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High-density expansion of correlation energy and its extrapolation to the metallic density region

T. Endo and M. Horiuchi
Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

Y. Takada
Institute for Solid State Physics, University of Tokyo, Minato-ku, Tokyo 106-8666, Japan

H. Yasuhara
Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

~Received 13 October 1998!

The r s expansion of the correlation energy per electron for an electron liquid is completed exactly up to
orderr s in units of Rydberg. A simple but accurate fitting formula for the correlation energy, which is a smooth
extrapolation of ther s expansion to the region of metallic densities is presented.@S0163-1829~99!07911-4#
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I. INTRODUCTION

An electron gas, an assembly of electrons embedded
uniform positive background is an important model to stu
the many-body effects in solids. The only parameter of t
model,r s defined by the radius of a sphere with the volum
per electron scaled in units of the Bohr radius gives a m
sure of the ratio of the potential energy to the kinetic ener
Practically, energy-band calculations in the local density
proximation rely on the numerical values of the correlati
energy obtained from the Green’s function Monte Ca
method.1 Fundamentally, this model enables one to und
stand how the correlated motion of electrons is realized a
consequence of the delicate balance among the kinetic
ergy, the Pauli principle~the exchange effect!, and the Cou-
lomb interaction, avoiding further complications due to
external field of ions. At high densities corresponding to ve
smallr s(r s&1), long-range parts of the Coulomb interactio
between electrons determine their correlated motion p
dominantly. As r s is increased to metallic levels (1.8&r s
&5.6), intermediate- and short-range parts of the Coulo
interaction between electrons play an increasingly impor
role in the correlated motion as well. Analytic methods a
desirable for the understanding of detailed features of co
lation in the region of metallic densities. In this respect
think that ther s expansion, the well-founded analytic a
proach from the high density limit deserves reconsidera
in order to link to the available numerical results of the c
relation energy at metallic densities.

The r s expansion of the ground-state energy of the el
tron gas is originally an asymptotic expansion, and its rad
of convergence is zero. This is a direct consequence of
fact that on a complex plane where the horizontal axis is
real part of the coupling constante2 and the vertical the
imaginary part ofe2, there exists a branch cut along the lin
Ree2,0, indicating the instability of the normal Fermi liqui
against the occurrence of superconductivity due to an a
trarily weak attractive interaction.2 The r s expansion of the
correlation energy per electron in units of Rydbergec(r s)
PRB 590163-1829/99/59~11!/7367~6!/$15.00
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includes nonanalytic terms such asr s
n ln rs with n

50,1,2,̄ ,3 besides powers ofr s . The appearance of thes
logarithmic factors in the expansion is ascribed to the lo
range nature of the Coulomb interaction. The screening
herent in the Coulomb interaction can properly be descri
by a resummation of those perturbation terms, which
individually divergent owing to the piling up of the sam
small-wave-number component of the Coulomb interacti
Such a reordering of perturbation terms leads to a conver
result and gives rise to the nonanalytic terms above.

Carr and Maradudin4 have attempted to evaluate ther s
expansion ofec(r s) up to orderr s as

e~r s!52.21r s
2220.916r s

2110.0622 lnr s20.096

10.018r s ln r s1~E3820.036!r s1O~r s
2 ln r s ,r s

2!,

~1!

wherer s is related to the average electron densityn through
4p/3(a0r s)

35n21; a0 is the Bohr radius. The term of orde
r s in Eq. ~1!, however, is not complete becauseE38 remains
unevaluated.E38 comes from those third-order perturbatio
terms, which involve three different wave-number comp
nents of the Coulomb interaction. These third-order pert
bation terms are closely related to intermediate- and sh
range correlation, rather than the screening. In fact, the th
order particle-particle ladder diagram contributing toE38 is
indispensable for the proper description of short-range c
relation. The importance of intermediate- and short-ran
correlation is enhanced with increasingr s , and the proper
evaluation of ec at metallic densities cannot possibly b
achieved without it. In this regard the evaluation ofE38 has
7367 ©1999 The American Physical Society
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7368 PRB 59T. ENDO, M. HORIUCHI, Y. TAKADA, AND H. YASUHARA
the significant implication to link the high-density expansi
of ec(r s) with the available numerical results ofec(r s) at
metallic densities.

In this paper we shall first evaluate those third-order p
turbation terms, which giveE38 in order to complete ther s

expansion up to orderr s . Next, we shall give a detailed
explanation of how to improve on the random-pha
approximation5 ~RPA! for the accurate evaluation ofec(r s)
at metallic densities, in connection with the strongly cor
lated features in the spin-antiparallel and the spin-para

FIG. 1. Nine Feynman diagrams that make a contribution
E32; eee

(d) : electron-electron direct scattering,eee
(e) : electron-

electron exchange scattering,ehh
(d) : hole-hole direct scattering,ehh

(e) :
hole-hole exchange scattering,eeh

(d) : electron-hole direct scattering
e r : doubly exchanged third-order RPA diagram,eeh

(e) : electron-hole
exchange scattering,ese: exchange with electron self-energy, an
esh: exchange with hole self-energy.
r-

e

-
el

pair correlation functionsg↑↓(r ) and g↑↑(r ). Finally, we
present a simple but accurate fitting formula forec(r s),
which is a smooth extrapolation of ther s expansion to the
region of metallic densities.

II. r s EXPANSION

For the analysis of ther s expansion it is convenient to us
the notation4 where each perturbation term is specified
Em,2n wherem is the order of the Coulomb interaction andn
the number of the interaction with the same wave-num
component. In Eq.~1! the first term is the kinetic energy an
the second the exchange energy specified byE12. The third
and higher order terms contribute to the correlation ener
The third term of order lnrs that is predominant in the high
density limit can be derived from a summation of the mo
divergent series of perturbation terms, i.e.,e85E241E36
1E481¯ . This was, for the first time, found by Macke3

The following constant term comes from both the seco
order exchange termE22 and the higher order contribution o
e8. The second-order exchange was first evaluated num
cally by the Monte Carlo method6 and later analytically in-
tegrated by Onsager, Mittag, and Stephan.7 The fifth term of
order r s ln rs can be derived from a summation of the ne
most divergent series, i.e.,e95E341E461E581¯ and the
higher order contribution ofe8. The expression for the sum
of the next most divergent series was first derived
DuBois8 from a careful examination of perturbation terms
the framework of the dielectric formulation. Its numeric
coefficient was correctly evaluated by Carr and Maradud4

The last term of orderr s comes from those third-order pe
turbation terms, which involve three different wave-numb
components of the Coulomb interaction, specified byE32 and
the higher order contribution ofe8 ande9. Carr and Maradu-
din have calculated numerically such a contribution of ord
r s as comes frome8 ande9, leavingE32 unevaluated.E32 is
the contribution from nine different types of Feynman d
grams drawn in Fig. 1, and can be written in the form
12-dimensional integrals. The termE32 is nothing butE38r s

in Eq. ~1!.
Note that three Coulomb interaction lines in each of t

nine diagrams in Fig. 1 have different wave-number com
nents. This implies that their contributions do not diver
because of the piling up of the same small wave-num
component of the interaction. Three of the nine diagrams
be constructed by inserting one electron-electron or ho
hole or electron-hole interaction line between two separ
bubbles in the second-order direct diagram. They are den
by eee

(d) , ehh
(d) , andeeh

(d) , respectively. Five of these diagram
can be constructed by inserting one interaction line in
second-order exchange diagram in all possible ways, i.e.,
electron-electron or hole-hole or electron-hole interact
line or one self-energy interaction line in electron or ho
lines. They are denoted byeee

(e) , ehh
(e) , eeh

(e) , ese, and esh,
respectively. The remaining diagram can be constructed
exchanging each of two terminal interaction lines in the th
order RPA, or ring diagram, which is denoted bye r . The
expression forE32 is then given as follows:

o
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32p7 ar sE d3p1d3p2E d3q1d3q2

1

q1
2

1

q2
2 F 2

uq12q2u22
1

up11p21q11q2u2G 1

q1
21q1•~p11p2!

1

q2
21q2•~p11p2!

2
3

16p7 ar sE d3p1d3p2E d3q1d3q2

1

q1
2

1

q2
2 F 2

uq12q2u22
1

up12p2u2G 1

q1•~p22p1!

1

q2•~p22p1!

1
3

8p7 ar sE d3p1d3p2d3p3E d3q
1

q2

1

up11p21qu2

1

up22p3u2

1

q21q•~p11p2!

1

q21q•~p11p3!

1
3

16p7 ar sE d3p1d3p2d3p3E d3q
1

q2

1

up11p21qu2 F 1

up12p31qu22
1

up12p3u2G 1
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where wave numbers are measured in units of the Fe
wave numberkf and the corresponding Feynman diagra
are indicated. The first term in Eq.~2! comes from a direct
and exchange pair of diagramseee

(d) , eee
(e) , and another pair of

diagramsehh
(d) , ehh

(e) . The region of integration foreee
(d) and

eee
(e) is

up11q1u.1, up11q2u.1, up1u,1,

up21q1u.1, up21q2u.1, up2u,1,

and the reversed inequalities forehh
(d) and ehh

(e) . The second
term comes from diagramseeh

(d) , e r , and the region of inte-
gration is

up11q1u.1, up11q2u.1, up1u,1,

up21q1u,1, up21q2u,1, up2u.1.

The third term comes from diagrameeh
(e) and the region of

integration is upi1qu.1, upi u,1. The fourth term comes
from diagramsese, esh, and the region of integration isup1
1qu.1, up21qu.1, upi u,1.

We have evaluated the 12-dimensional integrals above
means of the following numerical technique. Replace ev
Coulomb interactionqi

22 in the expression by the screene
interaction (qi

21l2)21 with an appropriate magnitude ofl.
Then, the integrals can numerically be obtained by exam
ing how they converge asl is gradually approached to zero
There is a large amount of cancellation between the th
integrals corresponding to direct diagramseee

(d) , ehh
(d) , and

eeh
(d) ; each of them is large in magnitude but finite. The su

of the three integrals above can be evaluated with an a
racy of double figures forl/2kf,0.01. The remaining six
integrals corresponding toeee

(e) , ehh
(e) , eeh

(e) , ese, esh, ande r

are nearly convergent forl/2kf,0.01. The sum of the six
integrals above amounts approximately to zero becaus
mutual cancellation. As a result, the value ofE32 is nearly
equivalent to the contribution from the three direct diagra
eee

(d) , ehh
(d) , andeeh

(d) . We have thus arrived atE3250.015r s

with an accuracy of double figures. To sum up,

e850.0622 lnr s20.142210.00542r s ln r s20.0144r s

1O~r s
2 ln r s ,r s

2!, ~3!
i
s

y
y

-

e

u-

of

s

E225
1

3
ln 22

3

2p2 z~3!50.04836̄ , ~4!

wherez~3! is the third-order Riemann zeta function,

e950.0130r s ln r s20.021r s1O~r s
2 ln r s ,r s

2!, ~5!

E3250.015r s . ~6!

The r s expansion exact up to orderr s is then given as fol-
lows:

e~r s![2.21r s
2220.916r s

211ec~r s!, ~7!

ec~r s!5e81E221e91E3250.0622 lnr s20.0938

10.0184r s ln r s20.020r s1O~r s
2 ln r s ,r s

2!,

~8!

where the coefficients of orderr s
0, r s ln rs are written with

available significant figures. The sum of the most diverg
termse8 overestimates the magnitude of the correlation
ergy at high densities. This is evident from a difference
the constant term betweene8 andec(r s).

III. CORRELATION AT METALLIC DENSITIES

In its construction, ther s expansion makes sense only
high densities (r s&1). It is quite useless for the evaluatio
of the correlation energy in the region of metallic densit
(1.8&r s&5.6). Instead, we can adopt the RPA as a start
approximation in this region since it is the basic approxim
tion for the description of two aspects characteristic of
Coulomb interaction: the existence of plasmon excitatio
and the screening as its counterpart effect. The RPA d
with the linear response to an external field in the framew
of the linearized time-dependent Hartree approximation.
for the correlation energy, this approximation amounts t
summation of the most divergent series of perturbation te
for any r s . Strictly, this is valid for high densities wher
long-range parts of correlation predominate over interme
ate and short-range parts of correlation. Even in the regio
metallic densities, however, the RPA gives the appropr
description of long-range correlation, since the RPA ser
make the most important contribution to small momentu
transfer interactions of all perturbation processes.
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An apparent error in the RPA can be seen from the sp
parallel and the spin-antiparallel pair correlation functio
g↑↑(r ) andg↑↓(r ), calculated in this approximation. Both o
the two functions, which should, by definition, be positi
incorrectly become negative at short distances, asr s is in-
creased to the values corresponding to metallic densi
That is, in this region the RPA overestimates those part
correlation that are associated with intermediate and la
momentum-transfer interactions, thus leading to a consi
able overestimate in the magnitude of the correlat
energy.9

We shall give an explanation of how to improve on t
RPA. First, the RPA deals with the spin-antiparallel corre
tion and the spin-parallel correlation in quite the same w
In other words,g↑↓(r )21 andDg↑↑(r )@5g↑↑(r )2gHF

↑↑ (r )#
are evaluated with the same Feynman diagrams wh
gHF
↑↑ (r ) is the spin-parallel pair correlation function in th

Hartree-Fock approximation, org↑↑(r ) in the limit r s→0. It
neglects the second- and higher-order exchange terms
violates the requirement due to the Pauli principleg↑↑(0)
50. Such an approximation is not correct except for
high-density limit. So far as the leading term of order lnrs is
concerned, both of the two correlations come from the sa
very small momentum transfer interactions and can
treated in quite the same way. Generally, there is a rem
able difference between the two correlations. In fact,
second-order exchange term not included in the RPA c
cels, by half, large momentum-transfer interactions of
same order direct term. That is, spin-parallel electrons
forbidden to interact via large momentum transfers beca
of the Pauli principle; such interactions are allowed on
between spin-antiparallel electrons. Thus, the inclusion
the exchange counterparts corrects the RPA’s overestim
in the correlation energy from interactions between sp
parallel electrons.

Second, the RPA deals with short-range correlation
lowest order. This is not appropriate because short-range
relation in the region of metallic densities is too strong
deal with to the lowest order. In fact, the RPA exaggera
the effect of short-range Coulomb repulsion to such an ex
as makes the value ofg↑↓(r ) negative at short distances fo
r s*1.7. From the diagrammatic analysis it has been pro
that an infinite series of particle-particle ladder interactio
make the most important contribution to large momentu
transfer interactions of all perturbation processes;10 its
lowest-order contribution is the second-order direct te
The inclusion of these higher-order particle-particle lad
interactions gives a reasonable description ofg↑↓(r ) at short
distances (0&kfr &3.0) for anyr s .11 It is important to no-
tice that these higher-order particle-particle ladder inter
tions involve the most complete mixing of different wav
number components of the Coulomb interaction, in strik
contrast to the RPA series. It is this property of the lad
series that is responsible for the appropriate description
local density fluctuations like the Coulomb hole. Furthe
more, it should be stressed that the ladder series fulfills
cusp condition12 on the many-body wave function that hold
rigorously for any systems interacting via the Coulomb
teraction. The cusp condition is a direct consequence of
fact that in the short-range limit correlation is essentia
reduced to the two-electron problem in the medium. As
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electron density is lowered to metallic levels,g↑↓(r ) is re-
markably reduced from unity at short distances, thus form
the Coulomb hole. The inclusion of higher-order ladder
teractions between spin-antiparallel electrons reduces
magnitude of large momentum-transfer interactions, th
correcting such an overestimate in the correlation energ
comes from interactions between spin-antiparallel electro
The same interactions between spin-parallel electrons, on
other hand, are always accompanied with their excha
counterparts. In their contribution to large momentu
transfer interactions every direct and exchange pair
higher-order ladder interactions cancel each other in
same way as a direct and exchange pair of second-order
turbation terms. The spin-parallel pair correlation functi
g↑↑(r ) vanishes at zero separation because of the Pauli p
ciple. This can be satisfied if one takes direct and excha
perturbation terms in pairs. In the dielectric formulation t
requirement of the Pauli principle imposes an extrem
complicated self-consistency on the proper polarization fu
tion. This is because the dielectric formulation is origina
suitable for the description of long-range correlation. W
conclude as follows: under the influence of the Coulom
interaction, g↑↑(r ) is somewhat depressed on the sho
distance side and enhanced beyond unity on the lo
distance side compared withgHF

↑↑ (r ), thus leading to a gain in
the potential energy. The above influence of the Coulo
interaction on the Fermi hole is minor compared with t
Coulomb hole, but it cannot possibly be neglected for
quantitative evaluation of the correlation energy in the reg
of metallic densities.

In conclusion, the RPA can thus be improved drastica
by including higher-order particle-particle ladder interactio
together with the second- and higher-order exchange co
terparts. In contrast to the leading term of order lnrs in the
high-density expansion, the correlation energy in the reg
of metallic densities comes, for the most part, from corre
tion between spin-antiparallel electrons. Their contributi
occupies about 75% of the total correlation energy at a ty
cal metallic density corresponding tor s54.0.

A variety of computational techniques and theoretic
methods have been devised for investigating strongly co
lated features of an electron liquid at metallic densiti
These are variational Monte Carlo method, Green’s funct
Monte Carlo method,1 Fermi hypernetted chain method,13

coupled-cluster expansion,14 effective potential expansion,15

and partial summation of perturbation expansion.16 The basic
idea underlying these theoretical methods is to interpo
between long-range correlation in the RPA and strong sh
range correlation between spin-antiparallel electrons,
gether with the corresponding exchange counterparts.
numerical values of the correlation energy per electron c
culated from several different methods, at present, ag
within an accuracy of 0.5 mRy throughout the whole regi
of metallic densities.

IV. AN EXTRAPOLATION

In this section we shall propose a smooth and accu
extrapolation formula for the correlation energy. It is n
only reduced rigorously to ther s expansion@Eq. ~8!# correct
up to orderr s for high densities, but also is best fitted to th
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most accurate values of the correlation energy1,16 throughout
the whole region of metallic densities. From a variety
possible extrapolated forms we have chosen a simple
physically motivated form as follows:

ec~r s!5S 0.06221
0.0184r s

11brs
D lnS r s

11ars
D

1
20.0938

12~1/0.0938!$0.02020.0622a%r s
, ~9!

a51.13, b50.202, ~10!

where we have written so as to make the relation to
original r s expansion explicit. In the limitr s→0 the formula
above can be expanded in a series ofr s

n ln rs and r s
n in the

same way as ther s expansion. Two parametersa, b in Eq.
~9! have been determined such thatec(r s) is best fitted to the
following numerical values of the correlation energy1,16 at
r s51,2,3,4,5,6.

ec~1!52120.0~2118.9!, ec~2!5289.6~288.7!,

ec~3!5273.8~273.2!, ec~4!5263.6~263.3!,

ec~5!5256.3~256.3!, ec~6!5250.7~251.0!,

where the values in the parentheses are due to Ref. 16.
ure 2 plots the above extrapolation formula as a function
r s ; for comparison ther s expansion is also drawn there. Th
deviation from the input value at eachr s above is smaller
than 0.5 mRy.

We shall mention the physical implications of the e
trapolation formula above. The appearance of logarithm
factors in ther s expansion is ascribed to the treatment
screening for high densities. Specifically, a summation of
most divergent series amounts to cutting off small wa
number components of one of the two Coulomb interacti
entering the second-order direct termE24 around the
Thomas-Fermi wave numberkTF@5(4ar s /p)1/2kf # for very
small r s and gives rise to 0.0622 lnrs. The screening length
measured in units of the average interparticle distance, i
orderkf /kTF5(p/4ar s)

1/2 and is much larger than unity fo
small r s . A straightforward extension of this definition t
metallic densities, however, leads to the absurdity that i
shorter than the average interparticle distance. Even if
exact dielectric functione(q,v) were available, one could
not possibly obtain any reasonable value of the screen
length from its static and small wave-number limit; the res
f
ut

e

ig-
f

ic
f
e
-
s

of

is
e

g
t

would be worse. In the rigorous sense the screening leng
the region of the metallic densities should be defined fr
the p8→p limit of Landau’s quasiparticle interaction
f (p,p8), not from theq→0 limit of the effective interaction
v(q)/e(q,0). This is because by definitionf (p,p8) involves
not only linear but also nonlinear screening. Practically,
replacement of the parameterr s in two logarithmic factors of
the r s expansion by a factor ofr s /(11ars) in the fitting
formula substantially corrects the above underestimate in
screening length. The constant term in ther s expansion, if
directly applied to metallic densities, overestimates its m
nitude. We have, therefore, cast the term of orderr s in the
form of a denominator of the constant term together with
additional correction due to the replacementr s→r s /(1
1ars). A factor of 1/(11brs) attached to the term of orde
r s ln rs also corrects the overestimate of its magnitude in
region of metallic densities. A number of interpolation fo
mulas for the correlation energy have been proposed
far.17–19 However, an extrapolated form of ther s expansion
has not been proposed so far as the authors are aware
stress that the present formula is a simple and smooth
trapolation of ther s expansion, sufficiently accurate throug
out the whole region of metallic densities.

FIG. 2. Correlation energy per electronec(r s) from the fitting
formula in Eq.~9!; triangles represent the input values from Ref.
and circles those from Ref. 16,~a! high density expansion,~b!
present extrapolation formula.
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