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Ballistic transport and scarring effects in coupled quantum dots
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We have performed numerical simulations of couptgazenquantum dots, connected by contacts supporting
a number of modes. In single dots, ttesonantwave functions can becarredby classical periodic orbits.
Coupling between dots allows for the two-dimensional analog of molecular states. With these molecular states,
we find that the wave functions can be scarred by orbits that are clearly dhetvegerdots. In a finite chain
of dots, we find that the formation of energy bands and gaps can be a by-product of complicated scarred states
involving orbits that can extend over many dots. These orbits appear to be variations of those that contribute
to the atomic and molecular stat¢$0163-18209)04311-9

[. INTRODUCTION path and phase coherence length are larger than any charac-
teristic dot dimensiod>!® Provided that the number of
Scarring is an effect whereby the quantum-mechanicapropagating modes is not too great, a collimation effect is
wave function in a cavity has its amplitude maximized alongProduced by the QPC'’s that can cause the selective excita-
the path of a periodic orbit that one would find in a corre-tion of particular dot eigenstatés’ This selection of states
sponding classical billiard system with the same geometryiS believed to be due to the fact that the collimation effect
Seminal work in this area was performed by Heller andallows only certain orbits to participafeThe scarring effect
co-workerst—3whose numerical calculations showed that theS€en in resonant states in open dots serves as evidence for
highly excited states of the Bunimovich stadiumhich is  this claim.
classically chaoticwere scarred by unstable periodic orbits. [N this paper, we extend our previous work 2y ex-
The scarring effect has been found in other chaotic cavit@mining coupled dots that are in the open regime. As was the
systems, a noteworthy example being the Sinai billiardCase in single dots, we find that scarred states can play an
which consists of a square or rectangular cavity with a cirimportant role in ballistic transport. When two dots are
cular diffuser in the center. In this case, the scarring ha§oupled, we find that conductance resonances that corre-
actually been observed experimentally in microwavespond to “molecular” states can be scarred by classical or-
Cavities‘}_e While the focus has been on chaotic SystemS, |[bItS that are Clearly shared between dots. S|mu|at|ng finite
haS been Shown that Scarring can be a property of regu|&hains of dIOtS, we obtain the eXpeCt_ed Superlflittice behaVior
structures as well.Scarring has also been observed in nu-(the formation of bands and gapsut find that this behavior
merical simulations obpenquantum cavities or dots. Spe- €an occur as a result of the formation of complicated scarred
cifically, scars have been found to correspondesonances —States that involve orbits that can extend over many dots.
in the magnetoconductance in open Sq&asmdujm? and S|gn|f|Cant|y, these orbits appear to be more Complicated
Sinai bi”iardlolll quantum dots Connected to Outside reser_variations of those that contribute to the Single and double
voirs by quantum point contactQPC's, which allowed dot states. .
several propagating modes. In these simulations, certain The paper is organized as follows. In Sec. II, our method
scarred states were found to recur periodica”y in magneti@f calculation is bl’lefly described. In Sec. I, we consider
field. The periodicities obtained have been found to matciihe case of two coupled dots. In Sec. IV, the focus is shifted
well those observed in experimental magnetoconductancl® superlattices of coupled dots. Conclusions are drawn in
fluctuations of such dof*?yielding circumstantial evidence Se€c. V.
that the periodicity of the fluctuations can be associated with
the periodic orbits underlying the scars. . _ Il. METHOD OF CALCULATION
Recently, there has been much interest in the physics of
coupled quantum dots. Single dots can be considered analo- In this section, we briefly summarize our method of cal-
gous to “artificial atoms” if the energy levels can be culation. For full mathematical details, we refer the reader
resolved'® Thus, fabricating multiple quantum dots that areto.!® For our simulations, the general situation is one in
coupled together by QPC'’s provides a way of creating “ar-which ideal quantum wires, which extend outward-tee,
tificial molecules.” Most of the work has focused on the are connected to the dot system. When a magnetic field is
situation where the coupled dots have been connected to eapplied, it is normal to the plane of this system. We solve
ternal reservoirs by QPC's that are in the tunneling regime sthis quantum-mechanical problem on a discrete lattice using
that the physics is dominated by Coulomb blockade effécts. an iterative matrix method that is a numerically stabilized
However, one should still expect the transport to be domivariant of the transfer matrix approach. The discretized
nated by the resolvable spectrum even in “open” dotsSchralinger equation, keeping terms up to first order in the
(QPC's allowing several modgprovided that the mean free approximation of the derivative, has the form
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II. TWO DOTS IN SERIES

Classically, closed square cavities have been shown to
yield a mixture of regular and chaotic behavior with finite
'“"“‘ AL B.1° As for the periodic scarring effects, diamond scars were
(e) seen to recur in single open dots nominally square in
shapeé®!? In Fig. 1(b), we show an example for two coupled
FIG. 1. In(@—(®), |#(x,y)| vs x andy is plotted, with darker dot_s. Each dot is a 0.am square anc_i the three fingers that
shading corresponding to higher amplitude, showing scars for thd€fine the two dots are each 0.5 wide[E and the QPC’s
situations described in the text. A classical periodic orbit is plotted@® the same as ife)]. A perpendicular magnetic field of
in (f). B=0.280T has been appliedhe cyclotron radius ig ¢,
~0.4um). In each dot|#(x,y)| is scarred by a classical
(Ee—H) ¢ +H; 1th1+H) 418 +1=0, (1)  periodic orbit in the form a diamond. In a single dot, these
wave functions correspond to resonarfiaesd so can be con-
where ¢; is a M-dimensional vector containing the ampli- sidered analogous to atomic states.
tudes of thejth slice. This problem is solved on a square At first glance, this picture seems odd as the orbit re-
lattice of lattice constard with the wires extendindl lattice  flected by the scar does nappearconnected to either lead.
sites across in theg direction. The region of interegfor However, it is important to realize as these correspond to
example, the QPC and open ended cavity shown in @] 1 resonantstates, the electrons can stay in the dot for a rather
is broken down into a series of slices along gdirection. In  long time. In a calculation where inelastic scattering was
this equation, théd; matrices represent Hamiltonians for in- introduced to limit the phase coherence length, it was esti-
dividual slices and the matricéd; ;_, andH; ;. give the  mated that the electrons would have to make on the order of
interslice coupling. By approximating the derivative, the ki- 20 circuits along the diamond orbit in order to build to suf-
netic energy terms of Schiinger's equation get mapped ficient amplitude to form the scaf.Since the electrons enter
onto a tight-binding model with= —#2/2m* a? representing and exit the dot system only once, the quantum-mechanical
nearest-neighbor hopping. The potentaht sitei,j simply  amplitude associated with those paths is dwarfed by com-
adds to the on-site energies, which appear along the diagongérison, as are the contributions made by any shorter orbits
of the H; matrices. Transfer matrices based on Ei.can that may be allowed in the dot. The conclusion that scars
then be derived, which allow translation across the system tgorrespond to long-lived states is supported by the dwell
obtain the transmission coefficients, and which, in turn, entefime analysis of Zozoulenket al?! In semiclassical calcu-
the Landauer-Biiker formula to give the conductance. The lations of conductance, the orbits that are usually singled out
instability problems inherent in the transfer matrix approachare short and show a clear and relatively simple connection
due to exponentially growing and decaying contributions ofwith the input and output leadsee, for example, Wirtz,
evanescent modes are overcome by some clever matrikang, and Bergdorfé). However, examining resonant
manipulations® Rather than just multiplying transfer matri- states is typically not done in these calculations, as the very
ces together, the scheme is turned into an iterative proceduteng quasiperiodicorbits (recall the electrons are confined
that does not allow the eigenvalues to diverge. Once théor a finite time which lead to the resonant behavior are not
calculation is complete, the wave function can be reconincluded. This is because a cutoff lengtxpressed in terms
structed by a backsubstitution scheme. In order to approxief the number of bounces an orbit makes, 15 being a typical
mate well the continuous system, the lattice spaeirmgust  numbey is imposed in order to allow the calculations to
be small compared to the Fermi wavelength, typically on  finish in a reasonable amount of tifieThis is not an issue
the order of~0.1\ or smaller. with our fully quantum-mechanical transport calculations. In
Figure Xa) illustrates beam collimation effect mentioned fact, in a system such as ours where the quantum dots are
in the introduction, which we believe plays an important rolewell defined one can begin making direct comparisons with
in determining which orbits participate in the transport. Herethe semiclassical theory ofosedsystems, where the density
|4(x,y)| versusx andy plotted for a QPC 0.0xm wide,  of statesDOS) is determined by weighted summations over
supporting three propagating modes given a Fermi energy afuly periodic orbits?* Indeed, examining the conductar@e
E=16 meV. The QPC exits into a 08m-wide cavity. With  in open quantum dots as a function of both enekgand
the quantization of the transverse velocities in the QPC, théeld B, it has been found that the resulting three-dimensional
electrons exist at well-defined anglésote that the beam function is prominently striated by lines of resonante®.
quite visibly splits into the three modeand this combined These resonance lines tend to coincide to points where one
with upper boundary reflection creates the downward collifinds scarred wave functions such as the diamond shown
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4 x andy directiond. Indeed, a relatively large number of anti-

~f N nodes are required in order to resolve a scar. This is why we
see scarring in our coupled dot results, while Li and
Berggrer’® who also examined what may be considered
open, coupled quantum dotactually a quantum wire with
double stub side brancheslid not. They only considered the
very lowest part of the energy range and the first few reso-
nant states. Among other things, they also examined the
guantum-mechanical current flow and saw that the resonant
states yielded vortices. With regards to this, we note that it
can be dangerous to associate quantum-mechanical current

G (2¢6%/h)
N
<

4.2 43 4.4

E (meV) flow lines with classical trajectories, particularly at low en-
T L T R ergy. For example, the lowest resonant state in a quantum
(b) (CCITR (LTI (U L) ITCED SO wire with a cross branch has a single antinode trapped in the
R CCOND Y TR region where wire and branch intersect and is h_eld in plac_e
(©) VN O St N TG e by the sharp corners of the structure. The flow lines associ-
~ _mmmes ated with the current vortex corresponding to such a state

(d) ><%> :f:f; = have no direct relationship to any classical orbit. We have

R A AW AW WA WA found that a simple correspondence between current flow
(c) HURR [OAH Niate seaie wlerite plwlte vl and a classical trajectory only occurs when the scarring of

- the resonant state is particularly obvious, such as the dia-

FIG. 2. (8 G vs E plotted for one(upper dashed curyetwo mond scar shown here. In this case, current circulates around

(upper solid curvg and seven quantum dot®wer solid curve. and a"?”g the_diamond' . " .
The two upper curves have been offset by a factoGef2e?/h. In Fig. L(c) is what may be described as a “molecular
(b), (c), and(e) are the wave functions that correspond to the indi- State- The QPC connecting the dots has been widened to 0.12

cated features irfa). A classical distribution function is plotted in M. Here it appears that a precession effect is occurring,
(d). with electrons roughly following the diamond, but then de-
viating from it, and eventually skipping into the adjacent dot.

here? They also tend to coincide to lines found in the actualON€ can observe this sort of sharing effect even if the indi-

spectrum of the closed d&tAs one might expect, the match vidual dots remain very V\.'e” defined. Figured] corre-
betweenG(E,B) and the closed dot spectrum is not exactSPONds to the same situation ab)L but now B=0.042T
since the openness of the dot broadens the energy levels, b@tcycwz'G'“m)' An mver'ted V-shapgd scar clearly extend;
the basic pattern is the sarffen important point is that the ~Petween the two dots. Given the collimation effects shown in
broadening isnot uniform In particular, which closed dot Fig. 1(a), it is not difficult to understand why the classical

states survive to yield resonance lines in the conductance zg/bit that scars this state is being favorably occupied, likely

; he middle portion of the split beam in Figdl For Fig.
the open system has been found to be highly dependent L "
not only the width of QPC openings, but on their position ast(®), we have sek to be 4.073 meV, the QPC's are 0.0

well.25 For example, if the QPC's are shifted down to the Wide, supporting two propagating modes et 0. Here a

center of the dot, the diamond orbit is no longer allowed. InM0ré complicated variation of the type of “shared” scar
this case, the resonance lines corresponding to states scargtPWWn in Fig. 1d) appears. With the change in conditions

by this orbit vanisi® This result serves as yet another con- (IOWer energy, zero field, wider QPQ’the aim of the colli-

firmation of the fact that the QPC’s act as a selector of parmated beam has been significantly altered. Thus, as one

ticular orbits. might expect, a different orbit is reflected by the resonant

With regard to scarring in closed systems, a semiclassica‘-l:ate' An example of a classical orbit that is closely related to
“scarring” formula has also been derived in a manner simi-(NiS scarred state is shown in Figfjl As one may imagine,

lar to that of the DOS formuld It relates the wave-function there are a large number of periodic orbits that have this

amplitude squared integrated over a range of energy to S2M€ basic fornithey of course would involve greater or

weighted summation over periodic orbits. As a result of thd€SSer numbers %f boungesAs Heller, O'Connor, and
nature of the weighting, the more stable orbits contribute>€nlen have notetbecause orbits tend to come in families

more strongly than the others and as such are reflected in thec0USIns”), it can be difficult to make a one to one corre-
wave functions. This is the origin of the scarring effect. SPondence between a particular scarred state and a specific
While this semiclassical formula requires an integration overorb't' However, it is clgar that one can at least make a cor-
energy, it is consistent with the results that show individual®SPondence to a family.

eigenstates being scarred. This is permitted provided that the
energy level spacing is sufficiently large. The semiclassical
formula for the DOS and scarring apply in the lirhit-0. In In Fig. 2(a), we plot conductanc& versus energ¥ for

the fully quantum-mechanical theory we employ, this isone, two, and seven dots and use the dot configuration of
equivalent to requiring that the states that are examined be &lg. 1(e). The upper solid curve is for two coupled dots and
high energy, so that a large number of nodes are present the resonance marked by theorresponds to Fig.(&). This

the wave function[examining the ripples underlying the resonance as well as the one adjacent tmérked+) do not
scars in Fig. &), one can see about18 antinodes along the occur in the upper dashed curve, which is for a single dot.

[ll. FINITE SUPERLATTICES OF DOTS
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This is not surprising since the scars here require at least two 5 —

dots to be establishefdhe + resonance corresponds to an 4 (a)f’\ - ‘\J \\"3_ //'\\C
inverted-V pattern similar to Fig.(dl)]. Importantly, the two — 3 \/L — v‘”b\‘/ N
dot and one dot curves still do share resonances in common, = v ’” ANV d

at ~4.21 and~4.39 meV. There is some splitting of the 8 2 M\A {U /NlT \ ,&/\\JWU/
resonances the two dot case due to the interdot coupling 6 1—/\[b U ﬂ , \J W
breaking the degeneracy of the single dot states. The middle 0- N 1] ,,A\é/\/vv\
solid curve corresponds to seven coupled dots and shows sets 1 | ' 9,‘3‘0 = 435 240

of resonances as well as flat plateaus. This is a more com-
plicated variation of behavior previously noted for finite one-
dimensional(1D) superlattice$®*° Specifically, if there is a
resonance in transmission through a single 1D potential well,
the N such wells coupled together will produdé peaks in
transmission as a function & These peaks correspond to
standing waves with different numbers of nodes trapped in
the structure. AN is made infinite, these groups of peaks
eventually correspond to energy bands, and the transmission
minima separating them to band gaps. However, unlike the
purely 1D case, there are two propagating modes in the
QPC'’s here, so that there are there three quantized steps in
conductance possible instead of jB&=0 and G=1 (in
units of 2e?/h). From the figure, one sees the groups of
resonances peaking either@t=1 or G=2 and flat plateaus FIG. 3. (a) G vs E is plotted for onglupper dashed curyetwo
correspond to eitheB=0 or G=1. As in the 1D case, if we (upper solid curvg and seven quantum dotewer solid curve. In
increase the number of dots in the structure, more resonanc8¥s case, the QPC’s have been moved to the centers of the dots.
appear in each group and they eventually form “quasipla-The two upper curves have been offset by a factof'BeMez/h.
teaus.” A “recovery of quantization” similar to what is seen Inset: G vs E for the same seven dot structure, but with QPC_’s that
here was first noted by Leng and L&hin a quantum wire have been narrowed), _(c),_ (d), (e), and(f) are the wave functions
with a relatively weak periodic modulation. Three of the fea-Nat correspond to the indicated features(an

tures in the curve are labelds ¢, andd. Figure Zb) is the

wave function ab (a resonance & =4.087 meV). The am- tions, particularly wheiG = 1. Analogous zero-field skipping
plitude is maximized in the center and there is a standingrbits have been observed in quantum-mechanical calcula-
wave with a single antinode trapped in the structure. Figurgions performed on 2D antidot superlattic@®ifferent types

2(c) corresponds te (a resonance & =4.063 meV), which  of behavior leading to plateaus are discussed below.

occurs in the same finite band as Figh)2 A more elaborate In Fig. 3, we show an example with a different lead con-
standing wave occurs, with several more antinodes. For configuration. The dots are the same size as above, as are the
parison, Fig. &d) shows aclassical distribution within an  widths of the fingers. The QPC openings in this case are 0.08
open seven dot structure. To generate this picture, we inum, wide enough to support three propagating modes for the
jected an angled beam of classical electrons into the left sidgiven energy range. Here, the leads have now been shifted
of the structure, which is broken down into a grid. To deter-down to the center of each dot. In this case, the electrons exit
mine the shading, we counted the number of times an eledhe leads in a V-shaped jet. In FigiaB we plot conductance
tron passes through a grid element in its trip through theG versus energ¥ for one, two, and seven dots. Figurg®)3
structure, with darker color for higher counts. Clearly evi-and 3c) show the resonant double dot wave functions cor-
dent are a series of interlocking orbits that are more compliresponding to labelsb (E=6.329meV) and c (E
cated variations of the orbit in Fig(f). Note, in particular, =6.45meV) in Fig. 83). Note that only a single resonance
the presence of orbits that appear to be spread across thratb occurs in both the one and two dot curves. Examining
dots instead of two. These orbits form patterns similar tothe wave function ab, we see that the pattern in both dots
those evident in the wave functions shown above. Thus, weeflects a pair of crossed rectangular orbits, tilted at an angle
conclude that, in general, the standing waves are not just ef 45°. As in Fig. 1b), this is an example of two “atomic”
simple linear combination of the original scarred states. Thetates that are very weakly coupled together. Looking at the
are in fact the quantum remnants of the type of multidotseven dot curve, there is a wide minimum where the reso-
orbits shown in Fig. &), obviously related to the original nance occurred in the one dot curve. Adjacent to this mini-
orbits, but clearly modified by the multidot structure. Figure mum are weak side resonances. The behavior here is remi-
2(e) corresponds to theG=1 plateau labelede (E niscent of that noted for quantum wires with single stub side
=4.35meV). Interestingly, this plateau appears to occur abranches? In contrast to simple one-dimensional problem of
the result of an underlying skipping orbit that bounces off thepotential barriers in series, which allows only for resonant
top edge of each finggsegments of such a trajectory can betransmission, it was found that the quasibound states in
seen in Fig. &d)]. However, in contrast to the quantum Hall stubbed quantum wires could actually yield resonant reflec-
effect, the skipping orbit present here occurgerp fieldand  tions (for a simple qualitative explanation of this behavior
is notrelated to any magnetic edge states. We find that thessee Ref. 34, for a review of the subject see Ref. 35 and
zero-field skipping orbits can occur in many different situa-references therejinin the case where several stubbed wire
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sections are connected in series, it was found that these re- 2.0
flection resonances broadened into valleys due to the cumu-
lative blocklng effect of the resonant states trapped in the 31 5 [V,
stubs®® Here a similar effect is apparent. While the patternin o~ v
each dot is the same, the amplitude in the second in Fig. 3 & 1 '0“ v
is much weaker than in the first. At the resonance labeled EO 5;
(E=6.435meV), the wave function shown in Fig(cB '
yields yet another example of a “molecular” state, with two 0.0
crossed rectangular orbits extending between the two dots 4. 0
(note that the resonance is absent in the one dot).cake
occurrence of this resonant state is obviously facilitated by
the position and collimation effect of the leads. In the seven (b) '%IP)‘"” o
dot curve, there are six resonances in this region of energy,
each corresponding to different standing waves trapped in T
the structure. The one corresponding Be-6.445meV is (1) p e Vet ote e
shown in Fig. 8d). As with the previous example, the stand- = S miI == . =
ing waves reflect more complicated variations of orbits ap-
parent in the “molecular” state. (d) i C N
The inset of Fig. 88) showsG versusE for a seven dot, L
centered lead superlattice as well. In contrast to the previous
example, the QPC openings have been narrowed to/n06 FIG. 4. (a) G vs E is plotted for a chain of seven Sinai billiard
so that only two modes propagate over the given energgiuantum dotgsold curve and a Sinai billiard chain with a defect
range. Note that, over this range, there a1 plateau and (dotted curvg Figures(b), (c), and(d) are the wave functions that
several resonances. The wave function for the plateau ig°rrespond to the indicated features (@h
shown in Fig. 8e) (E=4.325meV). In contrast to Fig.(®,
where a skipping trajectory was clearly reflected by the wavéalf of each dot and a 0.04m radius antidot has been in-
function, no trajectory pattern can be discerned. Indeed, theluded in each. While the closed, classical Sinai billiard is
simple checkerboard patterns that are exhibited in the indichaotic forB=0, there is no qualitative difference between
vidual dots in the last six dots of the structure are what youhe behavior in chains of Sinai billiard structures and that of
would expect for many of the eigenstates oflasedsquare  square dots. Figure(d) corresponds to the resonance labeled
dot. The pattern evident in the first dot is similar to the boundb in Fig. 4a) (E=4.35meV). Here we see a standing wave
state that you would see at resonance in a single dot near thigittern involving scars trapped in the lower part of each dot.
energy. The wave function here is comparatively compli-As with the square dot example, this wave does not involve
cated, so it is difficult to picture what the orbit correspondinga simple repetition of a single dot resonant state. Another
to this pattern might be. That said, it is clear that collimationresonant state is shown in Figic# (E=4.35meV). In this
has had a considerable effect on the formation of this statease, the resonant standing wave state has amplitude prima-
Note the V-shaped jet exiting the final QREorresponding rily trapped in the upper corners of the cavities. The dotted
primarily to the second mogdend that the amplitude in the curve in Fig. 4a) corresponds to a Sinai billiard chain with a
top and bottom parts of the first dot is concentrated in thedefect(there is no antidot in the fourth dotAs one expects
right-hand side. A resonant wave function is shown in Fig.in a periodic system with a defect, a localized state arises in
3(f) (E=4.351meV). Here is a standing wave with a singlea band gaglabeledd in Fig. 4@)]. This state, shown in Fig.
node. The amplitude in this case seems to be highly concerd), is dominated by a “twist-tie” scar trapped in the defect
trated along the central axis of the dot. This concentratiordot.
results in large part due to the first QPC mode, which exits In Fig. 5, we now consider the effect of a magnetic field.
with a small angle compared to the second mode. The effedtigure §a) showsG versusB for one, two, and eleven dots.
here is superficially reminiscent of the “channeling” statesAs before, the dots are 08m square. Her&=4 meV and
found in 2D antidot superlatticé8.In those Bloch states, the the QPC'’s allow three propagating modes. The one dot
guantum-mechanicalurrentis highly concentrated between (dashed lingand two dot(dotted ling curves show one main
rows of antidots and was found to flow almost exclusivelyresonance, but the 11 dot curve has several. Thus, as Leng
along the positivex direction. Here, while the amplitude is and Lent found* we see a build up of resonances witas
somewhat concentrated, there is no unidirectional currenvell as withE. The wave function corresponding to the reso-
flow. This is to be expected as it corresponds to a quasiboungiance market (B=0.259 T) is shown in Fig. ®). Here we
state. That said, it should be noted that the sort of skippingee a one antinode standing wave where the individual dots
behavior shown in Fig. @) for the top lead case is not dis- are scarred by diamond orbits similar to those shown in Fig.
allowed in the centered lead case. What is required is th&(b). A two antinode wave is shown in Fig.(§ (B
right combination of QPC opening and lattice spacing in=0.251T). The standing waves in this case appear to be
order to aim the collimated beams exiting the QPC’s cor-simply related to the single dot “atomic” states. Indeed, in
rectly to yield the desired effect. the broad minimum before resonarigehere is the blocking
In Fig. 4, we now consider a Sinai billiard structure. The behavior noted in the centered lead case. This is shown in
solid curve in Fig. 4a) is the conductance for a seven-unit- Fig. 5(d), which corresponds t®8=0.251T. Note that the
cell chain. Here the QPC’s have been pushed to the bottomiamond pattern becomes fainter as we progress through the
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FIG. 5. (8 G vs B is plotted for a one dotlong dashed ling FIG. 6. (a) G vs E for the original seven dot chain for no phase
two dots (short dashed lineand 11 dots(solid line). Figures(b)  preaking(upper thin line and with phase breaking corresponding to
through(f) are the wave functions that correspond to the indicatedr¢=1oo ps (upper thick lind, a seven dot chain with disorder
features on(a). Figure (f) is the 11 dot wave function foB= " (middle thin ling, disorder and phase breakinmiddle thick line,
—0.243T. a different disorder configuratiofiower thin ling and that disorder

configuration and phase breakiriipwer thick line. The middle
structure. The wave functiofFig. 5(€)] occurs on a plateau curves and bottom curves have been offset by factor$sef
(B=0.243T). In contrast to Fig.(8), which showed a skip- —2¢e?/h and —4e?/h, respectively. Inset: the original seven dot
ping orbit, this plateau wave function shows what might bechain, but with,=100ps. Figuregb), (c), (d), and (e) are the
described as a series of partial diamonds in each dot. Thus,ave functions that correspond to the indicated featuregon
appears that a more open variation of the orbit that leads to
resonant states in the individual dots leads to this plateawjuantum dots. Since it was an experiment, additional effects
Note that, in contrast to the gradual decay shown in Figsuch as rounding of the dot potentials by self-consistent elec-
5(d), the amplitude stays essentially constant throughout thtron effects and defects in periodicity were automatically in-
entire structure. What happens when the sigB @ flipped cluded. However, those experiments were performed at a
(B=—-0.243T herg is shown in Fig. &). The sign flip comparatively high field B=2 T). The presence of such a
yields the same conductance, as demanded by the Onsagéeld overcomes much of the backscattering that impurities
Casimer relations, but the dots in Figgdband Se) clearly ~ would otherwise caus&.With regard to phase breaking, in-
show significantly different variations of the diamond patternelastic scattering can be introduced phenomenologically by
[it is stronger in Fig. &e)]. Classically, this is understandable adding an imaginary potential,= —i%/(27,), wherer, is
since the sign oB determines whether the trajectories arethe inelastic scattering tint€.Figure 6 shows what occurs
bent upward or downward via the Lorentz forgeote the for the seven dot structure considered in Fig. 2. The thin
amplitude pile up at the top in Fig(&]. On the other hand, curve at the top of Fig.(®) is a reproduction of the seven dot
for the resonant statggtigs. §b) and Kc)], the sign flip  curve from Fig. Za). The thick curve overlayed on top of it
simply generates nearly identical wave functions, but a rewas generated using,= 100 ps, comparable to values mea-
versal in the direction of quantum-mechanical current circusured in real dots of this si%® (the corresponding path
lating around each dot orbit. Importantly, as they correspondength isl ,=vg7,~7 um). The broader resonances survive
to resonances, it can be shown that states analogous to Figghile the sharper ones vanish, showing up as points of in-
5(b) and Jc) occur in theclosed11 dot system. Needless to flection, or merge with adjacent resonances. As with reso-
say, Figs. &) and 5f) have no analog in the closed system. nant tunneling, the width of the peak of a resonance gives a

Are these effects robust to the phase breaking and disomeasure of the lifetime of the corresponding quasibound
der expected in a real system? Oscillations such as we hawtate; thus the states corresponding to the sharper resonances
shown in the preceding figures here have been sappri- require a longer coherence length in order to form. Corre-
mentallyby Kouwenhoveret al3’in an actual superlattice of spondingly, the multipeak wave function Bt=4.063 meV
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[Fig. 2c)] persists at this value af,, while the single peak breaking time ofr,= 100 ps to be included. While the details
wave function atE=4.087 meV[Fig. 2b)] is washed out. of the curve are quite different from the previous example,
To illustrate this, the corresponding wave function withthe same qualitative behavior is evident—some remnants of
phase breaking in the latter case is shown in F{).8Note = bands and gaps survive, and the conductance does not ex-
that the amplitude decays after the first dot. InterestinglyceedG=1.
comparing Fig. &) with Fig. 6(b), the patterns in the last Examples of resonant states in these disordered systems
two dots in the chain looks similar, while the pattern in theare shown in Figs. @), 6(d), and Ge). The wave function
first dot, in particular, is considerably different. Thus it ap- shown in Fig. 6c) corresponds to the peak markedn the
pears that the standing wave is only partially formed in thismiddle thin curve E=4.4235meV hereand looks as if it
case. Despite the washing out effect, the bands and gaps drelds an incompletely formed standing wave with two anti-
still present with the inelastic scattering. We note that a siminodes(note that the patterns in the third and sixth dots are
lar curve would be generated by introducing thermal broadalmost identicgl The second and third dots of wave function
ening (this is done be convoluting with the derivative of ~d(E=4.4488 meV) contain a distorted version of the double
the Fermi functioh and choosingkgT~7%/(274). As one  dot “molecular” state shown in Fig. (&), while dots four,
might expect given the above discussion, increasing th&ve, and six show a more irregular pattern. Wave function
broadening by inelastic scattering or by finite temperature(E=4.28 meV) was obtained using the second impurity
will cause the features to vanish in a progressive fashion. Asonfiguration. Here too is a distorted version of one of the
shown in the inset, the resonant features are all smeared odeuble dot molecular states shown earlier. However, in this
by 7,~20ps (4= ve7,~1.4um). What remains is a series case it has the inverted-V pattern. As is evident to some
of larger peaks and dips that correspond to the positions g#xtent in these pictures, the wave functions can become quite
the bands and gaps. It is worth noting that the @at1  complicated when there is disorder, even in the case of reso-
plateau, while no longer corresponding to exact quantizationjant states. In some situations, it appears as if the wave func-
appears to hold up quite well. This is because phase cohetion amplitude has percolated through the structure.
ence in this case is much less of an issue. Specifically, with
the skipping state shown in Fig(e2, the electrons only have
to skip in and out of a dot only once and thus pass through
rather quickly, in contrast with the comparatively long “stor-  In conclusion, in coupled dots, we find that resonances in
age” time it requires to form a scar. conductance can occur as a by-product of the formation of
With the Sinai billiard structure, we considered a singlemolecular states that can be scarred by classical orbits that
defect. We now consider a situation where the entire samplare shared between dots. In dot chains, we find that the states
has some disorder. The middle thin curve in Figg@ow that contribute to the multiple resonance superlattice behav-
shows what happens when there are multiple defects in thier can show scarring that can reflect complicated orbits that
original square dot structure at zero field. In this case, wextend over many dots. In those cases, while the orbits in
have randomized the spacing of the fingers, so that there isquestion are obviously related to the single and/or double dot
* é variation of finger spacing off of an average of 03,  orbits, they are clearly a nontrivial modification of them.
where § is distributed between 0.00 and 0.@in. All other  Conductance plateaus can occur as a result of partially
parameters, including the widths of the QPC openings aré&closed” orbit states(as in Fig. 5, or from simple skipping
fixed. As one might expect, th@=1 plateau, which corre- orbit stategFig. 2), the latter being present even without the
sponded to the orbit skipping off the tops of the findéfiy.  application of a magnetic field. There are also cases where a
2(e)], has vanished as a result of the disruption of the fingeplateau can not be easily identified with a particular orbit
periodicity. What is also interesting here is that the conduc{Fig. 3. However, in general, with these well-defined multi-
tance never exceeds one, despite the fact that we have n@bt systems, we find that the quantum behavior largely re-
changed the width of the lead openings. Some remnants dlects the underlying classical dynamics. The QPC's largely
the bands shown in the defect free curve are apparent, iletermine what orbits can participate and their role is in fact
particular, the group of resonances between 4.0 and 4.1 medmplified in the case of multiple dots. It should be noted that
in Fig. 2(a) have an analog in the lower part of the defectcollimation effect shown in Fig. (8 and the diamond scar
curve, as does th&=0 gap atE~4.4meV. As one may shown in Fig. 1b) persist even with a rounded potenfial.
expect, there is some shifting of the energy scale as dot siz@/e find that the same qualitative behavior occurs if rounded
is no longer uniform. In the energy region betwe&n potentials are used but different multidot scars are possible
~4.18 and 4.32 meV, wher&=2 and 1 plateaus are depending on the degree of rounding. With regards to phase
present in the clean system, the conductance remains closeliceaking and disorder, we find that the superlattice effects to
zero in the disordered system. Importantly, unlike the perfecbe fairly robust to inelastic scattering, but rather sensitive to
gaps in the uniform system, there are weak resonances standomization of the dot periodicity.
perimposed on thi&=0 “plateau.” Rather than a true band It is difficult to see how these scarred states might be
gap, thisG=0 region is a by-product of the formation of observeddirectly in a quantum dot system, but their occur-
localized states by the disorder. Introducing inelastic scatterrence should have important physical implications. For ex-
ing with 7,=100ps causes this plateau to be completelyample, they should strongly influence any time-dependent
disrupted by the merging of broadened resonaripgddle  excitation that involves the oscillation of charge between ad-
thick curve. For the bottom thin curve, we have also usedjacent dots. As mentioned in the introduction, scarring has
similar variation of finger spacing, but with a different ran- been observed directly in individual microwave cavitiés
dom configuration. The bottom thick curve has a phasend systems of coupled cavities have also been stddied.

IV. CONCLUSIONS
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The physics of ballistic quantum dots and microwave cavi-sion we have presented to explain our res(hsparticular,
ties is essentially identical, so direct observation of the efthe analogy with “atomic” and “molecular” states in closed
fects we have shown may be possible in the latter system.systemsis likely not relevant to their case.

Finally, in closing, we mention that scarring in a periodi-
ca_IIy modulated quantum leze system was dlscuss_ed, albeit ACKNOWLEDGMENTS
briefly, by Luna-Acostaet al."> However, they considered
relatively weak corrugations in contrast to the well-defined We acknowledge the financial support of ONR and
guantum dots examined here. As such, much of the discuB®ARPA and useful discussions with J. P. Bird.
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