different Hall conductancewhich large, temperature-dependent anisotropies were dis-
As the boundary between two stripes is approached the cucovered in the 2DEG under conditions in which tWor

rent switches from being perpendicular to the stripe to beingnore Landau levels are full. The experiments were done in
parallel to the stripe and it is carried by the correspondingultrahigh mobility GaAs/AlGa, _,As heterojunctions. That

Because the nematic phase is featureless, and so boost

V. EFFECTS OF QUENCHED DISORDER

A. The smectic phase
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the samples have very weak disorder is indicated, for in-
stance, by the observation of the quite fragile quantum Hall
plateau atv=3 and by the large number of fractional quan- T
tum Hall states seen in the lowest Landau level. The salient
features of the experiments of Ref. 9 are as follows: For a
partially filled third Landau level with’ in the neighborhood

of v=3, there is a characteristic temperatdig~150 mK
above which the resistivity tensor is nearly isotropic, and
below which there is a rapid crossover to a highly aniso-
tropic compressible state. The resistivity tensor in this state
exhibits a nonquantized Hall resistance and an anisotropic Nematic
longitudinal response, such that, grows very rapidly with
decreasing temperature until it reaches a value of order

Isotropic

Hexatic
10042 at the lowest temperature$~25 mK, while p,,, Stripe
measured by rotating the current by 90°, becomes very Crystal Wigner
small. Since in the absence of disorder, on theoretical Crystal
groundsp,,= pyx=(h/e®) v, we expect that this relation M) = e

should hold approximately in this system. Inverting this ten-
sor we find, for the conductivity tensor at low temperatures, FiG. 3. Schematic finite temperature phase diagram as a func-

oy~ €I, oy =0oy~ve’/h, ando,, small. The low tem- tion of inverse filling factor along line of Fig. 1.
perature value of,, as a function ofv exhibits a broad peak

centered ab=9/2, with a width inv, which is substantial isclination unbinding transition, perhaps somewhat rounded
and approximately temperature independent. Structure is alszn ng P P .
ue to quenched disorder. A small anisotropy in the hetero-

seen in the “wings” of the Landau level even at 150 mK. . X o . : :
Specifically, two very well-defined pairs of quantum Hall junction deylce IS the symmetry-b_reaklng_ field that picks a
plateaus are seen, one pair vuitl;ly:4e2/h for » near 4, and preferred orientation fqr the _nematlc, and insures Fhat there is
another one withe,,= 5e2/h for v near 5. However, the actual Iong—rangeq orientational order, as d_escnbe(_j in Eq.
resistivity peak between the two platea(with the same (7). The two quantized Hall states observed in the wings are
quantized Hall conductang®@ecomes smaller with decreas- naturally identified with the stripe-crystal and quasiparticle
ing temperature, in contrast with the usual critical peaks seeM/igner crystal phasésthat appear ag—M in the phase
in transitions between plateaus. diagrams in Figs. 1 and 3. It would be interesting to test this
The same structure is repeated forin the vicinity of hypothesis by looking for evidence of a finite temperature
11/2, 13/2, 15/2, and beyond, although it apparently becomeselting transition, or characteristic nonlinglalv/’s in these
more difficult to resolve beyond=15/2. In particular, the ranges ofB.
peak value ofp,, decreases with increasing roughly in This still does not address the question of whether the
such a way thatr,, at v=(2M + 1)/2 remains in the vicinity ~ground-state phase near=9/2 is a smectic or nematic.
of e?/h. It is important to stress that, even at low tempera-However, since the longitudinal resistivipg,~ 1004 cor-
tures, no substantial anisotropy is apparent at the lowest temesponds to a longitudinal conductivity,,~ e?/h, it seems
peratures at smaller values of in particular nearv=7/2 |ikely that the ground state is either a quantum nematic phase
and 5/2, nor at any magnetic field at temperatures in excessy that the stripe order of the underlying smectic is strongly
of 100 mK_- ] ] o disrupted due to pinning by impurities. If disorder does not
The existence of this anisotropy observed in highly puré,|ay 54 dominant role, the characteristic temperature depen-

samples clearly .indicat(_as that this effect is driven byyance of the nematic order implied by E8) will govern the
electron-electron interactions and that disorder plays a Se?'esistivity ratio, py,/ p
Pxx! Pyy-

ondary role. This is doubly remarkable since the natural ex- It is also worth noting that in the experiments of Willett

pectation was that precisely in the middle of the plateau there, _ 2 . . ) .
should be a phase transition fromva4 to av=5 quantum ét al““ in which an external modulation was imposed on a

. . l . .
Hall liquid. However at the transition between plateaus,ZDEG in the compressible stateat , similar phenomena

which is a quantum phase transition driven by disorder, alVvere observed as in the experiments of Lidyal. On the

though one expects a peakgn, , the peak shouid narrow as one hand, this gives us greater confidence in concluding that
T—0 following a universal scaling law. The results of these!N€ OPserved anisotropies are a consequence of stripe forma-

experiments suggest that, although the system is indeed corfion- On the other hand, it supports the intuitive noitihat
pressible, there is no narrowing of the peakTasO0. Thus, the isotropic compressible stateiat 1/2 still has substantial
the system is critical for a range of filling factors. Further-local stripe correlations, which are simply disordered by
more the transition between plateaus should be essentialjuantum fluctuations at long distances—this would rational-
isotropic. ize the large susceptibility of this state to the formation of

The picture presented in this paper gives a naturastripes. Similarly, it may be that anomalously broad regions
interpretatior® of these effects. It is natural to identify the of compressible smectic or nematic phases may be stabilized
experimentally observed anisotropic state with the finite temby an externally potential at the “edge” of a quantum Hall
perature nematic state discussed above, which is a criticalevice, producing a form of macroscopic edge
state, and the crossover observedTat100 mK with the  reconstructiorf*
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