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Variable-curvature-slab molecular dynamics as a method to determine surface stress
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A thin plate or slab, prepared so that opposite faces have different surface stresses, will bend as a result of
the stress difference. We have developed a classical molecular-dynamics~MD! formulation where~similar in
spirit to constant-pressure MD! the curvature of the slab enters as an additional dynamical degree of freedom.
The equations of motion of the atoms have been modified according to a variable metric, and an additional
equation of motion for the curvature is introduced. We demonstrate the method to Au surfaces, both clean and
covered with Pb adsorbates, using many-body glue potentials. Applications to stepped surfaces, deconstruction,
and other surface phenomena are under study.@S0163-1829~99!10311-4#
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I. INTRODUCTION

There has recently been a reevaluation of the role of
face stress, as an important microscopic indicator of the s
of a crystal surface. Recent experimental and theoretica
pects of issues related to surface stress were reviewe
Ibach.1

A good example of connection between microscopic a
macroscopic quantities is the determination of surface st
from the measurement of macroscopic deformations of a
plate-shaped sample. According to elasticity theory,2 if a thin
plate presents a stress difference between its two surfac
will bend in order to minimize its total free energy. In th
limit of small deformations, a simple formula connects t
stress difference, thickness, curvature, and elastic prope
of the sample. Several methods have been recently use
measure the bending. They are mainly optical or based
scanning tunneling microscopy~STM!.1 Flinn, Gardner, and
Nix3 discussed a laser scanning technique to measure
stress-induced curvature, and presented experimental re
for stress in Al-Si films as a function of temperature. Ma
tinez, Augustyniak, and Golovchenko4 measured surface
stress changes resulting from monolayer and submonol
coverages of gallium on Si~111!. They used local-density
approximation calculations of stress in the Ga-cove
Si~111! for a determination of stress in the Si~111! 737 and
Si~Ga! superlattice surfaces. Stress variations associated
deconstruction of Au~111! and Au~100! were obtained by
STM.5,6 Moreover, the influence of adsorbates on surfa
stress has been exploited using the sample bending me
for C/Ni~111!,7 S/Ni~111!,8 Co/Ni~100!,9 K/Pt~111!,10

Co/Pt~111!,11 and Ag/Pt~111!.12

An atomistic simulation method which controls the cu
PRB 590163-1829/99/59~11!/7687~10!/$15.00
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vature of a sample as an extra degree of freedom has
been available so far, although this would seem a potenti
useful tool. The situations in which surface stress var
when physical phenomena occur at interfaces are numer
adsorbates, reconstructions, steps, and phase transition
change surface stress dramatically. All of these phenom
are, under some conditions, well described by suita
molecular-dynamics ~MD! simulations. A simulation
method, where the slab curvature can be measured as a
tion of adsorbate coverage, should represent a powerful c
nection between important microscopic and macrosco
quantities.

In this work we describe and demonstrate a scheme wh
is meant to fill this gap. It is a classical MD method, but
could in principle be extended toab initio MD calculations.
It is based on extending the usual concept of variable
MD, pioneered by Andersen13 and by Parrinello and
Rahman,14 to a slab with variable curvature. In our formula
tion the curvature is a single, global, Lagrangian degree
freedom. Surface stress can be extracted as a direct res
the calculation through elasticity equations,15 which will be
described below.

The outline of the work is as follows: Sec. II will presen
the theory and geometric considerations underlying
simulation. In Sec. IV, the phenomenology of a bent plate
reviewed in order to extract the pertinent equations. In S
V we present some initial applications of the method.
nally, Sec. VI is devoted to a discussion and conclusions

II. THEORY

In ordinary variable-cell MD, the coordinates of an ato
can be written as
7687 ©1999 The American Physical Society
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r i5Ĥ–si , ~1!

wherer i is the position vector of theith particle,si are scaled
coordinates (si

j , j 51, . . . ,3 areheld between20.5 and 0.5!,

andĤ is a matrix describing the space metric inside the c
Supposing, as was done by Parrinello and Rahman,14 that the
cell can vary in volume and shape, these variations can

accounted for byĤ, whose elements can be treated as
extra set of dynamical degrees of freedom. Our aim is
extend this kind of approach to the case of a bending pl

through a different choice of the metricĤ.
Let us start with a slab-shaped system, with two surfa

and lateral (x,y) periodic boundary conditions~PBC’s!. Sup-
pose we bend the slab cylindrically through a radiusR ~see
Fig. 1!. A convenient choice of the transformation matr
convenient to our problem, could be

r5Ĥ~s,R!•s, ~2!

whereĤ, depending parametrically on the radius of curv
ture R, is no longer uniform~as in the Parrinello-Rahma
scheme!, but rather depends on the points. This dependence
is what originates the curvature. In Fig. 1, for example,s1
goes from20.5 to 0.5 alongx, which we choose to be un
affected by curvature;s2 goes from20.5 to 0.5 along direc-
tion y, which follows the curvature; ands3 spans the sample
from its inner to its outer surface.

From now on, we will use as reference surface an id
‘‘neutral cylinder’’ inside the slab, defined bys350. In par-
ticular, we define the curvaturek as the inverse radius of th
neutral cylinder:

FIG. 1. The geometry of a bent plate with curvilinear coor
nates;s1 and s2 lie in the neutral plane~shown as lighter in the
figure! whereass3 is vertical.R is the curvature radius measured
s350, anduM is the bending angle.
l.

be

n
o
e,

s

-

al

k5
1

RU
s350

. ~3!

In this way, if Ly is the linear dimension~arc! along the
bending direction atk50, the total bending angle is given b
uM5Ly k. Whereas in the Parrinello-Rahman approach

whole matrix Ĥ is treated as a set of additional degrees

freedom, in our caseĤ is completely determined by th
single parameterk which we will include in the Lagrangian
as an extra degree of freedom.

A. Lagrangian

The next step is the construction of a Lagrangian. T
general, classical Lagrangian for aN-particle interacting sys-
tem is

L5T2V5 1
2 (

i
miiṙ ii22V~r1 . . . rN!. ~4!

In Cartesian coordinatesṙ i5Ĥ–ṡi and iṙ i25 ṡi
TĜ ṡi , where

Ĝ5ĤTĤ is the metric tensor.14 We now define an extende
LagrangianL̃ by including an artificial ‘‘curvature kinetic
energy’’

L̃5L1 1
2 W k̇2, ~5!

whereW acts effectively as a ‘‘curvature inertial mass.’’ Th
velocity of a particle can be written as

ṙ5
d

dt
~Ĥ–s!, ~6!

or, explicitly,

ṙ a5
d

dt
~Hab sb!5Ḣab~s ,k! sb1Hab ṡb

5F ]Hab

]sg
ṡg1

]Hab

]k
k̇Gsb1Hab ṡb. ~7!

The third term is the usual time derivative for the consta
cell motion, whereas the second term contains a time der
tive of the extra degree of freedomk. As in the Parrinello-
Rahman formulation,14 we will omit this term from the
definition of the particle velocities. The kinetic energy of th
system will therefore depend onk̇ only through the curvature
kinetic energy

T̃5 1
2 W k̇2, ~8!

whose interpretation is discussed in Appendix A. Parrine
and Rahman14 and Andersen,13 using a similar approach
showed that the equations of motion derived from their L
grangian satisfy important requisites, leading in particular
correct thermodynamic averages~not dependent on the
choice ofW!, and to a correct balance between external a
internal stress.

One can then cast Eq.~7! as
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ṙ a5
]Hab

]sg
ṡg sb1Hab ṡb5F ]Has

]sb
ss1HabG ṡb8Mab ṡb.

~9!

The kinetic energy of a particle then becomes

T15 1
2 miṙ i25 1

2 m ṡaNab ṡb5 1
2 m ṡTN̂ ṡ, ~10!

whereN̂8M̂T
•M̂ .

We need now to express the potential energy in term
the scaled coordinates and of the metric. In the following,
will use mostly potentials~such as pairwise potentials o
many-body potentials of the ‘‘glue’’ form! which only de-
pend on pair distances:

V5V~$ir i2r j i2u iÞ j ; i , j 51, . . . ,N%!. ~11!

It is therefore necessary to expressir i2r j i2 in the new
coordinates.16 Denoting the metric tensor asĜ(k,si)

5ĤT(k,si)•Ĥ(k,si) we have

ir i2r j i2[r i j
2 5si

TĜ~k,si !si1sj
TĜ~k,sj !sj

22 si
T Ĥ T~k,si !•Ĥ~k,sj !sj . ~12!

We now have all the ingredients needed to write theN
11 Lagrange equations

W k̈1
] V

] k
2

1

2(i
mi ṡi

T ] N̂

] k
ṡi50,

mlN̂~k,sl !s̈l1
] V

] sl
2

1

2
ml ṡl

T] N̂

] sl
ṡl1mlN̂

˙
~k, sl !ṡl50, ~13!

l 51, . . . ,N.
e

a

of
e

B. Construction of the Ĥ matrix

To obtain an explicit form for Eqs.~2! and~13!, we write
the expression for the Cartesian coordinates in a box w
linear dimensions~at k50) Lx , Ly , andLz :

x5s1Lx ,

y5S 1

k
1s3LzD sinu,

z5s3Lz cosu1
1

k
~cosu21!, ~14!

where u is the angle running along they direction, and
2uM/2,u,uM/2 ~see Fig. 1!. With the help of simple trigo-
nometric formulas, we can expressu in terms ofs2 andk:

sin
u

2
52 s2 sin

k Ly

4
, ~15!

from which Eqs.~14! become

x5s1Lx ,

y54 s2S 1

k
1s3LzD sin~k Ly/4!A124~s2!2sin2~k Ly/4!,

z5s3Lz@128 ~s2!2 sin2~k Ly/4!#2
1

k
@8 ~s2!2 sin2~k Ly/4!#.

~16!

By inspection, we see that a possible choice forĤ is (u
5Ly/4)
Ĥ~s2 ,k!5S Lx 0 0

0 4
sin~k u!

k
A124~s2!2 sin2~k u! 4 s2Lz sin~k u!A124~s2!2 sin2~k u!

0 2s2

sin2~k u!

k
Lz@128 ~s2!2 sin2~k u!#

D . ~17!
ical
It can be easily shown that Eq.~2! is verified and that, in the

limit of zero curvature, limk→0 Ĥ( s2 ,k)5diag@Lx ,Ly ,Lz#;

that is, the CartesianĤ matrix is recovered. Moreover, th

same equations are exact in the limit of finite, fixed curv

ture.

The explicit form ofN̂ can be obtained by using Eqs.~10!
and ~17!:
-

Nab5S Lx
2 0 0

0
16~k Lz s311!2 sin2~k u!

@124~s2!2 sin2~k u!#k2
0

0 0 Lz
2

D . ~18!

N̂ is diagonal as a consequence of the chosen cylindr
geometry.



ric
it
n
th
e

-

e
ns
es

-

ha
ec
o
e

n-
th
im
is

ec

e
e
an

in
-

e-

n

th

e-
ol-

y,’’
e-
ible

ple

a
o
e-
iation
ed

he
the

ss
s
h-
re

con-
ire

so
on
rate,

xi-
e

of
im-

e
ion,
ith
e
ject
ea

7690 PRB 59PASSERONE, TOSATTI, CHIAROTTI, AND ERCOLESSI
III. CONSTRAINED MOLECULAR DYNAMICS AND PBC

The Lagrange equations are integrated using nume
methods. In particular, we will use a second-order veloc
Verlet algorithm, which is at the same time well tested a
simple. We found some problems due to the instability of
center of mass of the sample during the bending, which w
overcome and will be commented just below.

Our starting geometry is ann-layer crystalline slab with
PBC’s along thex and y directions. The periodicity is ac
counted for by the scaled coordinatess1 ands2 . The choice
of coordinates we have adopted requires a slightly differ
set of PBC’s with respect to the usual slab simulatio
Along thex direction, nothing changes: the minimum imag
of a particle with scaledx coordinate equal tos1 have simply
the coordinates (s161). Along y ~the bending direction! the
requirement is that the angleu of the particle should trans
form into (u6uM). The scaledy coordinate of the minimum
image is then

s2
~F !5S 2 cos2

uM

4
21D s26cos

uM

4
A124 ~s2!2 sin2

uM

4
.

~19!

When a particle is folded into its image, we also require t
its velocity should remain unchanged in modulus, its dir
tion following the curvature of the sample. Since the comp
nentsṡ1 and ṡ3 do not change, the conservation of the v
locity modulus is sufficient to determineṡ2

(F) :

ṡ~F ! N̂~ s,k ~F !!ṡ~F ! 5 ṡ N̂~ s,k! ṡ, ~20!

which leads to

ṡ2
~F !5 ṡ2

N22~s!

N22~s~F !!
5 ṡ2

A124 ~s2
~F !!2 sin2

uM

4

A124 ~s2!2 sin2
uM

4

. ~21!

From the computational point of view, the quantities i
volved in these equations are already available, since
are also needed for the force calculation. Therefore, the
pact of the PBC calculation on the total simulation time
negligible.

For kÞ0 the dynamics generated by Eq.~13! does not
conserve the total linear momentum along the radial dir
tion s3, so that a vertical drift arises as a consequence
bending. To prevent such drift, we resort to a constrain
MD scheme. Constrained MD is a well-known techniqu
and we adopted the method used by Ryckært, Ciccotti,
Berendsen17 and Andersen18 for simulations of rigid mol-
ecules. The main point to be kept in mind is that constra
must be verifiedexactlyat every time step, otherwise insta
bilities will occur. Technical details on the practical impl
mentation of this constraint are given in Appendix B.

The general MD protocol we apply consists of either co
stant energy runs or constant temperature runs~up to 300 K!
obtained by velocity rescaling, followed by quenching toT
50. Occasionally, we also introduced a damping term in
curvature dynamics.
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IV. PHENOMENOLOGY OF A BENT PLATE

Before moving on to the actual implementation, it is us
ful to recall some known results concerning the phenomen
ogy, largely contained in the review by Ibach.1 The definition
of surface stress, according to Gibbs,19 as the ‘‘reversible
work per unit area required to stretch a surface elasticall
points out the difference of this physical quantity with r
spect to the surface free energy, defined as the ‘‘revers
work per unit area to create a surface.’’ Stretching asolid
surface implies modifying the substrate, whereas a sim
increase of area does not: whence the difference.

Let us start with the bulk stress tensor, whose elementt i j
is defined as theith component of the force per unit are
acting on the side~with the normal to the surface parallel t
the jth direction! of a small cube in the sample. The corr
sponding surface stress tensor can be defined as the dev
of this quantity with respect to the bulk value, integrat
along the surface normal:

t i j
~s!5E

2`

1`

dz@t i j ~z!2t i j
~b!#. ~22!

The integral gives a nonzero contribution only where t
value of the stress deviates from the bulk value, i.e., at
surface.

Let us consider a rectangular-shaped sheet of thicknet,
delimited by two identical~100! surfaces. For our purpose
the following simplified construction can be put to use wit
out loss of generality.3 Schematize the plate at zero curvatu
as a ‘‘substrate’’ of thicknesst and lengthL alongx1 , plus
two films adsorbed on it: filmA on the lower part of the
plate, and filmB on the upper part. LetLA the unconstrained
length~alongx1) of film A, andLB the length of filmB. Let
LB.L and LA,L. In order to match the lengthL of the
substrate, the film must be stretched~compressed! by an
amountDLI5L2LI , with I 5A,B. The deformed film at-
tached to an undeformed substrate does not represent a
dition of minimum free energy; the free energy of the ent
system can be lowered by deforming the substrate slightly
as to reduce the deformation of the film. This deformati
has two components: an overall compression of the subst
and a bending of the substrate.

It can be shown3 that the neutral plane~i.e., the plane
along which the strain is zero! can be set approximately in
the middle of the sheet, and the deviations from this appro
mation are negligible for most cases. In the following, w
will extract the conditions for the minimum free energy
the sheet, allowed to bend along a single direction. For s
plicity, we will choose this to be the@100# direction ~of
course similar formulas can be derived for any other choic!.
If we denote the coordinates along the nonbending direct
the bending direction and the normal to the surface w
s1 , s2 , ands3 , respectively, the situation is similar to th
one depicted in Fig. 1. Each element of the sample is sub
to a strain«22(x3). The change in free energy per unit ar
associated to this strain, of an element at heights3 is

u~s3!5E
0

«22~s3!

t22~s3!d«22. ~23!
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The total free energy change of the bent sample~per unit
area! is

U5E
2t/2

1t/2

ds3E
0

«22~s3!

t22~s3!d«22. ~24!

We can separate this integral into two surface parts an
bulk part:

U5U ~s1 !1U ~s2 !1U ~b!, ~25a!

U ~s1 !5E
1~ t/2!2a

1t/2

ds3E
0

«22~s3!

@t22~s3!2t22
~b!#d«22,

~25b!

U ~s2 !5E
2t/2

2~ t/2!1b
ds3E

0

«22~s3!

@t22~s3!2t22
~b!#d«22,

~25c!

U ~b!5E
2t/2

1t/2

ds3E
0

«22~s3!

t22
~b!~s3!d«22. ~25d!

The first two terms lead to the definition of surface stress
the Gibbs sense, and can be written with a good approxi
tion:

U ~s1 !1U ~s2 !5@t22
~s!~1 !2t22

~s!~2 !#S k t

2 D , ~26!

where6k t/2 are the strains at the upper and lower surfac
The bulk term can be expressed using the elastic cons

of the crystal. Hooke’s law relates strain and bulk stress t
sor components in the following ways:

«115s11t111s12t22,

«225s12t111s11t22. ~27!

In our case,«1150, therefore, after introducing Young’
modulusY and Poisson’s ration,

Y5
1

s11
,

~28!

n52
s12

s11
,

one obtains1

«225
12n2

Y
t22. ~29!

If we substitute Eq.~29! into Eq. ~25d! we obtain, after in-
tegration,

U ~b!5
1

24

Y

12n2
k2 t3, ~30!

the total free energy of the bent plate is then:

F5@t22
~s!~1 !2t22

~s!~2 !#S k t

2 D1
1

24

Y

12n2
k2 t3. ~31!
a

n
a-

s.
nts
n-

Minimizing F with respect to the curvature, one obtains t
equation relating the equilibrium curvaturekM to the differ-
ence in surface stress between upper and lower surface

Dt~s!52
Y

6 ~12n2!
kM t2, ~32!

whereY is the Young’s modulus,n the Poisson’s number
kM the curvature, andt the thickness of the sample. Th
relation is known as Stoney’s equation, and was first deri
in 1909 ~except for the biaxial nature of the stress15,1!. We
stress that this formula is valid for a uniaxial bendin
whereas for an isotropic bending in two directions the fac
(12n2) should be replaced by (12n). Another limit of va-
lidity is that the plate must be infinitely large, relative to i
thickness. In other words, there will be finite thickness c
rections in (t/L) whereL is the lateral (x,y) size. We did not
make any attempt to find these corrections so far.

In the remainder of this section we present the sim
derivation of the elastic constants two high symmetry s
faces:~100! bent along@011#, and ~111!. We start from the
elastic stiffnessesCi j , which are related to the compliance
s i j by the equations:20

s115
C111C12

~C112C12!~C1112 C12!
,

s1252
C12

~C112C12! ~C1112 C12!
, ~33!

s445
1

C44
.

If the uniaxial bending is not along a@100# direction and for
a surface orientation other than~100!, the compliancess11
and s12 which appear in Eq.~28! have to be replaced by
effective elastic constants, which in the~100! case, with
bending along a@011# direction, have the forms21

s11
8 5s112

1
2 ~s111s121

1
2 s44!,

~34!
s12

8 5s121
1
2 ~ s111s121

1
2 s44!,

whereas in the~111! case have the forms

s11
8 5s112

1
2 ~ s111s121

1
2 s44!,

~35!
s12

8 5s121
1
6 ~ s111s121

1
2 s44!.

V. APPLICATION TO METAL SURFACES

A. Implementation

The first goal of the variable-curvature MD simulation
to obtain an equilibrium value for the curvature in order
extract the surface stress difference, according to Eq.~32!.
We can then compare the outcome with the surface st
difference calculated independently using Kirkwood-Bu
formula,22 and assess the success of the method. We will a
verify the validity of the approach by analyzing the behav
of the curvature as a function of the slab thickness.
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We will present two different exemplifications. Far fro
being exhaustive, these results are only meant to show
feasibility of the method in view of later applications to su
face physics.

First we simulated several Au slabs with a~100! orienta-
tion and different types of reconstruction on the two sid
This test can show the sensitivity of the method: differen
of the order of 5 meV/Å2 can be appreciated. Next we e
amined the effect of isotropic or anisotropic adsorbates
the surface stress, as exemplified by Pb/Au~100!.

All simulations were performed using many-body pote
tials of the glue type.23 They have the general forms
it
ca

e

te
r

th

in
s

he

.
s

n

-

V5 1
2 (

i , j
F~r i j !1(

i
U ~ni !,

~36!
ni5(

j
r~r i j !,

whereni is a generalized atomic coordination.F(r ), U (n),
andr(r ) are empirically constructed, by fitting several pro
erties of the system. Well-tested glue potentials
available24 for Au ~Ref. 23! and Pb.25 This scheme can be
extended to binary systems by introducing a mixed two-bo
potentialFAB(r ), and assumingni to be a linear superposi
tion of density contributionsrA and rB supplied, respec-
tively, by A- andB-type atoms to sitei ~Ref. 26!:
V5
1

2F (
i PA

S (
j PA

FAA~r i j !1 (
j PB

FAB~ r i j ! D 1(
i PB

S (
j PA

FAB~r i j !1 (
j PB

FBB~r i j ! D G1(
i PA

UA~ni !1(
i PB

UB~ni !, ~37!
34

e

A

qui-
e
s

h
on-

ter
ne,

nce
he
m

e

ed
ar-

nd
with

ni5 (
j PA

WArA~r i j !1 (
j PB

WBrB~r i j !, ~38!

where WA and WB are suitable weights. In our caseWAu
51.045 andWPb50.957.

B. A clean surface: Change of surface stress with
reconstruction

We prepared a family of Au~100! slabs composed by
about 600 atoms per layer (Lx528.78 Å, Ly5172.69 Å),
and different thicknesses of 8, 12, 16, and 20 layers, w
@011# as the bending direction. In order to extract numeri
values for the surface stress from Eq.~32!, we need the cor-
rect elastic constants for this case. For the case of Au~as
described by the glue model!, the elastic stiffnesses hav
been calculated,23 giving

C1152.2033107 N/cm2,

C1251.6033107 N/cm2, ~39!

C4450.6003107 N/cm2.

With these values, using Eqs.~28! and ~34!, the Young’s
modulus and the Poisson’s ratio for Au~100!, with bending
along @011#, are Y(100)51.3223107 N/cm2 and n (100)
50.1022.

Both ~100! surfaces were prepared in the reconstruc
state, characterized by a close-packed triangular overlaye
a square substrate. We chose a fixed reconstructed 135
structure~six @011# rows on top of five! for the reference
~lower! surface of the plate, and we changed the nature of
upper surface, ranging from 133 ~i.e., four surface rows
over three substrate rows, a ‘‘compressive’’ situation! to a
1320 structure ~a ‘‘tensile’’ situation!, touching the 1
34, 135, 136, 1310, 1312, and 1315 structures. In
the 135 case no bending was expected or observed, s
the surfaces on the two sides were identical. We also con
h
l

d
on

e

ce
id-

ered 1133, 1134, 1135, . . . , obtained by adding@011̄#
rows. The lowest energy surface in the glue model is
35,27 in the experiment is close to 2835, but all M35
surfaces differ very slightly in free energy.28–31The essential
point here will be that surfaces which differ only very littl
in energy, for example 135 (102.3 meV/Å2) and 1312
(103.2 meV/Å2) may differ enormously in surface stress.
typical snapshot of the simulation is shown in Fig. 2.

Figure 3 shows the time evolution of the curvaturek, for
two different values of the inertial parameterW. Starting
from an arbitrary value, the slab curvature reaches its e
librium value very rapidly. We verified that, as it should b
and as can be seen from the figure, the value of the masW
is irrelevant in determining the equilibrium value ofk. The
choice ofW does not influence equilibrium properties, whic
in classical mechanics do not depend on the mass of c
stituents.

Concerning dynamics, the value of the inertial parame
W which yields the fastest convergence is in general o
which gives rise to an oscillation period fork which is clos-
est to the main physical oscillation mode of the system, si
in that case the coupling of the two systems is optimal. T
frequency of any particular normal mode for a plate fro
theory of elasticity,32 is

FIG. 2. A typical snapshot of the simulation, with a positiv
value of the curvature. The top surface is a 1310 surface, and the
lower surface a 135 surface, both hexagonally reconstruct
Au~100!. The corrugations of both surfaces are evident. This p
ticular sample will invert its curvature during the simulation, a
the equilibrium value ofk will become negative.
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3S Y

~12n2!r
D t2aa4, ~40!

wherer is the mass density of the system,a2 is comparable
with Lx3Ly , anda ~dimensionless! is the solution of certain
transcendental equations~it is of the order of 10 for the low-
est modes!. The lowest frequencies for the case shown
Fig. 3 are close to 0.1 GHz.

Figure 3 shows the comparison between a value ofW
leading to a low frequency fork ~dashed line! and a value of
W leading to a frequency close to the optimal one~continu-
ous line!. A beat with the normal modes of the plate appe
in the latter case. The oscillating frequency fork is, in the
weak coupling limit, proportional toW1/2.

In the 133 and 134 cases, the equilibriumk was posi-
tive, whereas in the other cases it was negative. The sim
tion was performed at low temperature~from a few degrees
to 300 K!. The difference in surface stress between up
and lower surface has been extracted using Eq.~32!. The
surface stress of the two isolated surfaces has been inde
dently obtained from MD forces using the standa
Kirkwood-Buff formula.22 The comparison of the stress di
ferences is excellent, as can be seen from Fig. 4, show
that the variable curvature method works. The only deviat
is for 133, and clearly attributable to excessive curvatur

The calculation is repeated with a variety of different u
cells in the top surface; by adding a@011̄# row every ten, we
obtain 1133, 1134, 1135, . . . unit cells instead of 1
33, 134,135, . . . . The lower 135 surface of the slab
was left unchanged. The stress variations are clearly v
large, both relative to the basic stress of
35 (203.12 meV/Å2) and to the surface energy
(;100 meV/Å2). We judge that the smallest surface stre
difference detectable with our kind of simulation is of th
order of 10 meV/Å2. This sensitivity should be very impor
tant in the study of phase transitions.

We have also verified the linear dependence of the cu
ture from the inverse square of the thickness predicted by
~32!. Figure 5 shows the fit with 8, 12, 16, and 20 layers, a
the agreement is rather good.

FIG. 3. Time evolution of the curvaturek for two different val-
ues of the ‘‘mass’’W. The faster case~continuous line! is close to
the optimal coupling with the atomic degrees of freedom, and a b
with the normal modes of the plate appears.
s
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r
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ng
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C. Change of surface stress with adsorption

The surface stress is obviously a strong function of
sorption. As an example, here we will consider Pb on A
Underpotential deposition33 has recently been used togeth
with STM techniques to exploit the formation of two
dimensional phases of Pb on a substrate of Ag~100! and
Au~100!. Through different electrochemical potentials, o
can obtain different phases, such as Au(100)2c(2
32) Pb, Au~100! c(3A23A2)R45° Pb, and Au~100!
c(632) Pb. In particular, a close-packed layer of lead sho
a slight contraction in both@011# directions of the quadratic
substrate lattice; the final structure is pinned to the subst
lattice at equivalent adsorption sites, leading to an Au(1
2c(632) moirésuperstructure.

Using the potential in Eq.~37!, we found precisely this
c(632) superstructure as a local-energy minimum, throu
quenching of a sample prepared with a perfect substrat
Au~100!, and a triangular overlayer of Pb with the sam
density of a bulk~111! layer. In the optimized structure, th
632 pattern is evident@Fig. 6~a!#. Domain walls appear as

at

FIG. 4. Comparison between variable curvature simulations
Kirkwood-Buff formula, with different structures at the upper su
face of the sample. The lower surface is a 135 surface in every
case. Right ordinate axis: equilibrium value for the curvature. L
ordinate axis: corresponding difference in surface stress, accor
to Stoney’s equation. In order to obtain the absolute value of
surface stress componentt22 of the upper surface, the reference
35 result (203.12 meV/Å2) has to be added.

FIG. 5. Dependence of the curvature upon thickness in the c
of a (1310)/(135) surface. The inverse square dependence p
dicted by Stoney’s equation is recovered, and the stress differe
is extracted from the fit.
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FIG. 6. Different structures for the Pb overlayer~gray and black atoms! over a square Au~100! substrate~white atoms!. ~a! 632 structure
with domain walls. Black atoms are higher; two MD boxes are shown alongx. ~b! 632 structure without domain walls.~c! Square adlayer
with vacancies.
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the result of overlayer contraction. We were able to obtai
perfect 632 pattern@Fig. 6~b!# by starting from an initial
configuration with a denser overlayer. Deeper ene
minima are obtained by the simple commensurate squ
overlayers with vacancies, as in the case shown in Fig. 6~c!.

We performed variable curvature simulations on both
imperfect and the perfectc(632) structure, and on the
square overlayer with vacancies, with Au~100! (134) as the
reference (t225147.52 meV/Å2). For c(632), which is
anisotropic, two different simulations were carried out in o
der to access separatelyt11 andt22 ~the adlayer was rotate
of 90°, so as to keept22 as reference!.

For a 632 structure with domain walls, we foundt22
588.10 meV/Å2 (t11 was not measured in this case!, and
for the perfect 632 structuret11572.41 meV/Å2 and t22
538.52 meV/Å2. For the square structure with vacancie
we found t22540.34 meV/Å2. The stress anisotropy i
therefore large, and the effect of the domain walls is a
remarkable.

VI. CONCLUSIONS

In this work we have introduced a variable curvature s
simulation method which represents a promising techni
to study properties of crystal surfaces, in particular surf
stress differences. The first tests of the method, based o
comparison with known results, reveal a good accuracy
the range of 10 meV/Å2, and easy applicability. We are no
a

y
re

e

-

,

o

b
e
e
the
in

considering studies of a variety of phenomena, including s
face phase transitions, using this approach.
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APPENDIX A: INTERPRETATION OF THE KINETIC
ENERGY OF THE CURVATURE

If the arc s350 is forced to have lengthLy during the
whole simulation, the volumeV of the sample is guarantee
to remain constant and equal toLxLyLz . This is easily seen
by performing the integral in polar coordinates. The diffe
ence in surface area between upper and lower layer i
course

DA5LxFuMAX S R1
Lz

2 D2uMAX S R2
Lz

2 D G
5LxLzuMAX5LxLyLz k5V k. ~A1!

The relative time variation of this area is
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d

dtS DA

Ā
D 5

V

LxLy

d

dt
k5Lzk̇. ~A2!

Therefore, the fictitious kinetic energy term is

T̃5
1

2
W k̇25

1

2S W

Lz
2D F d

dtS DA

Ā
D G 2

5
1

2S W

V2D S d

dt
~DA! D 2

.

~A3!

This result is simple but important because it allows
connection with Andersen molecular dynamics:13 whereas in
Andersen’s formulation the extra degree of freedom is

volumeV and the term1
2 W V̇2 is the kinetic energy tied to

volume variations, in this case there is a variation in the a
difference between the two faces of the sample. The ana
could be brought further, adding to our Lagrangian a te
2P k, which is the reversible work of a radial force deca
ing as the square of the curvature radius, acting identic
on all particles, whereas the term2P V in Andersen’s for-
mulation is the reversible work of the hydrostatic press
during the variation of the cell volume. Such an extern
force, acting as a torque, could be used to force the equ
rium curvature to a different value from the one suggested
stress imbalance between the two surfaces. Application
this point are presently under study.

APPENDIX B: CONSTRAINED DYNAMICS FOR FIXING
THE CENTER OF MASS

1. Velocity Verlet algorithm as a predictor-corrector

Following Ref. 34, it is possible to cast a particular velo
ity Verlet algorithm as a predictor-corrector algorithm. O
can start from

r0~ t1dt !5r0~ t !1r1~ t !1r2~ t !,
~B1!

r1~ t1dt !5r1~ t !1r2~ t !1r2~ t1dt !,

where, as usual,

rn~ t !5
1

n!
~dt !n

dnr0

dtn
. ~B2!

This can be written as a two stages predictor-corrector, w
a force evaluation in between:

r0~ t1dt/2!5r0~ t !1r1~ t !1r2~ t !,

r1~ t1dt/2!5r1~ t !1r2~ t !,
~B3!

r0~ t1dt !5r0~ t1dt/2!,

r1~ t1dt !5r1~ t1dt/2!1r2~ t1dt !,

wherer2(t1dt) is obtained by the equations of motion.
this case the predicted values for the positions coincide w
the corrected ones, whereas the velocities are correcte~a
second-order, or three-value, predictor-corrector!.

When constraints are present, the forces acting on theith
particle can be written as

Fi5fa1ga'fa1ga
~x! . ~B4!
e

a
gy

ly

e
l
b-
y
of

-

th

th

The constraints forcesga at each stage are approximated w
ga

(x) , where (x)5r ,v, so as to ensure that the positions a
the velocities, respectively, satisfy the constraints, and
quantities at the various stages have to be corrected to
into account the constraints forces.

2. Bent plate case

In the case of varying curvature molecular dynamics,
bending leads to a drift toward the center of curvature of
center of mass. In order to fix thes3 component of the cente
of mass in the origin, the only constraint to be satisfied
~assuming all the particles to have the same mass for sak
simplicity!

s[(
i 51

N

s3i50, ~B5!

wheres3i are the scaled coordinates in our curvilinear syst
@in this appendix,s, ṡ, and s̈ are normalized according to
Eq. ~B2!#. The time derivative of the constraint equatio
gives a constraint on velocities:

ṡ[
1

dt (
i 51

N

ṡ3i50. ~B6!

The Lagrangian must then be completed with a te
lR ( i 51

N s3i1lV ( i 51
N ṡ3i .

Two different approximations to the constraint forc
have to be chosen so that positions and velocities satisfy
constraints exactly. In this particular case the forces turn
to be simple constants:

g3i
~r !52lR ,

~B7!
g3i

~v !52lV .

The first equation, involving positions, is

s3i~ t1dt !5s3i~ t !1 ṡ3i~ t !1 s̈3i~ t !2
~dt !2

2mi
lR . ~B8!

lR has to be chosen in order to satisfy the position constr
at time t1dt:

(
i 51

N S s3i~ t !1 ṡ3i~ t !1 s̈3i~ t !2
~dt !2

2mi
lRD50,

lR52mi

(
i 51

N

@s3i~ t !1 ṡ3i~ t !1 s̈3i~ t !#

N ~dt !2 . ~B9!

Therefore the former equation becomes

s3i~ t1dt !5s3i~ t !1 ṡ3i~ t !1 s̈3i~ t !

2

(
j 51

N

@s3 j~ t !1 ṡ3 j~ t !1 s̈3 j~ t !#

N
. ~B10!
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The second equation, involving velocities, is

ṡ3i~ t1dt !5 ṡ3i~ t !1 s̈3i~ t !2
~dt !2

2mi
lR1 s̈3i~ t1dt !2

~dt !2

2mi
lV . ~B11!

lV must satisfy

(
i 51

N S ṡ3i~ t !1 s̈3i~ t !2

(
j 51

N

@s3 j~ t !1 ṡ3 j~ t !1 s̈3 j~ t !#

N
1 s̈3i~ t1dt !2

~dt !2

2mi
lV
D 50,

~B12!

lV52mi

(
i 51

N

@ s̈3i~ t1dt !2s3i~ t !#

N~dt !2

and the equation becomes

ṡ3i~ t1dt !5 ṡ3i~ t !1 s̈3i~ t !2

(
i 51

N

@s3i~ t !1 ṡ3i~ t !1 s̈3i~ t !#

N
1 s̈3i~ t1dt !2

(
j 51

N

@ s̈3 j~ t1dt !2s3 j~ t !#

N
. ~B13!
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