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Liquid-crystal phases of quantum Hall systems
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Mean-field calculations for the two-dimensional electron gas in a large magnetic field with a partially filled
Landau level with indexN>2 consistently yield ‘‘stripe-ordered’’ charge-density wave ground states, for
much the same reason that frustrated phase separation leads to stripe-ordered states in doped Mott insulators.
We have studied the effects of quantum and thermal fluctuations about such a state and show that they can lead
to a set of electronic liquid crystalline states, particularly a stripe-nematic phase, which is stable atT.0.
Recent measurements of the longitudinal resistivity of a set of quantum Hall devices have revealed that these
systems spontaneously develop, at low temperatures, a very large anisotropy. We interpret these experiments as
evidence for a stripe nematic phase, and propose a general phase diagram for this system.
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There are many condensed matter systems in which
charge degrees of freedom form regular spatial patterns c
monly known as ‘‘stripes.’’ These structures are typically t
result of the competition between short-range attrac
forces, which give rise to a condensed~usually insulating!
phase, and the largely unscreened, long-range Coulomb
teractions. Specifically, in the condensed phase, and in
absence of long-range repulsive forces between like char
the charge degrees of freedom have a tendency to f
clumps, that is to phase separate. This tendency to p
separation is frustrated by the long-range repulsive Coulo
interactions and the result is the spontaneous organizatio
the charge degrees of freedom in low-dimensio
structures.1 In a large class of quasi-two-dimension
strongly correlated materials, i.e., doped Mott insulators s
as the copper oxides, the nickelates, and the mangan
stripe phases have recently been observed experimenta2,3

However, these structures should not be peculiar to do
Mott insulators, but should also arise in other electronic s
tems in which the same sort of competition is present. It
been realized for some time that there is a strong tende
for the two-dimensional electron gas~2DEG! in a high-
magnetic field to condense into incompressible quantum H
liquid states with quantized ‘‘filling factor’’n. Thus, in the
presence of long-range Coulomb interactions, at elec
densities intermediate between two quantized values
natural to expect the system to form an inhomogeneous s
with a periodic array of stripes of the two incompressib
liquids. Indeed, some time ago Kulakov, Fogler, a
Shklovskii4 and Moessner and Chalker5 showed that a two-
dimensional electron gas in a perpendicular magnetic fi
can have a stripe or charge-density wave~CDW! ground
state in which the charge density in a partially-filled hi
Landau level exhibits periodic oscillations along one spa
direction. According to these calculations, which are ba
on a Hartree-Fock approach, the electrons in a partially
cupiedNth Landau level form stripes in which the Landa
level is alternately full or empty. The stripe pattern is a p
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riodic modulation of the local Hall conductance between
quantized values 2Ne2/h and (2N11)e2/h.

In this paper, we present a theoretical description of
2DEG in a moderately large magnetic field, and show t
this system actually behaves like a set of dynamical cond
ing stripes. We have recently6 developed a theory of the
phase diagram of fluctuating conducting stripes for dop
Mott insulators. In the present context, the ‘‘edge states’
the interface between two regions of differently quantiz
Hall conductance play the same role as the conduc
stripes. However, there are two important differences
tween these edge states and the fluctuating stripes we stu
in the context of doped Mott insulators:~i! because of the
high-magnetic field, the edge states are intrinsically ch
~with alternating chirality, as shown in Fig. 2!, and ~ii ! the
high-temperature phase has fullU(1) rotational symmetry,
as opposed to the discrete rotational~point-group! symmetry
found in doped insulators. We will show here that t
quantum-mechanical fluctuations about the Hartree-F
state of Refs. 4 and 5 lead to a variety of new phases. Ba
on these results, we propose the qualitativeT50 phase dia-
gram in the absence of disorder shown in Fig. 1.

This phase diagram includes the followingelectronic liq-
uid crystallineand true crystalline phases:

1. A quantum smectic, which has charge-density wave o
der, which breaks translational and rotational symmetry,
in which the liquid-like~metallic! behavior of the chiral edge
states is preserved.

2. A quantum nematic, in which quantum fluctuations o
the stripe order are sufficiently strong to restore translatio
symmetry, i.e., to melt the CDW order, but still small enou
that local orientational order of the stripes persists, th
breaking rotational symmetry.

3. A quantum isotropic fluid phase, in which the 2DEG is
invariant under both rotations and translations.

4. An insulating stripe-crystalphase is also possible
when the partially filled Landau level is not half filled~i.e., is
not particle-hole symmetric!. This phase is characterized b
8065 ©1999 The American Physical Society
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8066 PRB 59EDUARDO FRADKIN AND STEVEN A. KIVELSON
the same CDW order perpendicular to the stripe direction
the smectic, but in addition the density-wave fluctuatio
along neighboring stripes phase lock to each other, formin
true, insulating, two-dimensional electron crystal.

5. A Wigner Crystalphase is also expected, especially
partial filling of the Landau level near 0 or 1. This phase
also insulating, but differs from the insulating stripe crys
in its crystal structure, and its degree of isotropy.

The smectic and the nematic phases both break rotati
symmetry; because of the conducting character of the ch
edge states, both liquid crystalline phases possess highly
isotropic conductivity tensors, with principal axes parallel
~‘‘ x direction’’! and perpendicular to~‘‘ y direction’’! the pre-
ferred stripe orientational direction. Both phases are co
pressible and have a nonquantized Hall conductance.
stripe and Wigner crystal phases are ‘‘insulating,’’ since
crystals are easily pinned by impurities or boundary effe
Of course, what this means is that the full conductivity ten
at low temperature is that of the lower-lying, full Landa
levels, so these states are actually quantized Hall states.
isotropic fluid is actually a set of phases, including the fra
tional quantum Hall and compressible Hall metal pha
which are familiar from previous studies.

Becaused53 is the lower critical dimension for smecti
order,7 the electron smectic only exists atT50; at finite
temperature, it is indistinguishable from the nematic. Th
mal fluctuations also eliminate true long-ranged orientatio
nematic order, but quasi-long-ranged~power-law! order sur-
vive up to a finite temperature transition. Wigner crystalli

FIG. 1. QualitativeT50 phase diagram for a clean 2DEG. Th
vertical axis measures the strength of the quantum fluctuat
~which is roughly inversely proportional to the Landau level inde
N! and the horizontal axis is the inverse filling factor~over a range
in which the partial filling of the highest spin-polarized Land
level varies betweenM and M11/2, whereM52N or M52N
11. Lines a, b, c, and d are three realizations for increasing th
strength of the quantum fluctuations. The smectic and nematic
compressible while the isotropic phase may either be compres
or incompressible. The stripe crystal and the Wigner crystal pha
are insulating and exhibit plateau behavior with the same quant
Hall conductance,sxy5e2M /h.
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order is destroyed by thermal fluctuations in the standard~2D
melting! fashion, i.e., either there is a single, first-order me
ing transition, or a sequence of two continuous transitio
and an intermediate temperature ‘‘hexatic’’ phase, w
short-range positional and sixfold orientational quasi-lon
range order.8 The stripe-crystal order is destroyed in a sim
lar fashion, although the intermediate state phase in this c
is a ‘‘biatic,’’ which from a symmetry point of view is in-
distinguishable from the finite temperature nematic.~See Fig.
3.!

The paper is organized as follows. In Sec. I, we summ
rize the main results of the mean-field theory of Refs. 4 a
5. Here we argue that this state should be viewed as
electron smectic. In Sec. II, we discuss in detail the effects
quantum fluctuations and their implications for theT50
phase diagram. We focus on two main effects: fluctuation
the geometry~or shape! of the stripes and intrastripe charg
density fluctuations. We show that intrastripe fluctuatio
alone always produce an instability of the smectic to a stri
crystal phase. In contrast, small shape fluctuations ten
stabilize the smectic.6 Furthermore, we argue that larg
shape fluctuations lead to a two stage quantum melting of
smectic through an intermediate nematic phase into an
tropic electron fluid. In this section, we also characterize
various phases in the phase diagram. In Sec. III, we disc
the effects of thermal fluctuations and the fate of theT50
phases. In Sec. IV, we discuss on general grounds the
pected behavior of the conductivity tensor in the vario
phases, especially its behavior and anisotropies at low t
peratures. Section V contains a brief and highly incompl
discussion of the effects of quenched randomness~disorder!
on the principal findings of this paper. Finally, in Sec. VI w
discuss the relation between this theoretical picture and
recent experiments of Lilly, Cooper, Eisenstein, Pfeiffer, a
West.9

I. MEAN-FIELD THEORY AND THE SMECTIC PHASE

We take as our starting point a mean-field state, wh
consists of alternating stripes with filling fractionn5M and
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FIG. 2. Schematic view of the smectic phase: In this picture,
have taken the filling factor somewhere betweenn59/2 andn54.
The system is compressible with the fraction of the sample w
filling fraction n55 decreasing with increasing magnetic field. A
this progresses, nearby pairs of edge states become strongly co
and the result is a stripe~smectic! phase of nonchiral Luttinger
liquids separating regions withn54. This phase exists only atT
50.
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PRB 59 8067LIQUID-CRYSTAL PHASES OF QUANTUM HALL SYSTEMS
n5M11 as shown in Fig. 2 for the caseM54. Here, we
have assumed, for simplicity, that the cyclotron and Zeem
energies are sufficiently large that electrons sequentially
individual spin-polarized Landau levels asB decreases, and
M52N or 2N11 depending on whether the partially fille
spin-polarized level is spin up or spin down. The stripe
CDW state is characterized by an order parameterDCDW ,
which describes a charge-density modulation with wa
length l. In the Hartree-Fock description of Refs. 4 and
the single-particle states in theNth Landau level near the
‘‘crest’’ of the CDW are filled while those near the ‘‘trough’
are empty. The wavelengthl of the CDW is of the order of
Rc , the cyclotron radius in theNth Landau level,l5ARc

5Al 0AN, wherel 05A\c/eB is the magnetic length. Her
A is a constant determined by the details of the interac
and A increases smoothly as the interactions become
gressively screened. ForN@1, the Fermi wavelengthlF is
small,lF!Rc .

It follows from general hydrodynamic principles th
there exist gapless edge states at the boundary between
regions of differently quantized Hall conductance.10–12In the
case of a boundary between two integer quantized H
states, these hydrodynamic edge modes can be simply
structed as particle-hole excitations, which propagate wit
velocity, v5cEedge/B, which is proportional to the strengt
of the electric field at the edge,Eedge. Thus, in the absenc
of interactions between edges, these excitations formchiral
Fermi liquids, and intraedge electron-electron interactio
only renormalize the velocityv. In an ordered stripe phase
there are two such chiral edge states per unit cell with op
site chirality, as shown in Fig. 2.

However, there is an important distinction between
edge states that occur on the boundaries of quantum
devices, which lie along equal potential contours defined
an externally applied gate voltage, and the internal e
states in a stripe phase where the edges are self-consis
generated. In the latter case, in addition to the intraedge
citations described above, there is a second class of
energy excitations associated with deformations of the ef
tive potential itself, or in other words with the ‘‘shape’’~and
even topology! of the stripe structure. Formally, the Hartre
Fock state can be thought of as a saddle-point solution o
imaginary time-path integral in which an effective potent
has been introduced as a Hubbard-Stratonovich fi
DCDW(rW,t), which is just the local CDW order paramete
The intraedge excitations occur with fixedDCDW(rW,t), while
the shape excitations involve deformations ofDCDW(rW,t),
itself. A uniform order parameterDCDW defines an ordered
CDW state with wavelengthl. Because this is a state o
spontaneously broken symmetry, the transverse excitat
are Goldstone modes, and hence gapless. These are the
deformations referred to above.~It is sometimes useful to
think of the intraedge excitations as the ‘‘quasi-Goldsto
modes’’ associated with an almost broken translational s
metry, i.e., the quasi-long-range order along the str
direction.13!

Whenn5M11/2, the system is particle-hole symmetr
which means that exactly half of the area is occupied
regions ofn5M and half by regions ofn5M11 integer
quantum Hall liquid. As the magnetic field is increased
n
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that n varies betweenM11/2>n>M , the ratio of areas of
the two locally coexisting quantum Hall liquids varies from
to 1. ~The rangeM11>n>M11/2 is related to the range
M11/2>n>M by particle-hole symmetry.! If we denote by
DM the width of each strip ofn5M , then the ratio of
DM /DM11 is determined by the filling fraction according t

n2S M1
1

2D5
DM2DM11

DM1DM11
. ~1!

The length scalel5DM1DM11 is determined by the com
petition between the short- and long-range pieces of the C
lomb potential, and so depends on the details of the sh
distance screening—in the schematic phase diagram in
1, they axis signifies appropriate changes in the short-ra
piece of the Coulomb interaction, which on a phenome
logical level we roughly associate with changes in Land
level indexN.

In the next section, we will consider the effects of inte
actions between the edge states. Asn is decreased fromM
11/2, the edge states~of opposite chiralities! on either side
of eachn5M11 stripe begin to approach each other;DM11
decreases. Consequently, the interactions between these
of edges grow stronger and the interactions among the e
trons in different pairs of edges~separated byDM) grow
weaker. For filling fractionsnÞM1 1

2 , rather then thinking
of individual, chiral edges, we should consider the exci
tions of an array of nonchiral one-dimensional structur
each constituted from apair of chiral edge states.

At zero temperature, mean-field stripe-ordered states h
a stripe spacing that varies continuously withn, so they are
clearly compressible. They spontaneously break theU(1)
rotational invariance of the 2DEG as well as translation
variance along one direction. Thus, these states have
orientational and translational long-range order~in one direc-
tion!; this is anelectron smectic. As a consequence, we ex
pectsxy;nec/B to be unquantized, andsxx.syy ; indeed,
we show below that, in the absence of disorder,sxy5syx
5e2n/h, sxx diverges, andsyy vanishes asT→0. In addi-
tion, at preciselyn5M1 1

2 , where the system has an exa
particle-hole symmetry~in the half-filled spin-polarized Lan-
dau level!, this discreteZ2 symmetry is also spontaneous
broken.

II. EFFECTS OF QUANTUM FLUCTUATIONS

So far we have ignored the effects of quantum and th
mal fluctuations around the mean-field state. Two disti
sorts of quantum fluctuation effects can fundamenta
change the character of the ground state:~1! fluctuations of
the interacting one-dimensional metallic intraedge degree
freedom~induced by electron-electron interactions!, and ~2!
shape fluctuations in the positions, and ultimately even
connectivity, of the edges themselves.6

The fluctuations of the metallic edge degrees of freed
can be described most simply using standard bosoniza
methods. Atn5M1 1

2 , the low-energy-charged degrees
freedom that are active in the smectic phase are the fluc
tions of the ‘‘edge states,’’ which are described by an ar
~with alternating chiralities! of Fermi liquids, i.e., chiral
bosons with unit compactification radius~or Luttinger pa-
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rameter!. Well away fromn5M1 1
2 , the charged degrees o

freedom of eachpair of close-by edges form anonchiral
Luttinger liquidwith a Luttinger parameterK,1, which is a
smooth function of the strength of the intrapair Coulom
repulsion, which is in turn a function of the mean separat
between the edges in a given pair, i.e., ofDM for n,M
11/2. Note6 that for K,1, the zero-temperature densi
fluctuations associated with an isolated pair of edges exh
quasi-long-range order,

^O j
†~x!Oj~0!&;cos~2kF

e f fx1u0!/uxu2K, ~2!

whereOj is the 2kF
e f f piece of the charge-density14 operator

on the jth stripe ~i.e., the jth pair of edge states!. Conse-
quently the intrapair CDW susceptibility diverges as the te
peratureT→0 as

xCDW;T22~12K !, ~3!

where the CDW has a period determined by an effec
value of

2kF
e f f5DM /l 0

2 . ~4!

Direct electron tunneling, and even pair tunneling betwe
pairs of ideal straight edges are forbidden by moment
conservation. However, forn not too close toM11/2, the
Coulomb interactions between neighboring pairs of ed
couples the intrapair CDW fluctuations; schematically, t
makes a contribution to the Hamiltonian density

HCoul5V$O j
†~x!Oj 11~x!1H.c.%. ~5!

The scaling dimension of the operatorHCoul , which repre-
sents the coupling of the 2kF

e f f CDW order parameters o
neighboring stripes isdCDW52K. For repulsive Coulomb
interactions K,1, xCDW diverges anddCDW,2. In the
renormalization group sense, this coupling is relevant. It p
duces an instability of the smectic phase, analogous to
that is commonly encountered inquasi-one-dimensional ma
terials, toward the formation of an insulating, stripe crys
phase with long-range CDW order both along and transve
to the stripe direction.

This is not the whole story, since, as discussed above
stripes are spontaneously generated, so theirshapesare also
dynamically fluctuating low-energy degrees of freedom6

Moreover, the couplings between these geometric degree
freedom and the~bosonized! charge fluctuations are nonlin
ear and involve many derivatives.15 It is somewhat technica
but nevertheless possible to show16 that backscattering pro
cesses assisted by weak-shape fluctuations of the st
leads only to further renormalizations of the Luttinger p
rameter. Where even weak-shape fluctuations can be q
tatively important is through their effect on the CDW flu
tuations on neighboring pairs of edges. Since the fluctua
CDW order oscillates with an effective Fermi waveleng
lF52p/2kF

e f f along thelocally definedstripe direction, the
slightly different geometries defined by neighboring strip
means that the CDW fluctuations on those stripes are g
metrically dephased when the arc lengths differ by
amount of orderlF . Formally, these fluctuations induce a
additional phase factor,
n
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O j
†~x!Oj 11~x!→O j

†~x!Oj 11~x!exp$ i2kF
e f fD jL~x!% ~6!

in the expression forHCoul, whereL j (x) is the arc length to
positionx measured along thejth stripe. Here, we have de
fined D jL(x)5L j (x)2L j 11(x). In Ref. 6, we showed tha
this sort of fluctuation renders the coupling between CD
fluctuations on neighboring stripes irrelevant, and this p
duces a first-order transition as a function of the magnitu
of the shape fluctuations from an insulating stripe-crys
phase for small fluctuations to a conducting smectic ph
for larger ones. Naturally, the smallerl, or equivalently the
closern is to M11/2, the more sensitive the CDW orderin
is to small amplitude shape fluctuations. As a conseque
we generally expect the smectic phase to be more stable
n nearM11/2 and the stripe-crystal phase to be more sta
away from this value.

So far, we have only considered the case in which
shape fluctuations are sufficiently small that they do
damage the basic stripe order of the mean-field ground s
When the shape fluctuations grow in magnitude to be co
parable to the spacing between edges, backscattering int
tions assisted by nonlinear retarded shape fluctuations ind
operators that break up the stripes. In other words, th
operators generatedislocationsin the smectic stripe order
These operators are irrelevant at weak coupling. The stre
of this coupling is a measure of the effects of quantum fl
tuations on the stripe structure and it decreases with incr
ing stripe rigidity.6 When these operators become releva
the system undergoes aquantum phase transitionfrom the
smecticstate to thenematicstate in which dislocations pro
liferate. In this state rotational long-range order is s
present but translation invariance is restored. Since
phase is far from the mean-field state from which we start
our knowledge of its properties is less certain. However,
cause in two spatial dimensions, the smectic to nem
phase transition is expected, from Landau theory, to be c
tinuous, we can imagine that substantial local stripe or
persists well into the nematic phase. As a consequence
expect this phase to be compressible, to posses a nonq
tized Hall conductance, and an anisotropic longitudinal c
ductivity with sxx.syy .

A schematicT50 phase diagram that summarizes t
above considerations is shown in Fig. 1. Here, thex axis is
the partial filling of the highest occupied spin-polarized La
dau level and they axis is a microscopic quantum paramete
related to the strength of the short-range piece of the C
lomb interaction, which determines the typical magnitude
shape fluctuations in units of the stripe width.~Roughly,
since fluctuations about the mean-field state are though
become less severe with increasing Landau indexN we have
identified this coordinate with 1/N, with shape fluctuations
of the stripes being increasingly important the larger 1/N.)

The general structure of the phase diagram along its ed
is completely determined by general principles and the ab
considerations. In the vicinity of then5M axis, the system
can be thought of as consisting of dilute quasiparticl
which thus necessarily form a triangular lattice quasiparti
Wigner crystal.17 This is separated by a line of first-orde
transitions from the various phases discussed in this pa
The instability of the smectic phase to stripe-crystal order
the absence of shape fluctuations means that along thex axis,
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the system is always crystalline; a stripe crystal forn near
M11/2 and a Wigner crystal for smallern. For n5M
11/2, the smectic phase is marginally stable, due to parti
hole symmetry, or equivalently, due to the fact that the e
states here are chiral Fermi liquids. However, as the quan
fluctuations become more severe, the smectic phase m
first to form a stripe nematic and then an isotropic liqu
phase. Presumably, forn5M11/2, this isotropic state is the
famous Hall metal. Finally, for large quantum parameter a
variable n, the system is dominated by the familiar liqu
states, including various Hall metal and fractional quant
Hall liquid states; we group all these states into one region
the phase diagram labeled ‘‘isotropic.’’ Within these co
straints, we have used artistic license to complete the s
matic phase diagram in a consistent manner. The resu
phase diagram bears strong similarities with the phase
gram we constructed previously for doped antiferromagne6

Associated with the various broken continuous symm
tries of theT50 phases are a set of Goldstone modes wh
character can be deduced from general principles. Detec
these modes may, ultimately, be the most direct way of
ambiguously identifying the various broken symme
phases experimentally.

The existence of Goldstone modes follows directly fro
the generalized elastic theory of the electron liquid-crys
phases. However, since the magnetic-field affects the dyn
ics of charge motion, the modes studied here have quite
ferent character than those of the corresponding phase
zero magnetic field. Moreover, because of the high densit
low-energy charge excitations associated with the e
states, dissipation may play a significant role in the dynam
of the Goldstone modes.

We expect the Goldstone modes of the crystalline pha
to be fairly standard. In particular, the Wigner crystal pha
has been extensively studied in the literature.18 The stripe-
crystal phase should be analogous except for differences
to the different point group symmetries of the two crystalli
structures.

The liquid-crystal phases have not been studied so
The transverse fluctuations of the CDW structure are
Goldstone modes. These modes per se do not couple dir
to charge fluctuations. However, the locus of the nodes of
CDW modulate the local charge density profile and throu
it they determine the local structure of the edge states. Th
two sets of low-energy modes, local fluctuations of t
stripes and charge fluctuations along each stripe, govern
low-energy physics of the smectic phase. In a separate
lication we will present a theory of these modes.

III. FINITE TEMPERATURE EFFECTS

At finite temperature, continuous symmetries cannot
broken in two dimensions, so both translation symme
~which is spontaneously broken atT50 in the smectic and
the two crystalline phases! and rotational symmetry~in all
liquid crystalline and true crystalline phases! are clearly re-
stored for T.0. However, quasi-long-range order is po
sible, even at finite temperature, so phases can still be di
guished according to what power-law order they possess

The smectic phase is destroyed at finite temperature
to a proliferation of dislocations; three is the lower critic
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dimension for smectic order.7 This is even true in the pres
ence of long-range Coulomb interactions.19

A nematic phase, with power-law orientational order, s
vives to finite temperature. Indeed, we expect that eve
where in theT50 phase diagram where smectic or nema
order exists, quasi-long-ranged orientational order will s
vive for smallT.0. In addition, by analogy with the theor
of hexatic phases in two dimensions,8 there should be a finite
temperature phase transition to a fully isotropic 2DEG m
diated by unbinding of disclinations. Above this temperatu
all tensor quantities, such as the conductivity, should be
tropic, while below it, anisotropies will develop which wi
grow with decreasing temperature.

Both crystalline phases will melt at finiteT by one of the
more or less standard routes for two-dimensional melti
that is either via a first order transition, or by a sequence
two transitions. In the latter case, there will be a lo
temperature solid phase with power-law positional and o
entational order, and a nonvanishing shear modulus. T
solid phase melts via a dislocation unbinding transition to
intermediate~liquid crystalline! state with power-law orien-
tational and short-range positional order. In the case of
melting of the stripe crystal, this ‘‘biatic’’ phase is not fun
damentally distinct from the finite temperature nematic ph
discussed above, although in practice, the melted crystal
still be fairly insulating, whereas the nematic is moderat
conducting. In the case of the Wigner crystal, the interme
ate phase is a ‘‘hexatic,’’ in which the power-law orient
tional order has a sixfold rotational symmetry, rather than
twofold symmetry of the nematic. As indicated above, the
intermediate phases give way to a fully isotropic hig
temperature phase via a continuous disclination unbind
transition.

In all critical phases, which is to say all the finite temper
ture phases described above, the effects of symmetry br
ing fields are particularly dramatic. At low temperatures, a
in the absence of such symmetry breaking fields, there is
true broken symmetry and no order parameter. In th
phases the system is actually in a critical region terminat
at a Kosterlitz-Thouless phase transition at a critical tempe
ture Tc . Naturally, this phase transition is rounded by
symmetry-breaking field. However, belowTc , even a small
symmetry-breaking fieldh produces a large response. Th
intuition is made precise in the sense that the exponend
.1 where

m;uhu1/d, ~7!

wherem is the value of the order parameter. For instance,
the nematic phase, we can definem5sxx2syy /sxx1syy ,
and h then is a dimensionless measure of the underly
anisotropy of the substrate. Near the critical temperatured
approaches the universal value 15, andd diverges asT→0.
As a function of temperature, this exponent can be compu
exactly in terms of the anomalous dimensionh of the XY
model ~or, with the same result, from a self-consistent ph
non approximation!

d5
4

h
215

2pk~T!

T
21, ~8!
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whereh approaches 1/4 asT→Tc . Here,k(T) is the long-
wavelength helicity modulus, which approaches a cons
as T→0, and the universal valuek(Tc)54Tc /p as T
→Tc . ~There is a factor of 4522 difference here than in the
usualXY model since the vortices in a nematic have half
usual topological charge.! As T→Tc ,d reaches the universa
value d515. The large values ofd imply that very small
microscopic anisotropies have an enormous orienting eff

IV. THE CONDUCTIVITY TENSOR

In this section, we discuss the expected behavior of
conductivity tensor in the various parts of the phase diag
in Fig. 1. It follows directly from the Kubo formula, so lon
as there are no singularities~such as are found in a supe
conductor! associated with thekW and v→0 limit, that sxy
5syx ~and, consequently, thatrxy5ryx). This statement is
true independent of whether or not the system is rotation
symmetric. In general, in a state with a fourfold rotation
symmetry ~which, of course, includes all isotropic liqui
states! sxx5syy . Conversely, in any state which is not fou
fold rotationally symmetric and has a finite Hall condu
tance, there is noa priori reason to expect this equality t
hold, and therefore there is every reason to expect it no
hold. Thus, in all the crystalline and liquid crystalline stat
discussed here, we expectsxxÞsyy , although for the two
crystalline states, since they are insulating, we expect
both diagonal components of the conductivity tensor will
small at low temperatures.

A. The smectic phase

At T50 and in the absence of impurities, the smec
phase is boost invariant in the stripe direction. As a con
quence, under conditions in which the electric field is p
pendicular to the stripe direction, it is possible to go to
co-moving frame in which the electric field vanishes.
therefore follows that the Hall conductance tracks the cha
in the filling fraction,sxy5ne2/h, and thatsyy50. On the
other hand, because there are a finite density of conduc
channels, and because of the irrelevance of all ba
scattering interactions in the smectic phase, the longitud
conductivity in the stripe direction,sxx , diverges in the limit
T→0. Impurities will, of course, alter these conclusions, b
for weak disorder and low but nonzero temperature, o
would still expectsxy;e2n/h andsxx@e2/h@syy .

From a microscopic viewpoint, if an external electric fie
perpendicularto the stripes is applied, every stripe with fil
ing fractionnM (nM11) has an induced Hall currentparallel
to the direction of the stripe and the Hall conductance of t
stripe issxy(M ) @sxy(M11)#. Notice that in this configu-
ration the current of the edge states separating each pa
nearby stripes is part of the Hall current. The Hall curre
changes continuously and no longitudinal current is indu
in this configuration. However, if the external electric field
applied parallel to the stripes, the induced Hall current
each stripe is nowperpendicularto the stripes.~Recall that
nearest neighboring stripes have different Hall conductan!
As the boundary between two stripes is approached the
rent switches from being perpendicular to the stripe to be
parallel to the stripe and it is carried by the correspond
nt

e

t.

e
m

ly
l

to

at

c
e-
-

e

ng
k-
al

t
e

t

of
t
d

.
r-
g
g

edge state. Thus, current is conserved but, in addition to
‘‘bulk’’ Hall current ~which is the same as in the other co
figuration! there is now a currentparallel to the external
electric field and it is carried entirely by the edge states.
least at the mean-field level,sxx;Ce2/h where C is the
number of edges that make it across the system~and so di-
verges with the size of the system! while syy50. This result
is correct for a clean system and it is robust against quan
fluctuations provided that they do not destabilize the sme
phase.

B. The nematic phase

Because the nematic phase is featureless, and so b
invariant, it follows that atT50, sxx5syy50 and sxy
5e2n/h. For T.0, since the nematic is a critical phase, t
zero-temperature result is likely to be strongly modified. O
general dimensional grounds, it is reasonable to expectsxx
;e2/h@syy , and thatsxx is greatest atn5M11/2, where
the Luttinger exponentK associated with the edge states
largest, and drops symmetrically~due to particle-hole sym-
metry! asn is varied from this value. There is no reason
expectsxy to be strongly temperature dependent.

V. EFFECTS OF QUENCHED DISORDER

Disorder likely eliminates most of the sharp distinctio
between phases, and hence, turns most of the phase tr
tions discussed above into crossovers. However, if the di
der is sufficiently weak, then the crossovers can be sha
defined, and important local distinctions between the vari
‘‘phases’’ should be experimentally detectable. Certain
neither broken translational nor rotational symmetry surv
disorder.

The effects of disorder on the conductivity tensor in t
T→0 limit are likely to be severe and nonperturbative; ev
weak disorder can cause localization. However, at nonv
ishing temperatures, we can expect that in the low-disor
limit, the conductivity tensor will resemble that of the ide
system. Interesting nonlinear effects, involving pinning
the various forms of CDW order, can be expected in
presence of disorder. In the stripe-crystal and Wigner cry
cases, these effects are well studied previously, but for
smectic they may have some novel features. Because
Luttinger exponentK,1, disorder is a relevant perturbatio
to the one-dimensional edge-state problem in the absenc
stripe shape fluctuations. Thus, disorder is likely to produ
dramatic decreases in the diagonal matrix elements of
conductivity tensor at sufficiently low temperatures in bo
electronic liquid crystalline phases. In general, the effects
weak disorder on electronic liquid crystals is an area
future study.

VI. RELATION TO EXPERIMENTS

The study undertaken in the present paper was origin
motivated by some very recent and remarkable experim
done by Lilly, Cooper, Eisenstein, Pfeiffer, and West9 in
which large, temperature-dependent anisotropies were
covered in the 2DEG under conditions in which two~or
more! Landau levels are full. The experiments were done
ultrahigh mobility GaAs/AlxGa12xAs heterojunctions. Tha
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the samples have very weak disorder is indicated, for
stance, by the observation of the quite fragile quantum H
plateau atn5 5

2 and by the large number of fractional qua
tum Hall states seen in the lowest Landau level. The sal
features of the experiments of Ref. 9 are as follows: Fo
partially filled third Landau level withn in the neighborhood
of n5 9

2 , there is a characteristic temperatureT0'150 mK
above which the resistivity tensor is nearly isotropic, a
below which there is a rapid crossover to a highly ani
tropic compressible state. The resistivity tensor in this s
exhibits a nonquantized Hall resistance and an anisotr
longitudinal response, such thatrxx grows very rapidly with
decreasing temperature until it reaches a value of o
1000V at the lowest temperatures,T'25 mK, while ryy ,
measured by rotating the current by 90°, becomes v
small. Since in the absence of disorder, on theoret
groundsrxy5ryx5(h/e2)n21, we expect that this relation
should hold approximately in this system. Inverting this te
sor we find, for the conductivity tensor at low temperatur
syy;e2/h,sxy5syx;ne2/h, and sxx small. The low tem-
perature value ofrxx as a function ofn exhibits a broad peak
centered atn59/2, with a width inn, which is substantial
and approximately temperature independent. Structure is
seen in the ‘‘wings’’ of the Landau level even at 150 m
Specifically, two very well-defined pairs of quantum Ha
plateaus are seen, one pair withsxy54e2/h for n near 4, and
another one withsxy55e2/h for n near 5. However, the
resistivity peak between the two plateaus~with the same
quantized Hall conductance! becomes smaller with decrea
ing temperature, in contrast with the usual critical peaks s
in transitions between plateaus.

The same structure is repeated forn in the vicinity of
11/2, 13/2, 15/2, and beyond, although it apparently beco
more difficult to resolve beyondn515/2. In particular, the
peak value ofrxx decreases with increasingn, roughly in
such a way thatsyy at n5(2M11)/2 remains in the vicinity
of e2/h. It is important to stress that, even at low tempe
tures, no substantial anisotropy is apparent at the lowest
peratures at smaller values ofn, in particular nearn57/2
and 5/2, nor at any magnetic field at temperatures in exc
of 100 mK.

The existence of this anisotropy observed in highly p
samples clearly indicates that this effect is driven
electron-electron interactions and that disorder plays a
ondary role. This is doubly remarkable since the natural
pectation was that precisely in the middle of the plateau th
should be a phase transition from an54 to an55 quantum
Hall liquid. However at the transition between platea
which is a quantum phase transition driven by disorder,
though one expects a peak inrxx , the peak should narrow a
T→0 following a universal scaling law. The results of the
experiments suggest that, although the system is indeed c
pressible, there is no narrowing of the peak asT→0. Thus,
the system is critical for a range of filling factors. Furthe
more the transition between plateaus should be essen
isotropic.

The picture presented in this paper gives a natu
interpretation20 of these effects. It is natural to identify th
experimentally observed anisotropic state with the finite te
perature nematic state discussed above, which is a cri
state, and the crossover observed atT'100 mK with the
-
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disclination unbinding transition, perhaps somewhat roun
due to quenched disorder. A small anisotropy in the hete
junction device is the symmetry-breaking field that picks
preferred orientation for the nematic, and insures that ther
actual long-ranged orientational order, as described in
~7!. The two quantized Hall states observed in the wings
naturally identified with the stripe-crystal and quasipartic
Wigner crystal phases21 that appear asn→M in the phase
diagrams in Figs. 1 and 3. It would be interesting to test t
hypothesis by looking for evidence of a finite temperatu
melting transition, or characteristic nonlinearI -V’s in these
ranges ofB.

This still does not address the question of whether
ground-state phase nearn59/2 is a smectic or nematic
However, since the longitudinal resistivityrxx;1000V cor-
responds to a longitudinal conductivitysyy;e2/h, it seems
likely that the ground state is either a quantum nematic ph
or that the stripe order of the underlying smectic is stron
disrupted due to pinning by impurities. If disorder does n
play a dominant role, the characteristic temperature dep
dence of the nematic order implied by Eq.~8! will govern the
resistivity ratio,rxx /ryy .

It is also worth noting that in the experiments of Wille
et al.22 in which an external modulation was imposed on
2DEG in the compressible state atn5 1

2 , similar phenomena
were observed as in the experiments of Lillyet al. On the
one hand, this gives us greater confidence in concluding
the observed anisotropies are a consequence of stripe fo
tion. On the other hand, it supports the intuitive notion23 that
the isotropic compressible state atn51/2 still has substantia
local stripe correlations, which are simply disordered
quantum fluctuations at long distances—this would ration
ize the large susceptibility of this state to the formation
stripes. Similarly, it may be that anomalously broad regio
of compressible smectic or nematic phases may be stabil
by an externally potential at the ‘‘edge’’ of a quantum Ha
device, producing a form of macroscopic ed
reconstruction.24

FIG. 3. Schematic finite temperature phase diagram as a f
tion of inverse filling factor along linec of Fig. 1.
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