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Variable-curvature-slab molecular dynamics as a method to determine surface stress
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A thin plate or slab, prepared so that opposite faces have different surface stresses, will bend as a result of
the stress difference. We have developed a classical molecular-dyn@tiigsformulation whergsimilar in
spirit to constant-pressure MBhe curvature of the slab enters as an additional dynamical degree of freedom.
The equations of motion of the atoms have been modified according to a variable metric, and an additional
equation of motion for the curvature is introduced. We demonstrate the method to Au surfaces, both clean and
covered with Pb adsorbates, using many-body glue potentials. Applications to stepped surfaces, deconstruction,
and other surface phenomena are under sti$y163-182809)10311-4

[. INTRODUCTION vature of a sample as an extra degree of freedom has not
been available so far, although this would seem a potentially
There has recently been a reevaluation of the role of sudseful tool. The situations in which surface stress varies
face stress, as an important microscopic indicator of the stathen physical phenomena occur at interfaces are numerous:
of a crystal surface. Recent experimental and theoretical agdsorbates, reconstructions, steps, and phase transitions can
pects of issues related to surface stress were reviewed ange surface stress dramatically. All of these phenomena
Ibach? are, under some conditions, well described by suitable
A good example of connection between microscopic andnolecular-dynamics (MD)  simulations. A simulation
macroscopic quantities is the determination of surface stredgethod, where the slab curvature can be measured as a func-
from the measurement of macroscopic deformations of a thiffon of adsorbate coverage, should represent a powerful con-

plate-shaped sample. According to elasticity thekifyg thin nection between important microscopic and macroscopic

plate presents a stress difference between its two surfaces dgantities. _ _
will bend in order to minimize its total free energy. In the  In this work we describe and demonstrate a scheme which
limit of small deformations, a simple formula connects theiS meant to fill this gap. Itis a classical MD method, but it
stress difference, thickness, curvature, and elastic properti€@uld in principle be extended b initio MD calculations.

of the sample. Several methods have been recently used toiS based on extending the usual concept of variable cell
measure the bending. They are mainly optical or based olID. Ppioneered by Anderseh and by Parrinello and
scanning tunneling microscogTM).! Flinn, Gardner, and Rahmanl, to a slab with variable curvature. In our formula-
Nix® discussed a laser scanning technique to measure tiion the curvature is a single, global, Lagrangian degree of
stress-induced curvature, and presented experimental resuff§édom. Surface stress can be extracted as a direct result of
for stress in Al-Si films as a function of temperature. Mar-the calculation through elasticity equatidiisyhich will be

tinez, Augustyniak, and Golovcherfkaneasured surface- described below. _ _

stress changes resulting from monolayer and submonolayer The outline of the work is as follows: Sec. Il will present
coverages of gallium on @ill). They used local-density- the the_ory and geometric considerations underlying our
approximation calculations of stress in the Ga-coveredimulation. In Sec. IV, the phenomenology of a bent plate is
Si(111) for a determination of stress in the(SL1) 7x7 and  reviewed in order to extract the pertinent equations. In Sec.
Si(Ga superlattice surfaces. Stress variations associated with We present some initial applications of the method. Fi-
deconstruction of A(l11) and Au100 were obtained by nally, Sec. VI is devoted to a discussion and conclusions.
STM.>® Moreover, the influence of adsorbates on surface

stress has been exploited using the sample bending method Il THEORY
for C/Ni(111),” S/Ni(111),% Co/Ni(100,° K/Pt(111),° '
Co/P{111),'! and Ag/Pt111).2 In ordinary variable-cell MD, the coordinates of an atom

An atomistic simulation method which controls the cur- can be written as
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1
k= R . 3

S3=0

In this way, if L, is the linear dimensioriarg along the
bending direction at=0, the total bending angle is given by
Om=Ly k. Whereas in the Parrinello-Rahman approach the

whole matrixH is treated as a set of additional degrees of

freedom, in our cas# is completely determined by the
single parametek which we will include in the Lagrangian

. . as an extra degree of freedom.
R A. Lagrangian
" . The next step is the construction of a Lagrangian. The
. . general, classical Lagrangian folNaparticle interacting sys-
. tem is

LM L=T-V=32 mr[P-V(r;...ry). (@

. . |

™~
. In Cartesian coordinates=H-5 and [r[?’=s'Gs, where

G=HTH is the metric tensol* We now define an extended

FIG. 1. The geometry of a bent plate with curvilinear coordi-| 54rangianl by including an artificial “curvature kinetic
nates;s; ands, lie in the neutral plandshown as lighter in the energy”

figure) whereass; is vertical.R is the curvature radius measured at

s3=0, and@,, is the bending angle. ~ .
3 M g ang L=L+iW I, )

ri=H-s, 1 whereW acts effectively as a “curvature inertial mass.” The
velocity of a particle can be written as
wherer; is the position vector of thigh particle,s are scaled
coordinatesg¢ ,j=1, . . .,3 areheld between-0.5 and 0.5,

andH is a matrix describing the space metric inside the cell.
Supposing, as was done by Parrinello and Rahtf&mt the o
cell can vary in volume and shape, these variations can b@l: explicitly,

accounted for by:|, whose elements can be treated as an d
extra set of dynamical degrees of freedom. Our aim is to 'ra:_(HaB sﬁ):HaB(s K) sP+ Haﬁéﬁ
extend this kind of approach to the case of a bending plate, dt

through a different choice of the metrit.

Let us start with a slab-shaped system, with two surfaces =
and lateral ,y) periodic boundary condition®BC's). Sup-
pose we bend the slab cylindrically through a radiuésee
Fig. . A convenient choice of the transformation matrix,
convenient to our problem, could be

. d -
r—a(Hs), (6)

Map,, Mg
Js? J

SP+H, 88 (7)

The third term is the usual time derivative for the constant-
cell motion, whereas the second term contains a time deriva-
tive of the extra degree of freedoka As in the Parrinello-
. Rahman formulation? we will omit this term from the
r=H(sR)-s, (2)  definition of the particle velocities. The kinetic energy of the
- system will therefore depend dnonly through the curvature
whereH, depending parametrically on the radius of curva-kinetic energy
ture R, is no longer uniform(as in the Parrinello-Rahman
schemg, but rather depends on the pomtThis dependence T=1wie, (8)
is what originates the curvature. In Fig. 1, for examgg,
goes from—0.5 to 0.5 along, which we choose to be un- whose interpretation is discussed in Appendix A. Parrinello
affected by curvatures, goes from—0.5 to 0.5 along direc- and Rahmal and Andersef® using a similar approach,
tion y, which follows the curvature; ans; spans the sample showed that the equations of motion derived from their La-
from its inner to its outer surface. grangian satisfy important requisites, leading in particular to
From now on, we will use as reference surface an ideatorrect thermodynamic averagdgsot dependent on the
“neutral cylinder” inside the slab, defined Igg=0. In par-  choice ofW), and to a correct balance between external and
ticular, we define the curvatuteas the inverse radius of the internal stress.
neutral cylinder: One can then cast E{7) as
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f9Ha3 B. Construction of the H matrix

as”

rf=—"sYsP+H,, 5=

oH . .
49 oo B B . - .
B $7HHop|S"=MpS7 To obtain an explicit form for Eq42) and(13), we write
(9) the expression for the Cartesian coordinates in a box with
o ) linear dimensiongatk=0) L, L, andL,:
The kinetic energy of a particle then becomes

. . . A X=S]_LX1
Ty=3mr[?=3m *N,zsP=3ms'Ns, (10
whereN=MT-M. -
. . =(—+
We need now to express the potential energy in terms of Y=k S3LZ)Sm0'

the scaled coordinates and of the metric. In the following, we

will use mostly potentialssuch as pairwise potentials or 1

many-body potentials of the “glue” forjnwhich only de- z=s3L,cos0+ E(cosa— 1), (19
pend on pair distances:

B o2l where 6 is the angle running along the direction, and
V=VAln=rilFi#isii=1,. .. ND. QD Ty n g 612 (see Fig. 1 With the help of simple trigo-
It is therefore necessary to exprefgs—r > in the new nometric formulas, we can expregsn terms ofs, andk:
coordinates® Denoting the metric tensor a(k,s) P

0 Ly

—rP=r2=4"¢ T3 s
Iri=ril —r G(k’S)S‘JrSi G(ks)s from which Egs.(14) become
—25 HT(ks) Hks)s. (12
X:S]_LX,
We now have all the ingredients needed to write tine 3
+1 Lagrange equations

y=4s;

! + 54l )sm(k Ly/4)V1—4(s,)?sinf(k Ly/4),

k
19 N.
Wk+ﬁ—22 ms &ks 0, )
z=53L[1-8(sy)?sinf(k L,/4)]— E[8 (s2)?sinf(k Ly/4)].
JvV 1 .. dN. . : (16)
mN(K, s)s+—$—§m|s£a+m|N(k, s)s=0, (13
By inspection, we see that a possible choice ffbris (u
I=1,...N. =L/4)
L, 0 0
sm(k u) . -
- 4 1—4(s,)?sir(ku)  4s,L,sin(k u)y1—4(s,)?sir(ku
A(sy.K) = N (S2)° sint(k u) oL, sin(k u)y/ (s2) (ku) _ 17
irf(k
0 —sz—s' (k ul LL1—8(sy)?sirP(k u)]
|
It can be easily shown that E(R) is verified and that, in the L2 0 0
limit of zero curvature, lim_q I:|( S;,kK)=diag Ly,Ly,L,]; 16(k L, S5+ 1)2 sir?(k u)
that is, the Cartesiahl matrix is recovered. Moreover, the Nap=| © [1—4(s,)?sir(k u)]k? °] 18
same equations are exact in the limit of finite, fixed curva- 0 0 L2

z
ture.

The explicit form ofN can be obtained by using Eq4.0) N is diagonal as a consequence of the chosen cylindrical
and(17): geometry.
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IIl. CONSTRAINED MOLECULAR DYNAMICS AND PBC IV. PHENOMENOLOGY OF A BENT PLATE

The Lagrange equations are integrated using numerical Before moving on to the actual implementation, it is use-
methods. In particular, we will use a second-order velocityful to recall some known results concerning the phenomenol-
Verlet algorithm, which is at the same time well tested andogy, largely contained in the review by Ibatfthe definition
simple. We found some problems due to the instability of theof surface stress, according to Gibiisas the “reversible
center of mass of the sample during the bending, which wereork per unit area required to stretch a surface elastically,”
overcome and will be commented just below. points out the difference of this physical quantity with re-

Our starting geometry is an-layer crystalline slab with spect to the surface free energy, defined as the “reversible
PBC's along thex andy directions. The periodicity is ac- work per unit area to create a surface.” Stretchingodid
counted for by the scaled coordinagsands,. The choice surface implies modifying the substrate, whereas a simple
of coordinates we have adopted requires a slightly differenincrease of area does not: whence the difference.
set of PBC’s with respect to the usual slab simulations. Let us start with the bulk stress tensor, whose elemgnt
Along thex direction, nothing changes: the minimum imagesis defined as théth component of the force per unit area
of a particle with scaled coordinate equal te; have simply  acting on the sidéwith the normal to the surface parallel to
the coordinatesg;=1). Alongy (the bending directionthe  the jth direction of a small cube in the sample. The corre-
requirement is that the angke of the particle should trans- sponding surface stress tensor can be defined as the deviation
form into (6= 6y,). The scaled coordinate of the minimum of this quantity with respect to the bulk value, integrated
image is then along the surface normal:

'y Oy N o
s(ZF)=(200§T—1)szicosT\/1—4(32)23|n27. Ti(]_s>:f7 dzf rj(2)— 7). 22)
(19)

When a particle is folded into its image, we also require thafThe integral gives a nonzero contribution only where the
its velocity should remain unchanged in modulus, its direcvalue of the stress deviates from the bulk value, i.e., at the
tion following the curvature of the sample. Since the compo-surface.
nentss;, ands; do not change, the conservation of the ve-  Let us consider a rectangular-shaped sheet of thickiness
locity modulus is sufficient to determiréF): delimited _by two |d_e_nt|ca[100) SL_Jrfaces. For our purposes
the following simplified construction can be put to use with-

out loss of generality.Schematize the plate at zero curvature
as a “substrate” of thicknessand lengthL alongx,, plus
two films adsorbed on it: filmA on the lower part of the
plate, and filmB on the upper part. Ldt, the unconstrained

P length (alongx,) of film A, andLg the length of filmB. Let
\/1_4(5(2F))25in2_M Lg>L andL,<L. In order to match the length of the

4 substrate, the film must be stretchébmpressedby an

sEN(sk®)s® =sN(sk) s, (20

which leads to

N2o(S)

sy =5, TSN (2D amountAL,=L—L,, with I=A,B. The deformed fim at-
Nax(s™) \/1_4 (s )Zsinze—M tached to an undeformed substrate does not represent a con-
2 4 dition of minimum free energy; the free energy of the entire
) . . __ . system can be lowered by deforming the substrate slightly so
From the computational point of view, the quantities in-as to reduce the deformation of the film. This deformation
volved in these equations are already available, since theyas two components: an overall compression of the substrate,
are also needed for the force calculation. Therefore, the imgnd a bending of the substrate.
pact of the PBC calculation on the total simulation time is |t can be showh that the neutral planéi.e., the plane
negligible. along which the strain is zer@an be set approximately in
For k#0 the dynamics generated by E@.3) does not the middle of the sheet, and the deviations from this approxi-
conserve the total linear momentum along the radial direCmation are negligible for most cases. In the following, we
tion s3, so that a vertical drift arises as a consequence ofyill extract the conditions for the minimum free energy of
bending. To prevent such drift, we resort to a constrainedhe sheet, allowed to bend along a single direction. For sim-
MD scheme. Constrained MD is a well-known technique,piicity, we will choose this to be th¢100] direction (of
and we adopted the method used by Ryckeert, Ciccotti, angourse similar formulas can be derived for any other choice
Berendsel and Anderself for simulations of rigid mol-  |f we denote the coordinates along the nonbending direction,
ecules. The main point to be kept in mind is that constraintshe bending direction and the normal to the surface with
must be verifiedexactlyat every time step, otherwise insta- s, | s, ands;, respectively, the situation is similar to the
bilities will occur. Technical details on the practical imple- gne depicted in Fig. 1. Each element of the sample is subject
mentation of this constraint are given in Appendix B. to a straine,(x3). The change in free energy per unit area

The general MD protocol we apply consists of either con-associated to this strain, of an element at heggis
stant energy runs or constant temperature fupsto 300 K

obtained by velocity rescaling, followed by quenchingTto
=0. Occasionally, we also introduced a damping term in the U(ss)= J822<53) T S3)de 5. 23
curvature dynamics.
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The total free energy change of the bent sampler unit
area is

T2 e2AS3)
U:f dssf() ToA(S3)de ;. (24

—t/2

We can separate this integral into two surface parts and

bulk part:
U=utH4+uts 4y, (259
+1/2 £9o(S3)
U<s+):f dssf “ 3[722(53)—7(22)](31822,
+(t2)—a 0
(25b)
B —(t/2)+8 £22(S3)
ue ):f—t/2 dSsJO [7'22(53)—7'(2%)](18221
(250
+t/2 £25(S3)
U= [ s, [ Bisder (250
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Minimizing F with respect to the curvature, one obtains the
equation relating the equilibrium curvatuke, to the differ-
ence in surface stress between upper and lower surfaces:

Y
A= — —— K, 12,

a 6(1—1?) &2

whereY is the Young's modulusy the Poisson’s number,
kv the curvature, and the thickness of the sample. This
relation is known as Stoney’s equation, and was first derived
in 1909 (except for the biaxial nature of the str&s8. We
stress that this formula is valid for a uniaxial bending,
whereas for an isotropic bending in two directions the factor
(1—v?) should be replaced by (1v). Another limit of va-
lidity is that the plate must be infinitely large, relative to its
thickness. In other words, there will be finite thickness cor-
rections in (/L) whereL is the lateral X,y) size. We did not
make any attempt to find these corrections so far.

In the remainder of this section we present the simple
derivation of the elastic constants two high symmetry sur-
faces: (100 bent along[011], and(111). We start from the
elastic stiffnesse€;; , which are related to the compliances

The first two terms lead to the dgfinition of surface stres_s inaij by the equation%‘?
the Gibbs sense, and can be written with a good approxima-

tion:

U U =75 (H) — ()]

kt
?) : (26)

wherex k t/2 are the strains at the upper and lower surfaces.

B CutCypp
011= — )
(C11—C1)(C11+2Cyp)

R Ciz
12 (C11—C1p) (Cy+2CyY)°

(33

The bulk term can be expressed using the elastic constants
of the crystal. Hooke’s law relates strain and bulk stress ten- 1

sor components in the following ways:
€11= 011711t 012 T2,

(27)

€20= 01T 011 To).

In our case,e;1=0, therefore, after introducing Young’s

modulusY and Poisson’s rati@,

1
Y: _l
011
(28
012
yv=——),
011
one obtaink
1—12
822:T7'22- (29

If we substitute Eq(29) into Eq. (25d we obtain, after in-
tegration,

U(b):iLkzﬁ,

24 1,2 (30
the total free energy of the bent plate is then:
kt), 1
—19 Ay — - 243
F=[r5(+)— 75 )]( 2)+241—V2k . (3D

0'44:C—44.

If the uniaxial bending is not along[d00] direction and for
a surface orientation other thgh00), the compliancesr;;
and o4, which appear in Eq(28) have to be replaced by
effective elastic constants, which in tH&00 case, with
bending along 4011] direction, have the forni$

" _1 + +l )
0117011~ 3(011t 0101+ 5044),

(34)
01,= 012t 3 (01t o1t 304),
whereas in th€111) case have the forms
0= 01— 3( 01t o1t 3049,
(39

ro_ 1 1
1= 012 5( 011t 01t 5044).

V. APPLICATION TO METAL SURFACES
A. Implementation

The first goal of the variable-curvature MD simulation is
to obtain an equilibrium value for the curvature in order to
extract the surface stress difference, according to(B®).

We can then compare the outcome with the surface stress
difference calculated independently using Kirkwood-Buff
formula®? and assess the success of the method. We will also
verify the validity of the approach by analyzing the behavior
of the curvature as a function of the slab thickness.
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We will present two different exemplifications. Far from

being exhaustive, these results are only meant to show the V=%i21 O(r ij)+2i U (ny),
feasibility of the method in view of later applications to sur- ’ (36)
face physics. ni:; p(ri),

First we simulated several Au slabs wit(#0 orienta-

tion and different types of reconstruction on the two Sideswhereni is a generalized atomic coordinatish(r), U (n),

This test can show the sensitivity of the _method: differencesind p(r) are empirically constructed, by fitting several prop-
of the order of 5 meV/A can be appreciated. Next we ex- erties of the system. Well-tested glue potentials are

amined the effect of isotropic or anisotropic adsorbates omvailablé* for Au (Ref. 23 and Pt?® This scheme can be

the surface stress, as exemplified by PRA&A0). extended to binary systems by introducing a mixed two-body
All simulations were performed using many-body poten-potential® ,g(r), and assuming,; to be a linear superposi-
tials of the glue typé® They have the general forms tion of density contributiongp, and pg supplied, respec-

tively, by A- andB-type atoms to sité (Ref. 26:

vl
"2

> (JE <I>AA<ri,->+j§B D pp( 1))

ieA eA

"‘AE (E ‘DAB(rij)"',E Dgp(rij)
ieB \jeA jeB

+2 Uam)+ 2, Ug(n), (37)

with ered 11x3, 11x4, 11X5, ..., obtained by adding011]
rows. The lowest energy surface in the glue model is 34
= Wapa(rij)+ >, Weps(rij), (38) %57 in the experiment is close to 28, but all M x5
fea B surfaces differ very slightly in free enerd§-3! The essential

where W, and Wy are suitable weights. In our casé, point here will be that surfaces which differ only very little
— 1045 gnOpr:BO-957- ' A" in energy, for example X5 (102.3 meV/&) and 1x 12

(103.2 meV/A?) may differ enormously in surface stress. A
typical snapshot of the simulation is shown in Fig. 2.
Figure 3 shows the time evolution of the curvatlydor
two different values of the inertial parameteé/. Starting
We prepared a family of A00 slabs composed by from an arbitrary value, the slab curvature reaches its equi-
about 600 atoms per layet {=28.78 A, Ly=172.69 Ay, librium value very rapidly. We verified that, as it should be
and different thicknesses of 8, 12, 16, and 20 layers, wittand as can be seen from the figure, the value of the Mass
[011] as the bending direction. In order to extract numericalis irrelevant in determining the equilibrium value kf The
values for the surface stress from Eg82), we need the cor- choice ofW does not influence equilibrium properties, which
rect elastic constants for this case. For the case of(au in classical mechanics do not depend on the mass of con-
described by the glue modelthe elastic stiffnesses have stituents.

B. A clean surface: Change of surface stress with
reconstruction

been calculateé® giving Concerning dynamics, the value of the inertial parameter
. W which yields the fastest convergence is in general one,
C1,=2.203< 10" Nfcn?, which gives rise to an oscillation period fkrwhich is clos-
est to the main physical oscillation mode of the system, since
C1,=1.603x 107 N/cn?, (39) Phy y

in that case the coupling of the two systems is optimal. The

_ frequency of any particular normal mode for a plate from
Cas=0.600< 10" Nicn. theory of elasticity’? is
With these values, using Eq&28) and (34), the Young's
modulus and the Poisson’s ratio for @00, with bending (1x10)
along [011], are Y(300=1.322<10" N/cn? and v
=0.1022.

Both (100 surfaces were prepared in the reconstructed $ssses
state, characterized by a close-packed triangular overlayer on
a square substrate. We chose a fixed reconstructed 1
structure(six [011] rows on top of five for the reference
(lower) surface of the plate, and we changed the nature of the

upper surface, ranging from3 (i.e., four surface rows FIG. 2. A typical snapshot of the simulation, with a positive
over three substrate rows, a “compressive” situalith a  yajue of the curvature. The top surface is & 10 surface, and the
1X20 structure (a “tensile” situation, touching the 1 |ower surface a X5 surface, both hexagonally reconstructed
X4, 1x5, 1X6, 1X10, 1x12, and IX15 structures. In  Au(100. The corrugations of both surfaces are evident. This par-
the 1X5 case no bending was expected or observed, sincgular sample will invert its curvature during the simulation, and
the surfaces on the two sides were identical. We also considre equilibrium value ok will become negative.

) (o (¢

1x5)
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- -Ww=10% XLZZ -¥ Kirkwood

-5 Bent plate
0.5 — W=0.7x104 ><L22 150  (1X2Q0x15) -A- Kirkwood, extra row alongx 71.82
{1 ﬂ(ilﬂ 0 -5 Bent plate, extra row alongx
of - " P 100 (11x29) 1.21
B h (11x15)
< 05 H sof  (11x12) 060 I
“.(’3 : (\I {11x10) °
T Ir ! = o} 0 2
g £ ®
2 15F VoL = 50t 1-060 3
1 g I & >
S 2t Vi ‘." 100 {121 3
© [OY T, (1x5) = 203.12 meV/AY (13)
2.5 -150 | (11x4) 1-1.82
-3 . . : : -200 : : - : - . : -2.42
0 5000 10000 15000 20000 08 09 09 1 105 11 1.15
Time steps (2.8x105 s) Number of rows along y (upper vs. lower face)
FIG. 3. Time evolution of the curvatutefor two different val- FIG. 4. Comparison between variable curvature simulations and

ues of the “mass™W. The faster casé&ontinuous lingis close to  Kirkwood-Buff formula, with different structures at the upper sur-
the optimal coupling with the atomic degrees of freedom, and a bedce ©of the sample. The lower surface is &3 surface in every
with the normal modes of the plate appears. case. Right ordinate axis: equilibrium value for the curvature. Left
ordinate axis: corresponding difference in surface stress, according
to Stoney’s equation. In order to obtain the absolute value of the
surface stress componeny, of the upper surface, the reference 1
t?aa’, (400 x5 result (203.12 meV/A has to be added.

C. Change of surface stress with adsorption

wherep is the mass density of the systeat,is comparable The surface stress is obviously a strong function of ad-

with L, XL, ande (dimensionlessis the solution of certain sorption. As an example, here we will consider Pb on Au.

transcendental equatiokis is of the order of 10 for the low- Underpotential depositidf has recently been used together

est modes The lowest frequencies for the case shown inwith STM techniques to exploit the formation of two-

Fig. 3 are close to 0.1 GHz. dimensional phases of Pb on a substrate of18§ and
Figure 3 shows the comparison between a valua\of Au(100. Through different electrochemical potentials, one

leading to a low frequency fdt (dashed lingand a value of can obtain different phases, such as Au(06§2

W leading to a frequency close to the optimal doentinu-  x2) Pb, AU100 c(3y2x2)R45° Pb, and A(100

ous line. A beat with the normal modes of the plate appearsc(6X2) Pb. In particular, a close-packed layer of lead shows

in the latter case. The oscillating frequency fors, in the  a slight contraction in both011] directions of the quadratic

weak coupling limit, proportional taV/2, substrate lattice; the final structure is pinned to the substrate
In the 1X3 and 1X4 cases, the equilibriurk was posi- lattice at equivalent adsorption sites, leading to an Au(100)

tive, whereas in the other cases it was negative. The simula- c(6X 2) moire superstructure.

tion was performed at low temperatuffeom a few degrees Using the potential in Eq(37), we found precisely this

to 300 K. The difference in surface stress between uppec(6X2) superstructure as a local-energy minimum, through

and lower surface has been extracted using (B8). The quenching of a sample prepared with a perfect substrate of

surface stress of the two isolated surfaces has been indepeku(100), and a triangular overlayer of Pb with the same

dently obtained from MD forces using the standarddensity of a bulk(112) layer. In the optimized structure, the

Kirkwood-Buff formula?? The comparison of the stress dif- 6x 2 pattern is evidenfFig. 6a)]. Domain walls appear as

ferences is excellent, as can be seen from Fig. 4, showing

that the variable curvature method works. The only deviation 0r -0

is for 1x 3, and clearly attributable to excessive curvature. % (1x10)/(1x5)

The calculation is repeated with a variety of different unit % 05F
cells in the top surface; by addind @11] row every ten, we o af {10 ’g
obtain 11X3, 11X 4, 11X5,... unit cells instead of 1 2 o
X3, 1X4,1X5,.... Thelower 1X5 surface of the slab g -15 §
was left unchanged. The stress variations are clearly very g 5l p2 oo =
large, both relative to the basic stress of 1 2 T(1X10) - T,,(1x5) = 96.32 meV/AT 170 &
X5 (203.12 meV/R) and to the surface energy 2 2sf
(~100 meV/&). We judge that the smallest surface stress J
difference detectable with our kind of simulation is of the B 10 12 14 16 18 2o ¥

order of 10 meV/A. This sensitivity should be very impor-
tant in the study of phase transitions.

We have also verified the linear dependence of the curva- FIG. 5. Dependence of the curvature upon thickness in the case
ture from the inverse square of the thickness predicted by E®f a (1x 10)/(1x5) surface. The inverse square dependence pre-
(32). Figure 5 shows the fit with 8, 12, 16, and 20 layers, anddicted by Stoney’s equation is recovered, and the stress difference
the agreement is rather good. is extracted from the fit.

Thickness (layers)
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FIG. 6. Different structures for the Pb overlaygray and black atom®ver a square AW00 substratéwhite atoms. (a) 6X 2 structure
with domain walls. Black atoms are higher; two MD boxes are shown atofiy 6X 2 structure without domain walléc) Square adlayer

with vacancies.

the result of overlayer contraction. We were able to obtain aonsidering studies of a variety of phenomena, including sur-

face phase transitions, using this approach.

Deeper energy

perfect 6x2 pattern[Fig. 6(b)] by starting from an initial

configuration with a denser overlayer.

minima are obtained by the simple commensurate square
overlayers with vacancies, as in the case shown in K. 6
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which is

with @00 (1% 4) as the

147.52 meV/R). For c(6x2)
anisotropic, two different simulations were carried out in or-INFM through PRA LOTUS, and from MURST—"Progetti

der to access separatety; and 7,, (the adlayer was rotated di ricerca di rilevante interesse nazionale.”

of 90°, so as to keep,, as reference

square overlayer with vacancies

reference o

For a 6x2 structure with domain walls, we foung,,
88.10 meV/R (7,; was not measured in this casand

APPENDIX A: INTERPRETATION OF THE KINETIC

ENERGY OF THE CURVATURE

72.41 meV/K and 7,

38.52 meV/X. For the square structure with vacancies,

for the perfect 6<2 structurer;,

0 is forced to have length, during the
, the volumg€ of the sample is guaranteed

If the arc s;

40.34 meV/R. The stress anisotropy is whole simulation

we found 75,

and the effect of the domain walls is alsdo remain constant and equal ltqL L ,. This is easily seen

therefore large
remarkable.

by performing the integral in polar coordinates. The differ-

ence in surface area between upper and lower layer is of

course

VI. CONCLUSIONS
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In this work we have introduced a variable curvature slab
simulation method which represents a promising technique

to study properties of crystal surfaces,

(A1)

=L, L,Lk=0k.

LXLzaMAX

based on the

comparison with known results, reveal a good accuracy, in

stress differences. The first tests of the method

the range of 10 meV/A and easy applicability. We are now The relative time variation of this area is
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d/ AA VvV d _ The constraints forces, at each stage are approximated with
ail & =L ak: L,k. (A2) o where; &) =r,v, SO as to ensure that the ppsitions and
Xy the velocities, respectively, satisfy the constraints, and the
Therefore, the fictitious kinetic energy term is quantities at the various stages have to be corrected to keep
into account the constraints forces.
- 1 . 1fw\[d[aA\]? 1{w)\/d 2
T= EW k2:§ L2)ldl & ) 02 (a AA)) : 2. Bent plate case
z
(A3) In the case of varying curvature molecular dynamics, the

. L . , bending leads to a drift toward the center of curvature of the

This resul'g is simple but important because it a”O\_NS dcenter of mass. In order to fix tlig component of the center
connection with Andersen molecular dynarrﬂésvhereas_ln of mass in the origin, the only constraint to be satisfied is
Andersen’s formulation the extra degree of freedom is th,ssming all the particles to have the same mass for sake of
volumeQ and the termi W Q2 is the kinetic energy tied to  simplicity)
volume variations, in this case there is a variation in the area
difference between the two faces of the sample. The analogy N
could be brought further, adding to our Lagrangian a term 0521 S5 =0, (BS)
—P k, which is the reversible work of a radial force decay-
ing as the square of the curvature radius, acting identicallyvheress; are the scaled coordinates in our curvilinear system
on all particles, whereas the termP () in Andersen’s for-  [in this appendixs, s, ands are normalized according to

mulation is the reversible work of the hydrostatic pressurezq. (B2)]. The time derivative of the constraint equation
during the variation of the cell volume. Such an externalgjyes a constraint on velocities:

force, acting as a torque, could be used to force the equilib-
rium curvature to a different value from the one suggested by o1 N
stress imbalance between the two surfaces. Applications of o=+ E S3=0. (B6)
this point are presently under study. =1
The Lagrangian must then be completed with a term
NRE[L S5+ Ay i s

Two different approximations to the constraint forces
1. Velocity Verlet algorithm as a predictor-corrector have to be chosen so that positions and velocities satisfy the
constraints exactly. In this particular case the forces turn out
to be simple constants:

APPENDIX B: CONSTRAINED DYNAMICS FOR FIXING
THE CENTER OF MASS

Following Ref. 34, it is possible to cast a particular veloc-
ity Verlet algorithm as a predictor-corrector algorithm. One
can start from n_ _
93’ = AR,

Fo(t+ ) =ro()+ry()+r5(1), w (B7)

(B1) O3 =~ Av.
ri(t+8t)=rq(t)+ry(t)+ry(t+6t),

where, as usual,

The first equation, involving positions, is

. . (8t)2
d"rg Sgi(t+ &):S3i(t)+s3i(t)+s3i(t)_W)\R- (B8)

. (B2) |
n
dt \r has to be chosen in order to satisfy the position constraint
This can be written as a two stages predictor-corrector, wittat timet+ 6t:
a force evaluation in between:

1
(0= (80"

N 2
. ) (8t)
Fo(t+ 8t/2) =ro(t) +ry(t) +r5(1), izl Sai(t) +83i(1) + S5i(t) — 5 ——Ag| =0,
rl(t+5t/2)=l’l(t)+l’2(t), N
(B3) : .
ro(t+ 8t)=ro(t+ 6t/2), 21 [S3i(t) +s3i(1) +53i(t)]
F(t+ St =ry(t+ 8t/2) +1,(t+ o), Ap=2m; N (oD)2 - (B9

wherer,(t+ 6t) is obtained by the equations of motion. In T
this case the predicted values for the positions coincide with
the corrected ones, whereas the velocities are corrdeted _ - o
second-order, or three-value, predictor-corrector S3i(t+ o) =s3i(1) + S5(t) + s5(1)
When constraints are present, the forces acting oritthe N _ )
particle can be written as > [S3j(t) +S5j(t) +S5;(1) ]
j=1
Fi=fat Ga~Ta+ g (B4) B N - (810

herefore the former equation becomes
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The second equation, involving velocities, is
- - . (8t)? . (8t)?
S3i(t+ &):S3i(t)+53i(t)— Z—rni)\R+ Sgi(t+ &)— 2mi )\V . (Bll)
Ay must satisfy
N
N 2, [5j(t)+55i(1) (1)) (o1)?
2, | sa(h)+sa(t)— N 851480 = S | =0,
y (B12)
2, [Sa(t+ o) —s5i(0)]
Ay=2m,
and the equation becomes
N N
2, [5ai(1)+85i(1) +85i(1)] ;1 [Saj(t+ ) = sgj(1)]
S3i(t+ 6t) = s3i(t) +s3i(t) — +Sgi(t+ ot) — (B13)

N
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