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Ballistic transport and scarring effects in coupled quantum dots
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We have performed numerical simulations of coupled,openquantum dots, connected by contacts supporting
a number of modes. In single dots, theresonantwave functions can bescarredby classical periodic orbits.
Coupling between dots allows for the two-dimensional analog of molecular states. With these molecular states,
we find that the wave functions can be scarred by orbits that are clearly sharedbetweendots. In a finite chain
of dots, we find that the formation of energy bands and gaps can be a by-product of complicated scarred states
involving orbits that can extend over many dots. These orbits appear to be variations of those that contribute
to the atomic and molecular states.@S0163-1829~99!04311-8#
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I. INTRODUCTION

Scarring is an effect whereby the quantum-mechan
wave function in a cavity has its amplitude maximized alo
the path of a periodic orbit that one would find in a corr
sponding classical billiard system with the same geome
Seminal work in this area was performed by Heller a
co-workers,1–3 whose numerical calculations showed that t
highly excited states of the Bunimovich stadium~which is
classically chaotic! were scarred by unstable periodic orbi
The scarring effect has been found in other chaotic ca
systems, a noteworthy example being the Sinai billia
which consists of a square or rectangular cavity with a
cular diffuser in the center. In this case, the scarring
actually been observed experimentally in microwa
cavities.4–6 While the focus has been on chaotic systems
has been shown that scarring can be a property of reg
structures as well.7 Scarring has also been observed in n
merical simulations ofopenquantum cavities or dots. Spe
cifically, scars have been found to correspond toresonances
in the magnetoconductance in open square,8 stadium,9 and
Sinai billiard10,11 quantum dots connected to outside res
voirs by quantum point contacts~QPC’s!, which allowed
several propagating modes. In these simulations, cer
scarred states were found to recur periodically in magn
field. The periodicities obtained have been found to ma
well those observed in experimental magnetoconducta
fluctuations of such dots,8,12 yielding circumstantial evidence
that the periodicity of the fluctuations can be associated w
the periodic orbits underlying the scars.

Recently, there has been much interest in the physic
coupled quantum dots. Single dots can be considered an
gous to ‘‘artificial atoms’’ if the energy levels can b
resolved.13 Thus, fabricating multiple quantum dots that a
coupled together by QPC’s provides a way of creating ‘‘
tificial molecules.’’ Most of the work has focused on th
situation where the coupled dots have been connected to
ternal reservoirs by QPC’s that are in the tunneling regime
that the physics is dominated by Coulomb blockade effect14

However, one should still expect the transport to be do
nated by the resolvable spectrum even in ‘‘open’’ do
~QPC’s allowing several modes! provided that the mean fre
PRB 590163-1829/99/59~11!/7529~8!/$15.00
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path and phase coherence length are larger than any ch
teristic dot dimension.15,16 Provided that the number o
propagating modes is not too great, a collimation effec
produced by the QPC’s that can cause the selective ex
tion of particular dot eigenstates.8,17 This selection of states
is believed to be due to the fact that the collimation effe
allows only certain orbits to participate.8 The scarring effect
seen in resonant states in open dots serves as evidenc
this claim.

In this paper, we extend our previous work8–10,12by ex-
amining coupled dots that are in the open regime. As was
case in single dots, we find that scarred states can pla
important role in ballistic transport. When two dots a
coupled, we find that conductance resonances that co
spond to ‘‘molecular’’ states can be scarred by classical
bits that are clearly shared between dots. Simulating fin
chains of dots, we obtain the expected superlattice beha
~the formation of bands and gaps!, but find that this behavior
can occur as a result of the formation of complicated scar
states that involve orbits that can extend over many d
Significantly, these orbits appear to be more complica
variations of those that contribute to the single and dou
dot states.

The paper is organized as follows. In Sec. II, our meth
of calculation is briefly described. In Sec. III, we consid
the case of two coupled dots. In Sec. IV, the focus is shif
to superlattices of coupled dots. Conclusions are drawn
Sec. V.

II. METHOD OF CALCULATION

In this section, we briefly summarize our method of c
culation. For full mathematical details, we refer the read
to.18 For our simulations, the general situation is one
which ideal quantum wires, which extend outward to6`,
are connected to the dot system. When a magnetic fiel
applied, it is normal to the plane of this system. We so
this quantum-mechanical problem on a discrete lattice us
an iterative matrix method that is a numerically stabiliz
variant of the transfer matrix approach. The discretiz
Schrödinger equation, keeping terms up to first order in t
approximation of the derivative, has the form
7529 ©1999 The American Physical Society
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~EF2H j !c j1H j , j 21c j 211H j , j 11c j 1150, ~1!

where c j is a M-dimensional vector containing the amp
tudes of thej th slice. This problem is solved on a squa
lattice of lattice constanta with the wires extendingM lattice
sites across in they direction. The region of interest@for
example, the QPC and open ended cavity shown in Fig. 1~a!#
is broken down into a series of slices along thex direction. In
this equation, theH j matrices represent Hamiltonians for in
dividual slices and the matricesH j , j 21 and H j , j 11 give the
interslice coupling. By approximating the derivative, the
netic energy terms of Schro¨dinger’s equation get mappe
onto a tight-binding model witht52\2/2m* a2 representing
nearest-neighbor hopping. The potentialV at site i,j simply
adds to the on-site energies, which appear along the diag
of the H j matrices. Transfer matrices based on Eq.~1! can
then be derived, which allow translation across the system
obtain the transmission coefficients, and which, in turn, en
the Landauer-Bu¨ttiker formula to give the conductance. Th
instability problems inherent in the transfer matrix approa
due to exponentially growing and decaying contributions
evanescent modes are overcome by some clever m
manipulations.18 Rather than just multiplying transfer matr
ces together, the scheme is turned into an iterative proce
that does not allow the eigenvalues to diverge. Once
calculation is complete, the wave function can be rec
structed by a backsubstitution scheme. In order to appr
mate well the continuous system, the lattice spacinga must
be small compared to the Fermi wavelengthlF , typically on
the order of;0.1lF or smaller.

Figure 1~a! illustrates beam collimation effect mentione
in the introduction, which we believe plays an important ro
in determining which orbits participate in the transport. He
uc(x,y)u versusx and y plotted for a QPC 0.06mm wide,
supporting three propagating modes given a Fermi energ
E516 meV. The QPC exits into a 0.3-mm-wide cavity. With
the quantization of the transverse velocities in the QPC,
electrons exist at well-defined angles~note that the beam
quite visibly splits into the three modes! and this combined
with upper boundary reflection creates the downward co

FIG. 1. In ~a!–~e!, uc(x,y)u vs x and y is plotted, with darker
shading corresponding to higher amplitude, showing scars for
situations described in the text. A classical periodic orbit is plot
in ~f!.
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mation. While we for the most part present results in t
quantum regime, it should be noted that the role of be
collimation as a selector of orbits has been verified in pur
classicalsimulations of an open square cavity atfinite mag-
netic field.8 By an examination of Poincare´ plots, it was
found that only a comparatively small region of phase sp
was visited if the electrons were injected via a collimat
beam at a particular angle with some small spread.

II. TWO DOTS IN SERIES

Classically,closed square cavities have been shown
yield a mixture of regular and chaotic behavior with fini
B.19 As for the periodic scarring effects, diamond scars w
seen to recur in single open dots nominally square
shape.8,12 In Fig. 1~b!, we show an example for two couple
dots. Each dot is a 0.3mm square and the three fingers th
define the two dots are each 0.05mm wide @E and the QPC’s
are the same as in~a!#. A perpendicular magnetic field o
B50.280 T has been applied~the cyclotron radius isr cyc
;0.4mm). In each dot,uc(x,y)u is scarred by a classica
periodic orbit in the form a diamond. In a single dot, the
wave functions correspond to resonances8 and so can be con
sidered analogous to atomic states.

At first glance, this picture seems odd as the orbit
flected by the scar does notappearconnected to either lead
However, it is important to realize as these correspond
resonantstates, the electrons can stay in the dot for a rat
long time. In a calculation where inelastic scattering w
introduced to limit the phase coherence length, it was e
mated that the electrons would have to make on the orde
20 circuits along the diamond orbit in order to build to su
ficient amplitude to form the scar.20 Since the electrons ente
and exit the dot system only once, the quantum-mechan
amplitude associated with those paths is dwarfed by co
parison, as are the contributions made by any shorter or
that may be allowed in the dot. The conclusion that sc
correspond to long-lived states is supported by the dw
time analysis of Zozoulenkoet al.21 In semiclassical calcu-
lations of conductance, the orbits that are usually singled
are short and show a clear and relatively simple connec
with the input and output lead~see, for example, Wirtz,
Tang, and Bergdorfer22!. However, examining resonan
states is typically not done in these calculations, as the v
long quasiperiodicorbits ~recall the electrons are confine
for a finite time! which lead to the resonant behavior are n
included. This is because a cutoff length~expressed in terms
of the number of bounces an orbit makes, 15 being a typ
number! is imposed in order to allow the calculations
finish in a reasonable amount of time.23 This is not an issue
with our fully quantum-mechanical transport calculations.
fact, in a system such as ours where the quantum dots
well defined one can begin making direct comparisons w
the semiclassical theory ofclosedsystems, where the densit
of states~DOS! is determined by weighted summations ov
truly periodic orbits.24 Indeed, examining the conductanceG
in open quantum dots as a function of both energyE and
field B, it has been found that the resulting three-dimensio
function is prominently striated by lines of resonances.25,26

These resonance lines tend to coincide to points where
finds scarred wave functions such as the diamond sh
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here.25 They also tend to coincide to lines found in the actu
spectrum of the closed dot.26 As one might expect, the matc
betweenG(E,B) and the closed dot spectrum is not exa
since the openness of the dot broadens the energy levels
the basic pattern is the same.26 An important point is that the
broadening isnot uniform. In particular, which closed do
states survive to yield resonance lines in the conductanc
the open system has been found to be highly dependen
not only the width of QPC openings, but on their position
well.25 For example, if the QPC’s are shifted down to t
center of the dot, the diamond orbit is no longer allowed.
this case, the resonance lines corresponding to states sc
by this orbit vanish.25 This result serves as yet another co
firmation of the fact that the QPC’s act as a selector of p
ticular orbits.

With regard to scarring in closed systems, a semiclass
‘‘scarring’’ formula has also been derived in a manner sim
lar to that of the DOS formula.27 It relates the wave-function
amplitude squared integrated over a range of energy
weighted summation over periodic orbits. As a result of
nature of the weighting, the more stable orbits contrib
more strongly than the others and as such are reflected in
wave functions. This is the origin of the scarring effe
While this semiclassical formula requires an integration o
energy, it is consistent with the results that show individ
eigenstates being scarred. This is permitted provided tha
energy level spacing is sufficiently large. The semiclass
formula for the DOS and scarring apply in the limith→0. In
the fully quantum-mechanical theory we employ, this
equivalent to requiring that the states that are examined b
high energy, so that a large number of nodes are prese
the wave function@examining the ripples underlying th
scars in Fig. 2~b!, one can see about;18 antinodes along the

FIG. 2. ~a! G vs E plotted for one~upper dashed curve!, two
~upper solid curve!, and seven quantum dots~lower solid curve!.
The two upper curves have been offset by a factor ofG52e2/h.
~b!, ~c!, and~e! are the wave functions that correspond to the in
cated features in~a!. A classical distribution function is plotted in
~d!.
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x andy directions#. Indeed, a relatively large number of ant
nodes are required in order to resolve a scar. This is why
see scarring in our coupled dot results, while Li a
Berggren,28 who also examined what may be consider
open, coupled quantum dots~actually a quantum wire with
double stub side branches!, did not. They only considered th
very lowest part of the energy range and the first few re
nant states. Among other things, they also examined
quantum-mechanical current flow and saw that the reson
states yielded vortices. With regards to this, we note tha
can be dangerous to associate quantum-mechanical cu
flow lines with classical trajectories, particularly at low e
ergy. For example, the lowest resonant state in a quan
wire with a cross branch has a single antinode trapped in
region where wire and branch intersect and is held in pl
by the sharp corners of the structure. The flow lines ass
ated with the current vortex corresponding to such a s
haveno direct relationship to any classical orbit. We ha
found that a simple correspondence between current fl
and a classical trajectory only occurs when the scarring
the resonant state is particularly obvious, such as the
mond scar shown here. In this case, current circulates aro
and along the diamond.

In Fig. 1~c! is what may be described as a ‘‘molecular
state. The QPC connecting the dots has been widened to
mm. Here it appears that a precession effect is occurr
with electrons roughly following the diamond, but then d
viating from it, and eventually skipping into the adjacent d
One can observe this sort of sharing effect even if the in
vidual dots remain very well defined. Figure 1~d! corre-
sponds to the same situation as 1~b!, but now B50.042 T
(r cyc;2.6mm). An inverted V-shaped scar clearly exten
between the two dots. Given the collimation effects shown
Fig. 1~a!, it is not difficult to understand why the classic
orbit that scars this state is being favorably occupied, lik
by the middle portion of the split beam in Fig. 1~a!. For Fig.
1~e!, we have setE to be 4.073 meV, the QPC’s are 0.08mm
wide, supporting two propagating modes andB50. Here a
more complicated variation of the type of ‘‘shared’’ sc
shown in Fig. 1~d! appears. With the change in condition
~lower energy, zero field, wider QPC’s! the aim of the colli-
mated beam has been significantly altered. Thus, as
might expect, a different orbit is reflected by the reson
state. An example of a classical orbit that is closely related
this scarred state is shown in Fig. 1~f!. As one may imagine,
there are a large number of periodic orbits that have
same basic form~they of course would involve greater o
lesser numbers of bounces!. As Heller, O’Connor, and
Gehlen have noted,3 because orbits tend to come in familie
~‘‘cousins’’!, it can be difficult to make a one to one corr
spondence between a particular scarred state and a sp
orbit. However, it is clear that one can at least make a c
respondence to a family.

III. FINITE SUPERLATTICES OF DOTS

In Fig. 2~a!, we plot conductanceG versus energyE for
one, two, and seven dots and use the dot configuration
Fig. 1~e!. The upper solid curve is for two coupled dots a
the resonance marked by the* corresponds to Fig. 1~e!. This
resonance as well as the one adjacent to it~marked1! do not
occur in the upper dashed curve, which is for a single d
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This is not surprising since the scars here require at least
dots to be established@the 1 resonance corresponds to a
inverted-V pattern similar to Fig. 1~d!#. Importantly, the two
dot and one dot curves still do share resonances in comm
at ;4.21 and;4.39 meV. There is some splitting of th
resonances the two dot case due to the interdot coup
breaking the degeneracy of the single dot states. The mi
solid curve corresponds to seven coupled dots and shows
of resonances as well as flat plateaus. This is a more c
plicated variation of behavior previously noted for finite on
dimensional~1D! superlattices.29,30 Specifically, if there is a
resonance in transmission through a single 1D potential w
the N such wells coupled together will produceN peaks in
transmission as a function ofE. These peaks correspond
standing waves with different numbers of nodes trapped
the structure. AsN is made infinite, these groups of pea
eventually correspond to energy bands, and the transmis
minima separating them to band gaps. However, unlike
purely 1D case, there are two propagating modes in
QPC’s here, so that there are there three quantized ste
conductance possible instead of justG50 and G51 ~in
units of 2e2/h). From the figure, one sees the groups
resonances peaking either atG51 or G52 and flat plateaus
correspond to eitherG50 or G51. As in the 1D case, if we
increase the number of dots in the structure, more resona
appear in each group and they eventually form ‘‘quasip
teaus.’’ A ‘‘recovery of quantization’’ similar to what is see
here was first noted by Leng and Lent31 in a quantum wire
with a relatively weak periodic modulation. Three of the fe
tures in the curve are labeledb, c, andd. Figure 2~b! is the
wave function atb ~a resonance atE54.087 meV). The am-
plitude is maximized in the center and there is a stand
wave with a single antinode trapped in the structure. Fig
2~c! corresponds toc ~a resonance atE54.063 meV), which
occurs in the same finite band as Fig. 2~b!. A more elaborate
standing wave occurs, with several more antinodes. For c
parison, Fig. 2~d! shows aclassical distribution within an
open seven dot structure. To generate this picture, we
jected an angled beam of classical electrons into the left
of the structure, which is broken down into a grid. To det
mine the shading, we counted the number of times an e
tron passes through a grid element in its trip through
structure, with darker color for higher counts. Clearly e
dent are a series of interlocking orbits that are more com
cated variations of the orbit in Fig. 1~f!. Note, in particular,
the presence of orbits that appear to be spread across
dots instead of two. These orbits form patterns similar
those evident in the wave functions shown above. Thus,
conclude that, in general, the standing waves are not ju
simple linear combination of the original scarred states. T
are in fact the quantum remnants of the type of multid
orbits shown in Fig. 2~d!, obviously related to the origina
orbits, but clearly modified by the multidot structure. Figu
2~e! corresponds to theG51 plateau labelede (E
54.35 meV). Interestingly, this plateau appears to occu
the result of an underlying skipping orbit that bounces off
top edge of each finger@segments of such a trajectory can
seen in Fig. 2~d!#. However, in contrast to the quantum Ha
effect, the skipping orbit present here occurs atzero fieldand
is not related to any magnetic edge states. We find that th
zero-field skipping orbits can occur in many different situ
o
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tions, particularly whenG51. Analogous zero-field skipping
orbits have been observed in quantum-mechanical calc
tions performed on 2D antidot superlattices.32 Different types
of behavior leading to plateaus are discussed below.

In Fig. 3, we show an example with a different lead co
figuration. The dots are the same size as above, as are
widths of the fingers. The QPC openings in this case are 0
mm, wide enough to support three propagating modes for
given energy range. Here, the leads have now been sh
down to the center of each dot. In this case, the electrons
the leads in a V-shaped jet. In Fig. 3~a!, we plot conductance
G versus energyE for one, two, and seven dots. Figures 3~b!
and 3~c! show the resonant double dot wave functions c
responding to labelsb (E56.329 meV) and c (E
56.45 meV) in Fig. 3~a!. Note that only a single resonanc
at b occurs in both the one and two dot curves. Examin
the wave function atb, we see that the pattern in both do
reflects a pair of crossed rectangular orbits, tilted at an an
of 45°. As in Fig. 1~b!, this is an example of two ‘‘atomic’’
states that are very weakly coupled together. Looking at
seven dot curve, there is a wide minimum where the re
nance occurred in the one dot curve. Adjacent to this m
mum are weak side resonances. The behavior here is r
niscent of that noted for quantum wires with single stub s
branches.33 In contrast to simple one-dimensional problem
potential barriers in series, which allows only for resona
transmission, it was found that the quasibound states
stubbed quantum wires could actually yield resonant refl
tions ~for a simple qualitative explanation of this behavi
see Ref. 34, for a review of the subject see Ref. 35 a
references therein!. In the case where several stubbed w

FIG. 3. ~a! G vs E is plotted for one~upper dashed curve!, two
~upper solid curve!, and seven quantum dots~lower solid curve!. In
this case, the QPC’s have been moved to the centers of the
The two upper curves have been offset by a factor ofG54e2/h.
Inset:G vs E for the same seven dot structure, but with QPC’s th
have been narrowed.~b!, ~c!, ~d!, ~e!, and~f! are the wave functions
that correspond to the indicated features on~a!.
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sections are connected in series, it was found that thes
flection resonances broadened into valleys due to the cu
lative blocking effect of the resonant states trapped in
stubs.36 Here a similar effect is apparent. While the pattern
each dot is the same, the amplitude in the second in Fig.~b!
is much weaker than in the first. At the resonance labelec
(E56.435 meV), the wave function shown in Fig. 3~c!
yields yet another example of a ‘‘molecular’’ state, with tw
crossed rectangular orbits extending between the two
~note that the resonance is absent in the one dot case!. The
occurrence of this resonant state is obviously facilitated
the position and collimation effect of the leads. In the sev
dot curve, there are six resonances in this region of ene
each corresponding to different standing waves trappe
the structure. The one corresponding toE56.445 meV is
shown in Fig. 3~d!. As with the previous example, the stan
ing waves reflect more complicated variations of orbits
parent in the ‘‘molecular’’ state.

The inset of Fig. 3~a! showsG versusE for a seven dot,
centered lead superlattice as well. In contrast to the prev
example, the QPC openings have been narrowed to 0.06mm,
so that only two modes propagate over the given ene
range. Note that, over this range, there is aG51 plateau and
several resonances. The wave function for the platea
shown in Fig. 3~e! (E54.325 meV). In contrast to Fig. 2~e!,
where a skipping trajectory was clearly reflected by the w
function, no trajectory pattern can be discerned. Indeed,
simple checkerboard patterns that are exhibited in the i
vidual dots in the last six dots of the structure are what y
would expect for many of the eigenstates of aclosedsquare
dot. The pattern evident in the first dot is similar to the bou
state that you would see at resonance in a single dot nea
energy. The wave function here is comparatively comp
cated, so it is difficult to picture what the orbit correspondi
to this pattern might be. That said, it is clear that collimati
has had a considerable effect on the formation of this st
Note the V-shaped jet exiting the final QPC~corresponding
primarily to the second mode! and that the amplitude in th
top and bottom parts of the first dot is concentrated in
right-hand side. A resonant wave function is shown in F
3~f! (E54.351 meV). Here is a standing wave with a sing
node. The amplitude in this case seems to be highly con
trated along the central axis of the dot. This concentrat
results in large part due to the first QPC mode, which e
with a small angle compared to the second mode. The ef
here is superficially reminiscent of the ‘‘channeling’’ stat
found in 2D antidot superlattices.32 In those Bloch states, th
quantum-mechanicalcurrent is highly concentrated betwee
rows of antidots and was found to flow almost exclusive
along the positivex direction. Here, while the amplitude i
somewhat concentrated, there is no unidirectional cur
flow. This is to be expected as it corresponds to a quasibo
state. That said, it should be noted that the sort of skipp
behavior shown in Fig. 2~e! for the top lead case is not dis
allowed in the centered lead case. What is required is
right combination of QPC opening and lattice spacing
order to aim the collimated beams exiting the QPC’s c
rectly to yield the desired effect.

In Fig. 4, we now consider a Sinai billiard structure. T
solid curve in Fig. 4~a! is the conductance for a seven-un
cell chain. Here the QPC’s have been pushed to the bot
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half of each dot and a 0.07-mm radius antidot has been in
cluded in each. While the closed, classical Sinai billiard
chaotic forB50, there is no qualitative difference betwee
the behavior in chains of Sinai billiard structures and that
square dots. Figure 4~b! corresponds to the resonance labe
b in Fig. 4~a! (E54.35 meV). Here we see a standing wa
pattern involving scars trapped in the lower part of each d
As with the square dot example, this wave does not invo
a simple repetition of a single dot resonant state. Anot
resonant state is shown in Fig. 4~c! (E54.35 meV). In this
case, the resonant standing wave state has amplitude pr
rily trapped in the upper corners of the cavities. The dot
curve in Fig. 4~a! corresponds to a Sinai billiard chain with
defect~there is no antidot in the fourth dot!. As one expects
in a periodic system with a defect, a localized state arise
a band gap@labeledd in Fig. 4~a!#. This state, shown in Fig
4~d!, is dominated by a ‘‘twist-tie’’ scar trapped in the defe
dot.

In Fig. 5, we now consider the effect of a magnetic fie
Figure 5~a! showsG versusB for one, two, and eleven dots
As before, the dots are 0.3mm square. HereE54 meV and
the QPC’s allow three propagating modes. The one
~dashed line! and two dot~dotted line! curves show one main
resonance, but the 11 dot curve has several. Thus, as L
and Lent found,31 we see a build up of resonances withB as
well as withE. The wave function corresponding to the res
nance markedb (B50.259 T) is shown in Fig. 5~b!. Here we
see a one antinode standing wave where the individual
are scarred by diamond orbits similar to those shown in F
1~b!. A two antinode wave is shown in Fig. 5~c! (B
50.251 T). The standing waves in this case appear to
simply related to the single dot ‘‘atomic’’ states. Indeed,
the broad minimum before resonanceb, there is the blocking
behavior noted in the centered lead case. This is show
Fig. 5~d!, which corresponds toB50.251 T. Note that the
diamond pattern becomes fainter as we progress through

FIG. 4. ~a! G vs E is plotted for a chain of seven Sinai billiar
quantum dots~sold curve! and a Sinai billiard chain with a defec
~dotted curve!. Figures~b!, ~c!, and~d! are the wave functions tha
correspond to the indicated features on~a!.



b
s

s
a
ig
th

ag

rn
le
re

,

re
cu
on
F
o
m
so
ha

f

cts
lec-
in-
t a

a
ies
-
by

s
hin
t
t
a-

ve
in-
so-
s a
nd

ances
re-

te

e
to
r

ot

7534 PRB 59R. AKIS AND D. K. FERRY
structure. The wave function@Fig. 5~e!# occurs on a plateau
(B50.243 T). In contrast to Fig. 2~e!, which showed a skip-
ping orbit, this plateau wave function shows what might
described as a series of partial diamonds in each dot. Thu
appears that a more open variation of the orbit that lead
resonant states in the individual dots leads to this plate
Note that, in contrast to the gradual decay shown in F
5~d!, the amplitude stays essentially constant throughout
entire structure. What happens when the sign ofB is flipped
(B520.243 T here! is shown in Fig. 5~f!. The sign flip
yields the same conductance, as demanded by the Ons
Casimer relations, but the dots in Figs. 5~d! and 5~e! clearly
show significantly different variations of the diamond patte
@it is stronger in Fig. 5~e!#. Classically, this is understandab
since the sign ofB determines whether the trajectories a
bent upward or downward via the Lorentz force@note the
amplitude pile up at the top in Fig. 5~e!#. On the other hand
for the resonant states@Figs. 5~b! and 5~c!#, the sign flip
simply generates nearly identical wave functions, but a
versal in the direction of quantum-mechanical current cir
lating around each dot orbit. Importantly, as they corresp
to resonances, it can be shown that states analogous to
5~b! and 5~c! occur in theclosed11 dot system. Needless t
say, Figs. 5~e! and 5~f! have no analog in the closed syste

Are these effects robust to the phase breaking and di
der expected in a real system? Oscillations such as we
shown in the preceding figures here have been seenexperi-
mentallyby Kouwenhovenet al.37 in an actual superlattice o

FIG. 5. ~a! G vs B is plotted for a one dot~long dashed line!,
two dots ~short dashed line! and 11 dots~solid line!. Figures~b!
through~f! are the wave functions that correspond to the indica
features on~a!. Figure ~f! is the 11 dot wave function forB5
20.243 T.
e
, it
to
u.
.
e

er-

-
-
d

igs.

.
r-
ve

quantum dots. Since it was an experiment, additional effe
such as rounding of the dot potentials by self-consistent e
tron effects and defects in periodicity were automatically
cluded. However, those experiments were performed a
comparatively high field (B52 T). The presence of such
field overcomes much of the backscattering that impurit
would otherwise cause.38 With regard to phase breaking, in
elastic scattering can be introduced phenomenologically
adding an imaginary potentialVin52 i\/(2tf), wheretf is
the inelastic scattering time.39 Figure 6 shows what occur
for the seven dot structure considered in Fig. 2. The t
curve at the top of Fig. 6~a! is a reproduction of the seven do
curve from Fig. 2~a!. The thick curve overlayed on top of i
was generated usingtf5100 ps, comparable to values me
sured in real dots of this size40 ~the corresponding path
length isl f5nFtf;7 mm). The broader resonances survi
while the sharper ones vanish, showing up as points of
flection, or merge with adjacent resonances. As with re
nant tunneling, the width of the peak of a resonance give
measure of the lifetime of the corresponding quasibou
state; thus the states corresponding to the sharper reson
require a longer coherence length in order to form. Cor
spondingly, the multipeak wave function atE54.063 meV

d

FIG. 6. ~a! G vs E for the original seven dot chain for no phas
breaking~upper thin line! and with phase breaking corresponding
tf5100 ps ~upper thick line!, a seven dot chain with disorde
~middle thin line!, disorder and phase breaking~middle thick line!,
a different disorder configuration~lower thin line! and that disorder
configuration and phase breaking~lower thick line!. The middle
curves and bottom curves have been offset by factors ofG5
22e2/h and 24e2/h, respectively. Inset: the original seven d
chain, but withtf5100 ps. Figures~b!, ~c!, ~d!, and ~e! are the
wave functions that correspond to the indicated features on~a!.
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@Fig. 2~c!# persists at this value oftf , while the single peak
wave function atE54.087 meV@Fig. 2~b!# is washed out.
To illustrate this, the corresponding wave function w
phase breaking in the latter case is shown in Fig. 6~b!. Note
that the amplitude decays after the first dot. Interesting
comparing Fig. 2~b! with Fig. 6~b!, the patterns in the las
two dots in the chain looks similar, while the pattern in t
first dot, in particular, is considerably different. Thus it a
pears that the standing wave is only partially formed in t
case. Despite the washing out effect, the bands and gap
still present with the inelastic scattering. We note that a si
lar curve would be generated by introducing thermal bro
ening ~this is done be convolutingG with the derivative of
the Fermi function! and choosingkBT;\/(2tf). As one
might expect given the above discussion, increasing
broadening by inelastic scattering or by finite temperat
will cause the features to vanish in a progressive fashion
shown in the inset, the resonant features are all smeared
by tf;20 ps (l f5nFtf;1.4mm). What remains is a serie
of larger peaks and dips that correspond to the position
the bands and gaps. It is worth noting that the flatG51
plateau, while no longer corresponding to exact quantizat
appears to hold up quite well. This is because phase co
ence in this case is much less of an issue. Specifically, w
the skipping state shown in Fig. 2~e!, the electrons only have
to skip in and out of a dot only once and thus pass thro
rather quickly, in contrast with the comparatively long ‘‘sto
age’’ time it requires to form a scar.

With the Sinai billiard structure, we considered a sing
defect. We now consider a situation where the entire sam
has some disorder. The middle thin curve in Fig. 6~a! now
shows what happens when there are multiple defects in
original square dot structure at zero field. In this case,
have randomized the spacing of the fingers, so that there
6d variation of finger spacing off of an average of 0.31mm,
whered is distributed between 0.00 and 0.01mm. All other
parameters, including the widths of the QPC openings
fixed. As one might expect, theG51 plateau, which corre-
sponded to the orbit skipping off the tops of the fingers@Fig.
2~e!#, has vanished as a result of the disruption of the fin
periodicity. What is also interesting here is that the cond
tance never exceeds one, despite the fact that we have
changed the width of the lead openings. Some remnant
the bands shown in the defect free curve are apparen
particular, the group of resonances between 4.0 and 4.1 m
in Fig. 2~a! have an analog in the lower part of the defe
curve, as does theG50 gap atE;4.4 meV. As one may
expect, there is some shifting of the energy scale as dot
is no longer uniform. In the energy region betweenE
;4.18 and 4.32 meV, whereG52 and 1 plateaus ar
present in the clean system, the conductance remains clo
zero in the disordered system. Importantly, unlike the per
gaps in the uniform system, there are weak resonances
perimposed on thisG50 ‘‘plateau.’’ Rather than a true ban
gap, thisG50 region is a by-product of the formation o
localized states by the disorder. Introducing inelastic scat
ing with tf5100 ps causes this plateau to be complet
disrupted by the merging of broadened resonances~middle
thick curve!. For the bottom thin curve, we have also us
similar variation of finger spacing, but with a different ra
dom configuration. The bottom thick curve has a pha
,
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breaking time oftf5100 ps to be included. While the detai
of the curve are quite different from the previous examp
the same qualitative behavior is evident—some remnant
bands and gaps survive, and the conductance does no
ceedG51.

Examples of resonant states in these disordered sys
are shown in Figs. 6~c!, 6~d!, and 6~e!. The wave function
shown in Fig. 6~c! corresponds to the peak markedc in the
middle thin curve (E54.4235 meV here! and looks as if it
holds an incompletely formed standing wave with two an
nodes~note that the patterns in the third and sixth dots
almost identical!. The second and third dots of wave functio
d(E54.4488 meV) contain a distorted version of the doub
dot ‘‘molecular’’ state shown in Fig. 1~e!, while dots four,
five, and six show a more irregular pattern. Wave funct
e(E54.28 meV) was obtained using the second impur
configuration. Here too is a distorted version of one of t
double dot molecular states shown earlier. However, in
case it has the inverted-V pattern. As is evident to so
extent in these pictures, the wave functions can become q
complicated when there is disorder, even in the case of re
nant states. In some situations, it appears as if the wave f
tion amplitude has percolated through the structure.

IV. CONCLUSIONS

In conclusion, in coupled dots, we find that resonances
conductance can occur as a by-product of the formation
molecular states that can be scarred by classical orbits
are shared between dots. In dot chains, we find that the s
that contribute to the multiple resonance superlattice beh
ior can show scarring that can reflect complicated orbits t
extend over many dots. In those cases, while the orbits
question are obviously related to the single and/or double
orbits, they are clearly a nontrivial modification of them
Conductance plateaus can occur as a result of part
‘‘closed’’ orbit states~as in Fig. 5!, or from simple skipping
orbit states~Fig. 2!, the latter being present even without th
application of a magnetic field. There are also cases whe
plateau can not be easily identified with a particular or
~Fig. 3!. However, in general, with these well-defined mul
dot systems, we find that the quantum behavior largely
flects the underlying classical dynamics. The QPC’s larg
determine what orbits can participate and their role is in f
amplified in the case of multiple dots. It should be noted t
collimation effect shown in Fig. 1~a! and the diamond sca
shown in Fig. 1~b! persist even with a rounded potentia8

We find that the same qualitative behavior occurs if round
potentials are used but different multidot scars are poss
depending on the degree of rounding. With regards to ph
breaking and disorder, we find that the superlattice effect
be fairly robust to inelastic scattering, but rather sensitive
randomization of the dot periodicity.

It is difficult to see how these scarred states might
observeddirectly in a quantum dot system, but their occu
rence should have important physical implications. For
ample, they should strongly influence any time-depend
excitation that involves the oscillation of charge between
jacent dots. As mentioned in the introduction, scarring h
been observed directly in individual microwave cavities4–6

and systems of coupled cavities have also been studie41
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The physics of ballistic quantum dots and microwave ca
ties is essentially identical, so direct observation of the
fects we have shown may be possible in the latter syste

Finally, in closing, we mention that scarring in a period
cally modulated quantum wire system was discussed, a
briefly, by Luna-Acostaet al.42 However, they considered
relatively weak corrugations in contrast to the well-defin
quantum dots examined here. As such, much of the dis
d
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p
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a,

r

lin
i-
f-
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eit

s-

sion we have presented to explain our results~in particular,
the analogy with ‘‘atomic’’ and ‘‘molecular’’ states in close
systems! is likely not relevant to their case.
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