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Quantum Monte Carlo calculation of Compton profiles of solid lithium
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Recent high-resolution Compton scattering experiments in lithium have shown significant discrepancies with
conventional band theoretical results. We present a pseudopotential quantum Monte Carlo study of electron-
electron and electron-ion correlation effects on the momentum distribution of lithium. We compute the corre-
lation correction to the valence Compton profiles obtained within Kohn-Sham density functional theory in the
local density approximation and determine that electronic correlation does not account for the discrepancy with
the experimental results. Our calculations lead to different conclusions than @d8&sitdies and indicate that
other effectgthermal disorder, core-valence separation,) etwst be invoked to explain the discrepancy with
experiments[S0163-18209)08011-X]

. INTRODUCTION The Compton profile ap is the integral of the momentum
. L _distribution on a plane perpendicular to the unit vectat a
Inelastic x-ray scattering is called Compton scattering,. ~ . o
stancep from the origin. The momentum distribution is

when the energy and the momentum transferred are lar din t £ th funct f the electroni
compared to the characteristic energy and reciprocal inter=(Pressed in terms of the wave function of the electronic

electronic distance of the scattering system. Compton scapyStem as

tering probes the electronic structure of materials through the N

electronic momentum distribution and, if the scattering sys- n(p)= _J' dry---dry f dr'e P’
tem is metallic, gives direct information on various charac- \Y

teristics of the Fermi surface, such as position and size of the * ,
Fermi breaks and their renormaliza‘?ion due to electron- XUy MWt ), ()
electron correlation. Fermi momenta are of the order of 1 a.uyhereN is the number of electrons andthe volume of the

so that high resolution in momentum is necessary in order t@ystem.

resolve features related to the Fermi surface. In the last few Since Compton experiments can 0n|y access the momen-

years, the advent of high-intensity, high-energy, and welltym distribution in an indirect way and there are difficulties
polarized synchrotron sources has made it possible to obtajR handling background or subtracting the core contribution
resolutions of the order of 0.1 a.u. and high statistics. Recorgthe impulse approximation may not hold for the core
resolutions of the order of 0.02 a.u. have been recentlglectrond®), it is important to establish the performance of
achieved for solid berylliuthand lithium? the technique for a system for which high-resolution experi-
In the range of energy and momentum transferred whergnental data are available and correlated calculations can be
the recoil electron can be considered free, i.e., within theyerformed. Being a loviz material, lithium has been the sub-
impulse apprOXimatiOﬁ,the experimental double-differential ject of Compton studies since the ear|y days of X-ray Comp_
Compton cross section is related to the momentum distribugn scattering. Recent high-resolution experiments have
tion n(p) of the electronic system &g atomic unitsh=e  peen conducted on lithium and Fermi-surface signatures

=m=1) have been investigated either by analyzing first and second
derivatives of the Compton profilesr attempting a recon-
d2o do d struction of the momentum distributidn.
d0do.= d_Q) J 3 n(p)8(g%/2+p-q—w), (1) Despite overall shape similarities, there is a clear discrep-
2 ™’ (27) ancy between the measured Compton profiles of lithium and

the theoretical profiles computed within Kohn-Sham density
wherew andq are the energy and momentum transfereedl,  ¢nctional theory in the local density approximatirDA)

is the energy of the scattered photon, adddQ)r, is the gy en when the Lam-Platzman correlation correcfiams in-
Thomson differential cross section. The outcome of a COMPgyded. These discrepancies were attributed to inadequate
ton scattering experiment is therefore given by what is calleqreatment of correlation in the Kohn-Sham single-particle
a Compton profile in a given directian and defined as picturé and it was proposed that plasmar@bound hole-
plasmon statelosses could explain the observed differefice.
J(B):J' dpn(p)8(p-G—TF) @ Two recent theoretical studies have tried to explain this dis-
' crepancy but reached opposite conclusions. Kubo calculated
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the Compton profiles using the occupation numbers obtainedarried out to account properly for core-valence orthogonal-
from a GW calculation and recovered good agreement withity. In Appendix A, we describe how to evaluate the Kohn-
experimental result® Dungdale and Jarlborg simulated the Sham momentum distribution and construct the Compton
effect of thermal disorder on the Kohn-Sham Compton prorofiles using the linear tetrahedron method.

files, found that disorder leads to a delocalization of the mo- In the pseudopotential calculations, we use the Troullier-
mentum distribution and concluded that this effect, com-Martins pseudopotentials whos@ndp components are gen-
bined with the Lam-Platzman correlation corrections,erated with a cutoff radius of 2.4 a.(Ref. 13. The plane-
accounts for the discrepancy with the experimental Comptomwave cutoff is set to 16 Ry and 44 spediapoints* in the
profiles! irreducible wedge of the zone are used for zone sampling

In order to determine the correction to the LDA Comptonduring iteration to self-consistency. The Compton profiles
profiles due to electron-electron correlation, we perform aare generated from 16 206 points in the irreducible zone
fully correlated calculation of the momentum distribution of unfolded in a sphere of 2 a.u. radidthe mesh spacing is
solid lithium within pseudopotential quantum Monte Carlo 0.0136 a.y. The profiles are converged with respect to mesh
(QMC). The QMC Compton profiles differ from the room- spacing and sphere radius but appear to be very sensitive to
temperature experimental data by Saketaal” and indicate  the value of the Fermi energy that must be carefully deter-
that Lam-Platzman corrections give a satisfactory descriptiomined as described in Appendix A.
of electronic correlation in this system even though they are The valence Compton profiles from a plane-wave full-
isotropic and cannot reproduce the observed directional desore calculation are obtained with a plane-wave cutoff of 400
pendence of the QMC corrections to the LDA Compton pro-Ry and 331X points in the irreducible zone, unfolded into a
files. Therefore, the QMC results for bec lithium differ from sphere of 4 a.u. radiushe mesh spacing is 0.0238 a.urhe
the GW calculation¥ and suggest that the discrepancy be-Compton profiles are in good agreement with the profiles
tween conventional band theory and experiments originatesomputed with the linearized augmented plane-wave
from other sources: temperature effétisr problems in the method® In Appendix B, we discuss convergence issues for
interpretation of the experimental d&taare possible expla- valence properties computed from a full-core calculation in a
nations. plane-wave basis.

Recently, QMC calculations of Compton profiles have The LDA Compton profiles are normalized to the number
also been performed for a rather different system, sili¢on. of valence electrons per unit cell, in this case one electron
Due to the absence of a Fermi surface, the momentum diger unit cell. The error in the normalization of the original
tribution of silicon is a smooth function and finite-size errorsLDA Compton profiles is very small. For instance, in the
in QMC are easier to correct than in a metal. These studiefgl11] direction, the error is about 0.1% for the pseudopoten-
concluded that, also in silicon, correlation effects are welltial and 0.8% for the full-core calculation.
described by the Lam-Platzman corrections and do not fully
account for the discrepancy between the theoretical Kohn-

Sham LDA profiles and the experimental results. 1. QUANTUM MONTE CARLO CALCULATIONS
In Sec. Il, the characteristics of our density functional

theory calculations are outli.ned'. In Sec;. I, the functional,q treat lithium as a pseudo-ion of charge one plus one va-
form of the QMC wave function is described. In Sec. IV, We |o 06 electron. We test the use of both a local and a nonlocal
compare the Kohn-Sham Compton profiles obtained fronqe  qonotentidf To simulate an infinite solid, we model
pgeudopotenual and fuII-cor_e LDA calculations. We theny, o system as a collection of ions and electrons in a simula-
discuss the role of electron-ion and electron-electron corregq, |l periodically repeated. An effective computation of
lation on the momentum distribution in QMC. We finally e Ewald sums over the images of the potential is obtained

prehsenththe QMC CO”'EI?FI'O” codrrectlons tohthe V?‘Iﬁnﬁeby optimizing the separation between the long- and short-
Kohn-Sham Compton profiles and compare them with thg,ge components of the electron-electron, electron-ion, and

experimental results. In Appendix A, the linear tetrahedrong jon interactiond” We will consider cubic simulations
method to obtain the Kohn-Sham Compton profiles is briefly.q containing 54, 250, and 686 lithium atoms.
outlined. In Appendix B, convergence of valence properties e \ave function used in these calculations is a deter-

of lithium from full-core plane-wave calculations is dis- inant of single-particle orbitals multiplied by a Jastrow fac-

cussed. Variance minimization, variational Monte Carloy, jescribing electron-electron and electron-ion correlations:
(VMC) and diffusion Monte Carlo(DMC) methods are

briefly presented in Appendix C.

In the quantum Monte Carlo simulations of bcc lithium,

N

N
\If:DTXDlexy:{—z u(rip+ 2, x(r|. 4
II. LDA CALCULATIONS 1= =1

We study bcc lithium at the experimental lattice constanty 1 onqp!
of 6.60 a.u. We carry out pseudopotential and full-core Calbitals for t
culations within LDA density functional theory in a plane-
wave basis. The pseudopotential calculations provide the We consider two forms of single-particle orbital$) We
single-particle orbitals that enter in the QMC wave functiontest the very simple choice
and the reference momentum distribution for the correlation
corrections determined within QMC. The full-core calcula- ‘
tions of the valence contribution to the Compton profiles are do(r)=e' X', 5)

are the Slater determinants of single-particle or-
he up and down electrons, respectivelyorre-
lates pairs of electrons angdis a single-body term.
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(2) We compute the single-particle orbitals from a LDA den-cell, so we can obtain a higher resolution in momentum
sity functional theory calculation within a plane-wave basis:space by performing calculations with different boundary
conditions'?
_ E i(k+G)-r 6 We only considek samplings that yield a grid & points
broalr) & Ck+c® ' ®  with inversion symmetry so that we can construct a real
wave function by occupying linear combinations of pairs of
where G are the reciprocal lattice vector of the underlying orbitals:
bcc lattice. We discuss the occupation of the orbitals below.
The electron-electron term in the Jastrow factor is peri- .1 1
odic over the cell and contains no free parameters. It is de- 2 :§(¢k+ -, b :E(‘f’k_ b-)- (10
rived within the random-phase approximati@®PA) and has
been extensively used for the homogeneous electrotf gasBy restricting ourselves to real wave functions, we can per-
and solid hydrogen calculation$It describes both the exact form both VMC and DMC calculations and avoid the com-
short range(cusp condition and large distancgplasmon  plications of dealing with complex wave functions in
behavior. We only impose the antiparallel cusp conditions, DMC.? For a cubic simulation cell, there are only four vec-
torsk that preserve inversion symmetry correspondingj to
ult(rip=u(riy)=ut(r))=urpa(rij). (7) X, M, andR sampling of the cubic simulation cell. THe
point calculation yields a cubic grid d&fvectors centered on
the origin with spacing 2/L and the additional calculations
rovide three grids shifted by ¢2L)/2 in the[100], [110],
nd[111] directions, respectively.
To construct the determinantal part of the wave function,
we compute the orbitals on the grid kifvectors compatible
x(1=> xs > ®ge'®. (8)  with the boundary conditions and occupy the orbitalsor
s Ges dpa Within the first Brillouin zone with the lowest free-
electron (@g) or LDA (¢ pa) energy. In general, the highest
occupied level is degenerate and only partially occupied, so
e should employ a linear combination of determinants in
order to construct a wave function with the proper symmetry.
We instead always use a single determinant and symmetrize
the momentum distribution on the grid of allowed wave vec-
tors by averaging it over symmetry relatkdsectors on the
grid. This procedure is done separately for the fkyooint
samplings. Finally, by combining the results of the four cal-
culations and applying the symmetry rotations of the cubic
We require that the wave function satisfies boundary congroup, we obtain a momentum distribution defined on a

The single-body term in the Jastrow factor has the periodic
ity of the underlying lattice, is expanded in Fourier compo-
nents and rewritten as the sum over stars of reciprocal Iatticg
vectors

Since the point group of bcc lithium is symmorphic, the
phasesb s can be set to unity. We include up to twelve stars
but convergence is obtained already with an expansion ov
seven stars. The coefficients of the stars, are optimized
using the variance minimization meth&t#!

A brief description of variance minimization, VMC and
DMC methods is given in Appendix C.

A. k-point sampling

ditions that can be either periodic or arbitrary: mesh with spacing (2/L)/2.
We consider cubic cells with 54, 250, and 686 atoms. For
W(ry, ... ritRg, ... rN) the 54-atom cell, we only carry out B-point calculation.

The wave function is constructed from the orbitals corre-
sponding to the lowest four complete shellkafectors, so it

where one electron has been displaced by a translational vefS. €@, has the full symmetry of the lattice and is a spin
tor of the simulation celRg. The Jastrow component is pe- singlet. For t_he_25(_)— and 686-atom cell, we compute the
riodic over the cell and does not affect the phase of the waygromentum distribution for.four wave fur_lct|ons corres.po_nd-
function. The determinant satisfies the above equation if thihg o', X, M, andRsampImg of the cubic cell. The grid in
single-particle orbitalsh obey similar equationss(r +Ry) momentum space has spacing 0.095 and 0.068 a.u. for the
—expli ke- R &(r), that is if the orbitals correspond to a 2°0- and the 686-atom cell, respectively.

singlek-point sampling of the simulation cell given lxy. If

we impose periodic boundary conditions on our cubic cell of B. Momentum distribution and Compton profiles

side L, the orbitals are Bloch states with wave vectors de- The momentum distribution of the correlated wave func-
fined on a cubic grid centered on the origin with spacingtion is computed as the expectation value over the distribu-
2x/L. For arbitrary boundary conditions, the grid of wave tion given either by? (VMC) or by the product of the trial

vectors is shifted b¥s. wave function and the fixed-node soluti®MC):
The idea ofk-point sampling in QMC was introduced to

achieve faster convergence in the total energy versus system 1 T A (ST Titr' oo
size, possibly faster than in a periodic calculatidfor bcc n(p)=2 Vi f dr’e'? V(ry,.

:el kS'RS\I’(rl, ...,riu --'!rN)' (9)

cof
lithium, since the valence band is aband, a calculation not ' v (11)

at thel" point yields a higher energy and corresponds to an

excited state of our finite simulation cell. On the other handAt a given Monte Carlo step, we uniformly samplé ran-
the allowed momenta coincide with the wave vectors comdom positionsr’ within the simulation cell and, for each
patible with the condition of periodicity on the simulation position and particle, compute in turn the above ratizhe
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value of M depends on the size of the system and is deter- 2?2 ; T
. T .. . g LDA momentum distribution
mined to optimize the efficiency in sampling the momentum 20 |
distribution. The allowed values of momentum coincide with ;| Iiveg I
the sets of vectors compatible with the condition of period- el i N [] }8% '000'_| ]
icity imposed on the simulation cdlEq. (9)] _ ' \ 1111 oy o<1
To obtain the Compton profiles, we have to integrate the ' p o 111] non—local ]
momentum distribution over planes perpendicular to a givenau 3 i
direction. It is possible to compute the Compton profiles di- &, | |
rectly within QMC. For instance, to evaluate the profile in s | {
the [100] direction, we could estimate the following expec- ’ |
tation value: 08 1 {
0.4 | l'"\
- (2)? ~ W(ry, X ) AN
3= S| [ gt AN RS
i V \I,(rl, P ,I‘N) 0.0 . . | l/ ~ e T
(12 0.0 0.2 0.4 0.6 08 1.0 12

This procedure is equivalent to evaluating the integral of the S
momentum distribution as the histogram over the momenta FIG. 1. LDA momentum distribution in th¢110] and [111]
compatible with the boundary conditions: directions using a local and a nonlocal pseudopotential.

~ ) nounced when using a nonlocal pseudopotential, yielding a
I(po=(2m/L)* 2 n(p), (13 pigger reduction below the Fermi break and a more signifi-
P:Px=Px cant contribution from the secondary Fermi surfaces
and is clearly a poor representation of the integral of a func{unklapp processgsFor both the local and nonlocal pseudo-
tion with several discontinuities, especially if the grid lof potentials, the momentum distribution is strongly anisotropic
vectors is coarse. The Compton profiles computed in thi&@nd goes to zero after the first Fermi break since the Fermi
way show indeed a strong dependence on the size of theurface of lithium is completely contained within the first
simulation cell. Brillouin zone.

To obtain Compton profiles with reduced finite size er- We find that the momentum distribution obtained with the
rors, we want to integrate a smoother function than the QM@ionlocal pseudopotential is in better qualitative agreement
momentum distributiomguc(p). We have to select a refer- with our full-core calculations. Therefore, for a more realistic
ence distribution nyopg (p) Whose Compton profiles description of bee lithium, we have to use a nonlocal pseudo-
JmooeL(P) can be computed with high accuracy and suchpotential even though this is computationally more demand-
that the difference An(p)=nouc(P) —Nmoper(p) is a  ing in QMC an?ﬁintroduces the additional locality approxi-
smoother function than the originabyc(p). The Compton ~ mation in DMC:

profiles are then obtained as The agreement of the valence momentum distributions
from a nonlocal pseudopotential and a full-core calculation is
Jomc(P) =JvopeL(P) +AJI(P), (14  only qualitative because of the pseudopotential approxima-

tion (lack of correct orthogonalization between core and va-
lence. When computing the momentum distribution within a
seudopotential scheme, we are underestimating the momen-
um distribution at high momenta and, consequently, overes-
timating it at low momenta. This effect is also evident in the
ompton profiles.
In Fig. 2, the pseudopotential Compton profiles are com-
pared with the valence profiles obtained with the full-core

where the correctionaJ(p) are computed by integrating
An(p) on the grid defined by the fouk-point samplings
using the linear tetrahedron method. The only difference i
computingA J(p) from the method described in Appendix A
is that there is no Kohn-Sham energy defined on the grid an
no Fermi energy but all grid points are considered for inte-
gration. In Sec. IV, we will show our choice for the reference

momentum distribution. potential in the[100], [110], and[111] directions. As men-
tioned in Sec. I, we normalize the LDA Compton profiles to
IV. RESULTS AND DISCUSSION the number of valence electrons per unit cell, in this case one

electron per unit cell. As expected, the Compton profiles
constructed from valence orbitals correctly orthogonalized to
the core orbitals show a higher tail at high momenta than the

core calculations. We then compute the momentum distribuPSeudopotential profiles and, since they must integrate to the

tion within pseudopotential QMC and determine the correla>@Me value, a significantly Iovyer value at low momenta. The
tion contribution to the directional Compton profiles. Cor_npton profile of a free-partlcle sys_tem at the same density
of lithium (r¢=3.25 a.u.) is an up-side down parabola ter-

minating atpr=0.5905 a.u. Due to electron-ion correlation,
the Kohn-Sham profiles develop a tail beyopd but the

In Fig. 1, we show the LDA momentum distribution along sharp features of the presence of a Fermi surface are clearly
the[110] and[111] directions for a locals componentand visible in any direction at about 0.6 a.u. The location of the
a nonlocal(s andp componentspseudopotential. The effect Fermi break varies however for the different directions as a
of the lattice on the momentum distribution is more pro-result of the already observed anisotrofgge Fig. 1 The

We present calculations of the momentum distribution
and Compton profiles within LDA Kohn-Sham density
functional theory. We perform both pseudopotential and full-

A. Kohn-Sham LDA Compton profiles
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FIG. 2. Valence Compton profiles of Li in tH&00], [110], and

[111] directions. The LDA Compton profiles constructed using the 2.0 0.6
Troullier-Martins pseudopotential are compared with the LDA pro-
files obtained with the full-core- 3/r potential. 18 L 1 04
effect of secondary Fermi surfac@snklapp processg¢sap- %

4 02

pears both in the pseudopotential and full-core potential va- 16 |
lence profiles. The effect is more pronounced in h#&0]
direction at about 0.8 a.u. and all profiles show an additional ,, |
bump in the far tailabove 1.6 a.\.

Within pseudopotential quantum Monte Carlo, we will

Dy, 22
0.0

compute a correction to the Compton profiles due to elec- 2 | 1092
tronic correlations. This correction will be summed to the I $o
valence Compton profile from a full-core calculation to ac- 1.0 . i —S POV 0.0
count properly for core-valence orthogonality. 0.0 0.2 0.4 0.6 0.8 1.0 1.2

(b) p (au)

B. Quantum Monte Carlo Compton profiles FIG. 3. VMC and DMC spherical momentum distribution for

In order to calculate the correlation corrections to thebcc lithium with a local (upper ploj and nonlocal(lower plob
Kohn-Sham Compton profiles of Fig. 2, we first determinepseudopotential and a simulation cell of 54 atoms with periodic
the potential and wave function needed to correctly describboundary conditions. Either simple plane-wawvi,) or LDA orbit-
the momentum distribution of solid lithium within QMC. We als (¢.pa) are employed in the determinantal part of the wave
start modeling bcc lithium with the simplest potential and function. The VMC momentum distribution for the electron gas is
wave function and improve upon that with a more sophisti-also shown. The statistical errors are smaller than the size of the
cated wave function and Hamiltonian. symbols. The vertical dashed line indicates the positiopgof

The tests are conducted on a small simulation cell of 54
electrons and 54 lithium ions on a bcc lattice and with peri- In Fig. 3, we show the spherical average of the momen-
odic boundary conditions. We carry out QMC calculationstum distribution in the case of local and nonlocal pseudopo-
using the Troullier-Martins pseudopotential and test the usg¢entials. The VMC and DMC spherical momentum distribu-
of a local (s component and a nonlocals and p compo- tion for bcc lithium are compared with the VMC momentum
nentg pseudopotential as we have done within LDA densitydistribution of the homogeneous electron gas at the same
functional theory. For either potential, we employ both thedensity {s=3.25 a.u.). The wave function for the electron
free-electron orbitalg, [Eq. (5)] and LDA orbitals[Eq.(6)]  gas is given by the product of a determinant of simple plane
determined with a plane-wave cutoff of 16 Ry. The Jastrowwaves,¢,, and a Jastrow factor only containing the electron-
factor is separately optimized in each case using 2000 corelectron term described in Sec. lll. The momentum distribu-
figurations within variance minimization. The VMC and tion of the electron gas shows a discontinuitypgt It is
DMC energies obtained with the nonlocal pseudopotentiateduced belowpr and develops a tail at high momenta with
and the LDA orbitals are given b yc=—0.2524(1) Har- respect to the noninteracting step function. The persistence
tree andEpyc=—0.2591(1) Hartree. of a Fermi break and its location are consistent with the
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Fermi-liquid behavior of the system. In the presence of an 2.0 ; - - 2.0
electron-ion pseudopotential, we have a further reduction of 1.8 r
the size of the Fermi break due to electron-ion correlation. In 16 r
all cases, the VMC and DMC momentum distribution are 14 1
almost indistinguishable indicating that for this system the 1.2

variational wave function is quite close to the fixed-node 207

solution in describing this property. 18 r
For both local and nonlocal pseudopotentials, we test the 1.6 |
use of free-electron orbitalgh,, versus LDA orbitals. The T4

use of orbitals given by a single plane wave is justified if the 12 |
dependence of the periodic component of the Bloch states is%‘ 2.0 7
not strongly varying withk. This dependence can then be 18
simply included in the Jastrow part as an electron-ion tgrm, 1.6
[Eq.(4)]. As shown in Fig. 3, this argument holds in the case  '* |
of a local potential: the momentum distribution is not signifi- -2

cantly different when using the orbitals, or the LDA or- 1.0

bitals. On the other hand, free-electron orbitals in the deter- %2 [

minant plus an electron-ion term in the Jastrow component °° [

give a poor description of electron-ion correlation when us-  %* [

ing a nonlocal pseudopotential. LDA orbitals yield a larger %2 [

reduction below the Fermi wave vector and the appearance O'OOO 02 04 06 08 10 12 14
of additional structure in the tail of the momentum distribu- ’ ' ’ b (au) ) '

tion as contribution from secondary Fermi surfaces. This ef-

fect is smeared out because of spherical averaging and is FIG. 4. VMC and DMC momentum distribution of bcc lithium

more evident when plotting the momentum distributionin the [100], [110], and[111] directions. The statistical error is

along different directions. smaller than the size of the symbols. The momentum distribution is
Having identified the necessary features to describe bcgomputed for a 250-atom cell and four differdapoint samplings.

determinantal part of the wave functipnve perform QMC ~ Shown for comparison.

calculations for larger systems and different boundary con- o . ) .

ditions to obtain higher resolution in momentum space. Weum distribution being slightly higher at low momenta and

consider two systems with 250 and 686 atoms and comput@Wer at high momenta than the VMC one. In the QMC
the VMC momentum distribution for four wave functions distribution, we observe a reduction of the LDA momentum

corresponding td”, X, M, andR sampling of the cubic cell. distribution below the Fermi wave vector, the persistence of

For the system with 250 atoms, we also determine the mothe discontinuity and an enhancement at high momenta due
mentum distribution within DMC. The parameters used int© electron-electron correlation. The momentum distribution
the electron-ion Jastrow component of the four wave func{Or lithium both in LDA and in QMC is strongly anisotropic.

tions for both system sizes are the ones optimized for the AS €xplained in Sec. Ill, we want to define a reference
54-atom simulation cell. momentum distribution such that its difference with the

As already explained, eack-point sampling defines a QMC distribution is a smoother function to integrate and
grid of allowed wave vectors and the QMC wave function is COmpton profiles with reduced finite size errors can be ob-
constructed from the orbitals with the lowest LDA energy. {@in€d. In Fig. 5, we show the difference of the QMC and

. . ) . LDA momentum distributions along thHe 10] direction for
This procedure yields a different LDA Fermi energ}éf and the 250-atom cell. This difference has smaller discontinuity

set of occupation numbef%s for eachk-point sampling. The  than the original VMC or DMC data and its integral is less
occupationf';S is equal to two below_:';S and in general frac- sensitive to finite-size errors. However, a yet better choice is
tional at the Fermi level. In the following, when comparing to compute the following difference

the LDA and QMC momentum distribution on the grid, we

are referring to A n%(p)=ngmc(P) — @ N pa(p), (16)

_ 2 kg ks where the parameter is chosen to reduce the size of the
Nioa(P) =1 Cp[* Fp*0(e(p) — €6, (15 discontinuity in the functiom n®. To determiner, we mini-
wherec, is the Fourier component of an LDA orbital and the mize the cost function

momentump is on the grid corresponding tios sampling.

This ensures that both the LDA and the QMC momentum 2 > N N ) )
distribution satisfy the sum rulE;n(p;)=N for eachk-point e [An%(p)—An“(p+dp)]°Nouc(P)®,  (17)
sampling.

In Fig. 4, we plot the VMC and DMC momentum distri- wheredp; is one grid spacing in thg, y, andz directions.
butions in thg100], [110], and[111] directions for the 250- For both the 250- and the 686-atom simulation cell, we
atom cell. The LDA distribution evaluated on the sake find the optimal value ox=0.8. In Fig. 5,A n*(p) is plot-
vectors is also shown for comparison. The VMC and DMCted in the[110] direction for the 250-atom system.n“(p)
results are quite close to each other with the DMC momenis a more regular function to integrate with no significant
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FIG. 5. Differencenyyc—n pa andnyyc— a N pa of the VMC
and LDA momentum distribution. The momentum distribution is
computed for a 250-atom cell and four differéapoint samplings.
The parameter is equal to 0.8.

discontinuity and a similar behavior is observed in he0]|
and[111] directions. We show below that this procedure of
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FIG. 7. Difference of the QMC and LDA valence Compton

defining a reference momentum distribution is successfuprofiles for lithium in the[100], [110], and[111] directions. We

since it yields Compton profiles that lie on the same curv
for the various system sizésee Figs. 6 and)7

To obtain the Compton profiles, we computel“(p) by
integratingA n“(p) with the linear tetrahedron method. The

momentum space is divided in cubes, the cubes in tetrahedrahe

and a contribution to the integral from each tetrahedron i
computed as in Appendix AA J*(p) represents the correla-
tion contribution to the Compton profile that is finally ob-
tained as

1.3 , , , , , . . . : 1.3
12 = QMC valence Compton profiles | 1,
1.1 -\\'\ 4 11

£ NN
12 I ——— Experiment ] ;:Z
————— Full-core LDA
1.1 S VMC (N=250) {1 038
1.3 7 —— VMC (N=686) q 07
1.2 p 0.6
1.1 0.5

31.0 - 41 0.4

= 0.9 { 03
0.8 4 0.2
07 | 0.1
0.6 | 0.0
0.5 T 0.2
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03+ 0 X TTTTEE=—a 0.0
02 | F 0.2
0.1 0.1
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00 02 04 06 08 1.0 1.2 14 16 18 20
p (au.)

FIG. 6. Valence Compton profiles for lithium in tHe.00],
[110], and[111] directions. The VMC results for the cell with 250
and 686 atoms and fouepoint sampling are compared with the
LDA valence profiles from a full-core calculation and the experi-
mental result§Ref. 7).

eshow the VMC and DMC results for the cell with 250 atoms and

the VMC results for the cell with 686 atom.

Jomc(P)=a Jipa(p)+A J%p), (18)

reJ pa(p) is the LDA Compton profile. To take into
account core-valence orthogonality properly, we add the cor-
relation contributionA J%(p) to the LDA valence Compton
profile obtained from a full-core calculatio(see Fig. 2

A J*(p) is computed using a pseudopotential but, since it is
the difference of results from two pseudopotential calcula-
tions (LDA and QMOQO), there is some degree of cancellation
in the pseudopotential error. Even though we do not impose
that A J*(p) is normalized to (+ «), as it would be for
perfect sampling in momentum space, we find that the devia-
tion in the normalization ofJguc(p) from unity is very
small. For instance, in thgl11] direction, the error in nor-
malization is only 0.08% and 0.16% for the 250- and 686-
atom cell, respectively.

In Fig. 6, the VMC Compton profiles in thHe,00], [110],
and[111] directions for the 250- and 686-atom cell are com-
pared with the LDA valence profiles from the full-core cal-
culation and the room-temperature experimental results by
Sakuraiet al.” The agreement between the simulations with
250 and 686 electrons implies that the differences between
the QMC profiles and either the LDA or the experimental
curves are beyond finite-size errors. Due to electron-electron
interaction, the QMC profiles are lower at low momenta and
higher at intermediate and high momenta than the LDA pro-
files. The experimental data, on the other hand, show oppo-
site trends. They are lower than the QMC profiles below the
Fermi wave vector and significantly higher in the intermedi-
ate and far tail. We do not convolute our results with the
experimental resolution since the momentum resolution for
the 250-atom simulation is only marginally better than the
experimental resolution of 0.12 a.u. The continuum line for
the QMC profiles is a result of the linear tetrahedron con-
struction onAn“(p).
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In Fig. 7, we show the difference of the QMC and LDA wave functions and eigenvalues are evaluated on a very fine
valence Compton profileSguc—J pa, in the[100], [110], grid of k points within the irreducible wedge of the Brillouin
and[111] directions, so details in the correlation correctionszone. The Fourier coefficients of the orbitals with the corre-
can be better appreciated. We plot the VMC and DMC re-ssponding eigenvalues are unfolded from the irreducible zone
sults for the 250-atom cell and the VMC results for the 686-to full space and the momentum distribution is obtained by
atom cell. The agreement between the results of the simulasimply squaring the Fourier components. This procedure
tions with the two system sizes is quite good with theyields a square mesh with the momentum distribution and
exception of thd 100] direction at low momenta as a result single-particle energy defined at each point.
of finite-size errors for the 250-atom cell. As already ob- To obtain the Compton profiles in a given direction, we
served for the momentum distribution, the DMC results arentegrate the momentum distribution using the linear tetrahe-
only slightly higher at low momenta and lower at high mo- dron method as described by Lehmann and Fadhe ex-
menta than the VMC ones. The difference of the LDA andpression for the Compton profil&q. (2)] is rewritten as
QMC profiles is anisotropic. In thEl00] and[111] direc-

tions, the QMC profiles do not show the sharp features of the - . ~

LDA profiles at the Fermi break but are more rounded off J(p)zf dpn(p)s(q-p—p)O(e(p)—ep), (Al
and, consequently, their difference is peaked at the Fermi

break. wheren(p) ande(p) are the Kohn-Sham single-particle mo-

If we assume a constant valence density corresponding tientum distribution and energy angt the Fermi energy.
rs=3.25 a.u. and employ the QMC momentum distributionThe ¢ function is introduced to ensure that only states below
we computed for the electron gas, the resulting Lam+the Fermi energy are included. i{p) and e(p) have been
Platzman corrections are in qualitative agreement with th%omputed on a square grid in momentum space, the mesh
QMC correlation corrections of Fig. 7. Consequently, givennatuyrally divides space in cubes whose corners are defined
the large difference between the experimental results byy the grid points. Each cube is then divided in six tetrahedra
Sakuraiet al. and the QMC profiles, the Lam-Platzman cor- and each tetrahedron is considered in turn. Within each tet-
rections offer a satisfactory description of electronic Co”e|a‘rahedron,n(p) and e(p) are linearly interpolated. The step
tion in QMC even though they are isotropic and cannot refynction 6(e(p) — er) may restrict the integration to only part
solve the directional differences observed within QMC.  of the tetrahedron: the primary tetrahedron is divided in sec-

In disagreement with th&W calcul_atio_nsl,f’ the QMC  ondary ones delimited by the boundarie)=eg. For a
results indicate that electronic correlation in lithium only ac- iven value ofp, the surface of constant projectiod; p

counts for about 30% of the discrepancy between experimerg— ) . "
tal data and conventional band theoretical results. A similar~ P> 1S détermined within each of the secondary tetrahedra
conclusion has been obtained recently in a comparison cind the contribution td(p) is computed as the integral over
QMC and experimental Compton profiles for bulk silicén. this surface of the linear interpolation of the momentum dis-
Other effects such as temperatirer the interpretation of tribution.

experimental resultén particular, the validity of the impulse ~ Before computing the Compton profiles, the Fermi energy
approximatiofi® may explain the difference between ex- € must be estimated. For a given value of the Fermi energy,
periments and QMC calculations. Our calculations also showe apply the linear tetrahedron construction to determine the
that QMC cannot only offer a qualitative description of cor- volume delimited by the Fermi surface and iteratively
relation effects in Compton profiles but, if finite-size errors changeer so that

are properly taken care of, also resolve directional differ-

ences in the correlation corrections to the LDA results and 47

provide useful comparisons for new Compton scattering f dp 6(e(p) - EF)Z?DE, (A2)
experimentg.

wherepg is the Fermi momentum.
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APPENDIX A: LINEAR TETRAHEDRON METHOD
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TABLE |. Total energy of full-core bcc lithium versus the en-  APPENDIX C: QUANTUM MONTE CARLO METHODS
ergy cutoff employed in the plane-wave calculation. The energy of

. . . . . l .
full-core atomic lithium iSE 4= — 14.6682 Ry. All energies are The variance minimization meth8t* consists of the

minimization of the variance of the local energy over a set of

in Rydberg.
N. configurations{R;} sampled from the square of the best
Ecutoft Etotal €15 €5 wave function available before we start the optimization,
300 —14.6277 —2.7442 —0.3102 Yo
400 —14.6886 —-2.7619 —0.3086 HV(R)) 2 Ne
1500 —14.7985 —2.7948 —0.3058 ool V1= Z VR Egues% w(R) / X w(R).
1800 —14.8032 —2.7962 —0.3057 ' (C1)

EguessiS @ guess for the energy of the state we are interested
straightforward route and adopt a plane-wave basis also witt andw(R;) =|¥ (R;)/¥o(R;)|?>. We do not allow the ratio

the — 3/r potential of lithium. of the weights to the average weight to exceed a maximum
In Table I, we show the convergence in the total energwalue.
and the 5 and X eigenvalues at th& point for full-core We compute the expectation value of various operators

solid lithium as a function of plane-wave cutoff. For zone both in variational and diffusion Monte Carlo. In VMC, con-
sampling to self-consistency, we used 14 spdcjadints. To  figurations are sampled fron¥? using Metropolis Monte
obtain an accuracy of a few mRy on either the total energy o€arlo method and the expectation value of a given operator
the 1s eigenvalue, plane-wave cutoffs higher than 1800 RyO is obtained from
are required. On the other hand, the convergence in valence
properties such as thesZdevel is achieved at significantly 1N OV (Ry)
lower cutoffs. MCTN > W(R)
Bellaiche and Kun@ obtained convergence in the struc-
tural properties of solid LiH with a plane-wave cutoff of the The transition matrix consists of a drift-diffusion step with a
order of 200 Ry and the valence Compton profiles were irtime step optimized to minimize the autocorrelation time. In
good agreement with the ones reconstructed by simply oDMC, the imaginary time-evolution operator exgkir) is
thogonalizing the valence wave functions to a core atomiaised to project out the ground state from the trial wave func-
orbital. Similarly, we find that the valence orbitals of lithium tion  within the fixed-node and the short-time
are well converged at about 300 Ry and increasing the planepproximations? The time-step error coming from the
wave cutoff to 400 Ry has a negligible effect on the valenceshort-time approximation is negligible but the fixed-node er-
Compton profiles. ror limits the accuracy of the results we obtain.
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