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High-density expansion of correlation energy and its extrapolation to the metallic density region
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The rg expansion of the correlation energy per electron for an electron liquid is completed exactly up to
orderr g in units of Rydberg. A simple but accurate fitting formula for the correlation energy, which is a smooth
extrapolation of the 3 expansion to the region of metallic densities is preseri®d163-18209)07911-4

. INTRODUCTION includes nonanalytic terms such as"Inrg with n
=0,1,2;--,° besides powers af,. The appearance of these
An electron gas, an assembly of electrons embedded in [@garithmic factors in the expansion is ascribed to the long-
uniform positive background is an important model to studyrange nature of the Coulomb interaction. The screening in-
the many-body effects in solids. The only parameter of thisherent in the Coulomb interaction can properly be described
model,r ¢ defined by the radius of a sphere with the volumeby a resummation of those perturbation terms, which are
per electron scaled in units of the Bohr radius gives a meaindividually divergent owing to the piling up of the same
sure of the ratio of the potential energy to the kinetic energysmall-wave-number component of the Coulomb interaction.
Practically, energy-band calculations in the local density apSuch a reordering of perturbation terms leads to a convergent
proximation rely on the numerical values of the correlationresult and gives rise to the nonanalytic terms above.
energy obtained from the Green's function Monte Carlo Carr and Maradudthhave attempted to evaluate the
method! Fundamentally, this model enables one to underexpansion ofe.(rs) up to orderr as
stand how the correlated motion of electrons is realized as a
consequence of the delicate balance among the kinetic en-
ergy, the Pauli principléthe exchange effegtand the Cou- s 4
lomb interaction, avoiding further complications due to an €(fs)=2.2Irs"“—0.916s" ~+0.0622Irrs—0.096
external field of ions. At high densities corresponding to very
smallry(rs=1), long-range parts of the Coulomb interaction
between electrons determine their correlated motion pre- +0.018slnrs+(E§—0.036rs+O(rszlnrs,rsz),
dominantly. Asrg is increased to metallic levels (X8
=<5.6), intermediate- and short-range parts of the Coulomb
interaction between electrons play an increasingly important
; . : (o
role in the correlated motion as well. Analytic methods are
desirable for the understanding of detailed features of corre-
lation in the region of metallic densities. In this respect we ) )
think that ther, expansion, the well-founded analytic ap- Wherers |53rela'5e1(j to the average electron densitirough
proach from the high density limit deserves reconsideratiorf7/3(&or's)"=n""; & is the Bohr radius. The term of order
in order to link to the available numerical results of the cor-s in EQ. (1), however, is not complete becauig remains
relation energy at metallic densities. unevaluatedE; comes from those third-order perturbation
The r expansion of the ground-state energy of the electerms, which involve three different wave-number compo-
tron gas is originally an asymptotic expansion, and its radiugients of the Coulomb interaction. These third-order pertur-
of convergence is zero. This is a direct consequence of theation terms are closely related to intermediate- and short-
fact that on a complex plane where the horizontal axis is théange correlation, rather than the screening. In fact, the third-
real part of the coupling constae? and the vertical the order particle-particle ladder diagram contributingEQ is
imaginary part ole?, there exists a branch cut along the line indispensable for the proper description of short-range cor-
Ree?<0, indicating the instability of the normal Fermi liquid relation. The importance of intermediate- and short-range
against the occurrence of superconductivity due to an arbieorrelation is enhanced with increasing, and the proper
trarily weak attractive interactiohThe rg expansion of the evaluation ofe. at metallic densities cannot possibly be
correlation energy per electron in units of Rydbesdr) achieved without it. In this regard the evaluationEf has
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pair correlation functiongy'!(r) and g''(r). Finally, we
present a simple but accurate fitting formula fey(rs),
which is a smooth extrapolation of thrg expansion to the
region of metallic densities.

II. rs EXPANSION

For the analysis of the; expansion it is convenient to use
the notatioff where each perturbation term is specified by
Emon Wheremis the order of the Coulomb interaction and
the number of the interaction with the same wave-number
component. In Eqg(l) the first term is the kinetic energy and
the second the exchange energy specifiely The third
and higher order terms contribute to the correlation energy.
The third term of order Ing that is predominant in the high-
density limit can be derived from a summation of the most
divergent series of perturbation terms, i.e/,=E,,+Ez4
+Eg+---. This was, for the first time, found by MacKe.
The following constant term comes from both the second-
order exchange terfa,, and the higher order contribution of
€'. The second-order exchange was first evaluated numeri-
cally by the Monte Carlo meth8dand later analytically in-
tegrated by Onsager, Mittag, and Stephdte fifth term of
orderrgInrg can be derived from a summation of the next
most divergent series, i.ee;’ =Egz,+ E 5+ Esgt--- and the
higher order contribution o&¢’. The expression for the sum
of the next most divergent series was first derived by
DuBoi< from a careful examination of perturbation terms in
the framework of the dielectric formulation. Its numerical
coefficient was correctly evaluated by Carr and Maradddin.
The last term of orderg comes from those third-order per-
turbation terms, which involve three different wave-number
components of the Coulomb interaction, specifiedegyand
the higher order contribution &f ande”. Carr and Maradu-
din have calculated numerically such a contribution of order
rs as comes frone’ ande”, leavingEs, unevaluatedEs,, is
the contribution from nine different types of Feynman dia-
grams drawn in Fig. 1, and can be written in the form of
12-dimensional integrals. The terfy, is nothing butEjr

FIG. 1. Nine Feynman diagrams that make a contribution toin Eq. (1).

Eso; eé‘?: electron-electron direct scatteringgé?: electron- Note that three Coulomb interaction lines in each of the
electron exchange scattering?) : hole-hole direct scattering{®: ~ nine diagrams in Fig. 1 have different wave-number compo-
hole-hole exchange scatteringg : electron-hole direct scattering, nents. This implies that their contributions do not diverge
€, : doubly exchanged third-order RPA diagraeff) : electron-hole  because of the piling up of the same small wave-number
exchange scattering,.: exchange with electron self-energy, and component of the interaction. Three of the nine diagrams can
€4, exchange with hole self-energy. be constructed by inserting one electron-electron or hole-
hole or electron-hole interaction line between two separate
bubbles in the second-order direct diagram. They are denoted
the significant implication to link the high-density expansionby €9, €, ande'{, respectively. Five of these diagrams
of e€.(rs) with the available numerical results ef(r;) at can be constructed by inserting one interaction line in the

metallic densities. second-order exchange diagram in all possible ways, i.e., one
In this paper we shall first evaluate those third-order perelectron-electron or hole-hole or electron-hole interaction
turbation terms, which giv&} in order to complete the;  line or one self-energy interaction line in electron or hole

expansion up to order. Next, we shall give a detailed lines. They are denoted b, €, €9, e, and g,
explanation of how to improve on the random-phaserespectively. The remaining diagram can be constructed by
approximation (RPA) for the accurate evaluation @f,(r) exchanging each of two terminal interaction lines in the third
at metallic densities, in connection with the strongly corre-order RPA, or ring diagram, which is denoted by. The
lated features in the spin-antiparallel and the spin-paralleéxpression foiEs, is then given as follows:
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where wave numbers are measured in units of the Fermi 1 3

wave numberk; and the corresponding Feynman diagrams E22=§In 2—524(3)=0.04836, (4)
are indicated. The first term in E¢R) comes from a direct
and exchange pair of diagrared) , €&, and another pair of

: d ) : ] d where((3) is the third-order Riemann zeta function,
diagramse(y, €. The region of integration foel® and

€ is €'=0.0130Inr,—0.02x +O(r2Inrs,r2), (5)
lp1+ail>1, |pita[>1, [pa|<1, Es=0.015. (6)
P2+ a1|>1, |pataal>1, |psl<1 The rg expansion exact up to ordeg is then given as fol-

’ ’ ’ lows:

and the reversed inequalities fefY) and €{® . The second . i

term comes from diagramel}’, ¢, and the region of inte- €(rg)=2.2Irs “—0.916s "+ ec(ry), @)

gration is

€(I)= € +Eppt €'+ E5p=0.0622 Inr .— 0.0938

Pitcal>1, [pi+dal>1, [P <L, +0.0184Inr —0.020 -+ O(r 2Intq,r ),
P+l <L, |Pot <1, [pal>1. ®

where the coefficients of ordet?, r.Inrg are written with

available significant figures. The sum of the most divergent
X . X X termse’ overestimates the magnitude of the correlation en-
from diagramsese, €s, and the region of integration {p1  ergy at high densities. This is evident from a difference in

+a[>1, [p2tql>1, |pi|<1. _ _ the constant term betweerl and e,(ry).
We have evaluated the 12-dimensional integrals above by

means of the following numerical technique. Replace every
Coulomb interactiory; 2 in the expression by the screened Ill. CORRELATION AT METALLIC DENSITIES

. . 2 — . . . . . .

interaction ¢7+\?) " with an appropriate magnitude af | ts construction, the expansion makes sense only at
Then, the integrals can numerically be obtained by examinhigh densities I;<1). It is quite useless for the evaluation
ing how they converge asis gradually approached to zero. of the correlation energy in the region of metallic densities
There is a large amount of cancellation between the threg) g<r_<5.6). Instead, we can adopt the RPA as a starting

integrals corresponding to direct diagrarfd, €{f), and  approximation in this region since it is the basic approxima-

egrj]) ; each of them is large in magnitude but finite. The sumtion for the description of two aspects characteristic of the

of the three integrals above can be evaluated with an accizoulomb interaction: the existence of plasmon excitations

racy of double figures foih/2k;<<0.01. The remaining six and the screening as its counterpart effect. The RPA deals
integrals corresponding telS) , €®, €, .., e, ande,  With the linear response to an external field in the framework

are nearly convergent for/2k;<0.01. The sum of the six Of the linearized time-dependent Hartree approximation. As

integrals above amounts approximately to zero because & the correlation energy, this approximation amounts to a

mutual cancellation. As a result, the value Bf, is nearly summation of the most divergent series of perturbation terms
equivalent to the contribution from the three direct diagramdor any r. Strictly, this is valid for high densities where

€D, €9 andel®. We have thus arrived d;,=0.015, long-range parts of correlation predominate over intermedi-

The third term comes from diagra ‘f} and the region of
integration is|p;+q/>1, |pi|<1. The fourth term comes

with an accuracy of double figures. To sum up, ate and short-range parts of correlation. Even in the region of
metallic densities, however, the RPA gives the appropriate
€' =0.0622 Inr ,— 0.1422+ 0.00542, Inr,— 0.0144 description of long-range correlation, since the RPA series

make the most important contribution to small momentum-
+0(rdlnrg,ré?), (3)  transfer interactions of all perturbation processes.
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An apparent error in the RPA can be seen from the spinelectron density is lowered to metallic levelg,'(r) is re-
parallel and the spin-antiparallel pair correlation functionsmarkably reduced from unity at short distances, thus forming
g''(r) andg'!(r), calculated in this approximation. Both of the Coulomb hole. The inclusion of higher-order ladder in-
the two functions, which should, by definition, be positive teractions between spin-antiparallel electrons reduces the
incorrectly become negative at short distancest @is in- magnitude of large momentum-transfer interactions, thus
creased to the values corresponding to metallic densitiesorrecting such an overestimate in the correlation energy as
That is, in this region the RPA overestimates those parts ofomes from interactions between spin-antiparallel electrons.
correlation that are associated with intermediate and larg&éhe same interactions between spin-parallel electrons, on the
momentum-transfer interactions, thus leading to a considelther hand, are always accompanied with their exchange
able overestimate in the magnitude of the correlationcounterparts. In their contribution to large momentum-
energy® transfer interactions every direct and exchange pair of

We shall give an explanation of how to improve on thehigher-order ladder interactions cancel each other in the
RPA. First, the RPA deals with the spin-antiparallel correla-same way as a direct and exchange pair of second-order per-
tion and the spin-parallel correlation in quite the same wayturbation terms. The spin-parallel pair correlation function
In other wordsg''(r)—1 andAg''(r)[=g'"(r)—glHr)] g'(r) vanishes at zero separation because of the Pauli prin-
are evaluated with the same Feynman diagrams wher@iple. This can be satisfied if one takes direct and exchange
gLTF(r) is the spin-parallel pair correlation function in the pertgrbation terms in pair_s. Ir_1 the di(_electric formulation the
Hartree-Fock approximation, @' '(r) in the limitrc—0. It ~ réquirement of the Pauli principle imposes an extremely
neglects the second- and higher-order exchange terms af@MmPplicated self-consistency on the proper polarization func-
violates the requirement due to the Pauli princiglé(0)  tion. This is because the dielectric formulation is originally
=0. Such an approximation is not correct except for theSuitable for the description of long-range correlation. We
high-density limit. So far as the leading term of order Jis conclude as follows: under the influence of the Coulomb

concerned, both of the two correlations come from the samiteraction, g''(r) is somewhat depressed on the short-
very small momentum transfer interactions and can bélistance side and enhanced beyond unity on the long-
treated in quite the same way. Generally, there is a remarkdistance side compared wigx(r), thus leading to a gain in
able difference between the two correlations. In fact, th¢he potential energy. The above influence of the Coulomb
second-order exchange term not included in the RPA Caﬂnteraction on the Fermi hole is minor ComparEd with the
cels, by half, large momentum-transfer interactions of thecoulomb hole, but it cannot possibly be neglected for the
same order direct term. That is, spin-parallel electrons arguantitative evaluation of the correlation energy in the region
forbidden to interact via large momentum transfers becaus@f metallic densities.
of the Pauli principle; such interactions are allowed only In conclusion, the RPA can thus be improved drastically
between spin-antiparallel electrons. Thus, the inclusion oPY including higher-order particle-particle ladder interactions
the exchange counterparts corrects the RPA’s overestimat@gether with the second- and higher-order exchange coun-
in the correlation energy from interactions between spini€rparts. In contrast to the leading term of ordergln the
parallel electrons. high-density expansion, the correlation energy in the region
Second, the RPA deals with Short_range correlation td)f metallic densities comes, for the most part, from correla-
lowest order. This is not appropriate because short-range cofion between spin-antiparallel electrons. Their contribution
relation in the region of metallic densities is too strong tooccupies about 75% of the total correlation energy at a typi-
deal with to the lowest order. In fact, the RPA exaggerate§al metallic density corresponding tg=4.0.
the effect of short-range Coulomb repulsion to such an extent A variety of computational techniques and theoretical
as makes the value af ! (r) negative at short distances for methods have been devised for investigating strongly corre-
r<=1.7. From the diagrammatic analysis it has been provedfited features of an electron liquid at metallic densities.
that an infinite series of particle-particle ladder interactions hese are variational Monte Carlo method, Green'’s function
make the most important contribution to large momentumMonte Carlo method, Fermi hypernetted chain methdd,
transfer interactions of all perturbation procesfests  coupled-cluster expansidfieffective potential expansio,
lowest-order contribution is the second-order direct termand partial summation of perturbation expansidfihe basic
The inclusion of these higher-order particle-particle ladderdea underlying these theoretical methods is to interpolate
interactions gives a reasonable descriptioyd{(r) at short ~between long-range correlation in the RPA and strong short-
distances (&k;r=3.0) for anyr..™ It is important to no-  fange cqrrelatlon between' spin-antiparallel electrons, to-
tice that these higher-order particle-particle ladder interacgether with the corresponding exchange counterparts. The
tions involve the most complete mixing of different wave- numerical values of the_correlatlon energy per electron cal-
number components of the Coulomb interaction, in strikingculated from several different methods, at present, agree
contrast to the RPA series. It is this property of the laddeMithin an accuracy of 0.5 mRy throughout the whole region
series that is responsible for the appropriate description off metallic densities.
local density fluctuations like the Coulomb hole. Further-
more, it shquld be stressed that the ladder sgries fulfills the IV. AN EXTRAPOLATION
cusp conditiof? on the many-body wave function that holds
rigorously for any systems interacting via the Coulomb in- In this section we shall propose a smooth and accurate
teraction. The cusp condition is a direct consequence of thextrapolation formula for the correlation energy. It is not
fact that in the short-range limit correlation is essentiallyonly reduced rigorously to the, expansiorf Eqg. (8)] correct
reduced to the two-electron problem in the medium. As thaup to orderr for high densities, but also is best fitted to the
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most accurate values of the correlation enéf§yhroughout

the whole region of metallic densities. From a variety of
possible extrapolated forms we have chosen a simple but
physically motivated form as follows:

rS
1+arg

0.0184r
€(rg)=|0.0622+ n

1+brg

-50

N —0.0938 9
1-(1/0.0938{0.020-0.062A}r’ ©

[mRy]

a=1.13, b=0.202, (10)

-100

where we have written so as to make the relation to the
original r ¢ expansion explicit. In the limit;— 0 the formula

above can be expanded in a seriegdinrg andr{ in the

same way as theg expansion. Two parametess b in Eq.

(9) have been determined such thgfr) is best fitted to the

following numerical values of the correlation enefdf at 150
r«=1,2,3,4,5,6.

€(1)=—120.0-118.9, €.(2)=—89.6—88.7),

-200

€(3)=—73.8-73.2, €(4)=-63.6-63.3, FIG. 2. Correlation energy per electrep(ry) from the fitting

formula in Eq.(9); triangles represent the input values from Ref. 1
and circles those from Ref. 16a) high density expansion(b)

€.(5)=—-56.3-56.3, €.(6)=—-50.1-51.0, present extrapolation formula.

would be worse. In the rigorous sense the screening length in

where the values in the parentheses are due to Ref. 16. Fithe region of the metallic densities should be defined from
ure 2 plots the above extrapolation formula as a function othe p’—p limit of Landau’'s quasiparticle interaction
rs; for comparison theg expansion is also drawn there. The f(p,p’), not from theg—0 limit of the effective interaction
deviation from the input value at each above is smaller v(q)/e(q,0). This is because by definitidi{p,p’) involves
than 0.5 mRy. not only linear but also nonlinear screening. Practically, the

We shall mention the physical implications of the ex- replacement of the parametgrin two logarithmic factors of
trapolation formula above. The appearance of logarithmiche rg expansion by a factor ofs/(1+arg) in the fitting
factors in therg expansion is ascribed to the treatment offormula substantially corrects the above underestimate in the
screening for high densities. Specifically, a summation of thescreening length. The constant term in theexpansion, if
most divergent series amounts to cutting off small wavedirectly applied to metallic densities, overestimates its mag-
number components of one of the two Coulomb interactionsitude. We have, therefore, cast the term of ondein the
entering the second-order direct ter,, around the form of a denominator of the constant term together with an
Thomas-Fermi wave numbérd = (4ar¢/m)*%,] for very  additional correction due to the replacement—r¢/(1
smallrg and gives rise to 0.0622 hy. The screening length, +ar). A factor of 1/(1+br) attached to the term of order
measured in units of the average interparticle distance, is af;Inr also corrects the overestimate of its magnitude in the
orderk; /kre= (m/4ar Y2 and is much larger than unity for region of metallic densities. A number of interpolation for-
small rg. A straightforward extension of this definition to mulas for the correlation energy have been proposed so
metallic densities, however, leads to the absurdity that it isar.!’~*° However, an extrapolated form of tg expansion
shorter than the average interparticle distance. Even if thhas not been proposed so far as the authors are aware. We
exact dielectric functiore(q,w) were available, one could stress that the present formula is a simple and smooth ex-
not possibly obtain any reasonable value of the screeningapolation of the ; expansion, sufficiently accurate through-
length from its static and small wave-number limit; the resultout the whole region of metallic densities.
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