
PHYSICAL REVIEW B 15 MARCH 1999-IVOLUME 59, NUMBER 11
X-ray reflection by rough multilayer gratings: Dynamical and kinematical scattering
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X-ray reflectivity by rough multilayer gratings is treated in the framework of kinematical and dynamical
theories. The kinematical scattering integral is calculated without the restrictions of the Fraunhofer approxi-
mation. The dynamical theory is presented by the matrix modal eigenvalue approach. In both theories we
generalize the Fresnel reflection and transmission coefficients for the case of grating diffraction. We obtain one
unique formalism which permits us to compare the results of both theories directly. Furthermore, interface and
sidewall roughnesses are taken into account. The dynamical approach allows us to explain the experimental
results obtained from a partially etched GaAs/InP periodic multilayer grating.@S0163-1829~99!05308-4#
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I. INTRODUCTION

Simple and multilayer gratings~MLG’s! of mesoscopic
scale have achieved scientific and practical application
optical and electronic devices. X-ray scattering metho
were successfully employed for the nondestructive charac
ization of such laterally patterned arrays. High-resolut
x-ray diffraction is mostly employed for the investigation
epitaxial gratings. The method is simultaneously sensitive
the perfection of the grating shape and to the strain stat
the layers. This is an advantage on the one hand, but in m
cases it is difficult to distinguish between both structural
fluences on the diffraction pattern.

X-ray reflection~XRR! allows one to characterize crysta
line, amorphous, and polycrystalline gratings, since it inv
tigates the distribution of the mean electron density. Thu
is sensitive to the grating shape, and would also allow on
determined the quality of the interfaces.

Until now, theories of different levels of complexity wer
involved in the calculations of the reflected intensity, bas
on fully dynamical and simple kinematical approaches. D
namical approaches from MLG’s have been studied by
ferent methods:~1! A rigorous vector theoryfor diffraction
gratings was developed by Maystre1 within the framework of
classical optics. An integral equation from this work w
used by Tolan and co-workers2–4 to calculate the x-ray scat
tering by a trapezoidal surface grating.~2! Two other meth-
ods are based on amatrix formalism:thedifferential method5

and themodal method.6–9 In the modal method the wav
equation is transformed into a transcendental disper
equation for the wave-vector components of the diffrac
waves,6,7 or into an eigenvalue problem~for etched gratings,8

for planar mirrors modulated with a transverse acou
wave9!. The modal and differential methods have been co
pared for the calculation of multilayer grating efficiencies8

The kinematical approach is equivalent to the first Bo
approximation.10 The scattering integral is always calculat
using the Fraunhofer approximation.10–12 Consequently, the
amplitude of the scattered wave is proportional to the sam
size, similar to conventional kinematical x-ray diffraction b
small crystals. Thus the Fraunhofer approximation is
PRB 590163-1829/99/59~11!/7632~12!/$15.00
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stricted on samples with a size smaller than the first Fres
zone. This is in general not fulfilled by~laterally extended!
multilayers.

The surface roughness of simple gratings was treated
Tolanet al.,4 averaging the Rayleigh-Mayster coefficients.
damping factor similar to the Ne´vot-Croce factor13 of rough
planar surfaces has been found. In order to explain
diminished efficiency of MLG’s, a damping factor has be
introduced phenomenologically in a dynamical mat
method.14

In the present paper we introduce interface roughnes
well as defects of the grating shape directly in the theoret
framework of the kinematical and dynamical approach
and apply them to XRR of semiconductor multilayer gratin
~part I!. The dynamical theory provides a rigorous but n
merically expensive treatment. The kinematical theory
transparent, and supports the intuitive interpretation. Tha
why we develop in a following paper~part II! semidynamical
approximations with the aim to be sufficiently preciseand
transparent to explain the essential experimental findings
order to provide an effective comparison, we derived o
unique formalism for all different approaches. In particul
we generalized the Fresnel coefficients of reflection a
transmission by planar interfaces for the case of diffract
by multilayered gratings.

Mainly short-period MLG’s ~lateral grating periodd
'1 mm! for electronic applications are concerned. We u
the coplanar scattering geometry for wavelengths of ab
l'1 Å. Finally, we present experimental results for XR
by epitaxial multilayered gratings~partially etched GaAs/InP
periodic multilayer gratings! and apply our theoretical mod
els successfully to fit the experimental curves.

The paper is organized as follows. In Sec. II we introdu
the common notation of the variables and of the geometr
parameters describing the multilayer grating. Sections III a
IV cover two treatments: the kinematical and dynamical a
proaches. In both these sections we start with the reflec
from perfect MLG’s. Afterwards we consider real structur
effects ~the roughness of the horizontal interfaces, and
fects of the sidewalls of the grating wires!. Then we compare
7632 ©1999 The American Physical Society
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both theories and continue by discussing the experime
results.

II. SAMPLE SETUP AND SCATTERING POTENTIAL

The x-ray reflection pattern depends on the distribution
the refractive indexn in the sample. The refractive index
related with the electrical susceptibility byx512n2. In the
present paper we will usex instead ofn in accordance with
x-ray-diffraction theories. The scattering potential is f
small angles of incidence and exitV(r)52K2x(r).

The considered multilayer gratings consist ofN21 layers
deposited on a substrate~a semi-infinite layer numberN!
~Figs. 1 and 2!. Thus there areN horizontal interfaces, the
sample surface is atz1 , and the substrate interface is atzN .
Laterally, each layerj is a periodic repetition of two wires
aI ( j ) and bI ( j ) with the susceptibilitiesxa

( j ) and xb
( j ) , respec-

tively. The grating setup can be approximated by a layerw
rectangular profile with a layer thicknesst j5zj 112zj and
widthsda

( j )5G ( j )d, db
( j )5(12G ( j ))d, and 0<G ( j )<1. In the

direction ŷ the wires are limited by the sample size~which
we assume to be infinite!. Two layer types can occur in th
MLG. Layers wherexa

( j )Þxb
( j ) will be calledstructured lay-

ers ~e.g., the etched layers where the materialbI is vacuum!,
and those withxa

( j )5xb
( j ) homogeneouslayers~e.g., the sub-

strate!.
The characteristic~common! property of all layers is the

lateral periodicityd along the directionx̂. Thus the suscep
tibility x(r) can be developed into a Fourier series

x~x,z!5(
h

xh~z!eihx, ~1!

xh~z!5
1

d E2d/2

d/2

dxx~x,z!e2 ihx, ~2!

with the reciprocal grating vectorsh5(2p/d)m of the grat-
ing orderm ~integer!. The reciprocal lattice of a grating is

FIG. 1. Schematic representation of the reflection by
multilayer grating: the diffracted wave field above the grating co
sists of a fan of diffracted-reflected waves.

FIG. 2. Drawing of a structured layerj consisting of two wiresa
andb.
al

f

e

periodic arrangement of grating truncation rods~GTR’s!; see
Fig. 3. They are perpendicular to the averaged surface
mal. Their intersection with theQx axis is defined byh. In all
homogeneous layers the Fourier components ofhÞ0 ~non-
zero GTR’s! vanish.

III. KINEMATICAL THEORY

In this section we formulate the kinematical theory
reflection by multilayer gratings.

A. Reflection from perfect multilayer gratings

The propagation of the wave field in a grating is describ
by the Maxwell equations. They reduce to the scalar wa
equation for x-ray reflection under grazing incidence,

~D1K2!E~r!5V~r!E~r!. ~3!

This can be solved by use of Green’s functions.10,15 This
leads to an integral equation for the amplitudes of the s
tered waves. Restricting ourselves to the first iterative so
tion, we obtain the first Born approximation with the kin
matical scattering integral

Es~r!5E dr8S K2

4p Dx~r8!
ei zr2r8zK

ur2r8u
E0eiKr8. ~4!

This writes the amplitude of the scattered waveEs(r) as a
single scattering process of the incident plane waveE0eiKr8

by the susceptibility distributionx(r8).
In the conventional kinematical theory, the Fraunhofer a

proximation is used.11,12 This is adequate in small sample
whose size is smaller than the first Fresnel zone. The
proximation is inconvenient for laterally extended plan
multilayers. Moreover, it prevents a direct comparison of
calculated amplitudes with the dynamical theory. Therefo
we solve the integral without these restrictions using the
tionary phase method.

We replace the susceptibility in Eq.~4! by its Fourier
series~1!. Then the scattered wave field is expressed by
sum of particular amplitudesEs(r,K)5(hEh(r,K), which
are enumerated by the reciprocal grating vectorsh. Since the
particular amplitudes at different positions differ only by
phase term and the final goal is to find their intensities, i
sufficient to calculate them at one pointr50. It is

a
-

FIG. 3. Reciprocal spaces of a MLG are grating truncation ro
distributed equidistantly at positionsh5(2p/d)m. Only the part
above the limiting Ewald spheres~represented by a thicker line! is
accessible in a coplanar scattering experiment.
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Eh[Eh~r50,K!5
K2

4p
E0E dzxh~z!eiK zzUh~z,K!, ~5!

which contains the integral

Uh~z,K!5E E dri

1

uru
ei ~Khiri1Kuru!. ~6!

Here we defined the lateral wave-vector componentsKhi by
the ~two-dimensional! Bragg law for gratings ~grating
equation16!

Khi5Ki1h. ~7!

The two-dimensional stationary phase method17,18 is em-
ployed to evaluate the integralUh(z,K), which gives

Uh~z,K!5
2p i

Khz
eiK hzz, ~8!

with

Khz5AK22uKhiu2. ~9!

The reflected wave field above the sample is a fan
diffracted-reflected plane waves~Fig. 1!, diffracted by the
reciprocal vectorh and reflected back toward the vacuu
with the wave vector@Eqs.~7! and ~9!#

Kh5Khi2Khzẑ5~Khx ,Ky ,2Khz!. ~10!

Their amplitudes on the sample surface@Eqs.~5! and~8!# are

Eh5E0

iK 2

2Khz
E dzxh~z!e2 iQhzz, ~11!

where the vacuum wave-vector transfer is

Qh5Kh2K. ~12!

Following the conditionK22uKhiu2.0 the kinematically
scattered wave field consists only of waves with realKhz ~in
contrary the dynamical theory considers also the evanes
waves, i.e., the waves with imaginaryKhz!.

Finally, the reflection amplitude isRh5Eh /E0 and the
sample reflectivity defined as a ratio of the energy fluxes

Rh5uRhu2
Khz

Kz
. ~13!

Reflection by a multilayer grating

Equation~11! allows us to calculate the XRR from an
grating structure characterized by any profile of the susc
tibility. Now let us consider a MLG whose Fourier coeffi
cients of the susceptibility are constant in each layerj. Then
it is

xh~z!5(
j 51

N

xh
~ j !@H~z2zj !2H~z2zj 11!#, ~14!

where the indexj goes over all layers of the multilayer,xh
( j )

is the Fourier coefficient of the susceptibility in thej th layer,
f

nt

s

p-

andH(z) is the Heaviside~step! function. Integral~11! turns
into the sum over the contributions of the horizontal inte
faces

Eh5E0(
j 51

N

rh, j
kine2 iQhzzj . ~15!

Here we generalize thekinematical Fresnel reflection coeffi
cient for a periodically structured interface j,

rh, j
kin[

K2~xh
~ j 21!2xh

~ j !!

22KhzQhz
. ~16!

In the case of specular reflection~h50, Q0z522K0z! the
coefficient r0,j

kin coincides perfectly with thekinematical
Fresnel reflection coefficientof a planar interface betwee
two homogeneous layers with averaged susceptibilities

rj
kin5

K2

Qz
2 ~x0

~ j 21!2x0
~ j !!. ~17!

The specular curve of the grating is identical to that of
associatedlaterally averagedplanar multilayer. The kine-
matical theory neglects refraction as well as total exter
reflection and any case of extinction. As a consequence
calculated reflectivity~Fig. 4! diverges toward small inciden
angles, and does not reproduce the refraction shift obse
in the experiments.

The generalized Fresnel coefficients of the nonspec
~higher-order! GTR’s hÞ0 are proportional to the contras
between the Fourier coefficients of the susceptibilities of
two subsequent layers (xh

( j 21)2xh
( j )).

For GTR’s with xh
( j )50, the kinematical theory predict

zero intensity; these GTR’s are kinematically forbidde
Otherwise,rh, j

kin is inversely proportional to the vertical com
ponents of the scattering vectorQhz and of the diffracted
wave vectorKhz . Figures 5 and 6 show the calculated inte
sity profiles.

B. Kinematical reflection from rough multilayer gratings

In a multilayer grating we find the phenomena of interfa
roughness between different layers similar to planar mu
layers. Moreover, there occur defects of the grating sh
created during the etching process~Fig. 7!.

FIG. 4. Comparison of the dynamical and kinematical calcu
tions of the specular reflectivity curves~the main truncation rod! of
the discussed GaAs surface grating~period 8000 Å, wire width to
grating periodG50.5, thickness 3000 Å, wavelength 1.54 Å!.
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The defects on the top of the grating and in the groo
can be interpreted as horizontal surface roughness, w
will be described together with the interface roughness. T
sidewall roughness will be considered independently. H
we restrict ourselves on the discussion of the influences
the coherent intensity.

1. Rough sidewalls

Let us suppose that the sidewalls, i.e., the walls separa
the materialsa( j ) andb( j ) in each layer, are rough. The la
eral positions of the side walls of thenth wire in thej th layer
arend6da

( j )/21v ( j ,n)(r), where the displacementv ( j ,n) is a

FIG. 5. Comparison of the kinematical and dynamical calcu
tions of the grating truncation rod21 for the surface grating de
scribed in Fig. 4.
s
ch
e

re
n

ng

random quantity. This modifies the lateral Fourier coe
cients of the susceptibilities changing the reflection am
tudes~15! and Fresnel coefficients~16!. Assuming no corre-
lation among the sidewall fluctuations of different wires, w
apply the coherent approach calculating the reflection am
tudes for a scattering potential laterally averaged over
statistical ensemble of the sidewall positions.

The rough side walls do not influence the kinematic
intensity of the specular truncation rod. The correspond
Fresnel coefficient is proportional to the zeroth Fourier co
ponent of the susceptibility, which is already the latera
averaged susceptibility in the layer. Consequently we
concentrate on GTR’s withhÞ0. Averaging the Fourier
componentxh

( j ) gives

FIG. 6. Comparison of the kinematical and dynamical calcu
tions of the GTR23.

-

ness

r to

Å. Its

ch,
, Eq.
^xh
~ j !&v5~xa

~ j !2xb
~ j !!K 1

d E2da/21v~ j !

da/21v8~ j !

dx e2 ihxL
v

5~xa
~ j !2xb

~ j !!^e2 ihv&v . ~18!

We assume a Gaussian distribution function of the side wall roughness characterized by the root mean square roughsv
( j ) .

Then the coefficients are diminished by Debye-Waller-like factors

^xh
~ j !&v5xh

~ j !
•e2h2~sv

~ j !
!2/2, ~19!

^rh, j
kin&v5

K2

22KhzQhz
~^xh

~ j 21!&v2^xh
~ j !&v!. ~20!

Depending directly onh, the Debye-Waller factore2h2sv
2/2 progressively damps the higher-order truncation rods. In orde

decrease the GTR’s noticeably near to the specular rod, the factorhsv should be at about unity, and thereforesv*d/4. For
a grating periodicity of 1mm the intensity of the first GTR changes essentially for a roughness of several hundreds
reflectivity is not sensitive to the small roughness of several Å.

2. Rough horizontal interfaces

The positionzj (r) of a rough interfacej is random,zj (r)5zj1uj (r); see Fig. 7. Also, here we apply the coherent approa
where the reflection amplitudes are averaged over the statistical ensemble of random interface positions. Therefore~15!
has to be averaged:

^Eh~r!&5K E0(
j 51

N

rh, j
kine2 iQhzzj ~r!L 5E0(

j 51

N

^rh, j
kin~r!&e2 iQhzzj . ~21!
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Making use of the Gaussian probability distribution functi
with a rms roughnesss j , we obtain the effective kinematica
Fresnel coefficients for rough horizontal interfacej

^rh, j
kin~r!&5rh, j

kin~r!•^e2 iQhzuj ~r!&5rh, j
kin
•e2Qhz

2 s j
2/2. ~22!

Similarly to the specular reflectivity from rough plan
multilayers,13 we obtain the kinematical damping factor d
pending on theẑ component of the vacuum scattering vec
~the Debye-Waller form of the diminution!.

IV. DYNAMICAL THEORY

First we solve the wave equation within one structur
layer. Then we couple the wave fields in all layers by app
ing the boundary conditions providing the reflection amp
tude for the whole MLG. Finally, we treat the reflection fro
rough gratings.

A. Reflectivity from perfect multilayer gratings

1. Wave field in a structured layer

Since the susceptibilityx(r) is periodic in the directionx̂,
its Fourier transform~1! is discrete and we can substitute
into the wave equation~3!. Similarly to the dynamical theory
of x-ray diffraction19 we assume the solution in the form of
one-dimensional Bloch~Ewald! wave

E~r!5(
h

eikhirEh~z!, ~23!

khi5Ki1h. ~24!

We introduce the corresponding wave-vector compone
according to the spherical dispersion relation

khz5AK2x02khi
2 , ~25!

inside the layers with laterally averaged susceptibility. Th
the wave equation decomposes into a set of differen
equations14 for each Fourier componenth,

FIG. 7. Drawing of a layer in a rough MLG with random fluc
tuations of the horizontal interfacesuj 11(r ) and the sidewalls
v ( j )(r ).
r

d
-
-
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n
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khz
2 Eh~z!1

d2Eh~z!

dz2 1K2 (
g,gÞh

Eg~z!xh2g50. ~26!

We search for the solution in the plane-wave represe
tion with the particular solutionsEh,n(z)5eikznzEh,n . The
differential equation~26! is invariant with respect to the sig
of kzn . The total wave field in a layerj is the linear combi-
nation of the particular solutions, written in the form7

Eh
~ j !~z!5(

n
@eikzn

~ j !
~z2zj 11!Tn

~ j !1e2 ikzn
~ j !

~z2zj 11!Rn
~ j !#Eh,n

~ j ! ,

~27!

wheren goes over all the particular solutions of the diffe
ential equation~26!, and the coefficients have the physic
meaning of amplitudes of transmitted (Tn) and reflected
(Rn) waves related to the particular solutionsn. Amplitude
phases are set with respect to the lower layer interfacezj 11 .

The wave equation turns into

Eh,n5
K2

kzn
2 2khz

2 (
g,gÞh

Eg,nxh2g . ~28!

The amplitudeEh,n of a particular solutionn associated to a
truncation rod h is proportional to the resonance fact
K2/(kzn

2 2khz
2 ). The z componentskzn lie on a dispersion

surface, which is different from the spherical one@Eq.
~25!#.8,9 This makes the resonance factors as well as the
plitudesEh,n in Eq. ~28! finite. Further,Eh,n depends on the
dynamical contribution of all other GTR’s~the so-calledin-
tertruncation rod scattering!, as schematically represented
Fig. 8.

The summation equation~28! for the wave fields can be
conveniently rewritten using the matrix formalism into a
eigenvalue problem9

FIG. 8. Schematic drawing of the dynamical scattering p
cesses. In the fully dynamical theory, the wave field of a truncat
rod h is excited by multiple scattering from all the other truncati
rods, as given by Eq.~28!.
@Â2kzn
2 Î #EW n50W , ~29!

Â5S �

k2h,z
2 K2x2h K2x22h

K2xh k0z
2 K2x2h

K2x2h K2xh khz
2

�

D , EW n5S ]

E2h,n

E0,n

Eh,n

]

D , ~30!
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whereÎ is the unity matrix, and 0W is column vector of zeros
The solution of Eq.~29! gives the wave-vector compo

nentskzn which form the column vectorkW z . The associated
column eigenvectorsEW n form the matrixÊ. The vectorsEW n
are unique except of a multiplicative constant@see Eq.~29!#,
allowing us to chooseEn,n51 for eachn. The number of
solutions, i.e., the dimension of the vectors and matrices
infinite. Many of the wave fields, mainly those of dista
truncation rods, are weak. That allows us to limit the num
D of the GTR’s involved in the numerical procedu
~multiple-beam approximationof the dynamical theory!. The
dimensionD is choosen depending on the numerical pre
sion.

In the following section we define for each layerj the
column vectorsTW ( j ), RW ( j ), andkW z

( j ) containingTn , Rn , and
kzn , respectively. The diagonal matrix of the eigenvalu
kz,n is k̂z

( j ) , and the corresponding eigenvector matrix isÊ( j ).
The dimension of these vectors and matrices isD.

2. Boundary conditions

In Sec. IV A 1 we expressed the wave field in a structu
layer as a series of plane waves@Eqs.~23! and~27!#. In order
to find the coefficientsTn

( j ) and Rn
( j ) , which determine the

value of the excitation of the particular solutions, we conn
the wave fields in the inner layers with the wave fields in
vacuum and in the substrate. We apply the convenient ma
formalism similar to the Abe`les method20 for planar multi-
layers. Various authors use different matrix sequences
couple all inner wave fields in order to obtain the reflecti
amplitudes above the sample surface.5,7 In this paper, we
present an ‘‘interface approach’’ which enables us to gen
alize the conventional Fresnel coefficients for the case
MLG’s. Moreover, this interfacelike representation will a
low us to describe the scattering from gratings with rou
interfaces.

The boundary conditions couple the wave fields and th
derivatives at the interfaces. Let us connect the wave fie
of two neighboring layersj 21 andj at their common inter-
face j at z5zj ~Fig. 2!.

Since the boundary conditions for the wave amplitud
and their normal derivatives hold at each point (x,y,zj ) of
each interfacej, the conditions for the undetermined coef
cientsTn

( j ) andRn
( j ) can be expressed by the matrix relatio

P~ j 21!
•S TW ~ j 21!

RW ~ j 21!D 5P~ j !Q~ j !
•S TW ~ j !

RW ~ j !D , ~31!

introducing theboundary matricesP( j ) and thepropagation
matricesQ( j ). The boundary matricesP( j ) are

P~ j !5S Ê~ j !

Ê~ j !k̂z
~ j !

Ê~ j !

2Ê~ j !k̂z
~ j !D 5S Ê~ j !

0

0

Ê~ j !D S Î

k̂z
~ j !

Î

2 k̂z
~ j !D
~32!

for structured layers, and

P~ j !5S Î

k̂z
~ j !

Î

2k̂z
~ j !D ~33!
is
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for homogeneous layers~including the vacuum and sub
strate!.

The propagation matricesQ( j ) connect the amplitudes o
the waves between the bottom and top interfaces of a la

Q~ j !5SQ~ j !1

0̂
0̂
Q~ j !2D . ~34!

HereQ( j )6 are diagonal matrices with the diagonal vecto

~e7 ik1,z
~ j !t j ,e7 ik2,z

~ j !t j ,...,e7 ikD,z
~ j ! t j ! ~35!

for structured layers, and

~ ...,e7 ik21,z
~ j ! t j ,e7 ik0,z

~ j !t j ,e7 ik1,z
~ j !t j ,...! ~36!

for homogeneous layers, respectively. Notice the differ
wave vectors in the phases: in Eq.~35! there occur the wave
vectors of the particular solutions of the dynamical wa
field @Eq. ~28!#, and in Eq.~36! occur the conventional wave
vectors of homogeneous layers@Eq. ~25!#. The dimension of
matricesP andQ is 2D.

3. Generalization of the Fresnel coefficients
for structured interfaces

Equation~31! can be rewritten by coupling the amplitude
at the bottom interfaces of two neighboring layersj 21 and
j:

S TW ~ j 21!

RW ~ j 21!D 5Nj S TW ~ j !

RW ~ j !D , ~37!

Nj[Pj 21,j•Q~ j !. ~38!

We introduced the ‘‘interface matrix’’

Pj 21,j[~P~ j 21!!21P~ j ![S t̂ j

r̂ j

r̂ j

t̂ j
D , ~39!

which corresponds formally to the ‘‘interface matrix’’ of th
Fresnel coefficients for an interface of a planar multilay
Notice that the boundary matrix~32! can be easily inverted

~P~ j !!215
1

2 S Î ~ k̂z
~ j !!21

Î 2~ k̂z
~ j !!21D S ~Ê~ j !!21 0

0 ~Ê~ j !!21D .

~40!

The matrices of dimensionD introduced in Eq.~39! are

t̂ j5
1

2
@Êj 21,j1~ k̂z

~ j 21!!21Êj 21,j k̂z
~ j !#,

r̂ j5
1

2
@Êj 21,j2~ k̂z

~ j 21!!21Êj 21,j k̂z
~ j !#, ~41!

with Êj 21,j5(Ê( j 21))21Ê( j ). Since the wave-vector matrice
k̂z are diagonal, the matrix elements are explicitly

t j ,mn5~Ej 21,j !mn /tj ,mn , r j ,mn5~Ej 21,j !mn•rj ,mn /tj ,mn ,
~42!

where
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tj ,mn5
2kz,m

~ j 21!

kz,m
~ j 21!1kz,n

~ j !
, rj ,mn5

kz,m
~ j 21!2kz,n

~ j !

kz,m
~ j 21!1kz,n

~ j !
~43!

are thegeneralized Fresnel transmission and reflection co
ficients for grating diffraction. They all form thegeneralized
Fresnel matricest̂j and r̂j . The transmission coefficient
t j ,mn correspond to the transmission and diffraction of t
wave kz,m

( j 21) ~in layer j 21! through the interfacej into the
wavekz,n

( j ) in layer j.
Finally, we can write the transfer matrix in a transpare

form
na

om
ic
e

ve

p

f-

t

Pj 21,j5
Êj 21,j

t̂j

^ S Î

r̂j

r̂j

Î
D . ~44!

The matrix operationsâ^ b̂ and â/b̂ used here are the
element-by-element multiplication and division operato
respectively@i.e., (â^ b̂) i j [ai j bi j and (â/b̂) i j [ai j /bi j #.

Let us consider the special case of an interface separa
two homogeneous layers. There is no lateral diffraction
these layers; therefore,Ê( j 21), Ê( j ) andÊj 21,j are unity ma-
trices. The matricest̂ j5 t̂j and r̂ j5 r̂j are diagonal and thei
elements correspond to the classical Fresnel coefficients21
r̂j5
k̂z

~ j 21!2 k̂z
~ j !

k̂z
~ j 21!1 k̂z

~ j !
5S kz,1

~ j 21!2kz,1
~ j !

kz,1
~ j 21!1kz,1

~ j !
0 0 ...

0
kz,2

~ j 21!2kz,2
~ j !

kz,2
~ j 21!1kz,2

~ j !
0 ...

0 0 ... ...

D . ~45!
ring
x
l-
ts.
er.

dd-

ds
ti-
ng
The interface matrix reduces to the known form of a pla
multilayer

Pj 21,j5
Î

t̂j

S Î

r̂j

r̂j

Î
D . ~46!

4. Reflection from a multilayer grating

Above, we have coupled the wave fields at the bott
interfaces of two subsequent layers by the transfer matr
Nj @Eq. ~37!#. Finally we couple the wave fields in th
vacuum~index v50! and in the substrate~index s5N! by

the transfer matrix of the whole multilayerM̂ :

S TW v

RW vD 5M̂•S TW s

RW sD ,

~47!

M̂5)
j 51

N

Nj[S M̂11 M̂12

M̂21 M̂22
D .

We employ two additional conditions:

~1! Since the incident wave is planar, all elementsTW v are
zero except that corresponding to the incident beamh50,

which is unity;TW v5(0,...,0,1,0,...,0).
~2! The substrate is semi-infinite, and no reflected wa

are excited (RW s50W ).
Then the amplitudes of the reflected waves above the sam
surface are

RW v5M̂21•M̂11
21

•TW v, ~48!
r

es

s

le

where the vectorRW v is the column vector of the matrix

(M̂21•M̂11
21) corresponding to the column ofh50. The re-

flected intensity of the waveh is uRh
vu2 and the grating reflec-

tivity is

Rh5uRh
vu2

Khz

Kz
. ~49!

In summary, we expressed the problem of the scatte
from a MLG by a matrix formalism similar to the matri
formalism of reflection from planar multilayers by genera
izing the Fresnel reflection and transmission coefficien
However, the matrices employed here are of higher ord
Figures 5 and 6 show the intensity profiles for some o
order GTR’s, and Fig. 9 those for for even-order GTR’s.

FIG. 9. The kinematically forbidden even-order truncation ro
22, 24, and26, calculated by the dynamical theory. The kinema
cal theory gives zero reflectivity of even-order GTR’s for a grati
with the ratioG50.5.
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B. Reflection from rough multilayer gratings

In this section we treat the influence of the roughness
the intensity profile of the truncation rods.

1. Rough sidewalls

In the kinematical theory the amplitudes of the scatte
waves were found to be proportional to the Fourier trans
mation of the susceptibility~17!. The roughness of the side
walls has been taken into account by laterally averaging
Fourier coefficients.

We can include averaged Fourier coefficients in the
namical procedure that modifies the dispersion relation~28!
and also influences the resonance factor. The interac
among distant GTR’s will be exponentially reduced, and th
the dynamical effects will be diminished.

As in the kinematical theory we find that the intensity
the low-order GTR’s is not affected essentially by the roug
ness of the grating sidewalls below several hundred Å
order to be sensitive to this roughness, we would have
measure the scattered intensity in a geometry where the
cident beam is nearly parallel to the wires. Such a nonco
nar scattering geometry requires another experimental
rangement. This case is promising and it will be studied
the future.

2. Rough horizontal interfaces

The rough interfaces cause layer thickness fluctuati
which influence randomly the phase terms@Eq. ~35!# of the
propagation matricesQ( j ) @Eq. ~34!# by the factorF j (r i)

5eikz
( j )t j (r i)5F je

ikz
( j )(uj 11(r i)2uj (r i)). Therefore the propaga

tion matrix also becomes random
te

co

di
n

d
r-

e

-

on
s

-
n
to
in-
a-
r-

n

s

Q~ j !~r i!5Uj~2kz
~ j ! ,r i!Q~ j !~kz

~ j !!Uj 11~kz
~ j ! ,r i!, ~50!

with

Uj~kz ,r i![SU~ j !1~kz ,r i!

0
0

U~ j !2~kz ,r i!
D . ~51!

U( j )6(kz ,r i) are the diagonal matrices, with the diagon
vector

~e7 ik1,zuj ~r i !,e7 ik2,zuj ~r i !,...,e7 ikD,zuj ~r i !! ~52!

for structured layers.
The amplitudes of the reflected waves given by Eq.~48!

have to be averaged over the random interface displa
ments. We employ the approximation

^RW v&5^M̂21•M̂11
21

•TW v&'^M̂21&•~^M̂11&!21
•TW v. ~53!

The averaged transfer matrix of the whole multilayer rea
@cf. Eq. ~47!#

^M~r i!&5)
j 51

N

^Nj~r i!&5)
j 51

N

^Pj 21,j~r i!&Q~ j !, ~54!

where we renamed the ideal matricesPj 21,j in Eq. ~39! as
Pj 21,j

id and put

Pj 21,j~r i![Uj~kz
~ j 21! ,r i!Pj 21,j

id Uj~2kz
~ j ! ,r i!. ~55!

Averaging the boundary matrix is straightforward. It leads
the form where the elements of the ideal matrix are mu
plied by the characteristic functionxuj

of the probability
distribution of interface displacements@as usual, we can us

the Gaussian distribution functionxuj
(Q)5e2Q2s j

2/2]
^Pj 21,j~r i!&5S @t j ,mnxuj
~kz,m

~ j 21!2kz,n
~ j ! !#

@r j ,mnxuj
~2kz,m

~ j 21!2kz,n
~ j ! !#

@r j ,mnxuj
~kz,m

~ j 21!1kz,n
~ j ! !#

@t j ,mnxuj
~kz,m

~ j ! 2kz,n
~ j 21!!# D . ~56!

This relation is a generalization of the averaged boundary matrix for XRR by a rough planar interface

^Pj 21,j~r i!&5
1

tj
S xuj

~kz
~ j 21!2kz

~ j !!

rjxuj
~2kz

~ j 21!2kz
~ j !!

rjxuj
~kz

~ j 21!1kz
~ j !!

xuj
~kz

~ j !2kz
~ j 21!!D , ~57!
m
id-
this
for

of
ing
cal
las,
he
where the Fresnel coefficientsrj andtj have now their ‘‘clas-
sical’’ meaning.

Comparing the matrix elements~56! to the definition~42!
we find the generalized Fresnel coefficients for rough in
faces in gratings

^rj ,mn~r i!&5rj ,mne
22kzm

~ j !kzn
~ j 21!s j

2
,

^tj ,mn~r i!&5tj ,mne
~kzm

~ j !
2kzn

~ j 21!
!2s j

2/2. ~58!

Notice the different meaning of the generalized Fresnel
efficientsr andt @determined by Eq.~43!# and of the coeffi-
cients t and r @determined by Eqs.~39! and ~42!#. The
Fresnel coefficientsrj and tj of one interfacej can be inter-
preted as the structure factor for the scattering from one
r-

-

f-

fraction orderm to another ordern at that interface. The
coefficientst andr describe the transfer of the waves fro
one grating diffraction order to the other, which also cons
ers the influence of all the other scattering processes at
interface. Figure 10 shows the calculated GTR profiles
MLG’s with different interface roughnesses.

C. Numerical implementation

Up to now we have provided a theoretical description
the dynamical theory for rough gratings. Before discuss
numerical results, also in comparison with the kinemati
theory, we briefly summarize the procedure and formu
which are suitable for the numerical implementation of t
dynamical theory.
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First of all, thez components of the wave vectors of th
diffracted waves are calculated. For homogeneous layers~in-
cluding vacuum and substrate! they are simply given by the
spherical dispersion relation~25!. For structured layers, tha
requires solving the eigenvalue problem~29! with the
Fourier coefficients of susceptibility~2!. The eigenvectors

form the matricesÊ( j ), which are unity matrices for homo
geneous layers.

The interface matrices of all interfaces~39! are formed by
the elements~42!, which are corrected, in case of roughne
according to Eq.~56!. Then the transfer matrix of the whol
multilayer is determined by multiplying successively t
propagation matrices of the interfaces and layers using E
~38! and~47!. Finally, the grating reflectivity~49! is obtained
independently for each grating truncation rod. The numbe
dynamically interacting GTR’s is chosen in the way
achieve good numerical convergence for all GTR regions
interest. Please notice that the susceptibility, thez compo-
nents of the wave vectors and the amplitudes of the w
field are within the grating complex numbers; therefore
matrices are complex too.

V. DISCUSSION

A. Diffraction by ideal gratings

In the following we want to discuss the results of bo
theories. The dynamical theory as well as the kinemat
theory reproduce a coherent grating diffraction pattern c
sisting of a specular rod and grating truncation rods~Fig. 3!,
determined by the lateral Bragg law@Eq. ~7!#. The GTR’s are
arranged equidistantly in reciprocal space around the sp
lar rod in a plane defined by the surface normal and the w

FIG. 10. Intensity of~a! the odd-order truncation rod21, and
~b! the even-order truncation rod22 of the surface grating de
scribed in Fig. 4 with rough interfaces. Thin full curve: no roug
ness. Dashed curve: no surface roughness, interface roughne
Å. Thick full curve: surface roughness 12 Å, no interface roug
ness. Notice that the reflectivity curve from the perfect MLG is n
damped, while the other two curves have the same order below
critical angle, and opposite order above it. The explanation of
phenomena is given in the discussion.
,

s.

f

f

e
ll

al
-

u-
e

normal. We remind the reader that in coplanar reflection
ometry the grating periodd, the wavelength used, and th
horizon of the sample determine the smallest accessibleQz

value of a given GTR~above the limiting Ewald spheres i
Fig. 3!.

In both theories we generalize the Fresnel coefficients
the case of diffraction by structured interfaces. In the limit
a nonstructured interface between two homogeneous la
these reduce to the classical Fresnel coefficients. Thekine-
matical contributionof one structured interface to the di
fracted amplitude of one GTR isdirectly proportional to the
corresponding generalized kinematical Fresnel coeffic
~15!. The diffracted wave of the whole multilayer is de
scribed by the simple series of the phase corrected Fre
diffraction coefficients of all interfaces. That means, the
are~1! no interaction of different GTR’s and~2! no multiple
scattering between different interfaces taken into acco
Only one scattering process, theprimary scatteringfrom the
incident wave into the considered grating diffraction ord
plays a role. In the simple example of a simple squa
shaped surface grating~with two structured interfaces!,
thickness interference fringes are created along the spec
scan~Fig. 4!, similar to the reflection by a laterally average
layer, and also along the higher-order GTR’s~Figs. 5 and 6!,
similar to the diffraction by a crystalline layer. Since an
extinction effect is neglected, all GTR intensities diverge
the vertical momentum transferQz goes to zero~see Fig. 4!.
Notice, that the reflection curves of the nonzero GTR’s
Figs. 5 and 6 merely do not diverge, since there it alwa
Qhz@0.

The dynamical contributionof one structured interface
depends on thewhole generalized Fresnel matrices~39!,
which include the Fresnel diffraction coefficients as their
ements~42!. The generalized Fresnel matrices include t
primary diffraction ~scattering of the directly transmitte
wave into the selected diffraction order! of the j th interface
by rj ,0m . Theintertruncation rod scattering, i.e., the multiple
scattering among the wave fields of all GTR’s~see Fig. 8!,
has been taken into account by the Fresnel coefficients o
the other indicesnÞ0:rj ,nm . Each structured interface give
rise to intertruncation rod scattering. In contrast, all plan
interfaces~below the grating! contribute only by Fresnel co
efficients with identical indices@rj ,mm; Eq. ~46!#. In other
words, planar interfaces exclusively causeintratruncation
rod scattering—the dynamical interaction between the tran
mitted and reflected waves of the wave field of a particu
GTR order. In summary, the dynamical theory takes the
fraction in the layers into account. It also includes all tho
diffraction orders with nonreal wave vectors describing th
evanescent wave character~extinction!. In the specular rod
one observes a plateau of total external reflection simila
specular reflection by a planar multilayer~Fig. 4!. The re-
fraction and the evanescent wave behavior of the incid
and the primary diffracted waves leads to the Yoneda-l
wings and Bragg-like peaks in the nonzero GTR’s~similar to
the grazing incidence diffraction curves of crystals22 or non-
specular x-ray reflection curves of rough surfaces23!. The
evanescent waves of other strongly diffracting GTR’s c
also affect the intensity profile of near-neighboring GTR
by intertruncation rod scattering. For example one can
serve the influence of intertruncation rod scattering on
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specular scan just when the incident angle excites
Yoneda-like wing of the GTR11. Along the GTR of weak
primary scattering~weak Fresnel coefficientsrj ,0m! the dy-
namical intertruncation rod scattering plays an essential r
For example, for rectangularly shaped gratings with a re
tive wire width G5 1

2 all even-order truncation rods 2mÞ0
are kinematically forbidden:rj ;0,2m50. Simulations by the
dynamical approach give diffraction curves with nonzero
tensity ~Fig. 9!. There the whole diffraction intensity isof
purely dynamical origin, caused by the intertruncation ro
scattering of the nonzero GTR’s into the direction of a fo
bidden GTR.

B. Influence of interface roughness

Interface roughness diminishes all Fresnel diffraction
efficients, kinematical@Eq. ~22!# as well as dynamical@Eq.
~58!# ones. Let us the further discuss the dynamical the
only.

The roughness damps the primary scattering as well as
inter-GTR scattering. The reflection and transmission coe
cients corresponding to primary specular reflectionrj ,00 and
tj ,00 depend on horizontal roughness in the same way as
classical Fresnel reflection and transmission coefficients
planar multilayers: below the critical angle the reflection c
efficients are not affected; above they decrease with incr
ing Q0z . The behavior of the other matrix elements of i
tratruncation rod scattering~diagonal terms! is more subtile.
From the matrix relations~57! and ~58! we deduce, espe
cially, that the transmission coefficients are not substanti
influenced for large exit angles of the corresponding diffr
tion order, since the vertical distancekz,m2kz,n is small. The
decrease of the reflection coefficientsrj ,mn is given by the
static Debye-Waller-like factor which depends on the wa
vector transferkz,m

( j ) 1kz,n
( j 11) , which decreases progressive

with increasing angles of incidence and exit.
Numerical results are shown in Fig. 10 for the stro

GTR 21 and for the kinematically forbidden second-ord
GTR. In both cases we calculated the curves~1! for a smooth
surface grating,~2! assuming a rough interface and a smoo
surface, and~3! assuming a smooth interface and a rou
surface. In thespecular GTR~not shown here! the results are
comparable to the well-known features of a single-layer s
tem: above the critical angle the surface roughness decre
the whole reflected intensity, while the interface roughn
damps mainly the fringe amplitudes. For thestrong GTR
orders @e.g.,21; see Fig. 10~a!# and incident angles abov
the critical angle, we observe a qualitatively similar beha
iour. Here primary scattering~given by rj ,0m! dominates the
other scattering processes. In contrast to the specular
surface roughness also decreases the GTR intensity at
dent anglesbelowthe critical angle. At small incident angle
kz,0 is imaginary~evanescent wave behavior!; however, the
wave vectorskz,m of all excited negative GTR orders corre
spond to exit angles above the critical angle. Conseque
the wave-vector transferqz,m05kz,m1kz,0 never becomes
purely imaginary, and the exponential damping factor is
ways smaller than unity. Therefore, the reflected inten
from a MLG with a rough surface is also below the critic
angle reduced@thick full curve in Fig. 10~a!#. That is differ-
ent in the second case@smooth surface and rough interfac
e
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dashed curve in Fig. 10~a!#. Now the evanescent inciden
wave does not penetrate into the grating, and thus does
reach the second interface. Only the surface contribute
the diffraction below the critical angle.

Finally, for the weak ~kinematically forbidden! GTR or-
ders @e.g., GTR22 in Fig. 10~b!# the primary scattering
vanishes:rj ,0m50. The wave fields of forbidden GTR’s ar
created by multiple scattering of the GTR’s excited by t
primary scattering of the incident wave. The influence o
rough surface@thick full curve in Fig. 10~b!# and a rough
interface~dashed curve! is similar to that of strong GTR’s for
small incident angles only, and it is opposite above the cr
cal angle.

VI. EXPERIMENT

In this section we present experimental results from a p
tially etched multilayer grating and its evaluation by our th
oretical approach. A Ga12xInxAs/InP multilayer of three and
a half periods~seven layers! has been grown by chemica
beam evaporation on an InP@001# substrate. The bilayer se
quence consists of nominally 50-nm Ga0.47In0.53As and
30-nm InP. A surface grating with a lateral period of 1.3
mm has been fabricated by holographic exposition of a p
toresist and subsequent selective etching. The etching
been stopped at the second interface; see Fig. 11. Thus
grating depth is exactly the bilayer thickness of the upp
most multilayer period. As a result, we obtained a partia
etched multilayer surface grating.

The reflectivity measurements have been performed at
Optics beamline D5 at the European Synchrotron Radia
Facility in Grenoble using the setup of the high-resoluti
x-ray diffractometer. A single reflection Si~111! monochro-
mator was mounted on the first goniometer, the sample
the second one, and the Si~111! analyzer crystal on the third
one. The detector unit was completed by additional s
mounted in front of the analyzer in order to limit the exte
sion of the analyzer streak. The movements of the slit,
analyzer, and the detector, as well as the whole third go
ometer, were coupled in order to detect all scattered wa
under identical intrinsic geometrical conditions of the who
detector unit, keeping its resolution function constant dur
the relatively large angular scans. We used the wavelen
l50.7114 Å. The sample was mounted in coplanar scat
ing geometry with a horizontal scattering plane. Figure
shows anv scan at 2u50.7°, with a central specular pea
and first-order grating reflection orders. The specular pea
well as the GTR peaks are well localized with a full width

FIG. 11. Schematical drawing of the sample.
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half maximum of 0.005°. From their positions in reciproc
space,Qx

6156(4.61310246231026 Å 21), we could de-
termine very precisely the grating period ofd52p/uQx

61u
5(1.36260.005)mm. In order to avoid errors caused by th
quite different precision of the participating motors during
single off-specularQz scan, the intensity pattern along ea
GTR was mapped by performing off-specularQz /v maps in
the narrow regions around their theoretical position. T
GTR pattern was deduced by following the maximum of t
small v scans. In Fig. 13, we plot the specular reflectiv
and the intensity profile of the GTR21. The intensity pat-
tern of the GTR11 was within the measurable accura
identical, indicating a symmetrical shape of the wires. T
curves were fitted by employing the dynamical theory. D
spite of dynamical intertruncation rod scattering the no
specular GTR’s are only influenced by the etched part of
multilayer, and are not sensitive to the planar multilayer
the bottom of the grating. No influence of sidewall roughne
could be established, since the lower GTR orders are
sensitive to sidewall roughness~see Secs. III B1 and IV B1!.
However, in order to obtain a good agreement between
perimental and calculated curves, we had to take the in
face roughness into account. We determined the layer th
nesses close to the nominal values:t InP52960.8 nm and
tGa12xInxAs550.360.8 nm, and a rms roughness of 0

60.3 nm. The ratio of the wire width and the grating peri
was determined to beG5dA /d50.6660.03.

VII. CONCLUSION

We reported x-ray reflection from multilayer gratings, d
scribed by kinematical and dynamical theories. In the
namical theory we proceeded by the modal eigenvalue
proach. The matrix sequence was organized in such a

FIG. 12. Measuredv scan for 2u50.7° of the sample which
cuts the truncation rods21, 0, and11.
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that the boundary matrices~describing the transition of the
wave fields through the interfaces! are easily related to the
introduced generalized dynamical Fresnel reflection coe
cients of lateral diffraction. In the framework of the kine
matical theory, we employed the stationary phase method
an evaluation of the kinematical scattering integral. We
fined generalized kinematical Fresnel reflection coefficie
of structured interfaces.

In both theories we considered the roughness of the h
zontal planar interfaces and the vertical sidewalls. In the
nematical theory damping factors for the generalized Fres
coefficients are obtained. In the dynamical approach the
fective Fresnel diffraction coefficients of rough interfaces
minished the elements of the boundary matrices. Sign
cantly different effects of surface roughness and interf
roughness on intense GTR’s and on weak~kinematically for-
bidden! GTR’s were discussed by numerical examples.
nally, we employed the dynamical calculation for fitting th
structure parameters of a partially etched GaAs/InP perio
multilayer grating.
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FIG. 13. Fit of the measured intensity profile of the specular~a!
and21 ~b! GTR’s of the sample. The simulated curves in~a! and
~b! are shifted five and three times, respectively.
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