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Light-induced drift in semiconductor heterostructures: Microscopic theory
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We have developed a consistent microscopic theory of light-induced (HH¥) effect in semiconductor
heterostructures. The strongly nonequilibrium nature of LID dictated our use of the Baym-Kadanoff-Keldysh’'s
field-theoretical technique. We have found qualitative features of LID, including singularities in its spectrum
and the reversal of current with temperature and light frequency associated with intersubband scattering. These
effects should be experimentally observalhe0163-182609)03111-2

Effect of light-induced drift(LID) has been predicted for of LID in quantum wells, which should be experimentally
gaseSas a physical implementation of an idea of Maxwell’s observable. These features are singularity in the spectrum
demon, where a laser light selectively excites moleculegissociated with collision-induced transitions in the well and
within some velocity range and changes their translationapossible reversal of the LID current with temperature and
motion, which results in a macroscopic motion of gas. Thephoton energy. The Baym-Kadanoff-Keldysh's technique
velocity-selective excitation is due to energy-momentum@lso solves a principal problem caused by time-dependence
conservation(Doppler effect. The effect of the excitation ©f the electromagnetic part of Hamiltonian. An oscillating
on translational motion is due to collision-frequency optical field generates a strongly nonequilibrium state that
(momentum-relaxationdependence on an internal state of a'enders equilibrium field-theoretical techniqtfesnappli-
molecule. One can think of LID as a result of extra friction cable. . . .
introduced selectively for molecules moving at a given ve- A system under consideration consists of electrons con-
locity. A close counterpart, LID of electrons in semiconduc-fined in a 2D quantum well subjected to an external fild
tors in magnetic field, has been propdsadd observedin ~ =Eq€'% '“d'+c.c. of an electromagnetic wave. Electrons
that case the Landau-level state of an electron plays the rolgteract with stationary impuritiesia a potential U(r,z)
of an internal state of a molecule. A similar effect, called =2;u(r—r;,z—z), where ¢;,z) is a coordinate of gth
photon drug effectPDE), has been suggested by Grinbergimpurity, andu(r,z) is a potential of one impurity. We set
and Luryf® for electrons in semiconductor quantum struc-the quantum well to be in thexy-plane. All vectors
tures and later observédFor this type of PDE, state- (g, ...) are inthis plane except foE, that is normal to it.
dependent relaxation of electrons is due to emission of optiGiven resonant nature of the effect, we will restrict our con-
cal phonons rather than elastic scattering. A closesideration to only two lowest stategsubbandg in the
counterpart of LID has been predicted for quantum wWélls well. We are using a system of units whete=c=1. The
based onelastic collisions of electrons with impurities, Hamiltonian of the system is
which depends on a state of electrons in the well. Elastic
collisions have an advantage of causing less dephasing of
internal states and, consequently, preserving a narrow lingy _ t t
shape and high selectivity of excitation in velocity. We will H % (§p+8a)a“’pa“’p+p%5 (@cprqBppVap(t) +H-C)
arbitrarily use the term LID rather than PDE for the class of
effects mentioned above. ot o 2

By its mere physical nature, LID is based on the interde- +;B f V(1. DU 2) (1. 2) 0Tz @
pendence between the translational relaxation and excitation.
Therefore it is very sensitive o relaxation processes, an?—|erea* anda are electron creation and annihilation opera-
their consistent description is required to obtain a qualita- P

tively correct theory, not mentioning quantitative precision.mrs’la.'ﬁt:hl’2 d”enott)i sudbb?fndsa aredthe enze(;gles of t{]e
A density-matrix technique with relaxation constants haéeveS in the well(subband offse)sp andq are 2d momenta

been used iff and in significant number of papers that fol- Of €léctron and photorg, is the kinetic energy of the elec-
lowed (see, e.g., Refs. 9 and lHowever, that approach has tron measured f_rom the Fermi energy:=p fem=p, wikl)etre
an inherent drawback: while the electron confinement in & IS the effective mass of the particldy,s(t)=Me'“d,
quantum structure and its interaction with light is taken intoWhereM=—ez,zEq, |s*the matrix element of the interac-
account microscopicallyyia a Hamiltonian, various relax- tion with light, z,z= [ 47, (2)2¢5(2)dz is the dipole matrix
ation and scattering processes are treated phenomenolo§i€ment of the particle, and, ;(z) are the envelope wave
cally, via rate constants of the collision term. unctions for tpe well. The eIectronAfleId operator is defined
In this paper we employ Baym-Kadanoff-Keldysh's non-as #,(r,z)=¢,(r)¢.(z), where 4//a(r)52pampe'pr/\/§
equilibrium Green-function techniqdé:1’ This allows us to ~ with S as the area of the well in they plane. To obtain
consistently treat collisions and relaxation microscopicallyclosed analytical results, we will assume that the impurity
and obtain a closed analytical result revealing new featurepotential is factorizedi(r,z)=v (r)f(z).
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An important propertysee, e.g., Refs. 14,156f the for-
mal theory of nonequilibrium Green functions is that the r ( )_ d _ 7
perturbation expansion has tsame structureas theT=0 2P+ ¢:P)= - +
P pptq p
1 2 1

equilibrium expansion. As a trade-off, instead of a single +q
time-ordered Green function, one has to work with a matrix 2
Green function that has four-components,

p+al, kp

FIG. 1. Definition and diagrammatic equation fdf,(p
G;B(r,t)z i<¢://2;(0,0) Do (1)), +0,q). A solid line with indicesa andp corresponds to a matrix
Green functionG,_,(p), momentum-energy three-vectops p’,
andq denotep=(p,w),p’=(p’,w), andq=(q,w,), a dotted im-
purity line corresponds to a constaméfllvzz, and a wave photon
line corresponds td/.

Gos(r,t)=—i(iha(r,1)¥5(0,0)),

a1 D) =F 0(F1)(G4(r,1) = Gg(r 1)), )

where(- - -} denotes quantum averaging and statistical averof diagrams containin@,, or G, with respect to those con-
aging over Gibbs ensemble with temperatlir@nd over ran- taining onlyGy; or G,, is also on order of 1K7).
dom positions of impuritiegscatterers Here and below, a For the sake of simplicity, we assume that the impurity
bold-face notation is used for Green’s functions that correpgtentialv(r) has small characteristic Width§r<1/\/m_z
spond to the full Hamiltoniar1), while G*',G”, andG™  Hence, we can consider the Fourier transform entering Eq.
denote Green’s functions in the zero order in electromagnetig-,) to be a constant;(p—p’) =v,=/d?rv(r). To obtain an
field Eq, but completely taking into account scattering from equation for, e.g., advanced component of the matrix Green
impurities. The LID current in the second Orderma (the function, ohe needs to app'y the Langreth's ru(és to a
lowest order in which the effect appepis expressed as  product of three Green functions. Further solution of this
equation is similar to th&=0 theory!! yielding

. 2e dw d’p
i=-i=3 [ o[ peifpw L @ .
m=y w (277) a,r _
Gaa(piw)_ _ _ Xil2 . (6)
<(2) ; : wW—E, §p+| Ta
where G is the corresponding second-order lesser
Green'’s function(exact with respect to the scatterjng Here we neglected small correctionsl/r to the real part of
The retarded, advanced, and lesser components of a protiie denominator. The times, («=1,2) andr, (to be used
uct of two matrix Green functions is given By laten are defined as
(G1Gp)"*=GG5%,(G1G,)“=G1G; +GI G5.  (4) o= [NMuE(fo oot F2110]7 % Te=[NMUEFis 20 7Y,
Products involving three or more matrix Green functigois — 1ot O+ p— ) (11— T10) )
self-energiescan be expanded by recursion of these rules. A 1= Mot Olo+ u=e2) (711~ Tio),
known procedure for averaging over positions of impurities where Tllz[nmvg(fll_n+ flz‘zj)]—l, and 10

applied to a matrix Green function in non-equilibrium theory _

2 -1 . o
nmo §f . In what follows we assume for simplicit
yields formally the same Dyson-type equation as in The th[ of11.1] plicity

at all three times are the same order of magnitude,

=0 theory, 71,72, 7e~7. We will also sete;=0 and, correspondingly,
&2p’ eg,=¢, Wheree is the intersubband excitation energy. Note
G (p,w)=G(o)(p,w)+G(0)(p,w)2 j P n that the timer; depends orw as given by the function in
“ “ o F J (2m)? Egs. (7). This reflects the fact that an electron can be scat-
1 . tered by an impurity from the first to second well state only
Xv|(P=P)*f ap paCpp(P",0)Gra(P, ). if it has enough energy. Such process becomes important at

(5) sufficiently large temperaturéf=¢— u. Similarly to Ref.

) ) ) . . » 15, the lesser Green function can be obtained in the form
Here G(¥ is a matrix Green function without impurities,

is a 2 concentration of impuritiesy(p) is the Fourier

n,i/
transform of the impurity potential, andf,s,s G, (p,w)= - ZTa > (©)]
=(Jdzy,(2)¥5(2) 1 (2= 2) [dZ (2" ) ¥ (2 ) }(Z' = 2) ) (084 &)+ (1/2r,)
where(- - ->Zi is an average over distribution of the impurity wheren,,= (e*/T+1) "1 is the Fermi-Dirac distribution.
atoms along the-axis. We define a matrix vertex function of an absorbed photon

Equation(5) is obtained in the “ladder” approximatiol, ~ T',,(p+q,p) by a diagrammatic equation shown in Fig. 1.
where we sum only those diagrams that do not contain interAdvanced, retarded and lesser component§ gtp+q,p)
secting impurity lines. The relative smallness of the ne-can be extracted by using the Langreth’s rulés An ad-
glected “intersecting” diagrams can be estimdtedass  vanced(retardedl component of the vertex functiofi,y(p
~1/(e7), wheree=max(u,T) is a characteristic kinetic en- +d,p) is not renormalized by impurity scattering due to
ergy, andr is the average time between collisions of ancausality: all poles 062 andI'?, or G" andI'" in loops lie in
electron with impurities. Also we neglect the diagrams thatthe same lower, or upper half-plane of variabje. Specifi-
containG,,z with a# B, which lack a resonant enhancementcally, '3y (p+q,p) =MG2; (p+0)Gi1 (p).
that G,,(p) has near the pole+¢&,—§,~1/7. Smallness The lesser component &%,;(p+q,p) obeys an equation
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FIG. 2. Diagrammatic expression f&~(?)(p).

I5(p+0,p)=MG5p+q)Giy(p) +MGh(p+q)

XG1i(p)+Gop+q)AGH(P),  (9)

FIG. 3. Spectral contouf (w) of the LID current as a function
where A= [d?p'/(2m)?nvfi1.d 5(p’ +a,p’). Deriving  of light frequencyw, for the case of small collision broadening
Eq. (9), we took into account that terms proportional to (large Doppler shif, calculated from Eq(13). The values of col-
Jdp'T3 (p’+q,p’) vanish due to causality. Equatid) lision times 74,7;, and 7, are shown in units of 7

-10000 —

can be integrated yielding =(m/2uqe?)?, wherepu, is the Fermi energy at low temperature.
We setr,=(1/7,— 1/710) ~*, which is the case fof(z)« 5(z). We
A=M(n,—n,, ) 7D(w), choose the following values of parameters realistic for a GaAs/
a AlGaAs quantum welluy=6 meV corresponding to electron den-
2 21112 sity 8.5x10'° cm™2, £=30 meV, andn=0.07n,.
o} i i 1
D(w)= 2(w+u)——<s—wq—2——2—> -—,
m 1 4T2 Te(lO) where the dimensionless spectral contour of LID is
where 7, is defined by Eq.7). Similarly, for an emitted o
photon we havel'(p,p+q)=—(T5(p+0a,p))*, and F(wg)=Im f_M(”w_nwmq)(Tl_TZ)
12 (P, p+0)=MGIy (p)G3; (p+0).
A diagrammatic expression for the matrix Green’s func- 1 1 1
tion G@ (3) is given in Fig. 2. Deriving this, we neglect X 2—71+2—7_2__e+'(8_wq) D( )d“’

diagrams that have at least one impurity line connecting the
two external electron lines. Contributions of such diagrams

tOZG<(2) depend oqu orj\p.| qnd vanish after integration OVET' One can see that the LID contob(w,) is an odd function
d°p. At the same time it is important to emphasize that Sump; wq— &, which is a general signature of LID. We empha-

of such diagrams diverges. One can convince himself thalj,¢ yhat the structure of curreft3d) differs dramatically

the resulting diverging contribution is proportional to the to- from the corresponding result of the density matrix approach
tal time of the interaction with the electromagnetic field. This[cf Egs.(3) and (4) in Ref. 7]

divergence would have cut off if one introduced an irevers-" g,y istration we consider two limiting cases that differ
ible population-relaxation process from the excited state in ) B \/—— i
the well that would lead to establishment of a stationary?y @ value of Doppler shiffswp =|q| Ve/m with respect to
equilibrium state. We emphasize again that a specific form of '€ collision width 7=, First, in the limit Awp>7"", a
diagrams in the diverging sum does not matter, because thdg'9¢ Doppler shift causes a highly selective excitation of a
do not contribute to the current. beam of electrons with a narrow spread pf Features of
The last diagram in Fig. 2 vanishes due to causality. FokID in this limit are |Ilgstrated in Fig. 3. At zero tempera-
the same reason, the only terms to survive are those whefdre, the current vanishes fdw,—e|=[q|V2u/m where

the integral ovep’ contains the lesser vertex function. Con- only electrons at Fermi surface contribute. At finite tempera-
sequently, an expression f&r? reduces to tures, there is no edge and LID exists for any detuning. A

singularity in the derivative ofF(w,) occurs at a

(13

G 2(p)=MZG14(p) Gl p+d)Gr1(p)) =+ Gly(p) temperature-independent  detuningw,— €| =|q| v2&/m,
where there is just enough kinetic energy of a Doppler-
X Ghy(p+q)AMG(p) — Gl (p) MA* selected electron to open up a new channel of scattering that
a a includes the transitionl)—|2)—|1) in the well [cf. Eq.
X G p+a)G1s(P)- (1D (7). This singularity has been missing in earlier

theories*>"~19Another previously unknown qualitative fea-
ture of LID is that the effect may reverse its sign with in-
crease of detuning or temperature. This is due to the fact that
for the relation between relaxation times chosenyt 7,
q 2em >1419), the diﬁerencgrl_— Ty changes'it_s sign with electron
j=— ——M?F(wy), (12)  energy. Thus, the friction due to collisions for the electrons
Q> T in the excited statg?) is greater than that in the ground state

An expression foiG5,? can be obtained similarly. Substi-
tuting G~ into Eq.(3), we obtain a general expression for
the LID current
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F(wo,) in Fig. 4. We see that spectral contours of LID are signifi-
cantly broadened and they have no singularities. The magni-
SN tude of the LID currents is much smaller than in Fig. 3. This
710 =0.23 St / AN . . . . .
S implies that the scattering from impurities has an effect of
o AN the phase relaxation for the spectral contour. However, the
72=02 TN analytical form ofF (w,) is significantly different from that
' I " @,(meV) in the relaxation-constant model of Refs. 7—10.
‘ ‘ TR = In conclusion, we have developed a consistent micro-
29.8  29.9 ,; /& 3071 30.2 . . .
, i scopic theory of LID in semiconductor quantum wells. A
N \‘\;/(').2//_; _ 720 strongly nonequilibrium nature of LID dictates our use of
\ Pl Baym-Kadanoff-Keldysh's field-theoretical technique. We
NS LS 2 20 mev have obtained a closed analytical expression for LID current
- that is significantly different from the previously-known re-
sults of the semi-phenomenological density-matrix theory
FIG. 4. Same as in Fig. 3, but for the case of large collisionpased on relaxation-constant model. We have predicted new
broadeningsmall Doppler shift qualitative features of the LID effect that are experimentally
verifiable. One of those is a singularity in its spectral contour
|1) at low energies, but is smaller at higher energies. Such telated to the opening of a scattering channel with excitation
relation between relaxation times may be tailored by propinto a higher subband. The other is a reversal of the LID
erly chosen doping profile across the well. current with light frequency and temperature also related to
The opposite case, where the Doppler shift is small comthe intersubband scattering.
pared to the collision broadening,wp<71, is illustrated

N
~o. 4 —+— —— 40 meVv
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