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Light-induced drift in semiconductor heterostructures: Microscopic theory
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We have developed a consistent microscopic theory of light-induced drift~LID ! effect in semiconductor
heterostructures. The strongly nonequilibrium nature of LID dictated our use of the Baym-Kadanoff-Keldysh’s
field-theoretical technique. We have found qualitative features of LID, including singularities in its spectrum
and the reversal of current with temperature and light frequency associated with intersubband scattering. These
effects should be experimentally observable.@S0163-1829~99!03111-2#
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Effect of light-induced drift~LID ! has been predicted fo
gases1 as a physical implementation of an idea of Maxwel
demon, where a laser light selectively excites molecu
within some velocity range and changes their translatio
motion, which results in a macroscopic motion of gas. T
velocity-selective excitation is due to energy-moment
conservation~Doppler effect!. The effect of the excitation
on translational motion is due to collision-frequen
~momentum-relaxation! dependence on an internal state o
molecule. One can think of LID as a result of extra frictio
introduced selectively for molecules moving at a given v
locity. A close counterpart, LID of electrons in semicondu
tors in magnetic field, has been proposed2 and observed.3 In
that case the Landau-level state of an electron plays the
of an internal state of a molecule. A similar effect, call
photon drug effect~PDE!, has been suggested by Grinbe
and Luryi4,5 for electrons in semiconductor quantum stru
tures and later observed.6 For this type of PDE, state
dependent relaxation of electrons is due to emission of o
cal phonons rather than elastic scattering. A clo
counterpart of LID has been predicted for quantum well7,8

based onelastic collisions of electrons with impurities
which depends on a state of electrons in the well. Ela
collisions have an advantage of causing less dephasin
internal states and, consequently, preserving a narrow
shape and high selectivity of excitation in velocity. We w
arbitrarily use the term LID rather than PDE for the class
effects mentioned above.

By its mere physical nature, LID is based on the interd
pendence between the translational relaxation and excita
Therefore it is very sensitive to relaxation processes,
their consistent description is required to obtain a qual
tively correct theory, not mentioning quantitative precisio
A density-matrix technique with relaxation constants h
been used in7,8 and in significant number of papers that fo
lowed~see, e.g., Refs. 9 and 10!. However, that approach ha
an inherent drawback: while the electron confinement i
quantum structure and its interaction with light is taken in
account microscopically,via a Hamiltonian, various relax
ation and scattering processes are treated phenomeno
cally, via rate constants of the collision term.

In this paper we employ Baym-Kadanoff-Keldysh’s no
equilibrium Green-function technique.12–17This allows us to
consistently treat collisions and relaxation microscopica
and obtain a closed analytical result revealing new featu
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of LID in quantum wells, which should be experimental
observable. These features are singularity in the spect
associated with collision-induced transitions in the well a
possible reversal of the LID current with temperature a
photon energy. The Baym-Kadanoff-Keldysh’s techniq
also solves a principal problem caused by time-depende
of the electromagnetic part of Hamiltonian. An oscillatin
optical field generates a strongly nonequilibrium state t
renders equilibrium field-theoretical techniques11 inappli-
cable.

A system under consideration consists of electrons c
fined in a 2D quantum well subjected to an external fieldE
5Eqe

iqr2 ivqt1c.c. of an electromagnetic wave. Electro
interact with stationary impuritiesvia a potential U(r ,z)
5( ju(r2r j ,z2zj ), where (r j ,zj ) is a coordinate of aj th
impurity, andu(r ,z) is a potential of one impurity. We se
the quantum well to be in thexy-plane. All vectors
(q,r , . . . ) are inthis plane except forEq that is normal to it.
Given resonant nature of the effect, we will restrict our co
sideration to only two lowest states~subbands! in the
well. We are using a system of units where\5c51. The
Hamiltonian of the system is

H5(
p,a

~jp1«a!aa,p
† aa,p1 (

p,a,b
„aa,p1q

† ab,pVab~ t !1H.c.…

1(
a,b

E ĉa
†~r ,z!U~r ,z!ĉb~r ,z!d2rdz. ~1!

Here a† and a are electron creation and annihilation oper
tors, a,b51,2 denote subbands,«a are the energies of the
levels in the well~subband offsets!, p andq are 2d momenta
of electron and photon,jp is the kinetic energy of the elec
tron measured from the Fermi energy,jp5p2/2m2m, where
m is the effective mass of the particle,Vab(t)5Meivqt,
whereM52ezabEq , is the matrix element of the interac
tion with light, zab5*ca* (z)zcb(z)dz is the dipole matrix
element of the particle, andca,b(z) are the envelope wave
functions for the well. The electron field operator is defin
as ĉa(r ,z)5ĉa(r )ca(z), where ĉa(r )[(paa,pe

ipr/AS
with S as the area of the well in thexy plane. To obtain
closed analytical results, we will assume that the impur
potential is factorizedu(r ,z)5v(r ) f (z).
7338 ©1999 The American Physical Society
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An important property~see, e.g., Refs. 14,15! of the for-
mal theory of nonequilibrium Green functions is that t
perturbation expansion has thesame structureas theT50
equilibrium expansion. As a trade-off, instead of a sin
time-ordered Green function, one has to work with a ma
Green function that has four-components,

Gab
, ~r ,t !5 i ^ĉb

†~0,0!ĉa~r ,t !&,

Gab
. ~r ,t !52 i ^ĉa~r ,t !ĉb

†~0,0!&,

Gab
a,r~r ,t !57u~7t !„Gab

. ~r ,t !2Gab
, ~r ,t !…, ~2!

where^•••& denotes quantum averaging and statistical av
aging over Gibbs ensemble with temperatureT and over ran-
dom positions of impurities~scatterers!. Here and below, a
bold-face notation is used for Green’s functions that cor
spond to the full Hamiltonian~1!, while Ga,r ,G., andG,

denote Green’s functions in the zero order in electromagn
field Eq, but completely taking into account scattering fro
impurities. The LID current in the second order inEq ~the
lowest order in which the effect appears! is expressed as

j52 i
2e

m(
a

E dv

2pE pGaa
,~2!~p,v!

d2p

~2p!2
, ~3!

where G,(2) is the corresponding second-order les
Green’s function~exact with respect to the scattering!.

The retarded, advanced, and lesser components of a p
uct of two matrix Green functions is given by14

~G1G2!r ,a5G1
r ,aG2

r ,a ,~G1G2!,5G1
r G2

,1G1
,G2

a . ~4!

Products involving three or more matrix Green functions~or
self-energies! can be expanded by recursion of these rules
known procedure for averaging over positions of impuritie11

applied to a matrix Green function in non-equilibrium theo
yields formally the same Dyson-type equation as in theT
50 theory,

Gaa~p,v!5Gaa
~0!~p,v!1Gaa

~0!~p,v!(
b

E d2p8

~2p!2
n

3vu~p2p8!u2f ab,baGbb~p8,v!Gaa~p,v!.

~5!

Here G(0) is a matrix Green function without impurities,n
is a 2d concentration of impurities,v(p) is the Fourier
transform of the impurity potential, and f ab,sd
[^*dzca(z)cb(z) f (z2zi)*dz8cs(z8)cd(z8) f (z82zi)&zi

,

where^•••&zi
is an average over distribution of the impuri

atoms along thez-axis.
Equation~5! is obtained in the ‘‘ladder’’ approximation,11

where we sum only those diagrams that do not contain in
secting impurity lines. The relative smallness of the n
glected ‘‘intersecting’’ diagrams can be estimated11 as
;1/(«̄t), where«̄.max(m,T) is a characteristic kinetic en
ergy, andt is the average time between collisions of
electron with impurities. Also we neglect the diagrams th
containGab with aÞb, which lack a resonant enhanceme
that Gaa(p) has near the polev1«a2jp;1/t. Smallness
x

r-

-

tic

r

d-

A

r-
-

t
t

of diagrams containingG12 or G21 with respect to those con
taining onlyG11 or G22 is also on order of 1/(«̄t).

For the sake of simplicity, we assume that the impur

potential v(r ) has small characteristic width,dr !1/Am«̄.
Hence, we can consider the Fourier transform entering
~5! to be a constant,v(p2p8)5v0[*d2rv(r ). To obtain an
equation for, e.g., advanced component of the matrix Gr
function, one needs to apply the Langreth’s rules~4! to a
product of three Green functions. Further solution of th
equation is similar to theT50 theory,11 yielding

Gaa
a,r~p,v!5

1

v2«a2jp7 i /2ta
. ~6!

Here we neglected small corrections;1/t to the real part of
the denominator. The timesta (a51,2) andte ~to be used
later! are defined as

t25@nmv0
2~ f 22,221 f 21,12!#

21, te5@nmv0
2f 11,22#

21,

t15t101u~v1m2«2!~t112t10!, ~7!

where t11[@nmv0
2( f 11,111 f 12,21)#21, and t10

[@nmv0
2f 11,11#

21. In what follows we assume for simplicity
that all three times are the same order of magnitu
t1 ,t2 ,te;t. We will also set«150 and, correspondingly
«25«, where« is the intersubband excitation energy. No
that the timet1 depends onv as given by theu function in
Eqs. ~7!. This reflects the fact that an electron can be sc
tered by an impurity from the first to second well state on
if it has enough energy. Such process becomes importa
sufficiently large temperature,T*«2m. Similarly to Ref.
15, the lesser Green function can be obtained in the form

Gaa
, ~p,v!5

nvi /ta

~v2«a2jp!21~1/2ta!2
, ~8!

wherenv5(ev/T11)21 is the Fermi-Dirac distribution.
We define a matrix vertex function of an absorbed pho

G21(p1q,p) by a diagrammatic equation shown in Fig.
Advanced, retarded and lesser components ofG21(p1q,p)
can be extracted by using the Langreth’s rules~4!. An ad-
vanced~retarded! component of the vertex functionG21(p
1q,p) is not renormalized by impurity scattering due
causality: all poles ofGa andGa, or Gr andG r in loops lie in
the same lower, or upper half-plane of variablejp8 . Specifi-
cally, G21

a,r(p1q,p)5MG22
a,r(p1q)G11

a,r(p).
The lesser component ofG21(p1q,p) obeys an equation

FIG. 1. Definition and diagrammatic equation forG21(p
1q,q). A solid line with indicesa andp corresponds to a matrix
Green functionGaa(p), momentum-energy three-vectorsp, p8,
andq denotep5(p,v),p85(p8,v), andq5(q,vq), a dotted im-
purity line corresponds to a constantnv0

2f 11,22, and a wave photon
line corresponds toM.
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G21
, ~p1q,p!5MG22

, ~p1q!G11
a ~p!1MG22

r ~p1q!

3G11
, ~p!1G22

r ~p1q!AG11
a ~p!, ~9!

where A[*d2p8/(2p)2nv0
2f 11,22G21

, (p81q,p8). Deriving
Eq. ~9!, we took into account that terms proportional
*dp8G21

a,r(p81q,p8) vanish due to causality. Equation~9!
can be integrated yielding

A5M ~nv2nv1vq
!/teD~v!,

D~v![F2~v1m!
q2

m
2S «2vq2

i

2t1
2

i

2t2
D 2G1/2

2
1

te
,

~10!

where te is defined by Eq.~7!. Similarly, for an emitted
photon we have G12

, (p,p1q)52„G21
, (p1q,p)…* , and

G12
a,r(p,p1q)5MG11

a,r(p)G22
a,r(p1q).

A diagrammatic expression for the matrix Green’s fun
tion G(2) ~3! is given in Fig. 2. Deriving this, we neglec
diagrams that have at least one impurity line connecting
two external electron lines. Contributions of such diagra
to G,(2) depend only onupu and vanish after integration ove
d2p. At the same time it is important to emphasize that s
of such diagrams diverges. One can convince himself
the resulting diverging contribution is proportional to the t
tal time of the interaction with the electromagnetic field. Th
divergence would have cut off if one introduced an irreve
ible population-relaxation process from the excited state
the well that would lead to establishment of a station
equilibrium state. We emphasize again that a specific form
diagrams in the diverging sum does not matter, because
do not contribute to the current.

The last diagram in Fig. 2 vanishes due to causality.
the same reason, the only terms to survive are those w
the integral overp8 contains the lesser vertex function. Co
sequently, an expression forG11

,(2) reduces to

G11
,~2!~p!5M2

„G11~p!G22~p1q!G11~p!…,1G11
r ~p!

3G22
r ~p1q!AMG11

a ~p!2G11
r ~p!MA*

3G22
a ~p1q!G11

a ~p!. ~11!

An expression forG22
,(2) can be obtained similarly. Subst

tuting G,(2) into Eq. ~3!, we obtain a general expression f
the LID current

j5
q

q2

2em

p
M2F~vq!, ~12!

FIG. 2. Diagrammatic expression forG,(2)(p).
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where the dimensionless spectral contour of LID is

F~vq![Im E
2m

`

~nv2nv1vq
!~t12t2!

3F 1

2t1
1

1

2t2
2

1

te
1 i ~«2vq!G 1

D~v!
dv.

~13!

One can see that the LID contourF(vq) is an odd function
of vq2«, which is a general signature of LID. We emph
size that the structure of current~13! differs dramatically
from the corresponding result of the density matrix approa
@cf. Eqs.~3! and ~4! in Ref. 7#.

For illustration we consider two limiting cases that diff

by a value of Doppler shiftDvD5uquA«̄/m with respect to
the collision width t21. First, in the limit DvD@t21, a
large Doppler shift causes a highly selective excitation o
beam of electrons with a narrow spread ofp. Features of
LID in this limit are illustrated in Fig. 3. At zero tempera
ture, the current vanishes foruvq2eu5uquA2m/m where
only electrons at Fermi surface contribute. At finite tempe
tures, there is no edge and LID exists for any detuning
singularity in the derivative of F(vq) occurs at a
temperature-independent detuninguvq2eu5uquA2«/m,
where there is just enough kinetic energy of a Doppl
selected electron to open up a new channel of scattering
includes the transitionsu1&→u2&→u1& in the well @cf. Eq.
~7!#. This singularity has been missing in earli
theories.4,5,7–10Another previously unknown qualitative fea
ture of LID is that the effect may reverse its sign with i
crease of detuning or temperature. This is due to the fact
for the relation between relaxation times chosen (t10.t2
.t11), the differencet12t2 changes its sign with electro
energy. Thus, the friction due to collisions for the electro
in the excited stateu2& is greater than that in the ground sta

FIG. 3. Spectral contourF(vq) of the LID current as a function
of light frequencyvq for the case of small collision broadenin
~large Doppler shift!, calculated from Eq.~13!. The values of col-
lision times t10,t11, and t2 are shown in units of t0

[(m/2m0e2)1/2, wherem0 is the Fermi energy at low temperatur
We sette5(1/t1121/t10)

21, which is the case forf (z)}d(z). We
choose the following values of parameters realistic for a Ga
AlGaAs quantum well:m056 meV corresponding to electron den
sity 8.531010 cm22, «530 meV, andm50.07me .
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u1& at low energies, but is smaller at higher energies. Su
relation between relaxation times may be tailored by pr
erly chosen doping profile across the well.

The opposite case, where the Doppler shift is small co
pared to the collision broadening,DvD!t21, is illustrated

FIG. 4. Same as in Fig. 3, but for the case of large collis
broadening~small Doppler shift!.
o
e

e

a
-

-

in Fig. 4. We see that spectral contours of LID are signi
cantly broadened and they have no singularities. The mag
tude of the LID currents is much smaller than in Fig. 3. Th
implies that the scattering from impurities has an effect
the phase relaxation for the spectral contour. However,
analytical form ofF(vq) is significantly different from that
in the relaxation-constant model of Refs. 7–10.

In conclusion, we have developed a consistent micr
scopic theory of LID in semiconductor quantum wells. A
strongly nonequilibrium nature of LID dictates our use o
Baym-Kadanoff-Keldysh’s field-theoretical technique. W
have obtained a closed analytical expression for LID curre
that is significantly different from the previously-known re
sults of the semi-phenomenological density-matrix theo
based on relaxation-constant model. We have predicted n
qualitative features of the LID effect that are experimental
verifiable. One of those is a singularity in its spectral conto
related to the opening of a scattering channel with excitati
into a higher subband. The other is a reversal of the L
current with light frequency and temperature also related
the intersubband scattering.
*Author to whom correspondence should be addressed. Electr
address: mstockman@gsu.edu; URL: www.phy-astr.gsu.
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