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Current injection from a metal to a disordered hopping system.
[I. Comparison between analytic theory and simulation
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Monte Carlo simulations of hopping injection from a metal into a random-organic dielectric, described in the
previous papefl), have been compared to results of analytic theory. Good agreement has been found for the
field dependence of the yield of charge carriers as a function of the energy barrier at the interface. This is a
crucial test for the validity of the assumptions required in order to render an analytical approach of hopping in
a disordered system in the presence of a long-ranged Coulombic potential tractable. The most serious of these
is the Onsager-like homogenous medium approach to treat the escape of a charge carrier from the Coulomb
well once injected. The primary injection event into the dielectric has been treated in terms of hopping theory
implying the concept of transport enerd$0163-182@99)08511-2

I. INTRODUCTION cross the maximum of the potential distribution or tunnel

Dark charge-carrier injection from a metallic eIectrodethrou.gh the potentla(lfbarne(sge F|g_. L Atan glectnc f'ek.j
into the bulk of an insulator is known to be restricted by a'anging f“im 16:}0 1 y/cm mfar;]msulato_r\:vgh d!gleptrlc_
potential barrierJ(x), that is formed by a superposition of constants =3.5 the maximum of the potential distri _ut|on IS
an external electric field and the Coulomb field binding thel0cated between 3.2 and 0.8 nm away from the interface.
carrier with its image twin on the electrode Since, in disordered organic solids, charge-carrier transport
occurs via hopping and the typical jump distance is around
e? 0.6 nm, a carrier cannot cross the potential barrier by a single
eFx, (1) thermally assisted or tunneling jump. Monte Carlo

simulationd2 of dark charge-carrier injection from a metallic

wherex is the distance away from the metal-insulator inter-electrode into a polymer, described as a random-hopping
face, located ax=0, A the barrier height in the absence of system, prove this to be a multijump process.

both the external field and the image charge effécthe A model describing dark current injection into a noncrys-
external field,e the elementary charge, the dielectric con- talline organic dielectric must, therefore, be based on the
stant, ance the dielectric permittivity. To be injected from concept of carrier random walk within a positionally and
a metallic electrode into the bulk of an insulator a chargeenergetically disordered hopping system and within the po-
carrier must either acquire a thermal energy sufficient tdential distribution described by E{l). This problem is too
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FIG. 1. Potential energy distribution and initial carrier jumps at the metal-polymer interface. Solid lines show the average electrostatic
energy of a charge carrier in the Coulombic field of the image charge and in the external electric field. Dotted lines represent the energy of

the transport level for the regime of upward carrier jumps.
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difficult for rigorous analytic treatment and some simplifica- v(E,E’,r)=vgexp —2yr)Bol(E,E"), (2a)
tions must be made to get an analytic solution. In the recent

work of the authorsthe injection has been considered as a 1 : E'>E
two-step process. On the first step, carriers make initial Bol(E,E')= E-E’ ’ (2b)
jumps from the Fermi level of the metal contact into a local- ;{ - ?) E'<E,

ized state close to the metal-polymer interface. The rate of ) ) )

such a jumpy;, is determined by the initial jump distangg ~ Where v is the attempt-to-jump frequencyy the inverse
and by the energy of a target st&eOn the second step, the 0calization radius;T the temperature, anklthe Boltzmann
carrier random walk within the system of hopping sites isconstant. Note that the direction of the energy scale is chosen

described as a continuous diffusive motion. Concomitantlyt© @ssign higher energy values to deeper states. In a random
the probability to cross the potential barrieg, . for a carrier ~ NOPPINg system the valuesand AE=E—E’ are also ran-

that has made an initial jump over the distange is calcu- QOm. Amongst all nelghpqrmg sites there is one o_f them that
lated as the one-dimensionélD) Onsager probability to 1S characterized by a minimum value of the hopping param-
avoid geminate recombination for a pair of a carrier and it<St€ry,

image twinindependentf the energy of a site into which the 0 : E'>E

carrier have made the initial jump. The rate of carrier injec-
tion is then calculated by averaging the product
Vin(Xo,E) wesd Xg) OVeErxy andE. In other words, two basic kT

assumptions have been made to make an analytic solution 14+ site will be referred to as the nearest-hopping neigh-

possible:(i) t_he carri_er random walk within the positipnally bor. Sincer depends exponentially upon the hopping param-
and energet!cally dlsordergd network. of hOPP".‘g sites .haﬁter the rate of carrier jumps to the second nearest-hopping
been approximated by continuous motion of carriers within §,eighhors in diluted hopping systems is normally much
smooth potential landscape afi) the probability to €ross  gajier than that for the nearest neighbor. This allows us to
the potential barrier has bgen assumed mdepe_ndent OT tré‘asstimate the total jump rate from a given site as the rate of
energy of the target localized state for the initial Camerjumps into the nearest-hopping neighbor and to neglect the
Jump. . . . probability of jumps into other sites.

An argument in favor of the former assumption is obvi- = 14 nearest-neighbor jump rate from a site with the en-

ous: if the.bgrrier. thickness exceedg th_e_ typica}l intersite disérgyE is subject to the condition that the hopping parameter
tance a finite distance of every individual jump cannotis 3 minimum

strongly affect the probability to cross the barrier.Justifica-

u=2yr+4{ E-E’ ()

E'<E.

tion of the latter assumption is the essence of the present u=2yr=min : E'>=E, (43
paper. It will be shown that, for carrier injection through a E_E’

high_barrier, most of the initial carrier jumps are made to u=2yr+ =min : E'<E, (4b)
localized states that belong to the effective transport level k

and that the regime of upward carrier jumps is, therefore
established by initial carrier jumps. Since this regime is
equivalent to trap-controlled transpbttone can calculate
the escape probability as a 1D Onsager quantum yield. Cu
rent injection under the regime of mostly downward jumps Amr3 (o

of carriers is also possible for lower barriers and broader 3 f ,dE”g(E”)zl. 5)
energetic distributions of localized states. Under these con- E

ditions the rate-limiting step is carrier jumps between hop- Here, g(E) is the density-of-state¢DOS) distribution.

ping sites close to the top of the potential barrier. The chargqation(s) leads to the following expression for the jump
acteristic feature of this regime is shown to be a weakjyisiance to sites with energi&d>E’

temperature dependence of the injection current. Predictions
of the analytic model are shown to be in a good quantitative [
r =

provided that the probability to find at least one neighboring
site with energyE”">E’ within the sphere of radius ap-
Rroaches unity, i.e.,

agreement with the results of Monte Carlo simulation, which

A (= —-1/3
?L,dE”g(E")} . (6)
is based on essentially the same microscopic picture of the

injection process. Substituting Eq(6) into Eq. (4b) yields,
4o (= 18 E-E
II. THEORETICAL CONSIDERATIONS ON ENERGY 2y|—=| dE"g(E") + =min, )
RELAXATION AND TRANSPORT OF CHARGE 3 Je kT

CARRIERS IN A DISORDERED HOPPING SYSTEM or, equivalently,

Consider a carrier localized in a hopping site with the a3 3
energyE. This site is surrounded by other hopping sites that 9(E") deE"g(En) zi 9_77 )
are characterized by their energieé and distances from E/ KT\ 243

the currently occupied localized state. The rate of possible

carrier jumps to a particular hopping sit€¢E,E’,r) is then Solving Eg.(8) may yield eitherE’' <E or E'=E. The
described by the well-known Miller-Abrahams expresSion former inequality is in agreement with the condition restrict-
as, ing the applicability of Eq(4b) while the latter implies that
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downward carrier jumps dominate for such sites and that Eq. 97| oNI3 2
(4@ rather than Eq(4b) should be addressed under these Etrzo\/z In[—( : ) . (14
conditions. Equation(4a requires the jump distance to be 2\/5 kTy

minimized. Equivalently, the value of the integral in E§) _ i _ )
under the conditiolE’ >E has to be maximized. Substituting _ A Carrier occupying a hopping site of the eneigypelow
E instead ofE’ as the lower bound of integration in E@)  Ew Will, most probably, make the next jump upwards in

than yields the following expression for the radius of down-8nergy into a state whose energy is aroéid The upward
ward jumpsr | jump is normally followed by a series of either downward

jumps or upward jumps with smaller energy difference be-
A [ -1/3 tween starting and target sites. The first upward jump is a
ri:{?J dE”g(E”)} . (9 rate limiting step for this sequence of jumps made by the
E same carrier until it is localized in a state of energy belbw
Therefore, under the so-called “regime of upward jumps” a
An interesting and important feature of E@) is that it  nymper of downward jumps occur. However, these are up-
does not depend upon the energy of starting&itet means  ward jumps which represent rate-limiting step and, thus, pre-
that, for upward jumps, the energy of a target site does noicribe the kinetics of carrier thermalization and transport. In
depend upon the energy of starting site. In other words, alihjs sense, the regime of upward carrier jumps is similar to
carriers making upward jumps reach target sites with similagne trap-controlled carrier transport in materials having a
energy. This is reminiscent of trap-controlled carrier trans{rgaqg energy distribution of DOS with the enery play-
port in_ inorganic disordgred semiconductors with the sites ofng the role of the mobility edge. Eventually an equilibrium
energies arouné&’ playing a role of transport states and the concerning the energy distribution of carriers will be estab-
energyE’ being equivalent to the mobility edge. In the fol- |ished. For longer times the average energy of localized car-
lowing, we shall refer to this energy as to the transport enriers remains constant and a constant value of average carrier
ergy Ey,. At a given temperature, the ener§ly, separates mopbility is achieved. The normalized equilibrium energy dis-
localized states which involve mostly downward jumps andipution of carriersf(E) is determined by the interplay of

upward jumps, respectively. the Boltzmann thermal exponent and the DOS function as
Although general results obtained in the present work are

applicable to practically all realistic DOS distributions we o E\]? E
illustrate the general results given by E¢8) and (9) em- f(E)= f_wdEg(E)ex /| 9Eexy /- (15
ploying a Gaussian DOS function that is typical for organic
disordered systerhs For a Gaussian DOS function E(L5) yields a Gaussian
distribution as well,
(B)=— p( = (10
= exp ——|, _EN2
I e N 20 o] e
f(E) ex : (16)
) ) ) Nemo 207
where N; is the total density of localized states andthe _
width of the distribution. Substituting E¢10) into Eqgs.(8)  shifted to deeper states by the eneEyy,
and (9) yields the radius of downward jumps and the trans- )
port energy for upward jumps, which can be written as E _9 (17)
0 kT
3 1/ 1/3
r :( ) erfd (12) which also represents the mean energy of localized carriers.
l y . .
27N, V20 In the following section we apply the above general results
to analysis of charge injection from a metallic contact into a
and disordered hopping system.
/
3E, o Bl 8V2 | M kT| ¥ 3 lll. CHARGE-CARRIER INJECTION
&P g2 ) €1 J20) o2y Vo) INJ THROUGH A METAL-POLYMER INTERFACE

(12) Similar to hopping transport current injection can occur
when the dominant mode of transport is either upward or
downward jumps of carriers. A general theory of charge-
(garrier injection from a metal contact to a disordered hopping
system must involve both these regimes as it is done in
'Monte Carlo simulations. However, such a theory can hardly
provide an analytical equation describing field and tempera-
ture dependencies of the injection current as well as its de-
pendencies upon the material parameters. Therefore, in the
13) present paper we consider these two regimes of carrier injec-
' tion separately and formulate the pertinent analytical models
that specifically account for their essential characteristic fea-
and tures.

where erfcg) is the complementary error function. Since
carrier jumps within the deep tail of the DOS distribution,
E>o, are the most important ones one can use th
asymptotic expansion of the complementary function
erfc@)=m"Y%z"texp(-2), z—», in Egs. (11) and (12
yielding
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A. Current injection under the regime most initial jumps are jumps into nearest available sites, i.e.,
of upward carrier jumps jumps over the distanca. For a positionally ordered hop-

A carrier injected from a contact into a polymer finds pi'ng system this corresponds to .r!earest-neighbor jumps.
itself within the potential well described by E¢L). Due to  Since the Onsager escape probability is the same for both
finite size of hopping sites in real materials, the distancd®0sitionally ordered and disordered systems this implies a

from the contact to the nearest localized state in the bulk of ¥’k dependence of the injection current upon positional

polymer cannot be shorter than the shortest intermoleculdf'Sorder.

distancea. Energy position of the transport level at the dis- At Strong electric fields the distance from the contact to
tancea from the contact with respect to the Fermi level in N maximum of the potential distribution may be compa-

the metal of the contact is of crucial importance for the re_rable with the average intersite distance. For instance, at an
gime of carrier transport within the potential well. If the €lectric field 2<10° Viem in an insulator with dielectric

zero-field barrierA is high enough such that constant 3 the maximum of the electrostatic potential is lo-
cated at 0.8 nm away from the contact while the typical
e? intersite distance is 0.6 nm. Under these conditions carriers
eFa can make initial jumps into the bulk behind the maximum of
the potential distribution. The Onsager probability to escape

U(a)~Ey=A4- 16megea a

9| oNI3 3 surface recombination approaches unity for such carriers
—o\/2In——= : ) >0, (18  and, concomitantly, the injection rate is practically equal to
22\ KTy the rate of initial jumps. At lower temperatures, carriers have

low probability to cross the barrier if they make initial jumps

the first carrier jump from the contact into the insulator will . . X
Jump over the distance&<X;,x, Wherexqay is the coordinate of

be an upward jump implying immediate establishing of the . Lo omax o .
. . - o the maximum of the potential distribution. Therefore, carrier
regime of energetically upward carrier jumps within the bulk.umps through the barrier represent the main channel of the

of the sample. As it was mentioned in the previous section”MPS . .
injection at strong fields and relatively low temperatures.

this regime is similar to the trap-controlled carrier transporRNith increasing field the initial jump distance through the

with E,, substituting the mobility edge and carrier upward . . X
jumps from deeper states governing the kinetics of transpo arrier becomes close to the thlckness of the barrier at the
prmi level of the electrode. Concomitantly, the current vs

and energy relaxation. Since the coordinate dependence leld curves resemble the Fowler-Nordheim field dependence
E,s follows the potential distributiokl (x) the probability for of the injection current at strong electric fiefdgthough long

a carrier to cross the potential barrier via jumps aroqd distant tunneling is neglected both in the analytic model and

. (19

can be calculated as the Onsager probability. of gemi- . o simulati
nate pair dissociation in one dimension in Monte Carlo simulations.

The condition of weak injection implies that fewer charge
Xo e e carriers will cross the potential barrier per unit time than the
f dxex;{ — —( Fx+ —) sample can transport. The rate-limiting step for charge trans-
=2 kT 16meoex port in the bulk is the jump from sites populated in equilib-
ese e e rium into sites that belong to the transport level. The corre-
Ja dxexr{ kT Fx+ W) sponding energy difference i — E,, . Note that, even if the

barrier A is high enough and first carrier jumps from the

where X, is the distance of a first carrier jump from the contact are upward jumps, jumps through the interface will
contact into a hopping site. Averaging over the distance obccur faster than in the bulk. In other words, more carriers
the first jump and the energy of target sité$ yields the may enter the sample than can be transported by virtue of
following expression for the injection current densjty field screening due to the space charge. However, under real
conditions, only a minority of carriers, which have made first
) o e e -1 jumps from the electrode, can cross the potential barrier and
J:e’jo( L dxexg — ﬁ( Fx+ m) ] contribute to the bulk current. Therefore, the current may be

limited by charge-carrier injection even if the number of car-
0 riers making jumps from the contact per unit time is larger
x . dxo expl —27yXo) than the sample can transport.

B. Current injection under the regime
of downward carrier jumps

X0 e ( e )
xfa dxex T Fx+ 16megex
Charge-carrier injection under the regime of downward
” , , =Y jumps is possible if the Fermi levél. in the electrode is
% ffoodE BOI(E")g[U(xo) ~E"]. 20 sufficiently high that a carrier can cross the top of the poten-
tial barrier by making only downward jumps. In other words,
The physical meaning of Eq20) is very simple: the in- the following condition must be fulfilled
jection current is determined by the rate of first carrier jumps
multiplied by the probability for a carrier to escape surface | eF om UNtlIS S
recombination if it has made an initial jump over the distance Unax—Ex=A4-¢ W_‘T 21n ﬁ KTy
Xp into a site with the energf’. The rate of initial jumps
exponentially decreases with increasing jump distance and <0, (21
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whereU ., is the maximum of the potential energy distri-
bution given by Eq(1). Since a metal contact represents an
infinite reservoir of carriers and the rate of downward jumps
is much lower for deeper states — see E@s.(9), (11), and 107k
(13) — all hopping sites in the vicinity of the interface :
deeper than the Fermi level in the metallic contact will be
filled. In other words, a quasi-Fermi level will be established
close to the metal-polymer interface. Under these conditions
the rate-limiting step for carrier injection must be the longest
jumps between pairs of deepest states whose energies in the
DOS distribution are equal to the quasi-Fermi level. This
will be jumps below the top of the potential barrier. Substi-

tuting the energy
[ eF 27 :
€ daepe’ 22 i
10°F

E=Una=A

-

<,
=
T

j (arb. units)

-

<
&
T

into Egs.(2), (11), and (13) yields the rate of such jumps,
i.e., the density of the injection current

-17

10

3 1/3
j=evgexp| — 27( 27-rNt)
oF -13
A—en/ (a)
drege
x| erfc S , (23
g -
—A=02¢eV
1/3 r
L [ A=03eV ;
---------- A=0.4eV

9 —e
] =e€evgexp —2’)/(%) O'—Nt
( \/T) ok
A—-e L
dmege - | T=300K I K

Xex P
60

j {arb. units)

(24)

eF
A—e >0.
4mege

Note that Eqs(23) and(24) do not depend upon tempera-
10'”_—

ture because downward jumps prevail. However, at fixed
material parameters, these results are valid at sufficiently
strong fields and at sufficiently low temperatures. The valid-
ity of Eqgs.(23) and(24) is restricted by the condition that the

energyE=U,,.x does not exceed the transport enekjy.

Therefore the inequality
9 JE( o-Ntl/3) ?

[ eF
A-e 477808§0-\/2|n 2\/§ kTy

must be satisfied. ForN,=10? cm 3, ¢=0.15 eV,

y=10® cm!, ¢=3, A=0.25 eV, andF=10° Vicm it

yields T<310 K. For the same set of material parametersyarametersN,=10%* cm 3, ¢=0.15 eV, y=1¢f cm %, ande
=3.

|
(25) 10° 10°
{b) F (V/em)
FIG. 2. Field dependencies of the dark injection current under
the downward hopping regime for the following set of material

and T=250 K Eg. (25 requires the field to be above

=1.6x 10" V/cm. The field dependence of the injection cur-

rent under the regime of downward carrier jumps is illus-jumps in the vicinity of the maximum of the potential distri-
bution. This implies the thermalization process is not fin-

trated in Fig. 2.
If charge carrier injection occurs under the regime ofished when carriers cross the potential barrier and penetrates

downward jumps, the rate-limiting steps are also downwardnto the bulk of the sample. Since the effective carrier mo-
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FIG. 3. Field dependencies of the injection current density de- FIG. 4. Injection current densities from simulation and analytic
rived from simulation and analytic theory parametric in the injec-theory parametric in barrier plotted verse&2
tion barrierA. The analytic data were normalized by a prefactor to

fit the simulation data at a field &F=4x10° V/cm and a barrier . L . . . .
of A=0.2 eV diffusivity is smaller than predicted by the Einstein relation

for a given value of the mobility.The total electric field in
bility decreases in the course of thermalization the bulk curfhe sample is a superposition of the Coulomb field of the
rent may, under these conditions, be less then the injectiolnage charge and the external field. Close to the interface it
current at the same external field Carrier injection and increases with decreasing external field and forces a carrier
transport in the bulk will be balanced again if the field at thet0 return to the contact. Under these circumstances, the Ein-
interface is reduced compared to its value in the bulk. As $tein relation leads to overestimating the rate of injection at
limiting case the regime of space charge limited current cafveak external fields and at high barriers.

be established. In Fig. 4 the curves shown in Fig. 3 are replotted on a
log(j) vs FY2 scale, appropriate to test the validity of
IV. COMPARISON WITH MONTE CARLO SIMULATION Rlchardson-_Schqttk}(RS) theory of thermlon|c emlssp*h. _
AND DISCUSSION The comparison indicates that thermally assisted hopping in-

jection does, in fact, resemble RS theory except that the

Field dependencies of the injected current calculated fronslope, 7 In j/oFY2, approximately is larger by a factor of 2.
Eq. (20) are shown in Fig. 3 together with the results of The reason for that similarity is that, at higher temperatures,
Monte Carlo simulations for the injection efficiency for dif- the energy of the transport level approaches the mean of the
ferent heights of the zero potential barrier. A numeric pre-Gaussian DOS distribution. Therefore, the height of the po-
factor is chosen such that the absolute values of analytic an@ntial barrier formed by the transport level is practically
simulated currents coincide exactly for the fiekl=4  equal to that of the electrostatic barrier and carrier injection
x 10 Vicm andA=0.2 eV. After this normalization, the is mainly due to carriers which cross the barrier by thermally
difference between any analytic curve and corresponderdctivated jumps. Under these conditions the probability to
simulation data is less than one order of magnitude coveringross the barrier is determined by the probability to obtain
more than ten decades. Note that for higher barriers therthe necessary thermal energy. The latter is governed by the
will be some discrepancy between the predictions of the anaBoltzmann distribution independent of whether a carrier ac-
lytic model and the simulation data increases with decreasinguires this energy as a single portion or as a sum of smaller
electric field. The origin of this discrepancy is the following. portions. This is the essential assumption of the RS model,

Interplay of the drift and diffusion is normally introduced that a carrier can be injected from a metal into the bulk of a
into the Onsager problem by using Einstein relation betweeulielectric once it has acquired a thermal energy sufficient to
the mobility and the diffusivity. For a hopping system this cross the potential barrier. Deviations occur at lower fields
implies neglecting the field dependencewafwhich may be and temperatures due to the stochastic carrier motion in the
justified only in weak electric fields. At stronger fields, the vicinity of the barrier as discussed in Sec. |I.
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Analytical approaches to the problem of carrier transport In summary, we checked the assumptions involved in the
in disordered hopping systems normally imply that the dropanalytic approach for hopping injection into a random hop-
of the electrostatic potential energy over a typical jump disping system against the “exact” Monte Carlo simulations.
tance is small. This simplification allows us to consider hop-The most serious of these is the neglect of disorder as far as
ping transport as a diffusion-type motion within a given po-the escape of a charge carrier across the Coulombic image
tential landscape. However, this assumption becomegotential is concerned. That process has been treated in the
doubtful as long as the problem of carrier injection is con-framework of the 1D version of Onsager’s approach of gemi-
cerned. In this case, the jump distarred nm is comparable  nate recombination. It implies the validity of Einstein’s rela-
to the characteristic scale of the potential distribution close Qo for diffusion and drift in the vicinity of the Coulomb
the interface. Since the distance from the interface to the to

of the_ potential barrier may .be 4. nm an(_j less at s.trong f'eld'?hat the rate-limiting step is the initial injection event from
applying the concept of diffusion-assisted carrier releas

. ; '€35¢he metal into the dielectric described in terms of the general

from the 1D Coulomb potential well is a rough approxima- . . .
tion hopping approach involving the concept of transport energy.

Another aspect of the analytic model not accounted for inonC? Ihavmg reC(I)gbmzetd that t?ﬁ pt)r_gnari/ |_nject|on g\{en:_ 'S
a proper way is that the intermediate regime of carrier injec-CrUCIa one can elaborate upon that idea to Improve injection
tion when carriers enter the sample via mostly downward?Y structural and/or chemical modification of the interfaCe.
first jumps while the transport regime is reversed before car-
riers cross the top of the potential barrier. This case can be
described neither as temperature-independent carrier injec- ACKNOWLEDGMENT
tion due to downward jumps nor within the framework of the
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