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Enhancement of pair correlation in a one-dimensional hybridization model
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We propose an integrable model of one-dimensional interacting electrons coupled with the local orbitals
arranged periodically in the chain. Since the local orbitals are introduced in a way that double occupation is
forbidden, the model keeps the main features of the periodic Anderson model with an interacting host. For an
attractive interaction, it is found that the local orbitals enhance the effective mass of the Cooper-pair-like
singlets and also the pair correlation in the ground state. However, the persistent current is depressed in this
case. For the repulsive interaction case, the Hamiltonian is non-Hermitian but allows Cooper pair solutions
with small momenta, which are induced by the hybridization between the extended states and the local orbitals.
[S0163-182699)11207-4

I. INTRODUCTION Based on the development of the strongly correlated elec-
tron systems and low-dimensional systems, many efforts
Metallic compounds containing elements with partially have been made in recent years to understand how the mag-

filled d shells orf shells belong to the category of strongly netic impurities behave in a one-dimensiofD) correlated
correlated electrons. Two typical examples are the Figh- host’ Several integrable models were propdsétb account
superconductors and the heavy fermion compounds in whicfPr this problem and some novel features were found. In a
spin fluctuations may play a central rdiéThe normal state "ecent papef, Schiottmann studied the attractive Hubbard
properties of heavy fermion compounds are characterized bgodel with a finite concentration of magnetic impurities. He
a large Pauli susceptibility and specific heat as compared tpund that the impurities generally weaken the binding en-
conventional metals. Such phenomena are attributed to tHf9Y Of the singlet pairs and the spin gap could be closed
large effective mass of the electrons near the Fermi surfac@POVe a critical concentration of impurities. ,
These anomalies are generally believed to be due to the for- 1h€ quantum inverse scattering metH@ SM) provides
mation of resonant states at the Fermi level, which is induce@ Powerful tool to construct integrable models in one
by the admixture of local orbitals and the conduction elec- d|menS|_orF’. In a lattice model, a local operatar, -(\) can
trons, and therefore the systems are usually modeled by tH€ def'{g)ed' which satisfies the following Yang-Baxter
periodic Anderson model or the Kondo lattice model in some'&lation:
limiting cases. One of the major mysteries of the heavy fer- _
mions is how superconductivity could be supported in a sys- R”’()"“)anf()‘)Ln,f’(f“)_'—n,r'(ﬂ)'—n,f()\)Rf,Tr(?\.M)(,l)
tem with strong local momentsit is generally accepted that
magnetic impurities in BCS superconductors break the timavhereL, .(X) acts on the auxiliary spacé. and the quan-
reversal symmetry and are unfavorable to the formation ofum spacev,,, respectively\ andu are the spectral param-
Cooper pairs. Such a pair-breaking effect directly causes theters, andR, .. (\,u)=L, (A—pu) is a c-number matrix.
reduction of the energy gap of the superconducting state arigefine the transition matrif (\) as
the transition temperatureHowever, the situation may be
different in some strongly correlated electron systems, where TN =Ly 0Ly AN, (2)
the electrons from the same source could be responsible fgyhereN is the site number of the lattice. From Ed) we
both the superconductivity and the magnetisiow mag-  can easily show that
netism and superconductivity reconcile each other is still a
hot topic in modern condensed matter physics and remains R, /(A —u)T (M) T ()=T ()T ANR, (N—pu).
an open problem. 3
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Tracing 7 and 7’ in the above equation we have enhanced by the local orbitals. In Sec. IV, we study the re-
pulsive interaction case. Section V gives our concluding re-

[trTTT()\)itrTTT(M)]:O' (4) marks.

Supposer(\)=tr,_ T (\) allows the following expansion:
Il. THE MODEL AND ITS BETHE ANSATZ
ty

N In this paper, we construct an integrable model, which

describes interacting conduction electrons in a continuum
medium hybridizing with local orbitals. The atoms with local
orbitals are arrayed periodically in the chain and the local
states are described by the Hubbard operatm%ﬁ
[tm.t,]=0, m,n=0,12.... 6  =lan)(Bnl (an.B,=0,1,1), with the constraintX{, + X,
+Xgo=1, which means double occupation of the same or-

Choosing one of the, as the Hamiltonian of the system, . %% . . .
from Eq. (6) we know that allt,, are conserved quantities. bital IS forb|dd'er'1. Let us start with the following segment
grgnsnmn matrix:

Therefore, we can establish the common eigenstates of the

guantities. Generally, the generating operators of these (7)

eigenstates are chosen from the off-diagonal elements of the

matrix T,(\). For the impurity models, the impurities are wherexe[na,(n+1)a); :: denotes the normal order of the

added by including some inhomogeneous vertex operators kgrmions,a is the space between two nearest local orbitals,

the transition matriX, which satisfy the same Yang-Baxter and thelL operator is defined as

relation as that of the host. )
In this paper, we consider a model of 1D interacting elec- '_)\

trons coupled to the local orbitals arranged periodically in 2

the chain. Maximumly, only one electron can occupy a

single local state. Therefore, the model preserves the main [ (\,x)=

feature of a 1D periodic Anderson model in the linit 2

—oo. The structure of t_he present paper is_the_following_: _ivge! —ivge!

In the subsequent section, the model Hamiltonian and its ivgep(x)  —ivge((x)

Bethe ansatz solution will be constructed based on the

QISM. In Sec. I, we discuss the attractive interaction casewith cT,(x) [c,(X)] the creatior(annihilation operator of the

It is shown that the effective mass of the Cooper-pair-likeconduction electrons. Here, we take the boundary condition

singlets as well as the pair correlation in the ground state aref T,,.;(\|x,na) as

t;
T(N)=to+ +§+~--. (5
Since A and u are arbitrary parameters, from E@) we
obtain

IxTnr1(N]x,n@)=:L(N,X) Ty 1(A[X,na):

0 ivge (x)

0 I ivge,(x) |,

[
_E)\

a’M)-b' V)X, —b' V)X, b’ (M)X],
Tor1(A|na,na)=L,(\)= —b'(M)XT a’(N)—b'(MXT b’(M)Xgp, ,
b’ (\)X3, b’ (\)X], a’(\)+b' (X2,

wherea’(N\)=a(A+ig/2), b’(\)=b(A+ig/2), and where
—ig R(N)=a(N)P+b(N), 1y
a()\)=m, b()\)zm (8)

andP is the fermion-fermion-bosofFFB) graded exchange
We remark that with a unit boundary condition, the transitionogebrator acting on the direct product of the auxiliary spaces,
matrix is just that of thes-potential Fermi gas mod®lin- P, = a;p,0a,0,(—1) ™% €, =1, €=0 (for conve-
troduced by Yang? The nonunit boundary condition is very nience, we put the subscripts| and 0 as 1, 2, and 3, re-

similar to the inhomogeneout operator in the lattice spectively; ®, denotes the direct product with FFB
model’ It is easy to show that the following Yang-Baxter grading?*?
relations hold:

(F®SG)gg:Fachd(_l)EC(Ea+Eb)- (12)

RN =) LN, X) @ L (0, X) =L (1,X) @ sL(N,X)R(N— ),

9

RON—p)Ly(M) ®gbn(p)=Ln(p) @ Ly(NR(N— ),
(10

From Egs.(9) and (10) we easily derive

RAN— ) To(M) @ Tr(u) =Tp()®sTh(MRN— ),
(13
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with T,(\)=T,(\|na,na—a). Furthermore, the global tran- Ca.(A\)Ca (Kz):r()\l_)\z)glalcb (A2)Cp.(\1),

sition matrix 1 2 281 72 ! (18
TN)=TNM)Tn-a(N) - - Ty(N) (14

satisfies the same Yang-Baxter equation as the segment ones [7(0), ()]=0, (19

Ta(N), where

RIN—u) TN @sT(u) =T()@T(NRN— ), (15

whereN is the number of atoms with local orbital. Introduce
the notation and

T(N)=StIT(N)=—Ap(N) —Axx(N) +D(N) (20

Ai(N)  AgN) Bi(N)
TN =| Aa(N)  Ax(N) By(N)

Ci(N) Cy(N) D(N) It can be shown that(\) satisfies the following Yang-
Baxter relation:

F(N)20=—b(\) SapSeq—a(N) Sagdiec- (22)

From Eq.(15) we have the following commutation relations:

b dyb
rON=p)p FON= )22 (V) LT ()2
AaN) Col ) = (= 1) 2 ECol ) Aad V) e e
— a;€y Codp _ ,,\C1P1
o) RN (N ZIr (N =gt (22)
a(A—p) ColM Aacl ), (16 From Eq.(19) we see that(\) can be considered as a gen-
erator of an infinite number of conserved quantities. Choos-
ing the vacuum state as
D(N)Ce(u)= mCC(M)D()\) g
c,(x)[0)=X{,|0)=0, (23
T VRO /=l
a(u—\) ¢ #)s we have
i(N2)L 4N 9
e a‘| AN+l E 0 0
T(N)[0)= 0 Qi(M2LgN )‘+ig 0 |0).
Ci(N) Ca(N) e (VAL

Therefore,C,(N\) can be treated as the creation operators of A, (M) + AN ][y, - .. KnlF)
the eigenstates of(\)

n

n
. g 1
— _ al(M2)L4N e -
ke, -« ol F)=Cay(Kn)Caylko) - - - Ca () 0)F 0 -2, etratn+iz |l fniy L Calo)
(24 i
where the indices; run over the values 1, 2, arigfn "%t is ><[7-(1)()\)]21:::ZnFan"‘al+2 (AI)Zl:::Zan (\)
a function of the spectral parametdss From the commu- v =1 v
tation relationg16) and(17) we have(n is the electron num- n
bey x [T Co (kp|oyFen 2, (26)
j#1
D()\)lkl! e ,kn|F>
n 1 where
=e MAL] | — ki, ... kil F)
=1 alki=h) D) =st T ]=st{ LY —ky) - - - LT (A —ky)],

(27)

n n
X \b1---by ) a, --a
+ 2 (Mg G CotkployFeras, @5
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L) =b(\)PP+a(n), (28)

which fulfill the Yang-Baxter relation

"ML () =LP(w)@LPNr(n—p),

(29

rv—p)Li

with (P)30=— 5, .5, the 4x 4 permutation matrix, and

n

b(A—k)) g
by-- by — aN .9
(AF)™ aln—k) 11 a(k| 2 | KkTi3
x @l (K/2)LEan - -ab 1 +by _ 1)l+1
XLV (k= ko)l
n— dn
XL (koo 1)t 203
XLy g (K=K g q) 21 (30)
1 by g3y,
A E\bi---b,— by---b bn---byy1a- -
(M) Pn=S(k), . o F 1+1%° %
n
_M} —i(k/2L 1
a(ki—\) iz a(ki—k))’
(3D

where

1 (kg =Kk
(32)
To obtain the Bethe ansatz equatidBAE) and the eigen-

values ofr(\), we solve first the following eigenvalue prob-
lem:

S(k)g!p=rlk g k)P

TD(N)F=e(\)F. (33

From Eq.(29) we know

V=T @ TP () =TP ()@ TN r(N—p).

(39
Introduce the notation
o[ 2w
T (V)= c®\) DB/’
then we find from Eq(34)
1
D(l)()\)c(l)(M)Za()\—_mc(l)(/vb)D(l)()\)
+%c<“<x>o<“<m (35)
A(l)(A)C(”(,u):ﬁC‘l)(u)A(l)(h)
uC(l)(h)A Y(m), (36)

Ta-n)

WANG, DAI, PU, AND ECKERN

PRB 59
COMCD(u)=CH(u)CHN),

[7P(N), 7Y (u)]=0. (37
Define the pseudovacuuf®)® as BM(1)|0)M=0. The
eigenstates of*)(\) can be written as

M

s =1L CHualo)?. (39)

1,

Applying 7 H(\)=-ABDN)-DD(\) on Eq. (39), we
have

" " a(\—kj)
em)=—| 11 7= Ma) 11 a(k—\)
M
+11 H an—k)|, (39
a=1 a( Mo

and the cancellation of the unwanted terms gives the Bethe
ansatz equation

a(ppg—Ma)

. (40
- Mﬁ)

n M
il]l a(ki— o) =11

aF B a(lu‘
To ensure Eq(24) to be an eigenstate a{\), the unwanted

terms in Egs(25) and(26) must cancel, i.e.,

Fan 1=,

— (A E o (A (41)

This gives
M

elit= H1 a(k = ftg)-

a=

.9
N =
k +i 5 (42

[For the detailed derivation of Eq&30), (31), and(42), we

refer the readers to the Appendix B of Ref. 12, since the
algebraic structure of the present model is almost the same as
theirs] The eigenvalue of(\) reads

n
i(\2)L
j=1 a(A—k;)

v} o) =ad A +is e e(\)

n

1

+e—i()\/2)L ,
j=1 a(kj_)\)

(43

whereM is the number of electrons with down spin. Putting
Mm.=N,—ig/2, the Bethe ansatz Eq&l0) and (42) are re-
duced to

k:N
elkjNa E———
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i terms that often appear in integrable impurity modeBom-
No—kj— 29 Moy ~ig paring Eqs.(4_7) and (46)_, we easily obtain the spectrum of
Za T8 Y 45 the Hamiltonian to be given by
: (45)

ﬁ=1 )\a_ )\’3+ 10

m——

"3 29 "
E=2 K. (52)
and the eigenvalue of(\) can be written clearly as =1
v(N KN =€ '<*’2>LH 14 _)\ - ) Ill. ATTRACTIVE INTERACTION
We discuss first the attractive interaction, ig<0 case.
g\ N Without the local orbitals, the ground state is a Fermi sea
N+i > filled by Cooper-pair-like bound pairs. Now from Ed44)
SEPNIONZ)1H — and (45), we can show how the local levels behave in the
N—i 9 ground state. Carefully checking the Bethe ansatz equations
2 we find that the Cooper-pair states described by
.9 N i
M )\—)\a—li n ig k;:)‘“iig (53
=1y IR i are still possible solutions in the thermodynamic lirhit
“ 2 —oo, despite the existence of the local orbitals, whegeare
real. To study the stability of these pair states, we consider a
) reference state, i.e., all theelectrons forrm/2 pairs. In this
i ;
" H 14 9 . (46) case, the Bethe ansatz equations are reduced to
— [ — . 2 .
A )\a+I2 2i\,Na )\a_||g| N: )\a_)\ﬁ_llg|
S i) et N w we TR
Now we turn to the construction of the model Hamiltonian. “ p=1 R BB
For A— in the upper-half complex plane, we have theand the energy of this state is given by
following asymptotic expansion: o
2
ng
_ 2_ 79
el (ML Cl C, GCg E_az'l 2\a 4 - 9
InN[7(\)e€ I=1+igy =+ S+ 5+ (. (47
AT A Taking the logarithm of Eq(54) we obtain
From the commutation relatiof19) we know /2
[C.,C,]=0, mn=12,3.... (48) 2\ ot 2 0(Na)= (56)

In principle, we have freedom to choose a Hamiltonian from, ;..o 0(x)=2tan
the conserved quantitid,.}. In this paper, we define the
Hamiltonian as

Y(x/|g|) andl, are integers or half inte-

gers depending on the parity Nf— n/2. Notice that each,,

corresponds to a pair state, and they must be different from

1 each other due to the exclusion principle. The minimum state

H=C;+igC,— = g°C;. (490  (with lowest energy is thus described by a sequence of
2 {1 }={—(/2—1)12,...,0/2—1)/2}. In the thermody-

For unit boundary conditioff,,, ;(na,na) =1, Eq.(49) leads namic limit (n/L finite), the distribution of\ , can be de-

via Neumann expansion b scribed by a density function
7ct(x) 7, (%) )= lim — 5
I PO = I R 57
which satisfies
+ZgJ’ (x)c ) (X)cp(x)dx, (50
A
which is nothing but the Hamiltonian of a 1D electron gas PN =+ 2T = J_ Ff()‘_)\ )p(A)dA"(58)
with §-potential interactions. With the local orbitals, E49) o
reads where the cutofi\g is given by
= A n
H=Hy+H,, (51) f F pOV)IN= 5, (59)
where H, is very complicated, containing a hybridiza- M

tion term En WVniCh(K)Xg,+H.c., a correlation term and f(\)=|g|/7(\2+g?). Without the local orbitals, the
Eno(,,U(,(,,c (na)c, (na)X ., and other irrelevant density distribution of\ in the ground state takes the form

oo
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1 z0
Po(K):;—JiFO f(N=N")po(N")dN’, (60)
f”g dh= o 61
0 po(N)dA= 7. (61)

F

Comparing Egs(58) and (60) we can readily read off ¢

<7\2. That means the effective Fermi energy is reduced by
the hybridization relative to that of the homogeneous system,
a typical heavy fermion behaviéiNow we consider the den-
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Therefore,e(\) can be treated as the quasiparticle energy of
the elementary excitations. The excitation of breaking a Coo-
per pair can be treated in a similar manner. Such an excita-
tion can be described by hole in the Fermi sea and two
real k modesk,, k, above the Fermi level. In this case, the
excitation energy is

2

g

5E=—e()\h)—2,u+ki+k§+?. (70)

sity of states at the Fermi surface. The energy density of th&lotice that the dressed energy has the propesiesig)

minimum state(relative to the chemical potentjatan be
written as

2

E/L=JAF (ZAZ—%—ZM)p()\)d)\, (62
7)\':

whereu is the chemical potential. Substituting E§8) into
Eq. (62), we obtain
e | 1
E/L= f
,)\F a

€(N)dN, (63

1

wheree(\) is the dressed enertjyof the Cooper pairs,

2 A
e(x)=2>\2—%—zﬂ—f " EA =)\ )e(\")d\".

(64)

Consider then a particle-hole excitation relative to the min
mum state. The density of the hole and that of the excite

particle can be expressed as

1 1
=T =Nn),  pp(M)=T3N=Xp), (69

=0, €(\)<0 for [\|<Ag and e(\)>0 for [\|>\g. Con-
cerning the excitation near the Fermi surface, N+ A\g,
k2,k3— u, from Eq. (70) we readily obtain that there is a
finite gapg?/2 to break a Cooper pair at the Fermi surface.
The energy gap seems not to be changed by the local orbit-
als. The minimum state we introduced is thus the absolute
ground state of the system for a givenFrom the BAE(56)

we see that the “quasiparticle{Cooper pair momenta can

be defined asp(\,)=27l,/L; then in our casep’(\)
=2mp(\). The density of states at the Fermi surface is thus

1 dp(N)

. . 2p(N\f) B
N()\F)_ ; dE()\) )\:)\F_

e(Np)

1
—, (71

mo

wherev is the sound velocity:*** Since p(\g) > po(A2)

ande’ (Ag) is an increasing function of:, as can be shown
i_from Eqg. (64), we deduce that the density of states is en-

rged by the local orbitals. This is not very strange because

he Fermi sphere is compressed.

At present, we see that the local orbitals cannot destroy
the Cooper-pair state completely. However, it is still not
clear whether the local orbitals weaken the pair correlation or
enhance it. To answer this question, let us consider the stiff-

where\,, and\, are the centers of the hole and the particle,1€ss constari, which measures the nonuniversal exponents
respectively. In addition, such an excitation induces the bacRf & variety of correlation functions in one dimensidror

flow of the Fermi sea, i.edp(N\). From the BAE we have

1 1
pOV+ 390 ==+ 1) +pu(0) — o0~ [ FA=A)

X[p(N")+p(N")+pp(N) = pn(N')]JdN".
(66)
With Eq. (58) we find

1
Sp(N)=pn(N) = pp(M)+ TIFHA=Ap) = F(A=Ap)]

N
—f T H (A=) Sp(\')dN . (67)
The excitation energy reads
Ap
SE= Lf 2N28p(N)dN— 2N+ 2N . (68)
Substituting Eq(67) into Eq. (68) we readily obtain
OE=€(Np) — €(N\p). (69

the integrable system#&=Z?(\), and the dressed charge
functionZ(\) (Ref. 13 in our case satisfies

N

Z()\)=1—f

T EON=N)Z(N AN (72)
NS

Notice that the local orbitals do not change the fornz (k)

but the value of the cutoff\r. Easily we can show
dZ(\)/d\<0, which meansZ(\) is a monotonically de-
creasing function ok g . The stiffness constait is therefore
also monotonically decreasing with-. As stated in earlier
publications'® the gapless 1D quantum system is confor-
mally invariant at zero temperature and the nonuniversal ex-
ponents of the correlation functions can be derived from the
finite-size corrections of the energy spectrtfin® SE
=2muX, /L, wherex, is the scaling dimensiofone-half the
critical exponent of the relevant operator. In our case, the
spin excitations have a finite gap while the charge excitations
are gapless. Therefore, the charge sector is conformally in-
variant at zero temperature and the asymptotic long-distance
superconducting correlators can be derived from the finite-
size correction of the ground-state enetdy*'®Notice the
pair operatorclr(x)c}r(x) induces a pair-number change by
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one. The energy change induced by this operator can be cdfor the Hermitian Hamiltonian, cag@ represents the real
culated by following the standard method introduced in Refmodes and caséi) denotes the string solution&ooper

13 as pairs in the present modeBoth of these two types of modes
lead to real eigenvalues of the Hamiltonian. WhenO in
SE=EY.  —E9. _2 243_#2 v (73) our case, the Hamiltonian contains a non-Hermitian hybrid-
2+l 2T SR TR T oK ization term and a Hermitian term, which is nothing but the

Hamiltonian of the repulsives-potential Fermi gas! Even
for |#(k)|=1, the Bethe ansatz equations have complex so-
lutions. A typical solution is the imaginary mode=i « with

where EJ, is the ground-state energy with Cooper pairs.
Hence, the pair correlator reads

(c:(x)c,(x)cl(0)c(0))~x* xka=In[|k+0/2|/| k—g/2| in the thermodynamic limit. An in-
! . . ! ’ teresting feature is that the Bethe ansatz equations allow
0= 1/2K . (74)  Cooper-pair solutions. Fdrp(k;)|>1, the left-hand side of

_ _ _ Eq. (44) is divergent in the thermodynamic limit, while for
Since 6< 6, (where 6, is the corresponding exponent of the | 4(k;)|<1 it tends to zero. Therefore, the pair soluti¢h8)
homogeneous systemwe conclude that the local orbitals are allowed. However, there is a constraint for the real part

enhance the superconducting correlations. To see thigf the pair solutions. The conditidmp(k)|+# 1 hints to
clearly, let us consider the tunneling of the Cooper pairs

through an impurity. The leading tunneling current through ' ig
the impurity is e (9221 4 N (79
irat t
Jx,y)~—ilej(x)ei(x)eq(y)e (y)—H.cl, which gives the critical value of the real part of the pair
luti
x~0", y~0* 75 solutions as
where we have put the impurity at the origin. From the g
boundary conformal field theoty we have the time cor- ?\c:—ega_l- (80)
relator ofJ,
_ The Cooper pair solution can exist only in the regiom
([3(1),3(0) )~ (76) P P y Jrome

<A<M\.. For the complex solutions in casg@), |Imk]|
The tunneling conductance can be derived from the Kubo’s>|g|/2 when|Rek|<\.. Hence the ground state consists of
formula’ as these modes and there is no Cooper pair in the ground state.
. Even so, we can see the local orbitals do cause some fluc-
o(T)~T2K 772, (770 tuation towards the formation of Cooper pairs, since without

. these orbitals, the system does not have any bound state of
That means the local orbitals enhance the Iow—temperaturgk:Jctrons Y y

tunneling conductance, which provides another evidence for
the enhancement of the superconducting correlation at low
temperatures. The Drude weight which measures the per- V. CONCLUSION
sistent current in one dimensidfican also be derived ex- |, conclusion, we propose an integrable hybridization
actly for the present modeD =Kv. Thus we can deduce qgqe| for a 1D correlated electron system. We remark,
tha‘gD is reduced by the Io_cal orbitals. That means the Iocakhough the local orbitals are introduced periodically, the
orbitals suppress the persistent current. problem is still at the level of a single impurity since there is
no correlation among the local states. In fact, the Bethe an-
IV. REPULSIVE INTERACTION satz Eqs(44) and(45) do not depend on the distribution of
the local orbitals in real space. This remains a shortcoming
of integrable models with many impurities, since the impu-
O[_ities introduced in such a way are completely transparent to
fthe host electrons; only the forward scattering is included.
dEven so, a finite concentration of impurities enhances the
superconducting correlation in our model. It seems that our
result contradicts that of Ref. 8. The difference comes from
(i) in our model, the binding energy is independent of the
momenta of the pairs while in the attractive Hubbard model,

Now we turn to the repulsive cas@y¥0) where the
Hamiltonian defined in Eq(49) is non-Hermitian. We re-
mark the study on non-Hermitian systems has drawn consi
erable attention recently for the applications in a variety o
physical situations such as delocalization in disordere
systems? quantum chao® population biology in random
media with convectioR! and metal-insulator transitions
driven by an imaginary vector potentf The spectrum of a

non-Hermitian Hamiltonian generally falls in the complex . ) e .
plane?® In our case, from the Bethe ansatz E4d) we can it depends on the pair momentaA (n Ref. 8); (ii) there is no

; _ P . Eimp In the formal expression of the eigenene(§y), even
Z?el(;(hst)gi.s((;l)u?;?li)?i 1ar\(lthceI?:S|f|ed into two types: thoSgh the local orbitals change the distribution{kf}; (iii)
! ' y ' in our model, the density of electrons is not changed by the
i local orbitals. This corresponds to the hybridization configu-
k+ 59 rations of f°=f for the local orbitals with a configuration
d(k)=ekd———, (78 % in the atomic limit. We remark that impurities with higher
ke I—g spin and finite momenta can also be introduced in our model
2 by a similar procedure. In this case, the spin momenta are
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