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Quantum Monte Carlo calculation of Compton profiles of solid lithium
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Recent high-resolution Compton scattering experiments in lithium have shown significant discrepancies with
conventional band theoretical results. We present a pseudopotential quantum Monte Carlo study of electron-
electron and electron-ion correlation effects on the momentum distribution of lithium. We compute the corre-
lation correction to the valence Compton profiles obtained within Kohn-Sham density functional theory in the
local density approximation and determine that electronic correlation does not account for the discrepancy with
the experimental results. Our calculations lead to different conclusions than recentGWstudies and indicate that
other effects~thermal disorder, core-valence separation, etc.! must be invoked to explain the discrepancy with
experiments.@S0163-1829~99!08011-X#
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I. INTRODUCTION

Inelastic x-ray scattering is called Compton scatter
when the energy and the momentum transferred are l
compared to the characteristic energy and reciprocal in
electronic distance of the scattering system. Compton s
tering probes the electronic structure of materials through
electronic momentum distribution and, if the scattering s
tem is metallic, gives direct information on various chara
teristics of the Fermi surface, such as position and size of
Fermi breaks and their renormalization due to electr
electron correlation. Fermi momenta are of the order of 1
so that high resolution in momentum is necessary in orde
resolve features related to the Fermi surface. In the last
years, the advent of high-intensity, high-energy, and w
polarized synchrotron sources has made it possible to ob
resolutions of the order of 0.1 a.u. and high statistics. Rec
resolutions of the order of 0.02 a.u. have been rece
achieved for solid beryllium1 and lithium.2

In the range of energy and momentum transferred wh
the recoil electron can be considered free, i.e., within
impulse approximation,3 the experimental double-differentia
Compton cross section is related to the momentum distr
tion n(p) of the electronic system as~in atomic units\5e
5m51)

d2s

dV dv2
5S ds

dV D
Th
E d p

~2p!3
n~p!d~q2/21p•q2v!, ~1!

wherev andq are the energy and momentum transferred,v2
is the energy of the scattered photon, and (ds/dV)Th is the
Thomson differential cross section. The outcome of a Com
ton scattering experiment is therefore given by what is ca
a Compton profile in a given directionq and defined as

J~ p̃!5E dp n~p!d~p•q̂2 p̃!. ~2!
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The Compton profile atp̃ is the integral of the momentum
distribution on a plane perpendicular to the unit vectorq̂ at a
distancep̃ from the origin. The momentum distribution i
expressed in terms of the wave function of the electro
system as

n~p!5
N

VE dr1•••drN E dr 8ei p•r8

3C* ~r1 , . . . ,rN!C~r11r 8, . . . ,rN!, ~3!

whereN is the number of electrons andV the volume of the
system.

Since Compton experiments can only access the mom
tum distribution in an indirect way and there are difficulti
in handling background or subtracting the core contribut
~the impulse approximation may not hold for the co
electrons4,5!, it is important to establish the performance
the technique for a system for which high-resolution expe
mental data are available and correlated calculations ca
performed. Being a low-Z material, lithium has been the sub
ject of Compton studies since the early days of x-ray Com
ton scattering.6 Recent high-resolution experiments ha
been conducted on lithium and Fermi-surface signatu
have been investigated either by analyzing first and sec
derivatives of the Compton profiles7 or attempting a recon-
struction of the momentum distribution.8

Despite overall shape similarities, there is a clear discr
ancy between the measured Compton profiles of lithium
the theoretical profiles computed within Kohn-Sham dens
functional theory in the local density approximation~LDA !
even when the Lam-Platzman correlation corrections9 are in-
cluded. These discrepancies were attributed to inadeq
treatment of correlation in the Kohn-Sham single-parti
picture7 and it was proposed that plasmaron~a bound hole-
plasmon state! losses could explain the observed differenc8

Two recent theoretical studies have tried to explain this d
crepancy but reached opposite conclusions. Kubo calcul
7907 ©1999 The American Physical Society
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7908 PRB 59CLAUDIA FILIPPI AND DAVID M. CEPERLEY
the Compton profiles using the occupation numbers obta
from a GW calculation and recovered good agreement w
experimental results.10 Dungdale and Jarlborg simulated th
effect of thermal disorder on the Kohn-Sham Compton p
files, found that disorder leads to a delocalization of the m
mentum distribution and concluded that this effect, co
bined with the Lam-Platzman correlation correction
accounts for the discrepancy with the experimental Comp
profiles.11

In order to determine the correction to the LDA Compt
profiles due to electron-electron correlation, we perform
fully correlated calculation of the momentum distribution
solid lithium within pseudopotential quantum Monte Car
~QMC!. The QMC Compton profiles differ from the room
temperature experimental data by Sakuraiet al.7 and indicate
that Lam-Platzman corrections give a satisfactory descrip
of electronic correlation in this system even though they
isotropic and cannot reproduce the observed directional
pendence of the QMC corrections to the LDA Compton p
files. Therefore, the QMC results for bcc lithium differ fro
the GW calculations10 and suggest that the discrepancy b
tween conventional band theory and experiments origin
from other sources: temperature effects11 or problems in the
interpretation of the experimental data4,5 are possible expla
nations.

Recently, QMC calculations of Compton profiles ha
also been performed for a rather different system, silico12

Due to the absence of a Fermi surface, the momentum
tribution of silicon is a smooth function and finite-size erro
in QMC are easier to correct than in a metal. These stu
concluded that, also in silicon, correlation effects are w
described by the Lam-Platzman corrections and do not f
account for the discrepancy between the theoretical Ko
Sham LDA profiles and the experimental results.

In Sec. II, the characteristics of our density function
theory calculations are outlined. In Sec. III, the function
form of the QMC wave function is described. In Sec. IV, w
compare the Kohn-Sham Compton profiles obtained fr
pseudopotential and full-core LDA calculations. We th
discuss the role of electron-ion and electron-electron co
lation on the momentum distribution in QMC. We final
present the QMC correlation corrections to the valen
Kohn-Sham Compton profiles and compare them with
experimental results. In Appendix A, the linear tetrahed
method to obtain the Kohn-Sham Compton profiles is brie
outlined. In Appendix B, convergence of valence propert
of lithium from full-core plane-wave calculations is dis
cussed. Variance minimization, variational Monte Ca
~VMC! and diffusion Monte Carlo~DMC! methods are
briefly presented in Appendix C.

II. LDA CALCULATIONS

We study bcc lithium at the experimental lattice const
of 6.60 a.u. We carry out pseudopotential and full-core c
culations within LDA density functional theory in a plane
wave basis. The pseudopotential calculations provide
single-particle orbitals that enter in the QMC wave functi
and the reference momentum distribution for the correlat
corrections determined within QMC. The full-core calcul
tions of the valence contribution to the Compton profiles
d
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carried out to account properly for core-valence orthogon
ity. In Appendix A, we describe how to evaluate the Koh
Sham momentum distribution and construct the Comp
profiles using the linear tetrahedron method.

In the pseudopotential calculations, we use the Troulli
Martins pseudopotentials whoses andp components are gen
erated with a cutoff radius of 2.4 a.u.~Ref. 13!. The plane-
wave cutoff is set to 16 Ry and 44 specialk points14 in the
irreducible wedge of the zone are used for zone samp
during iteration to self-consistency. The Compton profi
are generated from 16 206k points in the irreducible zone
unfolded in a sphere of 2 a.u. radius~the mesh spacing is
0.0136 a.u.!. The profiles are converged with respect to me
spacing and sphere radius but appear to be very sensitiv
the value of the Fermi energy that must be carefully de
mined as described in Appendix A.

The valence Compton profiles from a plane-wave fu
core calculation are obtained with a plane-wave cutoff of 4
Ry and 3311k points in the irreducible zone, unfolded into
sphere of 4 a.u. radius~the mesh spacing is 0.0238 a.u.!. The
Compton profiles are in good agreement with the profi
computed with the linearized augmented plane-wa
method.15 In Appendix B, we discuss convergence issues
valence properties computed from a full-core calculation i
plane-wave basis.

The LDA Compton profiles are normalized to the numb
of valence electrons per unit cell, in this case one elect
per unit cell. The error in the normalization of the origin
LDA Compton profiles is very small. For instance, in th
@111# direction, the error is about 0.1% for the pseudopot
tial and 0.8% for the full-core calculation.

III. QUANTUM MONTE CARLO CALCULATIONS

In the quantum Monte Carlo simulations of bcc lithium
we treat lithium as a pseudo-ion of charge one plus one
lence electron. We test the use of both a local and a nonl
pseudopotential.16 To simulate an infinite solid, we mode
the system as a collection of ions and electrons in a sim
tion cell periodically repeated. An effective computation
the Ewald sums over the images of the potential is obtai
by optimizing the separation between the long- and sh
range components of the electron-electron, electron-ion,
ion-ion interactions.17 We will consider cubic simulations
cells containing 54, 250, and 686 lithium atoms.

The wave function used in these calculations is a de
minant of single-particle orbitals multiplied by a Jastrow fa
tor describing electron-electron and electron-ion correlatio

C5D↑3D↓ expF2(
i . j

N

u~r i j !1(
i 51

N

x~r i !G . ~4!

D↑ andD↓ are the Slater determinants of single-particle
bitals for the up and down electrons, respectively,u corre-
lates pairs of electrons andx is a single-body term.

We consider two forms of single-particle orbitals.~1! We
test the very simple choice

f0~r !5ei k•r. ~5!
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~2! We compute the single-particle orbitals from a LDA de
sity functional theory calculation within a plane-wave bas

fLDA~r !5(
G

ck1Gei ~k1G!•r, ~6!

whereG are the reciprocal lattice vector of the underlyin
bcc lattice. We discuss the occupation of the orbitals bel

The electron-electron term in the Jastrow factor is pe
odic over the cell and contains no free parameters. It is
rived within the random-phase approximation~RPA! and has
been extensively used for the homogeneous electron g18

and solid hydrogen calculations.19 It describes both the exac
short range~cusp condition! and large distance~plasmon!
behavior. We only impose the antiparallel cusp condition

u↑↓~r i j !5u↑↑~r i j !5u↓↓~r i j !5uRPA~r i j !. ~7!

The single-body term in the Jastrow factor has the perio
ity of the underlying lattice, is expanded in Fourier comp
nents and rewritten as the sum over stars of reciprocal la
vectors

x~r !5(
s

xs (
GPs

FGeiG•r. ~8!

Since the point group of bcc lithium is symmorphic, th
phasesFG can be set to unity. We include up to twelve sta
but convergence is obtained already with an expansion o
seven stars. The coefficients of the stars,xs , are optimized
using the variance minimization method.20,21

A brief description of variance minimization, VMC an
DMC methods is given in Appendix C.

A. k-point sampling

We require that the wave function satisfies boundary c
ditions that can be either periodic or arbitrary:

C~r1 , . . . ,r i1Rs , . . . ,rN!

5ei ks•RsC~r1 , . . . ,r i , . . . ,rN!, ~9!

where one electron has been displaced by a translational
tor of the simulation cellRs . The Jastrow component is pe
riodic over the cell and does not affect the phase of the w
function. The determinant satisfies the above equation if
single-particle orbitalsf obey similar equations,f(r1Rs)
5exp$i ks•Rs% f(r ), that is if the orbitals correspond to
singlek-point sampling of the simulation cell given byks . If
we impose periodic boundary conditions on our cubic cel
side L, the orbitals are Bloch states with wave vectors d
fined on a cubic grid centered on the origin with spac
2p/L. For arbitrary boundary conditions, the grid of wa
vectors is shifted byks .

The idea ofk-point sampling in QMC was introduced t
achieve faster convergence in the total energy versus sy
size, possibly faster than in a periodic calculation.22 For bcc
lithium, since the valence band is ans band, a calculation no
at theG point yields a higher energy and corresponds to
excited state of our finite simulation cell. On the other ha
the allowed momenta coincide with the wave vectors co
patible with the condition of periodicity on the simulatio
:
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cell, so we can obtain a higher resolution in momentu
space by performing calculations with different bounda
conditions.12

We only considerk samplings that yield a grid ofk points
with inversion symmetry so that we can construct a r
wave function by occupying linear combinations of pairs
orbitals:

fk
15

1

2
~fk1f2k!, fk

25
1

2i
~fk2f2k!. ~10!

By restricting ourselves to real wave functions, we can p
form both VMC and DMC calculations and avoid the com
plications of dealing with complex wave functions
DMC.23 For a cubic simulation cell, there are only four ve
torsks that preserve inversion symmetry corresponding toG,
X, M, and R sampling of the cubic simulation cell. TheG
point calculation yields a cubic grid ofk vectors centered on
the origin with spacing 2p/L and the additional calculation
provide three grids shifted by (2p/L)/2 in the @100#, @110#,
and @111# directions, respectively.

To construct the determinantal part of the wave functio
we compute the orbitals on the grid ofk vectors compatible
with the boundary conditions and occupy the orbitalsf0 or
fLDA within the first Brillouin zone with the lowest free
electron (f0) or LDA (fLDA) energy. In general, the highes
occupied level is degenerate and only partially occupied
we should employ a linear combination of determinants
order to construct a wave function with the proper symme
We instead always use a single determinant and symme
the momentum distribution on the grid of allowed wave ve
tors by averaging it over symmetry relatedk vectors on the
grid. This procedure is done separately for the fourk-point
samplings. Finally, by combining the results of the four c
culations and applying the symmetry rotations of the cu
group, we obtain a momentum distribution defined on
mesh with spacing (2p/L)/2.

We consider cubic cells with 54, 250, and 686 atoms. F
the 54-atom cell, we only carry out aG-point calculation.
The wave function is constructed from the orbitals cor
sponding to the lowest four complete shells ofk vectors, so it
is real, has the full symmetry of the lattice and is a sp
singlet. For the 250- and 686-atom cell, we compute
momentum distribution for four wave functions correspon
ing to G, X, M, andR sampling of the cubic cell. The grid in
momentum space has spacing 0.095 and 0.068 a.u. fo
250- and the 686-atom cell, respectively.

B. Momentum distribution and Compton profiles

The momentum distribution of the correlated wave fun
tion is computed as the expectation value over the distri
tion given either byC2 ~VMC! or by the product of the trial
wave function and the fixed-node solution~DMC!:

n~p!5(
i

1

VK E dr 8ei p•r8
C~r1 , . . . ,r i1r 8, . . . ,rN!

C~r1 , . . . ,rN! L .

~11!

At a given Monte Carlo step, we uniformly sampleM ran-
dom positionsr 8 within the simulation cell and, for each
position and particle, compute in turn the above ratio.24 The
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7910 PRB 59CLAUDIA FILIPPI AND DAVID M. CEPERLEY
value of M depends on the size of the system and is de
mined to optimize the efficiency in sampling the momentu
distribution. The allowed values of momentum coincide w
the sets of vectors compatible with the condition of perio
icity imposed on the simulation cell@Eq. ~9!#.

To obtain the Compton profiles, we have to integrate
momentum distribution over planes perpendicular to a gi
direction. It is possible to compute the Compton profiles
rectly within QMC. For instance, to evaluate the profile
the @100# direction, we could estimate the following expe
tation value:

J~ p̃x!5(
i

~2p!2

V K E dx ei p̃x x
C~r1 , . . . ,r i1x, . . . ,rN!

C~r1 , . . . ,rN! L .

~12!

This procedure is equivalent to evaluating the integral of
momentum distribution as the histogram over the mome
compatible with the boundary conditions:

J~ p̃x!'~2p/L !2 (
p:px5 p̃x

n~p!, ~13!

and is clearly a poor representation of the integral of a fu
tion with several discontinuities, especially if the grid ofk
vectors is coarse. The Compton profiles computed in
way show indeed a strong dependence on the size of
simulation cell.

To obtain Compton profiles with reduced finite size e
rors, we want to integrate a smoother function than the Q
momentum distribution,nQMC(p). We have to select a refer
ence distribution nMODEL(p) whose Compton profiles
JMODEL(p) can be computed with high accuracy and su
that the difference Dn(p)5nQMC(p)2nMODEL(p) is a
smoother function than the originalnQMC(p). The Compton
profiles are then obtained as

JQMC~p!5JMODEL~p!1DJ~p!, ~14!

where the correctionsDJ(p) are computed by integratin
Dn(p) on the grid defined by the fourk-point samplings
using the linear tetrahedron method. The only difference
computingDJ(p) from the method described in Appendix
is that there is no Kohn-Sham energy defined on the grid
no Fermi energy but all grid points are considered for in
gration. In Sec. IV, we will show our choice for the referen
momentum distribution.

IV. RESULTS AND DISCUSSION

We present calculations of the momentum distribut
and Compton profiles within LDA Kohn-Sham densi
functional theory. We perform both pseudopotential and fu
core calculations. We then compute the momentum distr
tion within pseudopotential QMC and determine the corre
tion contribution to the directional Compton profiles.

A. Kohn-Sham LDA Compton profiles

In Fig. 1, we show the LDA momentum distribution alon
the @110# and@111# directions for a local~s component! and
a nonlocal~s andp components! pseudopotential. The effec
of the lattice on the momentum distribution is more pr
r-
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nounced when using a nonlocal pseudopotential, yieldin
bigger reduction below the Fermi break and a more sign
cant contribution from the secondary Fermi surfac
~unklapp processes!. For both the local and nonlocal pseud
potentials, the momentum distribution is strongly anisotro
and goes to zero after the first Fermi break since the Fe
surface of lithium is completely contained within the fir
Brillouin zone.

We find that the momentum distribution obtained with t
nonlocal pseudopotential is in better qualitative agreem
with our full-core calculations. Therefore, for a more realis
description of bcc lithium, we have to use a nonlocal pseu
potential even though this is computationally more dema
ing in QMC and introduces the additional locality approx
mation in DMC.16

The agreement of the valence momentum distributio
from a nonlocal pseudopotential and a full-core calculation
only qualitative because of the pseudopotential approxim
tion ~lack of correct orthogonalization between core and
lence!. When computing the momentum distribution within
pseudopotential scheme, we are underestimating the mom
tum distribution at high momenta and, consequently, ove
timating it at low momenta. This effect is also evident in t
Compton profiles.

In Fig. 2, the pseudopotential Compton profiles are co
pared with the valence profiles obtained with the full-co
potential in the@100#, @110#, and @111# directions. As men-
tioned in Sec. II, we normalize the LDA Compton profiles
the number of valence electrons per unit cell, in this case
electron per unit cell. As expected, the Compton profi
constructed from valence orbitals correctly orthogonalized
the core orbitals show a higher tail at high momenta than
pseudopotential profiles and, since they must integrate to
same value, a significantly lower value at low momenta. T
Compton profile of a free-particle system at the same den
of lithium (r s53.25 a.u.) is an up-side down parabola te
minating atpF50.5905 a.u. Due to electron-ion correlatio
the Kohn-Sham profiles develop a tail beyondpF but the
sharp features of the presence of a Fermi surface are cle
visible in any direction at about 0.6 a.u. The location of t
Fermi break varies however for the different directions a
result of the already observed anisotropy~see Fig. 1!. The

FIG. 1. LDA momentum distribution in the@110# and @111#
directions using a local and a nonlocal pseudopotential.
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PRB 59 7911QUANTUM MONTE CARLO CALCULATION OF COMPTON . . .
effect of secondary Fermi surfaces~unklapp processes! ap-
pears both in the pseudopotential and full-core potential
lence profiles. The effect is more pronounced in the@110#
direction at about 0.8 a.u. and all profiles show an additio
bump in the far tail~above 1.6 a.u.!.

Within pseudopotential quantum Monte Carlo, we w
compute a correction to the Compton profiles due to el
tronic correlations. This correction will be summed to th
valence Compton profile from a full-core calculation to a
count properly for core-valence orthogonality.

B. Quantum Monte Carlo Compton profiles

In order to calculate the correlation corrections to t
Kohn-Sham Compton profiles of Fig. 2, we first determi
the potential and wave function needed to correctly desc
the momentum distribution of solid lithium within QMC. We
start modeling bcc lithium with the simplest potential an
wave function and improve upon that with a more sophis
cated wave function and Hamiltonian.

The tests are conducted on a small simulation cell of
electrons and 54 lithium ions on a bcc lattice and with pe
odic boundary conditions. We carry out QMC calculatio
using the Troullier-Martins pseudopotential and test the
of a local ~s component! and a nonlocal~s and p compo-
nents! pseudopotential as we have done within LDA dens
functional theory. For either potential, we employ both t
free-electron orbitalsf0 @Eq. ~5!# and LDA orbitals@Eq. ~6!#
determined with a plane-wave cutoff of 16 Ry. The Jastr
factor is separately optimized in each case using 2000 c
figurations within variance minimization. The VMC an
DMC energies obtained with the nonlocal pseudopoten
and the LDA orbitals are given byEVMC520.2524(1) Har-
tree andEDMC520.2591(1) Hartree.

FIG. 2. Valence Compton profiles of Li in the@100#, @110#, and
@111# directions. The LDA Compton profiles constructed using t
Troullier-Martins pseudopotential are compared with the LDA pr
files obtained with the full-core23/r potential.
-

al
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-

e

-

4
-

e

n-

l

In Fig. 3, we show the spherical average of the mom
tum distribution in the case of local and nonlocal pseudo
tentials. The VMC and DMC spherical momentum distrib
tion for bcc lithium are compared with the VMC momentu
distribution of the homogeneous electron gas at the sa
density (r s53.25 a.u.). The wave function for the electro
gas is given by the product of a determinant of simple pla
waves,f0, and a Jastrow factor only containing the electro
electron term described in Sec. III. The momentum distrib
tion of the electron gas shows a discontinuity atpF . It is
reduced belowpF and develops a tail at high momenta wi
respect to the noninteracting step function. The persiste
of a Fermi break and its location are consistent with

-

FIG. 3. VMC and DMC spherical momentum distribution fo
bcc lithium with a local ~upper plot! and nonlocal~lower plot!
pseudopotential and a simulation cell of 54 atoms with perio
boundary conditions. Either simple plane-wave (f0) or LDA orbit-
als (fLDA) are employed in the determinantal part of the wa
function. The VMC momentum distribution for the electron gas
also shown. The statistical errors are smaller than the size of
symbols. The vertical dashed line indicates the position ofpF .
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7912 PRB 59CLAUDIA FILIPPI AND DAVID M. CEPERLEY
Fermi-liquid behavior of the system. In the presence of
electron-ion pseudopotential, we have a further reduction
the size of the Fermi break due to electron-ion correlation
all cases, the VMC and DMC momentum distribution a
almost indistinguishable indicating that for this system
variational wave function is quite close to the fixed-no
solution in describing this property.

For both local and nonlocal pseudopotentials, we test
use of free-electron orbitals,f0 , versus LDA orbitals. The
use of orbitals given by a single plane wave is justified if t
dependence of the periodic component of the Bloch state
not strongly varying withk. This dependence can then b
simply included in the Jastrow part as an electron-ion termx
@Eq. ~4!#. As shown in Fig. 3, this argument holds in the ca
of a local potential: the momentum distribution is not sign
cantly different when using the orbitalsf0 or the LDA or-
bitals. On the other hand, free-electron orbitals in the de
minant plus an electron-ion term in the Jastrow compon
give a poor description of electron-ion correlation when
ing a nonlocal pseudopotential. LDA orbitals yield a larg
reduction below the Fermi wave vector and the appeara
of additional structure in the tail of the momentum distrib
tion as contribution from secondary Fermi surfaces. This
fect is smeared out because of spherical averaging an
more evident when plotting the momentum distributi
along different directions.

Having identified the necessary features to describe
lithium ~a nonlocal pseudopotential and LDA orbitals in t
determinantal part of the wave function!, we perform QMC
calculations for larger systems and different boundary c
ditions to obtain higher resolution in momentum space.
consider two systems with 250 and 686 atoms and com
the VMC momentum distribution for four wave function
corresponding toG, X, M, andR sampling of the cubic cell.
For the system with 250 atoms, we also determine the
mentum distribution within DMC. The parameters used
the electron-ion Jastrow component of the four wave fu
tions for both system sizes are the ones optimized for
54-atom simulation cell.

As already explained, eachk-point sampling defines a
grid of allowed wave vectors and the QMC wave function
constructed from the orbitals with the lowest LDA energ
This procedure yields a different LDA Fermi energyeF

ks and

set of occupation numbersf p
ks for eachk-point sampling. The

occupationf p
ks is equal to two beloweF

ks and in general frac-
tional at the Fermi level. In the following, when comparin
the LDA and QMC momentum distribution on the grid, w
are referring to

nLDA~p!5u cp u2 f p
ksu„e~p!2eF

ks
…, ~15!

wherecp is the Fourier component of an LDA orbital and th
momentump is on the grid corresponding toks sampling.
This ensures that both the LDA and the QMC moment
distribution satisfy the sum rule( in(pi)5N for eachk-point
sampling.

In Fig. 4, we plot the VMC and DMC momentum distr
butions in the@100#, @110#, and@111# directions for the 250-
atom cell. The LDA distribution evaluated on the samek
vectors is also shown for comparison. The VMC and DM
results are quite close to each other with the DMC mom
n
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e
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e
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-

tum distribution being slightly higher at low momenta an
lower at high momenta than the VMC one. In the QM
distribution, we observe a reduction of the LDA momentu
distribution below the Fermi wave vector, the persistence
the discontinuity and an enhancement at high momenta
to electron-electron correlation. The momentum distribut
for lithium both in LDA and in QMC is strongly anisotropic

As explained in Sec. III, we want to define a referen
momentum distribution such that its difference with t
QMC distribution is a smoother function to integrate a
Compton profiles with reduced finite size errors can be
tained. In Fig. 5, we show the difference of the QMC a
LDA momentum distributions along the@110# direction for
the 250-atom cell. This difference has smaller discontinu
than the original VMC or DMC data and its integral is le
sensitive to finite-size errors. However, a yet better choic
to compute the following difference

D na~p!5nQMC~p!2a nLDA~p!, ~16!

where the parametera is chosen to reduce the size of th
discontinuity in the functionD na. To determinea, we mini-
mize the cost function

(
p

(
i 51

3

@ D na~p!2D na~p1dpi !#
2 nQMC~p!2, ~17!

wheredpi is one grid spacing in thex, y, andz directions.
For both the 250- and the 686-atom simulation cell,

find the optimal value ofa50.8. In Fig. 5,D na(p) is plot-
ted in the@110# direction for the 250-atom system.D na(p)
is a more regular function to integrate with no significa

FIG. 4. VMC and DMC momentum distribution of bcc lithium
in the @100#, @110#, and @111# directions. The statistical error is
smaller than the size of the symbols. The momentum distributio
computed for a 250-atom cell and four differentk-point samplings.
The LDA momentum distribution evaluated at the same vector
shown for comparison.
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discontinuity and a similar behavior is observed in the@100#
and @111# directions. We show below that this procedure
defining a reference momentum distribution is succes
since it yields Compton profiles that lie on the same cu
for the various system sizes~see Figs. 6 and 7!.

To obtain the Compton profiles, we computeD Ja(p) by
integratingD na(p) with the linear tetrahedron method. Th
momentum space is divided in cubes, the cubes in tetrah
and a contribution to the integral from each tetrahedron
computed as in Appendix A.D Ja(p) represents the correla
tion contribution to the Compton profile that is finally ob
tained as

FIG. 5. DifferencenVMC2nLDA andnVMC2a nLDA of the VMC
and LDA momentum distribution. The momentum distribution
computed for a 250-atom cell and four differentk-point samplings.
The parametera is equal to 0.8.

FIG. 6. Valence Compton profiles for lithium in the@100#,
@110#, and@111# directions. The VMC results for the cell with 25
and 686 atoms and fourk-point sampling are compared with th
LDA valence profiles from a full-core calculation and the expe
mental results~Ref. 7!.
f
ul
e

ra
is

JQMC~p!5a JLDA~p!1D Ja~p!, ~18!

where JLDA(p) is the LDA Compton profile. To take into
account core-valence orthogonality properly, we add the c
relation contributionD Ja(p) to the LDA valence Compton
profile obtained from a full-core calculation~see Fig. 2!.
D Ja(p) is computed using a pseudopotential but, since i
the difference of results from two pseudopotential calcu
tions ~LDA and QMC!, there is some degree of cancellatio
in the pseudopotential error. Even though we do not imp
that D Ja(p) is normalized to (12a), as it would be for
perfect sampling in momentum space, we find that the de
tion in the normalization ofJQMC(p) from unity is very
small. For instance, in the@111# direction, the error in nor-
malization is only 0.08% and 0.16% for the 250- and 68
atom cell, respectively.

In Fig. 6, the VMC Compton profiles in the@100#, @110#,
and@111# directions for the 250- and 686-atom cell are co
pared with the LDA valence profiles from the full-core ca
culation and the room-temperature experimental results
Sakuraiet al.7 The agreement between the simulations w
250 and 686 electrons implies that the differences betw
the QMC profiles and either the LDA or the experimen
curves are beyond finite-size errors. Due to electron-elec
interaction, the QMC profiles are lower at low momenta a
higher at intermediate and high momenta than the LDA p
files. The experimental data, on the other hand, show op
site trends. They are lower than the QMC profiles below
Fermi wave vector and significantly higher in the interme
ate and far tail. We do not convolute our results with t
experimental resolution since the momentum resolution
the 250-atom simulation is only marginally better than t
experimental resolution of 0.12 a.u. The continuum line
the QMC profiles is a result of the linear tetrahedron co
struction onDna(p).

FIG. 7. Difference of the QMC and LDA valence Compto
profiles for lithium in the@100#, @110#, and @111# directions. We
show the VMC and DMC results for the cell with 250 atoms a
the VMC results for the cell with 686 atom.
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In Fig. 7, we show the difference of the QMC and LD
valence Compton profiles,JQMC2JLDA , in the @100#, @110#,
and@111# directions, so details in the correlation correctio
can be better appreciated. We plot the VMC and DMC
sults for the 250-atom cell and the VMC results for the 68
atom cell. The agreement between the results of the sim
tions with the two system sizes is quite good with t
exception of the@100# direction at low momenta as a resu
of finite-size errors for the 250-atom cell. As already o
served for the momentum distribution, the DMC results
only slightly higher at low momenta and lower at high m
menta than the VMC ones. The difference of the LDA a
QMC profiles is anisotropic. In the@100# and @111# direc-
tions, the QMC profiles do not show the sharp features of
LDA profiles at the Fermi break but are more rounded
and, consequently, their difference is peaked at the Fe
break.

If we assume a constant valence density correspondin
r s53.25 a.u. and employ the QMC momentum distributi
we computed for the electron gas, the resulting La
Platzman corrections are in qualitative agreement with
QMC correlation corrections of Fig. 7. Consequently, giv
the large difference between the experimental results
Sakuraiet al. and the QMC profiles, the Lam-Platzman co
rections offer a satisfactory description of electronic corre
tion in QMC even though they are isotropic and cannot
solve the directional differences observed within QMC.

In disagreement with theGW calculations,10 the QMC
results indicate that electronic correlation in lithium only a
counts for about 30% of the discrepancy between experim
tal data and conventional band theoretical results. A sim
conclusion has been obtained recently in a comparison
QMC and experimental Compton profiles for bulk silicon12

Other effects such as temperature11 or the interpretation of
experimental results~in particular, the validity of the impulse
approximation4,5! may explain the difference between e
periments and QMC calculations. Our calculations also sh
that QMC cannot only offer a qualitative description of co
relation effects in Compton profiles but, if finite-size erro
are properly taken care of, also resolve directional diff
ences in the correlation corrections to the LDA results a
provide useful comparisons for new Compton scatter
experiments.2

ACKNOWLEDGMENTS

This work was supported by NSF Grant No. DM
9422496. We are grateful to Dr. Y. Sakurai for sending
the experimental results and to Professor Jose Luis Ma
for giving us his plane-wave code. We thank Bernardo B
biellini and P. Platzman for suggesting this project and
many useful discussions. C.F. also benefited from sev
discussions with Erik Koch, Keijo Ha¨mäläinen, Aleksi
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APPENDIX A: LINEAR TETRAHEDRON METHOD

To determine the momentum distribution within Koh
Sham density functional theory, the Kohn-Sham valen
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wave functions and eigenvalues are evaluated on a very
grid of k points within the irreducible wedge of the Brilloui
zone. The Fourier coefficients of the orbitals with the cor
sponding eigenvalues are unfolded from the irreducible z
to full space and the momentum distribution is obtained
simply squaring the Fourier components. This proced
yields a square mesh with the momentum distribution a
single-particle energy defined at each point.

To obtain the Compton profiles in a given direction, w
integrate the momentum distribution using the linear tetra
dron method as described by Lehmann and Taut.25 The ex-
pression for the Compton profile@Eq. ~2!# is rewritten as

J~ p̃!5E dp n~p!d~ q̂•p2 p̃!u~e~p!2eF!, ~A1!

wheren(p) ande(p) are the Kohn-Sham single-particle mo
mentum distribution and energy andeF the Fermi energy.
Theu function is introduced to ensure that only states bel
the Fermi energy are included. Ifn(p) and e(p) have been
computed on a square grid in momentum space, the m
naturally divides space in cubes whose corners are defi
by the grid points. Each cube is then divided in six tetrahe
and each tetrahedron is considered in turn. Within each
rahedron,n(p) and e(p) are linearly interpolated. The ste
functionu„e(p)2eF… may restrict the integration to only pa
of the tetrahedron: the primary tetrahedron is divided in s
ondary ones delimited by the boundariese(p)5eF . For a
given value of p̃, the surface of constant projection,q̂•p
5 p̃, is determined within each of the secondary tetrahe
and the contribution toJ( p̃) is computed as the integral ove
this surface of the linear interpolation of the momentum d
tribution.

Before computing the Compton profiles, the Fermi ene
eF must be estimated. For a given value of the Fermi ene
we apply the linear tetrahedron construction to determine
volume delimited by the Fermi surface and iterative
changeeF so that

E dp u„e~p!2eF…5
4p

3
pF

3, ~A2!

wherepF is the Fermi momentum.

APPENDIX B: FULL-CORE PLANE-WAVE LDA
CALCULATIONS

As mentioned in Sec. IV, due to the lack of correct o
thogonalization between core and valence, the pseudopo
tial momentum distribution is too low at high momenta an
consequently, too high at low momenta. To account for
correct oscillatory behavior of the valence wave functio
the valence orbitals are usually computed within traditio
all-electron schemes~linearized augmented plane wave
linear muffin-tin orbital methods! or, alternatively, the true
valence-wave functions are reconstructed from the pseud
orbitals.26,27 On the other hand, several calculations in t
literature have shown the feasibility of plane-wave calcu
tions using the unscreened Coulomb potential for first-r
elements.19,28,29 We therefore decided to follow this mor
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straightforward route and adopt a plane-wave basis also
the 23/r potential of lithium.

In Table I, we show the convergence in the total ene
and the 1s and 2s eigenvalues at theG point for full-core
solid lithium as a function of plane-wave cutoff. For zon
sampling to self-consistency, we used 14 specialk points. To
obtain an accuracy of a few mRy on either the total energy
the 1s eigenvalue, plane-wave cutoffs higher than 1800
are required. On the other hand, the convergence in vale
properties such as the 2s level is achieved at significantly
lower cutoffs.

Bellaiche and Kunc28 obtained convergence in the stru
tural properties of solid LiH with a plane-wave cutoff of th
order of 200 Ry and the valence Compton profiles were
good agreement with the ones reconstructed by simply
thogonalizing the valence wave functions to a core ato
orbital. Similarly, we find that the valence orbitals of lithiu
are well converged at about 300 Ry and increasing the pla
wave cutoff to 400 Ry has a negligible effect on the valen
Compton profiles.

TABLE I. Total energy of full-core bcc lithium versus the en
ergy cutoff employed in the plane-wave calculation. The energy
full-core atomic lithium isEatom5214.6682 Ry. All energies are
in Rydberg.

Ecutoff Etotal e1s e2s

300 214.6277 22.7442 20.3102
400 214.6886 22.7619 20.3086

1500 214.7985 22.7948 20.3058
1800 214.8032 22.7962 20.3057
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APPENDIX C: QUANTUM MONTE CARLO METHODS

The variance minimization method20,21 consists of the
minimization of the variance of the local energy over a set
Nc configurations$Ri% sampled from the square of the be
wave function available before we start the optimizatio
C0:

sopt
2 @C#5(

i

Nc FHC~Ri !

C~Ri !
2EguessG2

w~Ri !Y (
i

Nc

w~Ri !.

~C1!

Eguessis a guess for the energy of the state we are intere
in andw(Ri)5uC(Ri)/C0(Ri)u2. We do not allow the ratio
of the weights to the average weight to exceed a maxim
value.

We compute the expectation value of various operat
both in variational and diffusion Monte Carlo. In VMC, con
figurations are sampled fromC2 using Metropolis Monte
Carlo method and the expectation value of a given oper
O is obtained from

OVMC5
1

N (
i

N OC~Ri !

C~Ri !
. ~C2!

The transition matrix consists of a drift-diffusion step with
time step optimized to minimize the autocorrelation time.
DMC, the imaginary time-evolution operator exp(2Ht) is
used to project out the ground state from the trial wave fu
tion within the fixed-node and the short-tim
approximations.30 The time-step error coming from th
short-time approximation is negligible but the fixed-node
ror limits the accuracy of the results we obtain.
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