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X-ray reflection by rough multilayer gratings: Dynamical and kinematical scattering
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X-ray reflectivity by rough multilayer gratings is treated in the framework of kinematical and dynamical
theories. The kinematical scattering integral is calculated without the restrictions of the Fraunhofer approxi-
mation. The dynamical theory is presented by the matrix modal eigenvalue approach. In both theories we
generalize the Fresnel reflection and transmission coefficients for the case of grating diffraction. We obtain one
unique formalism which permits us to compare the results of both theories directly. Furthermore, interface and
sidewall roughnesses are taken into account. The dynamical approach allows us to explain the experimental
results obtained from a partially etched GaAs/InP periodic multilayer grgtB@163-18209)05308-4

I. INTRODUCTION stricted on samples with a size smaller than the first Fresnel
zone. This is in general not fulfilled bifaterally extended
Simple and multilayer gratingdMLG’s) of mesoscopic multilayers.
scale have achieved scientific and practical applications in The surface roughness of simple gratings was treated by
optical and electronic devices. X-ray scattering method§olanet al.* averaging the Rayleigh-Mayster coefficients. A
were successfully employed for the nondestructive charactedamping factor similar to the Net-Croce factof of rough
ization of such laterally patterned arrays. High-resolutionplanar surfaces has been found. In order to explain the
x-ray diffraction is mostly employed for the investigation of diminished efficiency of MLG’s, a damping factor has been
epitaxial gratings. The method is simultaneously sensitive tontroduced phenomenologically in a dynamical matrix
the perfection of the grating shape and to the strain state imethod'*
the layers. This is an advantage on the one hand, butin many |n the present paper we introduce interface roughness as
cases it is difficult to distinguish between both structural in-well as defects of the grating shape directly in the theoretical
fluences on the diffraction pattern. . framework of the kinematical and dynamical approaches,
~ X-ray reflection(XRR) allows one to characterize crystal- gnd apply them to XRR of semiconductor multilayer gratings
line, amorphous, and polycrystalline gratings, since it invesypart ). The dynamical theory provides a rigorous but nu-
tigates 't'he dlstrlbutlon' of the mean electron density. Thus 'Fnerically expensive treatment. The kinematical theory is
is sensitive to the grating shape, and would also allow one t§.,ngparent, and supports the intuitive interpretation. That is
detsrnjlned the qughty of fche interfaces. . why we develop in a following papépart Il) semidynamical
. ntil now, theories OT different levels of cqmplex_|ty were pproximations with the aim to be sufficiently precised
involved in the calculations of the reflected intensity, base . . . L
on fully dynamical and simple kinematical approaches. Dy- ransparent tq explain the gssenual ex.penmental f'r.‘d'”gs- In
namical approaches from MLG’s have been studied by dif_or(jer to prov[de an effec.tlve comparison, we derlvgd one
ferent methods(1) A rigorous vector theoryor diffraction unigue formahsm for all different approaches. In partlcular,
gratings was developed by Maystsithin the framework of W€ ger_1er_allzed the Frgsnel coefficients of reflecjuon e_md
classical optics. An integral equation from this work Wastransml_ssmn by planar interfaces for the case of diffraction
used by Tolan and co-workéré to calculate the x-ray scat- Py multilayered gratings.
tering by a trapezoidal surface gratirf@) Two other meth- Mainly short-period MLG's (lateral grating periodd
ods are based onmatrix formalism:thedifferential methoti =1 um) for electronic applications are concerned. We use
and themodal method=® In the modal method the wave the coplanar scattering geometry for wavelengths of about
equation is transformed into a transcendental dispersion~1 A. Finally, we present experimental results for XRR
equation for the wave-vector components of the diffractecby epitaxial multilayered gratingartially etched GaAs/InP
waves®’ or into an eigenvalue probleffor etched grating8,  periodic multilayer gratingsand apply our theoretical mod-
for planar mirrors modulated with a transverse acoustiels successfully to fit the experimental curves.
wave)). The modal and differential methods have been com- The paper is organized as follows. In Sec. Il we introduce
pared for the calculation of multilayer grating efficiencies. the common notation of the variables and of the geometrical
The kinematical approach is equivalent to the first Bornparameters describing the multilayer grating. Sections Ill and
approximationt’ The scattering integral is always calculated IV cover two treatments: the kinematical and dynamical ap-
using the Fraunhofer approximatiofi.? Consequently, the proaches. In both these sections we start with the reflection
amplitude of the scattered wave is proportional to the sampl&éom perfect MLG’s. Afterwards we consider real structural
size, similar to conventional kinematical x-ray diffraction by effects (the roughness of the horizontal interfaces, and de-
small crystals. Thus the Fraunhofer approximation is refects of the sidewalls of the grating wipe3hen we compare
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FIG. 1. Schematic representation of the reflection by a
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FIG. 3. Reciprocal spaces of a MLG are grating truncation rods
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multilayer grating: the diffracted wave field above the grating con-distributed equidistantly at positiorts= (27/d)m. Only the part

sists of a fan of diffracted-reflected waves.

above the limiting Ewald spherdeepresented by a thicker linés
accessible in a coplanar scattering experiment.

both theories and continue by discussing the experimental

results.

II. SAMPLE SETUP AND SCATTERING POTENTIAL

periodic arrangement of grating truncation r¢@'R’s); see
Fig. 3. They are perpendicular to the averaged surface nor-
mal. Their intersection with th®, axis is defined by. In all
homogeneous layers the Fourier componenth#D (non-

The x-ray reflection pattern depends on the distribution okzero GTR’$ vanish.

the refractive index in the sample. The refractive index is
related with the electrical susceptibility by=1—n2. In the
present paper we will usg instead ofn in accordance with

x-ray-diffraction theories. The scattering potential is for

small angles of incidence and exi(r) = — K2y(r).

The considered multilayer gratings consistNbf 1 layers
deposited on a substrata semi-infinite layer numbeN)
(Figs. 1 and 2 Thus there ardN horizontal interfaces, the
sample surface is a;, and the substrate interface iszt.
Laterally, each layey is a periodic repetition of two wires
al) andb with the susceptibilities¢!)) and x{’, respec-

lll. KINEMATICAL THEORY

In this section we formulate the kinematical theory of
reflection by multilayer gratings.

A. Reflection from perfect multilayer gratings

The propagation of the wave field in a grating is described
by the Maxwell equations. They reduce to the scalar wave
equation for x-ray reflection under grazing incidence,

tively. The grating setup can be approximated by a layerwise

rectangular profile with a layer thickness=z;,;—z; and
widthsd{’=10)d, d{’=(1-TW)d, and 0<TV<1. In the
direction{ the wires are limited by the sample si@ghich
we assume to be infiniteTwo layer types can occur in the
MLG. Layers Wher@((aj)aﬁ)(f)j) will be calledstructured lay-
ers(e.g., the etched layers where the matelia vacuum,
and those withy{) = x{) homogeneoukayers(e.g., the sub-
strate.

The characteristiccommon property of all layers is the
lateral periodicityd along the directiork. Thus the suscep-
tibility x(r) can be developed into a Fourier series

nxa=;xmaw& (1)

1 (de e
Xh(Z):af_d/ZdXX(X,Z)e . (2

with the reciprocal grating vectofs= (27/d)m of the grat-
ing orderm (integey. The reciprocal lattice of a grating is a

Zjp1 - .
da(”’ Nd dbm

FIG. 2. Drawing of a structured laygconsisting of two wires
andb.

(A+K2)E(r)=V(r)E(r). ®)
This can be solved by use of Green’s functioh& This
leads to an integral equation for the amplitudes of the scat-
tered waves. Restricting ourselves to the first iterative solu-
tion, we obtain the first Born approximation with the kine-
matical scattering integral
K2 ei|r—r’|K
am=Jd%4>xw>

——Eqe

iKr’
= S

4

4
This writes the amplitude of the scattered wdwgr) as a

single scattering process of the incident plane WEyeiK’/
by the susceptibility distributiory(r’).

In the conventional kinematical theory, the Fraunhofer ap-
proximation is used™2 This is adequate in small samples,
whose size is smaller than the first Fresnel zone. The ap-
proximation is inconvenient for laterally extended planar
multilayers. Moreover, it prevents a direct comparison of the
calculated amplitudes with the dynamical theory. Therefore,
we solve the integral without these restrictions using the sta-
tionary phase method.

We replace the susceptibility in E@4) by its Fourier
series(1). Then the scattered wave field is expressed by the
sum of particular amplitude&y(r,K)=Z2,En(r,K), which
are enumerated by the reciprocal grating vectorSince the
particular amplitudes at different positions differ only by a
phase term and the final goal is to find their intensities, it is
sufficient to calculate them at one point 0. It is
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K?2 ‘
EhEEh(rZO:K):EEOJ dzxn(2)e*?Up(z,K), (5)

which contains the integral

1.
Uh(Z,K)ZJ J dr“mel(Kh\\r\\+K|r|)_ (6)

Here we defined the lateral wave-vector componé&isby
the (two-dimensiongl Bragg law for gratings (grating
equation®)

Kni= Ky +h. (7)

The two-dimensional stationary phase metfddis em-
ployed to evaluate the integrbl,(z,K), which gives

2i

Un(z.K)= 1 e'knz, (8)

hz

with

Khz= VK*—[Kp[2. 9
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FIG. 4. Comparison of the dynamical and kinematical calcula-
tions of the specular reflectivity curvéthe main truncation rgdof
the discussed GaAs surface gratipgriod 8000 A, wire width to
grating periodl’=0.5, thickness 3000 A, wavelength 1.54.A

andH(z) is the Heavisiddstep function. Integral11) turns
into the sum over the contributions of the horizontal inter-
faces

N

Eq= on; e Qnet, (15)

The reflected wave field above the sample is a fan oHere we generalize thdanematical Fresnel reflection coeffi-

diffracted-reflected plane wavd§ig. 1), diffracted by the

reciprocal vectorh and reflected back toward the vacuum

with the wave vectofEgs.(7) and(9)]
Kn=Kn = KnzZ= (Kpx: Ky, = Kpp). (10
Their amplitudes on the sample surfdé&gs.(5) and(8)] are

2

i .
Eh:EO_J dZ)(h(Z)e_IQhZZ, (11)
2K},
where the vacuum wave-vector transfer is
Qh: Kh_ K (12)

Following the conditionk?—|Ky,|2>0 the kinematically
scattered wave field consists only of waves with €g (in

cient for a periodically structured interface j

i K2OR " xl)
hi —2KhQh;

In the case of specular reflectign=0, Qq,= — 2K,,) the
coefficient t¢ coincides perfectly with thekinematical
Fresnel reflection coefficierdf a planar interface between

two homogeneous layers with averaged susceptibilities

(16)

2
kin_ 2

2
J Qz
The specular curve of the grating is identical to that of an

associatedaterally averagedplanar multilayer. The kine-
matical theory neglects refraction as well as total external

(xd "= x¢"). (17)

T

contrary the dynamical theory considers also the evanescergflection and any case of extinction. As a consequence the

waves, i.e., the waves with imaginai§,,).
Finally, the reflection amplitude iR,=E, /E, and the

calculated reflectivityFig. 4) diverges toward small incident
angles, and does not reproduce the refraction shift observed

sample reflectivity defined as a ratio of the energy fluxes isin the experiments.

Khz

Rn=|Rn|? K
z

13

Reflection by a multilayer grating

Equation(11) allows us to calculate the XRR from any
grating structure characterized by any profile of the suscep-
tibility. Now let us consider a MLG whose Fourier coeffi-

cients of the susceptibility are constant in each Igydihen
it is

N
xh<z>=;1xw[H(z—zj)—H(z—sz)]. (14)

where the index goes over all layers of the multilaye(ﬂ)
is the Fourier coefficient of the susceptibility in the layer,

The generalized Fresnel coefficients of the nonspecular
(higher-ordey GTR’s h#0 are proportional to the contrast
between the Fourier coefficients of the susceptibilities of the
two subsequent layergef ~1— x{).

For GTR’s with x{’=0, the kinematical theory predicts
zero intensity; these GTR’s are kinematically forbidden.
Other\Nise,tﬁ"’j1 is inversely proportional to the vertical com-
ponents of the scattering vect@,, and of the diffracted
wave vectorK,,,. Figures 5 and 6 show the calculated inten-
sity profiles.

B. Kinematical reflection from rough multilayer gratings

In a multilayer grating we find the phenomena of interface
roughness between different layers similar to planar multi-
layers. Moreover, there occur defects of the grating shape
created during the etching proce$sg. 7).
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FIG. 5. Comparison of the kinematical and dynamical calcula- 5 6. Comparison of the kinematical and dynamical calcula-
tions of the grating truncation roet1 for the surface grating de- 0.« ot the GTR-3.

scribed in Fig. 4.
random quantity. This modifies the lateral Fourier coeffi-
The defects on the top of the grating and in the groove§ients of the susceptibilities _changing the r_eflection ampli-
can be interpreted as horizontal surface roughness, whiddes(15) and Fresnel coefficientd6). Assuming no corre-
will be described together with the interface roughness. Théation among the sidewall fluctuations of different wires, we
sidewall roughness will be considered independently. Her@PP!Y the coherent approach calculating the reflection ampli-

we restrict ourselves on the discussion of the influences o des_for a scattering poteqtial Iaterally_ averaged over the
the coherent intensity statistical ensemble of the sidewall positions.

The rough side walls do not influence the kinematical
intensity of the specular truncation rod. The corresponding
Fresnel coefficient is proportional to the zeroth Fourier com-

Let us suppose that the sidewalls, i.e., the walls separatingonent of the susceptibility, which is already the laterally
the materialsa(’ andb‘!) in each layer, are rough. The lat- averaged susceptibility in the layer. Consequently we can
eral positions of the side walls of tmth wire in thejth layer  concentrate on GTR’s witth#0. Averaging the Fourier
arend+dW/2+y0:"(r), where the displacement'™ is a  componenty{’ gives

1. Rough sidewalls

) ) . 1 (d/2+0'W® » ) . »
<xﬁ”>u=<x2>—x8>><a f L adxe ™) = e ™), (18

We assume a Gaussian distribution function of the side wall roughness characterized by the root mean square otfgj&ghness
Then the coefficients are diminished by Debye-Waller-like factors

i i _ (i)
(i, = xi)- e~ (w172, (19

. K? : ‘
<tﬁ',r}>u:ThZQhZ(<Xﬁ'_l)>u—<xﬁ”>v)- (20)

Depending directly o, the Debye-Waller factoe‘hz"zz/2 progressively damps the higher-order truncation rods. In order to
decrease the GTR’s noticeably near to the specular rod, the fagtoshould be at about unity, and therefarg=d/4. For
a grating periodicity of um the intensity of the first GTR changes essentially for a roughness of several hundreds A. Its

reflectivity is not sensitive to the small roughness of several A.

2. Rough horizontal interfaces

The positiorz;(r) of a rough interfacg is randomgz;(r) =z;+u;(r); see Fig. 7. Also, here we apply the coherent approach,
where the reflection amplitudes are averaged over the statistical ensemble of random interface positions. Thergfbre, Eq.
has to be averaged:

N

N
(En(n)= < Eo 2, rﬁ‘,’}e“thZi<”> =Eo2, (sRj(r)e "on. (21)
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FIG. 7. Drawing of a layer in a rough MLG with random fluc- v
tuations of the horizontal interfaces;,;(r) and the sidewalls I
vO(r). — -

Making use of the Gaussian probability distribution function £ g Schematic drawing of the dynamical scattering pro-
with a rms roughness; , we obtain the effective kinematical cesses. In the fully dynamical theory, the wave field of a truncation

Fresnel coefficients for rough horizontal interfgce rod h is excited by multiple scattering from all the other truncation
i i ) i 2 2 rods, as given by Eq28).
(ep(r))y=tpn(r)- (e My =¢. e~ 2 (22)

2
Similarly to the specular reflectivity from rough planar Kﬁth(Z)Jr @
multilayers'® we obtain the kinematical damping factor de- dz’
pending on th& component of the vacuum scattering vector
(the Debye-Waller form of the diminutigon

+K2 X Eg(2)xn-g=0. (26)
g,9#h

We search for the solution in the plane-wave representa-
tion with the particular solution&,, ,(z) =e'*=*E,, ,. The
differential equatior(26) is invariant with respect to the sign
of k,,. The total wave field in a laygris the linear combi-

First we solve the wave equation within one structurednation of the particular solutions, written in the form
layer. Then we couple the wave fields in all layers by apply-

: i S X 4 ‘ 0 _ . -
ing the boundary conditions providing the reflection ampli Ew(z):; [elkzjn(z—zj+1)T$1])+e—lkZJn(z—Zj+1)R§1J)]EE]J’)H'

IV. DYNAMICAL THEORY

tude for the whole MLG. Finally, we treat the reflection from
rough gratings. 27
o _ ) wheren goes over all the particular solutions of the differ-
A. Reflectivity from perfect multilayer gratings ential equation(26), and the coefficients have the physical
1. Wave field in a structured layer meaning of amplitudes of transmitted’{) and reflected

(R,) waves related to the particular solutionsAmplitude
phases are set with respect to the lower layer interface.
The wave equation turns into

Since the susceptibility(r) is periodic in the directio,
its Fourier transform(1) is discrete and we can substitute it
into the wave equatio8). Similarly to the dynamical theory
of x-ray diffractiont® we assume the solution in the form of a K?
one-dimensional BlockEwald) wave Eh,n:W > EgnXh-g- (28)
zn hz9.9#h
_ ikt The amplitudeE,, , of a particular solutiom associated to a
E(r)—}h: e En(2), 23 truncation rodh is proportional to the resonance factor
K2/(kZ,— Z,). The z componentsk,, lie on a dispersion
K=K+ h. (24)  surface, which is different from the spherical ofEq.
g25)].8'9 This makes the resonance factors as well as the am-
plitudeskEy, , in Eq. (28) finite. Further Ey, , depends on the
dynamical contribution of all other GTR'&he so-calledn-
K= m, (25) Eai;trtgncation rod scattering as schematically represented in
inside the layers with laterally averaged susceptibility. Then The summation equatiof28) for the wave fields can be
the wave equation decomposes into a set of differentiatonveniently rewritten using the matrix formalism into an

We introduce the corresponding wave-vector component
according to the spherical dispersion relation

equationd® for each Fourier componeht eigenvalue probleth
|
[A-k211E,=0, (29)
Zhe Kixon Koz E;hn
A= Kih ko, Ko . En=| Eon |, (30)
K2 K2xn  «iy E!"”
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wherel is the unity matrix, and Gs column vector of zeros. for homogeneous layeréincluding the vacuum and sub-
The solution of Eq.(29) gives the wave-vector compo- Strate. _ . 0 _
nentsk,, which form the column vectoIEZ. The associated The propagation matrice®™” connect 'the amplitudes of
. - A - the waves between the bottom and top interfaces of a layer
column eigenvectork, form the matrixE. The vectorsE,

are unigue except of a multiplicative constasge Eq(29)], _ o+ 0
allowing us to choosé&, ,=1 for eachn. The number of Q(”=( ) Q(i))'
solutions, i.e., the dimension of the vectors and matrices, is
infinite. Many of the wave fields, mainly those of distant Here Q)= are diagonal matrices with the diagonal vector
truncation rods, are weak. That allows us to limit the number _ _ _
D of the GTR'’s involved in the numerical procedure (e:ik(f,%tj,e:ik(z{%ti,...,e:‘k%,)zti) (35
(multiple-beam approximatioaf the dynamical theopy The
dimensionD is choosen depending on the numerical preci-for structured layers, and
sion. i) b =i il

In the following section we define for each layjethe (-8 ), e ozl e, ) (36)
column vectorsT(®), R®, andk!" containingT,, R,, and  for homogeneous layers, respectively. Notice the different
k,, respectively. The diagonal matrix of the eigenvalueswave vectors in the phases: in E§5) there occur the wave
Ky n iS jo)’ and the corresponding eigenvector matrifs . vectors of the particular solutions of the dynamical wave

The dimension of these vectors and matrice®is field [Eq. (28)], and in Eq.(36) occur the conventional wave
vectors of homogeneous laydsq. (25)]. The dimension of

(39

2. Boundary conditions matricesP and Q is 2D.
In Sec. IVA 1 we expressed the wave field in a structured 3. Generalization of the Eresnel coefficients
layer as a series of plane waJ&xs.(23) and(27)]. In order for structured interfaces

to find the coefficientsT!) and RY), which determine the

n

value of the excitation of the particular solutions, we connect Equation(31) can be rewritten by coupling the amplitudes

the wave fields in the inner layers with the wave fields in thef'%t the bottom interfaces of two neighboring laygrs1 and

vacuum and in the substrate. We apply the convenient matrix

formalism similar to the Ables method for planar multi- Fi-1) F0)
layers. Various authors use different matrix sequences to ( ~ion | =Ml a0 ] (37)
couple all inner wave fields in order to obtain the reflection RU-D RU

amplitudes above the sample surfadeln this paper, we .

present an “interface approach” which enables us to gener- Ni=Pj_y;- Q. (38)

alize the conventional Fresnel coefficients for the case ofye introduced the “interface matrix”

MLG’s. Moreover, this interfacelike representation will al-

low us to describe the scattering from gratings with rough . ) T ;

interfaces. ’ I ’ Pi—lyiz(ﬂjl))lp(l)z(ﬁj- ,3)-]
The boundary conditions couple the wave fields and their b

derivatives at the interfaces. Let us connect the wave fieldyhich corresponds formally to the “interface matrix” of the
of two neighboring layer§— 1 andj at their common inter- Fresnel coefficients for an interface of a planar multilayer.
facej at z=2z, (Fig. 2 Notice that the boundary matri82) can be easily inverted:

i . 2.

, (39

Since the boundary conditions for the wave amplitudes A K1 & (-1 0
and their normal derivatives hold at each poirty(z;) of (P“'))‘1=1 I (kg) (EY)
each interfacg, the conditions for the undetermined coeffi- 2\7 (k)1 0 (E0)~1)"
cientsTY) andR{’ can be expressed by the matrix relation (40)
G- T The matrices of dimensio® introduced in Eq(39) are
pa-u. _ =pho.| _ (3D
RU-1 R/’

1. o “ s
_ Fi==[Ei_q i+ (kU™ g k)7,
introducing theboundary matrices”?) and thepropagation i=plEinit -kl
matricesQ(). The boundary matriceg!!) are

1 . SO o
(T I ) pi=5Ej1j— (KT TR k), (4D

. g g B g0 0
- - R0 kW)

EORD  —EORD o EW

with E;_,;=(EU~1)"1E0). Since the wave-vector matrices

k, are diagonal, the matrix elements are explicitly
for structured layers, and

Tj,mn:(Ej —1,j)mn/tj,mn- Pj,mn:(Ej 71,j)mn' tj,mn/j‘j,mn-
4

<j>) (33 :

where
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tj,mnz

2k<zjn—11) k(zjrgl)_k(zj% E -
) _ ) , —]_Yl I ]
- o YmnT o i (43 Pi—1j= ] . ~- (44
k(zJ,ml) + k<z]r)1 I((z],ml) + k?% I T I

are thegeneralized Fresnel transmission and reflection coefThe matrix operationsa®b and a/b used here are the
ficients for grating diffractionThey all form thegeneralized element-by-element multiplication and division operators,
Fresnel matricesij and t;. The transmission coefficients respectivelyi.e., (é®6)”-5aijbij and (é/B)ianij/b”].

7j,mn COrrespond to the transmission and diffraction of the Let us consider the special case of an interface separating
wave k%l) (in layer j — 1) through the interfacg into the ~ two homogeneous layers. There is no lateral diffraction in

wavek{) in layerj. these layers; therefor&l =%, E0) andE;_,; are unity ma-
Finally, we can write the transfer matrix in a transparenttrices. The matrice§;=t; andp;=t; are diagonal and their
form elements correspond to the classical Fresnel coeffiélents

ki "~k

KU~ ¢ k) 0 0
RU-1 D) ol 21
o K kz (-1 ()
tj=A_7l) A(.): ka2~ —Kz2 . (45
kg~ ke O mga O
kz,2 +kz,2
0 0

The interface matrix reduces to the known form of a planagyhere the vectoR® is the column vector of the matrix

multilayer ~ ~ .
y (M21~M111) corresponding to the column &f=0. The re-

flected intensity of the wavkis |RY|2 and the grating reflec-
] tivity is
ik (46)

o —

i
Pj—l,j:T(
4

4. Reflection from a multilayer grating

Ri=|RH ZE—“Z- (49
z

In summary, we expressed the problem of the scattering

Above, we have coupled the wave fields at the bottomfrom a MLG by a matrix formalism similar to the matrix
interfaces of two subsequent layers by the transfer matricermalism of reflection from planar multilayers by general-
N; [Eq. (37)]. Finally we couple the wave fields in the izing the Fresnel reflection and transmission coefficients.
vacuum(index v=0) and in the substraténdexs=N) by = However, the matrices employed here are of higher order.
the transfer matrix of the whole multilay&l: Figures 5 and 6 show the intensity profiles for some odd-

order GTR’s, and Fig. 9 those for for even-order GTR’s.

-Fv -Fs
= =N s ] 106
RY RS
(47)
N |\7|11 '\7'12 1077
M=IT Nj=| .= .
=1 M21 Mgy, z
8
We employ two additional conditions: = 408
(1) Since the incident wave is planar, all elemehtsare
zero except that corresponding to the incident bdwanD, ;
which is unity; T°=(0,...,0,1,0,...,0). 0o lf
(2) The substrate is semi-infinite, and no reflected waves i

are excited RS_:O)' 0 01 anglce)'cz)f incidenc%?deg] 04 05
Then the amplitudes of the reflected waves above the sample
surface are FIG. 9. The kinematically forbidden even-order truncation rods
—2, —4, and—6, calculated by the dynamical theory. The kinemati-
A ~ - cal theory gives zero reflectivity of even-order GTR’s for a grating

R'=My- M T7, (48)  \with the ratiol =0.5.
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B. Reflection from rough multilayer gratings Q(j)(ru)zuj(_k(zj) ,r||)Q(j)(k§j))Z/lj+1(k(Zj) ), (50
In this section we treat the influence of the roughness Oyith
the intensity profile of the truncation rods.
U (ky,ry) 0

0 U (kyry))

In the kinematical theory the amplitudes of the scattered /)~ . : . .
waves were found to be proportional to the Fourier transfogfééto(rkz’r') are the diagonal matrices, with the diagonal
mation of the susceptibilityl7). The roughness of the side-
walls has been taken into account by laterally averaging the (eTTkagtj() @ ikaaUj(ry) - ¥ ikp Uj(r)) (52)
Fourier coefficients.

We can include averaged Fourier coefficients in the dyfor Structured layers. .
namical procedure that modifies the dispersion relatRs) The amplitudes of the reflected waves given by &@)
and also influences the resonance factor. The interactiof@ve to be averaged over the random interface displace-
among distant GTR’s will be exponentially reduced, and thugnents. We employ the approximation
the dynamical effects will be diminished. 2 ~ SR

As in the kinematical theory we find that the intensity of (R%)=(May- My - T)=(Map)- ((M1)) ™" T%. (53
the low-order GTR'’s is not affected essentially by the rough-The averaged transfer matrix of the whole multilayer reads
ness of the grating sidewalls below several hundred A. Ifcf. Eq. (47)]
order to be sensitive to this roughness, we would have to
measure the scattered intensity in a geometry where the in- N N .
cident beam is nearly parallel to the wires. Such a noncopla- (M(r)))= H1 (Nj(r)))= 1:[1 (Pj_1j(rp)yQV, (54
nar scattering geometry requires another experimental ar- a =
rangement. This case is promising and it will be studied inwhere we renamed the ideal matricBs_,; in Eq. (39) as
the future. P4, and put

1. Rough sidewalls Ui(ky,r)= (51)

2. Rough horizontal interfaces 7Dj—1,j(rn)EUj(k(zj_l) !rH)Pijd—l,juj(_k(zD I, (59

The rough interfaces cause layer thickness fluctuationdveraging the boundary matrix is straightforward. It leads to
which influence randomly the phase terfis). (35)] of the  the form where the elements of the ideal matrix are multi-
propagation matrice@ [Eq. (34)] by the factor®;(r;)  Plied by the characteristic functio;sg{uj of the probability
:eikg)tj(ru):(Djeikgj)(uj+1(r||)—Uj(f”))_ Therefore the propaga- distribution of interface displacemeriss usual, we can use
tion matrix also becomes random the Gaussian distribution functiqn,j(Q)ze’Qz”iz’z]

<P;1j(r|)>:( [Tj’mnxuj(kgi)l:k(zjg:'}z] [pj'mnxu"(ké{?muk%)])- (56)
’ LojmaXu,(—Kzm ™ —Kz)] - [7jmaxu (Kzm—Kzn ™)
This relation is a generalization of the averaged boundary matrix for XRR by a rough planar interface
Xu (KITY =k gy, (kYD + kD)
(Pivi(d=¢ thuj(J—kQ‘l)—kgﬂ) Xu:(k(zj)_k(zj_l)) ! (57)

where the Fresnel coefficientsandt; have now their “clas-  fraction orderm to another orden at that interface. The
sical” meaning. coefficientsr and p describe the transfer of the waves from

Comparing the matrix elemen(s6) to the definition(42) one grating diffraction order to the other, which also consid-
we find the generalized Fresnel coefficients for rough interers the influence of all the other scattering processes at this
faces in gratings interface. Figure 10 shows the calculated GTR profiles for

o MLG’s with different interface roughnesses.
—okyi—1) 2
<tj,mn(r\l)>:tj,mne znfzn %,
(t,-,mn(r”)>=tj,mne(k(zlf%_k(zjn 1))201_2/2. 59) C. Numerical |.mplementat|on . N
Up to now we have provided a theoretical description of

Notice the different meaning of the generalized Fresnel cothe dynamical theory for rough gratings. Before discussing
efficientst andt [determined by Eq43)] and of the coeffi- numerical results, also in comparison with the kinematical
cients 7 and p [determined by Eqs(39) and (42)]. The theory, we briefly summarize the procedure and formulas,
Fresnel coefficients; andt; of one interfacg can be inter-  which are suitable for the numerical implementation of the
preted as the structure factor for the scattering from one difdynamical theory.
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normal. We remind the reader that in coplanar reflection ge-
ometry the grating period, the wavelength used, and the
horizon of the sample determine the smallest acces§ble
value of a given GTRabove the limiting Ewald spheres in
Fig. 3.
. . . ‘ ‘ In both theories we generalize the Fresnel coefficients for
0.2 0.25 0.3 0.35 0.4 0.45 0.5 the case of diffraction by structured interfaces. In the limit of
angle of incidence [deg] a nonstructured interface between two homogeneous layers
these reduce to the classical Fresnel coefficients. Kiime-
matical contributionof one structured interface to the dif-
(b) fracted amplitude of one GTR directly proportional to the
N ATVEVATA corresponding generalized kinematical Fresnel coefficient
i RVRVAVATAY ! (15. The diffracted wave of the whole multilayer is de-
vi4F vy A scribed by the simple series of the phase corrected Fresnel
A diffraction coefficients of all interfaces. That means, there
. . i o i b are(1) no interaction of different GTR’s an@) no multiple
0.2 0.25 0.3 0.35 0.4 0.45 05 scattering between different interfaces taken into account.
angle of incidence [deg] Only one scattering process, themary scatteringfrom the
incident wave into the considered grating diffraction order,

FIG. 10. Intensity of(a) the odd-order truncation rog1, and  plays a role. In the simple example of a simple square-
(b) the even-order truncation rod2 of the surface grating de- shaped surface gratingwith two structured interfaces
scribed in Fig. 4 with rough interfaces. Thin full curve: no rough- thickness interference fringes are created along the specular
ness. Dashed curve: no surface roughness, interface roughness §@an(Fig. 4), similar to the reflection by a laterally averaged
A. Thick full curve: surface roughness 12 A, no interface rOUQh'Iayer, and also along the higher-order GTRZgs. 5 and &
ness. Notice.that the reflectivity curve from the perfect MLG is notgimilar to the diffraction by a crystalline layer. Since any
damped, while the other two curves have the same order below they i -tion effect is neglected, all GTR intensities diverge, if
critical angle_, an_d opposne qrder a_bove it. The explanation of thls[he vertical momentum transfe¥, goes to zerdsee Fig. 4
phenomenais given in the discussion. Notice, that the reflection curves of the nonzero GTR’s in
Figs. 5 and 6 merely do not diverge, since there it always
th>0-

The dynamical contributionof one structured interface
depends on thavhole generalized Fresnel matricd89),
requires solving the eigenvalue problet@9) with the which include the Fresne! diffraction coeffic[ents as their el-
Fourier coefficients of susceptibility2). The eigenvectors ements(42_). The generallz_ed Fresnel matrices mclud_e the

~ ' primary diffraction (scattering of the directly transmitted
form the matrice€€!”), which are unity matrices for homo- \ave into the selected diffraction ordef the jth interface
geneous layers. _ ) by vj om- Theintertruncation rod scattering.e., the multiple

The interface matrices of all interfacé®9) are formed by scatfering among the wave fields of all GTR&ee Fig. 8,
the element$42), which are corrected, in case of roughness,has been taken into account by the Fresnel coefficients of all
according to Eq(56). Then the transfer matrix of the whole the other indicesi#0:t; . Each structured interface gives
multilayer is determined by multiplying successively the ise to intertruncation rod scattering. In contrast, all planar
propagation matrices of the interfaces and layers using Edgterfaces(below the gratingcontribute only by Fresnel co-
(38) and(47). Finally, the grating reflectivity49) is obtained  gfficients with identical indicet; mm; EQ. (46)]. In other
independently for each grating truncation rod. The number ofyords, planar interfaces exclusively cauisgratruncation
dynamically interacting GTR's is chosen in the way 10 yoq scattering—the dynamical interaction between the trans-
achieve good numerical convergence for all GTR regions ofpjtted and reflected waves of the wave field of a particular
interest. Please notice that the susceptipility, theompo-  GTR order. In summary, the dynamical theory takes the re-
nents of the wave vectors and the amplitudes of the wavgaction in the layers into account. It also includes all those
field are within the grating complex numbers; therefore allgiffraction orders with nonreal wave vectors describing their

intensity of GTR -1

10-6

107 }

intensity of GTR -2

First of all, thez components of the wave vectors of the
diffracted waves are calculated. For homogeneous layers
cluding vacuum and substratéhey are simply given by the
spherical dispersion relatiof25). For structured layers, that

matrices are complex too. evanescent wave charact@xtinction. In the specular rod
one observes a plateau of total external reflection similar to
V. DISCUSSION specular reflection by a planar multilayé¥ig. 4). The re-

fraction and the evanescent wave behavior of the incident
and the primary diffracted waves leads to the Yoneda-like
In the following we want to discuss the results of bothwings and Bragg-like peaks in the nonzero GTRBnilar to
theories. The dynamical theory as well as the kinematicathe grazing incidence diffraction curves of crystalsr non-
theory reproduce a coherent grating diffraction pattern conspecular x-ray reflection curves of rough surf&esThe
sisting of a specular rod and grating truncation rdeig. 3), evanescent waves of other strongly diffracting GTR’s can
determined by the lateral Bragg |d®qg. (7)]. The GTR’'s are  also affect the intensity profile of near-neighboring GTR’s
arranged equidistantly in reciprocal space around the specby intertruncation rod scattering. For example one can ob-
lar rod in a plane defined by the surface normal and the wiraerve the influence of intertruncation rod scattering on the

A. Diffraction by ideal gratings
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specular scan just when the incident angle excites the
Yoneda-like wing of the GTR+1. Along the GTR of weak
primary scatteringweak Fresnel coefficients o) the dy-
namical intertruncation rod scattering plays an essential role.
For example, for rectangularly shaped gratings with a rela-
tive wire width "=} all even-order truncation rodsn2#0

are kinematically forbiddent;.q »,=0. Simulations by the
dynamical approach give diffraction curves with nonzero in-
tensity (Fig. 9. There the whole diffraction intensity isf InP substrate
purely dynamical origin caused by the intertruncation rod

scattering of the nonzero GTR’s into the direction of a for-
bidden GTR. FIG. 11. Schematical drawing of the sample.

) dashed curve in Fig. 18)]. Now the evanescent incident
B. Influence of interface roughness wave does not penetrate into the grating, and thus does not
Interface roughness diminishes all Fresnel diffraction cofeach the second interface. Only the surface contributes to
efficients, kinematicalEq. (22)] as well as dynamicdlEq.  the diffraction below the critical angle.
(58)] ones. Let us the further discuss the dynamical theory Finally, for the weak (kinematically forbiddenGTR or-
only. ders[e.g., GTR -2 in Fig. 10b)] the primary scattering
The roughness damps the primary scattering as well as theanishes:; o,=0. The wave fields of forbidden GTR’s are
inter-GTR scattering. The reflection and transmission coefficreated by multiple scattering of the GTR’s excited by the
cients corresponding to primary specular reflectipg, and  primary scattering of the incident wave. The influence of a
t; oo depend on horizontal roughness in the same way as th@ugh surfacethick full curve in Fig. 1@b)] and a rough
classical Fresnel reflection and transmission coefficients ofterface(dashed curves similar to that of strong GTR'’s for
planar multilayers: below the critical angle the reflection co-small incident angles only, and it is opposite above the criti-
efficients are not affected; above they decrease with increagal angle.
ing Qq,. The behavior of the other matrix elements of in-
tratruncation rod scatterin@liagonal termsis more subtile.
From the matrix relationg57) and (58) we deduce, espe-
cially, that the transmission coefficients are not substantially |n this section we present experimental results from a par-
influenced for large exit angles of the corresponding diffrac+ially etched multilayer grating and its evaluation by our the-
tion order, since the vertical distankg,,—k, , is small. The  oretical approach. A Ga,In,As/InP multilayer of three and
decrease of the reflection coefficienis,, is given by the a half periods(seven layershas been grown by chemical
static Debye-Waller-like factor which depends on the waveheam evaporation on an IfB01] substrate. The bilayer se-
vector transfek{) +kJ 1) which decreases progressively quence consists of nominally 50-nm GangsAs and
with increasing angles of incidence and exit. 30-nm InP. A surface grating with a lateral period of 1.360
Numerical results are shown in Fig. 10 for the strongum has been fabricated by holographic exposition of a pho-
GTR —1 and for the kinematically forbidden second-ordertoresist and subsequent selective etching. The etching has
GTR. In both cases we calculated the cur¢dor a smooth  been stopped at the second interface; see Fig. 11. Thus the
surface grating(2) assuming a rough interface and a smoothgrating depth is exactly the bilayer thickness of the upper-
surface, and3) assuming a smooth interface and a roughmost multilayer period. As a result, we obtained a partially
surface. In thespecular GTRnot shown hergethe results are  etched multilayer surface grating.
comparable to the well-known features of a single-layer sys- The reflectivity measurements have been performed at the
tem: above the critical angle the surface roughness decreas@ptics beamline D5 at the European Synchrotron Radiation
the whole reflected intensity, while the interface roughnes$acility in Grenoble using the setup of the high-resolution
damps mainly the fringe amplitudes. For teong GTR x-ray diffractometer. A single reflection @il1) monochro-
orders[e.g., —1; see Fig. 1&)] and incident angles above mator was mounted on the first goniometer, the sample on
the critical angle, we observe a qualitatively similar behav-the second one, and the(8L1) analyzer crystal on the third
iour. Here primary scatterinfgiven byr; o) dominates the one. The detector unit was completed by additional slits
other scattering processes. In contrast to the specular rothounted in front of the analyzer in order to limit the exten-
surface roughness also decreases the GTR intensity at indion of the analyzer streak. The movements of the slit, the
dent anglebelowthe critical angle. At small incident angles, analyzer, and the detector, as well as the whole third goni-
k.o is imaginary(evanescent wave behaviphowever, the ometer, were coupled in order to detect all scattered waves
wave vectors, , of all excited negative GTR orders corre- under identical intrinsic geometrical conditions of the whole
spond to exit angles above the critical angle. Consequentlgietector unit, keeping its resolution function constant during
the wave-vector transfeq, o=k, m+k,o never becomes the relatively large angular scans. We used the wavelength
purely imaginary, and the exponential damping factor is alA\=0.7114 A. The sample was mounted in coplanar scatter-
ways smaller than unity. Therefore, the reflected intensityng geometry with a horizontal scattering plane. Figure 12
from a MLG with a rough surface is also below the critical shows anw scan at #=0.7°, with a central specular peak
angle reducedthick full curve in Fig. 1@a)]. That is differ-  and first-order grating reflection orders. The specular peak as
ent in the second cagemooth surface and rough interface; well as the GTR peaks are well localized with a full width at

VI. EXPERIMENT
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FIG. 12. Measured» scan for 2=0.7° of the sample which E 1074
cuts the truncation rods-1, 0, and+1. ’é
: o £ 10 L : :
half maximum of 0.005°. From their positions in reciprocal 0 0.1 0.2 0.3 0.4
space,Qxﬂz +(4.61X 107 4+2x10° %A _1), we could de- angle of incidence [deg]

termine very precisely the grating period df=27/|Q, Y|
=(1.362+0.005)um. In order to avoid errors caused by the
quite different precision of the participating motors during a
single off-specula), scan, the intensity pattern along each
GTR was mapped by performing off-specu@y/w maps in  that the boundary matricgslescribing the transition of the
the narrow regions around their theoretical position. Thewave fields through the interfadeare easily related to the
GTR pattern was deduced by following the maximum of theintroduced generalized dynamical Fresnel reflection coeffi-
small w scans. In Fig. 13, we plot the specular reflectivity cients of lateral diffraction. In the framework of the kine-
and the intensity profile of the GTR 1. The intensity pat- Mmatical theory, we employed the stationary phase method for
tern of the GTR+1 was within the measurable accuracy &n evaluation of the kinematical scattering integral. We de-

identical, indicating a symmetrical shape of the wires. Thdined generalized kinematical Fresnel reflection coefficients

curves were fitted by employing the dynamical theory. De-Of Structured interfaces. _
In both theories we considered the roughness of the hori-

spite of dynamical intertruncation rod scattering the non- ; ; s _
specular GTR'’s are only influenced by the etched part of thgontallplanar mterfaces_ and the vertical S|dewall_s. In the ki-
multilayer, and are not sensitive to the planar multilayer affematical theory damping factors for the generalized Fresnel
the bottom of the grating. No influence of sidewall roughnes<efficients are obtained. In the dynamical approach the ef-
could be established, since the lower GTR orders are led§Ctive Fresnel diffraction coefficients of rough interfaces di-
sensitive to sidewall roughnegsee Secs. Il B1 and IV B1 mlnlsheq the elements of the boundary matrices. Signifi-
However, in order to obtain a good agreement between exeantly different effects of surface roughness and interface
perimental and calculated curves, we had to take the intefUghness on intense GTR’s and on weakematically for-
face roughness into account. We determined the layer thickidden GTR’s were discussed by numerical examples. Fi-
nesses close to the nominal valuégp=29+0.8nm and nally, we employed the dynamical calculation for fitting the
tea inac=50.3-0.8nm, and a rms roughness of 0.5 structure parameters of a partially etched GaAs/InP periodic
8 xINyAS ) ’ ! ’

+0.3nm. The ratio of the wire width and the grating periodmUItIIayer grafing.
was determined to bE=d,/d=0.66+0.03. ACKNOWLEDGMENTS

FIG. 13. Fit of the measured intensity profile of the spec(dar
and —1 (b) GTR’s of the sample. The simulated curves(@ and
(b) are shifted five and three times, respectively.
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