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Current injection from a metal to a disordered hopping system.
II. Comparison between analytic theory and simulation

V. I. Arkhipov,* U. Wolf, and H. Bässler
Institut für Physikalische Chemie, Makromolekulare Chemie und Kernchemie und Zentrum fu¨r Materialwissenschaften,

Philipps Universita¨t, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
~Received 24 July 1998!

Monte Carlo simulations of hopping injection from a metal into a random-organic dielectric, described in the
previous paper~I!, have been compared to results of analytic theory. Good agreement has been found for the
field dependence of the yield of charge carriers as a function of the energy barrier at the interface. This is a
crucial test for the validity of the assumptions required in order to render an analytical approach of hopping in
a disordered system in the presence of a long-ranged Coulombic potential tractable. The most serious of these
is the Onsager-like homogenous medium approach to treat the escape of a charge carrier from the Coulomb
well once injected. The primary injection event into the dielectric has been treated in terms of hopping theory
implying the concept of transport energy.@S0163-1829~99!08511-2#
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I. INTRODUCTION

Dark charge-carrier injection from a metallic electro
into the bulk of an insulator is known to be restricted by
potential barrier,U(x), that is formed by a superposition o
an external electric field and the Coulomb field binding t
carrier with its image twin on the electrode

U~x!5D2
e2

16p«0«x
2eFx, ~1!

wherex is the distance away from the metal-insulator int
face, located atx50, D the barrier height in the absence
both the external field and the image charge effect,F the
external field,e the elementary charge,« the dielectric con-
stant, and«0 the dielectric permittivity. To be injected from
a metallic electrode into the bulk of an insulator a cha
carrier must either acquire a thermal energy sufficient
PRB 590163-1829/99/59~11!/7514~7!/$15.00
-
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cross the maximum of the potential distribution or tunn
through the potential barrier~see Fig. 1!. At an electric field
ranging from 105 to 106 V/cm in an insulator with dielectric
constant«53.5 the maximum of the potential distribution
located between 3.2 and 0.8 nm away from the interfa
Since, in disordered organic solids, charge-carrier trans
occurs via hopping and the typical jump distance is arou
0.6 nm, a carrier cannot cross the potential barrier by a sin
thermally assisted or tunneling jump. Monte Car
simulations1,2 of dark charge-carrier injection from a metall
electrode into a polymer, described as a random-hopp
system, prove this to be a multijump process.

A model describing dark current injection into a noncry
talline organic dielectric must, therefore, be based on
concept of carrier random walk within a positionally an
energetically disordered hopping system and within the
tential distribution described by Eq.~1!. This problem is too
trostatic
energy of
FIG. 1. Potential energy distribution and initial carrier jumps at the metal-polymer interface. Solid lines show the average elec
energy of a charge carrier in the Coulombic field of the image charge and in the external electric field. Dotted lines represent the
the transport level for the regime of upward carrier jumps.
7514 ©1999 The American Physical Society
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difficult for rigorous analytic treatment and some simplific
tions must be made to get an analytic solution. In the rec
work of the authors3 the injection has been considered as
two-step process. On the first step, carriers make in
jumps from the Fermi level of the metal contact into a loc
ized state close to the metal-polymer interface. The rate
such a jumpn in is determined by the initial jump distancex0
and by the energy of a target stateE. On the second step, th
carrier random walk within the system of hopping sites
described as a continuous diffusive motion. Concomitan
the probability to cross the potential barriervesc for a carrier
that has made an initial jump over the distancex0 , is calcu-
lated as the one-dimensional~1D! Onsager probability to
avoid geminate recombination for a pair of a carrier and
image twinindependentof the energy of a site into which th
carrier have made the initial jump. The rate of carrier inje
tion is then calculated by averaging the produ
n in(x0 ,E)vesc(x0) over x0 andE. In other words, two basic
assumptions have been made to make an analytic solu
possible:~i! the carrier random walk within the positionall
and energetically disordered network of hopping sites
been approximated by continuous motion of carriers withi
smooth potential landscape and~ii ! the probability to cross
the potential barrier has been assumed independent o
energy of the target localized state for the initial carr
jump.

An argument in favor of the former assumption is ob
ous: if the barrier thickness exceeds the typical intersite
tance a finite distance of every individual jump cann
strongly affect the probability to cross the barrier.Justific
tion of the latter assumption is the essence of the pre
paper. It will be shown that, for carrier injection through
high barrier, most of the initial carrier jumps are made
localized states that belong to the effective transport le
and that the regime of upward carrier jumps is, therefo
established by initial carrier jumps. Since this regime
equivalent to trap-controlled transport4,5 one can calculate
the escape probability as a 1D Onsager quantum yield. C
rent injection under the regime of mostly downward jum
of carriers is also possible for lower barriers and broa
energetic distributions of localized states. Under these c
ditions the rate-limiting step is carrier jumps between ho
ping sites close to the top of the potential barrier. The ch
acteristic feature of this regime is shown to be a we
temperature dependence of the injection current. Predict
of the analytic model are shown to be in a good quantita
agreement with the results of Monte Carlo simulation, wh
is based on essentially the same microscopic picture of
injection process.

II. THEORETICAL CONSIDERATIONS ON ENERGY
RELAXATION AND TRANSPORT OF CHARGE

CARRIERS IN A DISORDERED HOPPING SYSTEM

Consider a carrier localized in a hopping site with t
energyE. This site is surrounded by other hopping sites t
are characterized by their energiesE8 and distancesr from
the currently occupied localized state. The rate of poss
carrier jumps to a particular hopping siten(E,E8,r ) is then
described by the well-known Miller-Abrahams expressio6
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n~E,E8,r !5n0 exp~22gr !Bol~E,E8!, ~2a!

Bol~E,E8!5H 1 : E8.E

expS 2
E2E8

kT D : E8,E,
~2b!

where n0 is the attempt-to-jump frequency,g the inverse
localization radius,T the temperature, andk the Boltzmann
constant. Note that the direction of the energy scale is cho
to assign higher energy values to deeper states. In a ran
hopping system the valuesr and DE5E2E8 are also ran-
dom. Amongst all neighboring sites there is one of them t
is characterized by a minimum value of the hopping para
eteru,

u52gr 1H 0 : E8.E

E2E8

kT
: E8,E.

~3!

That site will be referred to as the nearest-hopping nei
bor. Sincen depends exponentially upon the hopping para
eter the rate of carrier jumps to the second nearest-hop
neighbors in diluted hopping systems is normally mu
smaller than that for the nearest neighbor. This allows us
estimate the total jump rate from a given site as the rate
jumps into the nearest-hopping neighbor and to neglect
probability of jumps into other sites.

The nearest-neighbor jump rate from a site with the
ergyE is subject to the condition that the hopping parame
is a minimum,

u52gr 5min : E8>E, ~4a!

u52gr 1
E2E8

kT
5min : E8,E, ~4b!

provided that the probability to find at least one neighbor
site with energyE9.E8 within the sphere of radiusr ap-
proaches unity, i.e.,

4pr 3

3 E
E8

`

dE9g~E9!51. ~5!

Here, g(E) is the density-of-states~DOS! distribution.
Equation~5! leads to the following expression for the jum
distance to sites with energiesE9.E8

r 5F4p

3 E
E8

`

dE9g~E9!G21/3

. ~6!

Substituting Eq.~6! into Eq. ~4b! yields,

2gF4p

3 E
E8

`

dE9g~E9!G21/3

1
E2E8

kT
5min, ~7!

or, equivalently,

g~E8!F E
E8

`

dE9g~E9!G24/3

5
1

kTS 9p

2g3D 1/3

. ~8!

Solving Eq.~8! may yield eitherE8,E or E8>E. The
former inequality is in agreement with the condition restri
ing the applicability of Eq.~4b! while the latter implies that
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downward carrier jumps dominate for such sites and that
~4a! rather than Eq.~4b! should be addressed under the
conditions. Equation~4a! requires the jump distance to b
minimized. Equivalently, the value of the integral in Eq.~5!
under the conditionE8.E has to be maximized. Substitutin
E instead ofE8 as the lower bound of integration in Eq.~6!
than yields the following expression for the radius of dow
ward jumpsr ↓

r ↓5F4p

3 E
E

`

dE9g~E9!G21/3

. ~9!

An interesting and important feature of Eq.~8! is that it
does not depend upon the energy of starting siteE.4 It means
that, for upward jumps, the energy of a target site does
depend upon the energy of starting site. In other words,
carriers making upward jumps reach target sites with sim
energy. This is reminiscent of trap-controlled carrier tra
port in inorganic disordered semiconductors with the sites
energies aroundE8 playing a role of transport states and t
energyE8 being equivalent to the mobility edge. In the fo
lowing, we shall refer to this energy as to the transport
ergy Etr . At a given temperature, the energyEtr separates
localized states which involve mostly downward jumps a
upward jumps, respectively.

Although general results obtained in the present work
applicable to practically all realistic DOS distributions w
illustrate the general results given by Eqs.~8! and ~9! em-
ploying a Gaussian DOS function that is typical for organ
disordered systems7

g~E!5
Nt

A2ps
expS 2

E2

2s2D , ~10!

whereNt is the total density of localized states ands the
width of the distribution. Substituting Eq.~10! into Eqs.~8!
and ~9! yields the radius of downward jumps and the tran
port energy for upward jumps, which can be written as

r ↓5S 3

2pNt
D 1/3FerfcS E

A2s
D G21/3

, ~11!

and

expS 3Etr
2

8s2 D erfcS Etr

A2s
D 5S 8A2

9p2Ap
D 1/4S kT

s D 3/4S g3

Nt
D 1/4

,

~12!

where erfc(z) is the complementary error function. Sinc
carrier jumps within the deep tail of the DOS distributio
E@s, are the most important ones one can use
asymptotic expansion of the complementary functio
erfc(z)>p21/2z21 exp(2z2), z→`, in Eqs. ~11! and ~12!
yielding

r ↓5S 9

8p D 1/6S E

sNt
D 1/3

expS E2

6s2D , ~13!

and
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Etr>sA2 lnF9Ap

2A2
S sNt

1/3

kTg D 3G . ~14!

A carrier occupying a hopping site of the energyE below
Etr will, most probably, make the next jump upwards
energy into a state whose energy is aroundEtr . The upward
jump is normally followed by a series of either downwa
jumps or upward jumps with smaller energy difference b
tween starting and target sites. The first upward jump i
rate limiting step for this sequence of jumps made by
same carrier until it is localized in a state of energy belowE.
Therefore, under the so-called ‘‘regime of upward jumps’
number of downward jumps occur. However, these are
ward jumps which represent rate-limiting step and, thus, p
scribe the kinetics of carrier thermalization and transport.
this sense, the regime of upward carrier jumps is similar
the trap-controlled carrier transport in materials having
broad energy distribution of DOS with the energyEtr play-
ing the role of the mobility edge. Eventually an equilibriu
concerning the energy distribution of carriers will be esta
lished. For longer times the average energy of localized c
riers remains constant and a constant value of average ca
mobility is achieved. The normalized equilibrium energy d
tribution of carriersf (E) is determined by the interplay o
the Boltzmann thermal exponent and the DOS function a

f ~E!5F E
2`

`

dEg~E!expS E

kTD G21

g~E!expS E

kTD . ~15!

For a Gaussian DOS function Eq.~15! yields a Gaussian
distribution as well,

f ~E!5
1

A2ps
expF2

~E2E0!2

2s2 G , ~16!

shifted to deeper states by the energyE0 ,

E05
s2

kT
, ~17!

which also represents the mean energy of localized carr
In the following section we apply the above general resu
to analysis of charge injection from a metallic contact into
disordered hopping system.

III. CHARGE-CARRIER INJECTION
THROUGH A METAL-POLYMER INTERFACE

Similar to hopping transport current injection can occ
when the dominant mode of transport is either upward
downward jumps of carriers. A general theory of charg
carrier injection from a metal contact to a disordered hopp
system must involve both these regimes as it is done
Monte Carlo simulations. However, such a theory can har
provide an analytical equation describing field and tempe
ture dependencies of the injection current as well as its
pendencies upon the material parameters. Therefore, in
present paper we consider these two regimes of carrier in
tion separately and formulate the pertinent analytical mod
that specifically account for their essential characteristic f
tures.
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A. Current injection under the regime
of upward carrier jumps

A carrier injected from a contact into a polymer find
itself within the potential well described by Eq.~1!. Due to
finite size of hopping sites in real materials, the distan
from the contact to the nearest localized state in the bulk
polymer cannot be shorter than the shortest intermolec
distancea. Energy position of the transport level at the d
tancea from the contact with respect to the Fermi level
the metal of the contact is of crucial importance for the
gime of carrier transport within the potential well. If th
zero-field barrierD is high enough such that

U~a!2Etr5D2
e2

16p«0«a
2eFa

2sA2 lnF9Ap

2A2
S sNt

1/3

kTg D 3G.0, ~18!

the first carrier jump from the contact into the insulator w
be an upward jump implying immediate establishing of t
regime of energetically upward carrier jumps within the bu
of the sample. As it was mentioned in the previous sect
this regime is similar to the trap-controlled carrier transp
with Etr substituting the mobility edge and carrier upwa
jumps from deeper states governing the kinetics of trans
and energy relaxation. Since the coordinate dependenc
Etr follows the potential distributionU(x) the probability for
a carrier to cross the potential barrier via jumps aroundEtr
can be calculated as the Onsager probabilityvesc of gemi-
nate pair dissociation in one dimension

vesc5

E
a

x0
dx expF2

e

kTS Fx1
e

16p«0«xD G
E

a

`

dx expF2
e

kTS Fx1
e

16p«0«xD G , ~19!

where x0 is the distance of a first carrier jump from th
contact into a hopping site. Averaging over the distance
the first jump and the energy of target sitesE8 yields the
following expression for the injection current densityj

j 5en0H E
a

`

dx expF2
e

kTS Fx1
e

16p«0«xD G J 21

3E
a

`

dx0 exp~22gx0!

3E
a

x0
dx expF2

e

kTS Fx1
e

16p«0«xD G
3E

2`

`

dE8 Bol~E8!g@U~x0!2E8#. ~20!

The physical meaning of Eq.~20! is very simple: the in-
jection current is determined by the rate of first carrier jum
multiplied by the probability for a carrier to escape surfa
recombination if it has made an initial jump over the distan
x0 into a site with the energyE8. The rate of initial jumps
exponentially decreases with increasing jump distance
e
a
ar

-

n
t

rt
of

f

s

e

d

most initial jumps are jumps into nearest available sites,
jumps over the distancea. For a positionally ordered hop
ping system this corresponds to nearest-neighbor jum
Since the Onsager escape probability is the same for b
positionally ordered and disordered systems this implie
weak dependence of the injection current upon positio
disorder.

At strong electric fields the distance from the contact
the maximum of the potential distribution may be comp
rable with the average intersite distance. For instance, a
electric field 23106 V/cm in an insulator with dielectric
constant 3 the maximum of the electrostatic potential is
cated at 0.8 nm away from the contact while the typic
intersite distance is 0.6 nm. Under these conditions carr
can make initial jumps into the bulk behind the maximum
the potential distribution. The Onsager probability to esca
surface recombination approaches unity for such carr
and, concomitantly, the injection rate is practically equal
the rate of initial jumps. At lower temperatures, carriers ha
low probability to cross the barrier if they make initial jump
over the distancex,xmax, wherexmax is the coordinate of
the maximum of the potential distribution. Therefore, carr
jumps through the barrier represent the main channel of
injection at strong fields and relatively low temperature
With increasing field the initial jump distance through th
barrier becomes close to the thickness of the barrier at
Fermi level of the electrode. Concomitantly, the current
field curves resemble the Fowler-Nordheim field depende
of the injection current at strong electric fields8 although long
distant tunneling is neglected both in the analytic model a
in Monte Carlo simulations.

The condition of weak injection implies that fewer char
carriers will cross the potential barrier per unit time than t
sample can transport. The rate-limiting step for charge tra
port in the bulk is the jump from sites populated in equili
rium into sites that belong to the transport level. The cor
sponding energy difference isE02Etr . Note that, even if the
barrier D is high enough and first carrier jumps from th
contact are upward jumps, jumps through the interface w
occur faster than in the bulk. In other words, more carri
may enter the sample than can be transported by virtue
field screening due to the space charge. However, under
conditions, only a minority of carriers, which have made fi
jumps from the electrode, can cross the potential barrier
contribute to the bulk current. Therefore, the current may
limited by charge-carrier injection even if the number of ca
riers making jumps from the contact per unit time is larg
than the sample can transport.

B. Current injection under the regime
of downward carrier jumps

Charge-carrier injection under the regime of downwa
jumps is possible if the Fermi levelEF in the electrode is
sufficiently high that a carrier can cross the top of the pot
tial barrier by making only downward jumps. In other word
the following condition must be fulfilled

Umax2Etr5D2eA eF

4p«0«
2sA2 lnF9Ap

2A2
S sNt

1/3

kTg D 3G
<0, ~21!
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whereUmax is the maximum of the potential energy distr
bution given by Eq.~1!. Since a metal contact represents
infinite reservoir of carriers and the rate of downward jum
is much lower for deeper states — see Eqs.~2!, ~9!, ~11!, and
~13! — all hopping sites in the vicinity of the interfac
deeper than the Fermi level in the metallic contact will
filled. In other words, a quasi-Fermi level will be establish
close to the metal-polymer interface. Under these conditi
the rate-limiting step for carrier injection must be the long
jumps between pairs of deepest states whose energies i
DOS distribution are equal to the quasi-Fermi level. T
will be jumps below the top of the potential barrier. Subs
tuting the energy

E5Umax5D2eA eF

4p«0«
, ~22!

into Eqs.~2!, ~11!, and ~13! yields the rate of such jumps
i.e., the density of the injection current

j 5en0 expH 22gS 3

2pNt
D 1/3

3F erfcS D2eA eF

4p«0«

A2s
D G21/3J , ~23!

j 5en0 expH 22gS 9

8p D 1/6S D2eA eF

4p«0«

sNt

D 1/3

3expF S D2eA eF

4p«0« D 2

6s2
G J ,

D2eA eF

4p«0«
@s. ~24!

Note that Eqs.~23! and~24! do not depend upon tempera
ture because downward jumps prevail. However, at fix
material parameters, these results are valid at sufficie
strong fields and at sufficiently low temperatures. The va
ity of Eqs.~23! and~24! is restricted by the condition that th
energyE5Umax does not exceed the transport energyEtr .
Therefore the inequality

D2eA eF

4p«0«
<sA2 lnF9Ap

2A2
S sNt

1/3

kTg D 3G ~25!

must be satisfied. ForNt51021 cm23, s50.15 eV,
g5108 cm21, «53, D50.25 eV, andF5106 V/cm it
yields T,310 K. For the same set of material paramet
and T5250 K Eq. ~25! requires the field to be aboveF
51.63104 V/cm. The field dependence of the injection cu
rent under the regime of downward carrier jumps is illu
trated in Fig. 2.

If charge carrier injection occurs under the regime
downward jumps, the rate-limiting steps are also downw
s

s
t
the
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jumps in the vicinity of the maximum of the potential distr
bution. This implies the thermalization process is not fi
ished when carriers cross the potential barrier and penetr
into the bulk of the sample. Since the effective carrier m

FIG. 2. Field dependencies of the dark injection current un
the downward hopping regime for the following set of mater
parameters:Nt51021 cm23, s50.15 eV, g5108 cm21, and «
53.
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bility decreases in the course of thermalization the bulk c
rent may, under these conditions, be less then the injec
current at the same external fieldF. Carrier injection and
transport in the bulk will be balanced again if the field at t
interface is reduced compared to its value in the bulk. A
limiting case the regime of space charge limited current
be established.

IV. COMPARISON WITH MONTE CARLO SIMULATION
AND DISCUSSION

Field dependencies of the injected current calculated fr
Eq. ~20! are shown in Fig. 3 together with the results
Monte Carlo simulations for the injection efficiency for di
ferent heights of the zero potential barrier. A numeric p
factor is chosen such that the absolute values of analytic
simulated currents coincide exactly for the fieldF54
3106 V/cm andD50.2 eV. After this normalization, the
difference between any analytic curve and correspond
simulation data is less than one order of magnitude cove
more than ten decades. Note that for higher barriers th
will be some discrepancy between the predictions of the a
lytic model and the simulation data increases with decrea
electric field. The origin of this discrepancy is the followin

Interplay of the drift and diffusion is normally introduce
into the Onsager problem by using Einstein relation betw
the mobility and the diffusivity. For a hopping system th
implies neglecting the field dependence ofm, which may be
justified only in weak electric fields. At stronger fields, th

FIG. 3. Field dependencies of the injection current density
rived from simulation and analytic theory parametric in the inje
tion barrierD. The analytic data were normalized by a prefactor
fit the simulation data at a field ofF543106 V/cm and a barrier
of D50.2 eV.
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diffusivity is smaller than predicted by the Einstein relatio
for a given value of the mobility.9 The total electric field in
the sample is a superposition of the Coulomb field of
image charge and the external field. Close to the interfac
increases with decreasing external field and forces a ca
to return to the contact. Under these circumstances, the
stein relation leads to overestimating the rate of injection
weak external fields and at high barriers.

In Fig. 4 the curves shown in Fig. 3 are replotted on
log(j) vs F1/2 scale, appropriate to test the validity o
Richardson-Schottky~RS! theory of thermionic emission.8

The comparison indicates that thermally assisted hopping
jection does, in fact, resemble RS theory except that
slope,] ln j/]F1/2, approximately is larger by a factor of 2
The reason for that similarity is that, at higher temperatur
the energy of the transport level approaches the mean o
Gaussian DOS distribution. Therefore, the height of the
tential barrier formed by the transport level is practica
equal to that of the electrostatic barrier and carrier inject
is mainly due to carriers which cross the barrier by therma
activated jumps. Under these conditions the probability
cross the barrier is determined by the probability to obt
the necessary thermal energy. The latter is governed by
Boltzmann distribution independent of whether a carrier
quires this energy as a single portion or as a sum of sma
portions. This is the essential assumption of the RS mo
that a carrier can be injected from a metal into the bulk o
dielectric once it has acquired a thermal energy sufficien
cross the potential barrier. Deviations occur at lower fie
and temperatures due to the stochastic carrier motion in
vicinity of the barrier as discussed in Sec. I.

-
-

FIG. 4. Injection current densities from simulation and analy
theory parametric in barrier plotted versusF1/2.
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Analytical approaches to the problem of carrier trans
in disordered hopping systems normally imply that the d
of the electrostatic potential energy over a typical jump
tance is small. This simplification allows us to consider h
ping transport as a diffusion-type motion within a given
tential landscape. However, this assumption beco
doubtful as long as the problem of carrier injection is c
cerned. In this case, the jump distance>1 nm is comparabl
to the characteristic scale of the potential distribution clos
the interface. Since the distance from the interface to the
of the potential barrier may be 4 nm and less at strong fi
applying the concept of diffusion-assisted carrier rele
from the 1D Coulomb potential well is a rough approxim
tion.

Another aspect of the analytic model not accounted fo
a proper way is that the intermediate regime of carrier in
tion when carriers enter the sample via mostly downw
first jumps while the transport regime is reversed before
riers cross the top of the potential barrier. This case ca
described neither as temperature-independent carrier i
tion due to downward jumps nor within the framework of
Onsager type model of carrier upward jumps via hopp
sites that belong to the transport level.
e
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In summary, we checked the assumptions involved in t
analytic approach for hopping injection into a random ho
ping system against the ‘‘exact’’ Monte Carlo simulation
The most serious of these is the neglect of disorder as fa
the escape of a charge carrier across the Coulombic im
potential is concerned. That process has been treated in
framework of the 1D version of Onsager’s approach of gem
nate recombination. It implies the validity of Einstein’s rela
tion for diffusion and drift in the vicinity of the Coulomb
barrier. The obvious success of the theory rests upon the
that the rate-limiting step is the initial injection event from
the metal into the dielectric described in terms of the gene
hopping approach involving the concept of transport energ
Once having recognized that the primary injection event
crucial one can elaborate upon that idea to improve injecti
by structural and/or chemical modification of the interface.10
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