
PHYSICAL REVIEW B 15 MARCH 1999-IVOLUME 59, NUMBER 11
Collective interband excitations in the Raman spectra of quantum wires
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A unifying theory for the collective interband excitations of the interacting electrons in a quantum wire with
several occupied subbands is developed by using the bosonization method. Interband spin- and charge-density
excitations for two subbands are treated in detail. The results are used to clarify the physical nature of the
interband modes detected in recent Raman scattering experiments, especially the so-called single-particle
excitations.@S0163-1829~99!00611-6#
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In spite of considerable effort, the excitation spectra
interacting electrons in clean quantum wires with several
cupied subbands have not yet been fully understood. O
very limited physical understanding of the results of t
available Raman experiments—the standard tool for det
ing elementary excitations1—has been achieved by usin
mean-field theories as the random phase approxima
~RPA! or the Hartree-Fock approach~HFA!.2–4

On the other hand, for only one occupied subband, res
for the one-dimensional Luttinger-liquid model5,6 have been
shown not only to be consistent with experimentally o
servedintrabandcharge- and spin-density excitations~CDE
and SDE!,7–11 but also to account for the so-far unexplain
intraband ‘‘single-particle excitations’’~‘‘SPE’’ !.12,13Gener-
alizations of this approach to include several subband14

have been found to be difficult. Treating two coupled su
bands led to some picture for the ground-state properties
for the energetically lowest excitations.15–17 Neglecting cer-
tain interaction matrix elements,intrabandexcitation spectra
were obtained.13,18An attempt to generalize the bosonizatio
technique of the Luttinger-liquid model for theinterband
features in the Raman spectra of several subband qua
wires has not yet been attempted. A consistent theory
can account for both the CDE and SDE, as well as
‘‘SPE’’ in the energy region of theinterbandmodes pres-
ently does not exist.

In this paper, we describe a novel approach to treat
interbandexcitations of quantum wires by using approxim
tions that are similar to thebosonization methodused previ-
ously for the explanation of theintraband modes, particu-
larly concerning the ‘‘SPE.’’ We describe the main resu
and show that they can be successfully applied to explain
positions and the heights of the peaks in the Raman spe
of state-of-the-art quantum wires. A full report of the high
nontrivial calculations and a detailed discussion of the res
in comparison with the experiments will be give
elsewhere.19

We consider quasi-1D confined interacting electrons w
effective massm. The one-particle spectrum consists of pa
bolic bands, Ej (k)5Ej1\2k2/2m, where Ej ( j
51,2,3, . . . ) are theconfinement energies. They parametri
the confinement potential. We assume that the Fermi en
PRB 590163-1829/99/59~11!/7297~4!/$15.00
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EF is adjusted such that the Fermi velocitiesvF j

5A2(EF2Ej )/m of n occupied bands are approximately th
same. This can be realized in experiment. For example, f
boxlike confinement potential, then11st subband is ener
getically far away from thenth band and it is possible to
adjustEF well in between. When the bands are energetica
almost equidistant—the case of parabolic confinement—
can suspect that with more than the lowestn subbands occu-
pied, the experimentally observedinterbandexcitations will
be dominated only by the transitions between the low
bands, in analogy with the previous findings for theintra-
bandexcitations.12 Although we have not included screenin
due to higher subbands, we find our results consistent w
existing experiments, especially regarding theresonant be-
havior not treated previously.

As discussed below in more detail, we use an assump
that is equivalent to neglecting the interplay betweenintra
and interbandexcitations. This leads to a quadratic Ham
tonian that can be diagonalized in the presence of the in
action. For the latter, we take into account Coulomb a
exchange matrix elements. All the modes are found to
collective CDE’s and SDE’s. We calculate the cross sect
for Raman scattering far from and closer to resonance.
simplicity, we apply our theory to the case of only two o
cupied subbands,j 51,2.

We find two pairs of branches corresponding tointerband
CDE and SDE. Nearq50, only two of these—one CDE an
one SDE—have nonvanishing weights in the nonreson
Raman cross section. The other two are, atq50, degenerate
These contribute to the Raman cross section near resona
when the energy of the incident photons\v I approaches
EG , the gap energy. Additionally, the usual selection rules
CDE in the polarized, SDE in the depolarized configuratio
of incident and scattered photons—cannot be applied n
resonance giving rise to an interpretation of the experim
tally observed interband ‘‘SPE’’ in terms of combined int
and intraband SDE’s.

All of our results are consistent with the existing Ram
data. Furthermore, we predict new structures that sugge
reinterpret the Raman spectra of quantum wires in the reg
of the interbandtransitions.
7297 ©1999 The American Physical Society
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In order to describe the interband excitations, we rew
the Hamiltonian of the noninteracting electrons

H05 (
j ,s,k

Ej~k!cjs
† ~k!cjs~k!, ~1!

@cjs
† (k), cjs(k) Fermion operators,s spin quantum number,k

wave number# as a quadratic form in the densities

r i j ,s~q![(
k

cis
† ~k1q!cjs~k![r i j ,s

~2 !~q!1r i j ,s
~1 !~q!. ~2!

Here,r (1) andr (2) correspond to the independent branch
of the spectrum withk.0 andk,0, respectively, with an
extension of the Hilbert space to states with negat
energies.5

Of crucial importance for the diagonalization of th
Hamiltonian is that commutation relations of the form

@H0 ,r i j ,s
~l! ~q!#}r i j ,s

~l! ~q! ~3!

can be constructed. From Eqs.~1! and~2! one can show tha
~neglecting terms}q2)

@H0 ,r i j ,s
~l! ~q!#5~Ei2Ej !r i j ,s

~l! ~q!

1
\2q

m (
k,l56

kcis
~l!†~k1q!cjs

~l!~k!. ~4!

For theintrabanddensitiesi 5 j we obtain the required com
mutator if we assume that in the sum on the right-hand s
k'lkFi , consistent with the linearization of the dispersi
nearkFi . We do not consider this case in the following
the results have been described previously.12,13

For iÞ j , we replacek'l(kF11kF2)/2 which is equiva-
lent to neglecting multiple pair excitations between inter a
intraband modes.19 The commutators of the densities a
(l56)

@r12,s
~l! ~q!,r i i ,s8

~l8!
~q8!#5~21! idll8dss8r12,s

~l! ~q1q8!, ~5!

@r12,s
~l! ~q!,r21,s8

~l8!
~2q8!#

5(
k

@c1s
~l!†~k1q2q8!c1s

~l!~k!2c2s
~l!†~k2q8!

3c2s
~l!~k2q!#dll8dss8 . ~6!

Relations~5! and~6! imply that, strictly, interband and intra
band modes arenot decoupled. However, they may be d
coupled when considering expectation values in the gro
state. By assuming^r12,s

(l) &50 and ^cis
(l)†(k)cis

(l)(k8)&
5dk,k8nis

(l)(k), wherenis
(l)(k) is the Fermion particle num

ber, one can show the right-hand side of Eq.~6! to be
dll8dss8dq,q8(L/2p)(kF12kF22lq) ~with L the system
length! similar to the one-band case.5 Commutator~6! has
now the form necessary for the formal description of t
interband excitations as bosons.

The kinetic energy associated with the interband exc
tions can then be cast into the quadratic form

H05
hv
L (

q,l
@r12

~l!~q!r21
~l!~2q!1s12

~l!~q!s21
~l!~2q!#, ~7!
e

s

e

e

d

d

-

wherev5(vF11vF2)/2, and

r125
1

A2
~r12,↑1r12,↓!, s125

1

A2
~r12,↑2r12,↓!. ~8!

For the interaction, we start from the general form

(
ss8

(
i j lm

(
qkk8

V̂i j lm~q!cis
† ~k1q!cjs8

†
~k8!cls8~k81q!cms~k!.

The matrix elementsV̂i j lm(q) are obtained by projecting th
three-dimensional Coulomb potentialV(r) on the subbands
and Fourier transforming with respect tox.3,13 By using the
Fermion operators corresponding to left and right spec
branches@cf. Eq. ~4!#, one can decompose the interactio
into many nontrivial contributions. Important for the inte
band excitations are

Hr5
1

2L (
q,l,l8

@V̂1~dll821!V̂ex#rq
~l!r2q

~l8! , ~9!

Hs52
V̂ex

2L (
q,lÞl8

sq
~l!s2q

~l8! . ~10!

Here, we defined density operatorsnq
(l)5( iÞ jn i j

(l)(q) (n
5r,s), and abbreviated the interaction matrix elements
V̂[V̂i j i j (0)}e2/«0 ( iÞ j ), and V̂ex'V̂(2kF), with kF
5(kF11kF2)/2. Only the CDE feel the Coulomb repulsion

The total Hamiltonian for the interband excitationsH0
1Hr1Hs being quadratic in the densities, can be diagon
ized separately for CDE and SDE by generalizing t
method used previously by Penc and Solyom for the in
band excitations.20 One obtains two quartic equations th
are biquadratic. There are two CDE’s,r 6 , and two SDE’s,
s6 corresponding to energies

E6
n ~q!5E6

n ~0!S 16A6
n

\2q2v2

E0
2 D . ~11!

The energy scales are given by

E6
r ~0!5E0A11~161!V7Vex, ~12!

E6
s ~0!5E0A17Vex, ~13!

the constants byA6
r 5@21(261)V#/2V andA6

s 521/Vex .
The above expressions hold for not too largeq and to the
order O(Vex

2 ). We redefined Vex52V̂ex /hv, and V

52V̂/hv. The complete excitation spectra, evaluated n
merically by solving the secular equations are shown in F
1.

Now we discuss the significance of the results for int
preting the above mentioned Raman scattering experim
on quantum wires. The interband contribution to the diffe
ential cross section is given by the dynamic auto-correlat
function of the generalized density1,12

N~q!5 (
iÞ j ,k,l,s

cis
~l!†~k1q!cjs

~l!~k!
G

Di~k,q!
. ~14!
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Here, G5(g1eI•eO1 isg2ueI3eOu) contains information
about the relative polarization of incident (eI) and scattered
(eO) light. The constantsg1,2 are mean transition probabili
ties. The quantities

Di~k,q!5EG
0 2\v I1Ei1

\2~k1q!2

2m
~15!

are the energy denominators due to the second-order pe
bation theory in the electromagnetic field, withEG

0 the en-
ergy gap of the bulk material. The crucial point for the u
derstanding of the Raman spectra is the expansion ofDi

21 in
powers of (k2lkF1q/2)/@EG

i 2\v I1l\vq/2#, with EG
i

5EG
0 1Ei1mv2/2.

The lowest order term

N~q!5 (
iÞ j ,l

g1~eI•eO!r i j
~l!~q!1 ig2ueI3eOus i j

~l!~q!

EG
i 2\v I1\lvq/2

~16!

leads to the ‘‘classical selection rule,’’ namely that CDE a
SDE appear only in the polarized and depolarized confi
rations, respectively. For photon energies such that,uEG

i

2\v Iu@\vq one obtains by summing over the branch ind
l in Eq. ~16! that only symmetric combinations of charg
and spin densities,ns5n i j

(1)1n i j
(2) , (n5r,s) are observ-

able. Closer to resonance,EG
i '\v I , the corresponding anti

symmetric densities,na5n i j
(1)2n i j

(2) , in Eq. ~16! become
dominant.

In order to see which of the above collective modes
pear in the spectra, we have to expressns,a in terms of the
eigenmodesr 6 and s6 . The results of the diagonalizatio
shows that, basically,rs is given by r 1 for all wave num-
bers. Similiarly,sa's2 . Thus, off resonance for allq, the
collective charge moder 1 will appear in the Raman spec
trum in parallel polarization, while the collective spin mod
s2 will be present only near resonance.

For the other densities, the dependence on the wave n
ber is important. Nearq50, ss is dominated bys1 , while
with increasing wave number,ss's2 . This means that in
the off-resonant Raman spectra the weight of the spin mo
is shifted fromE1

s towardsE2
s . The crossover is determine

by the exchange interactionVex . For the antisymmetric
charge density, we find correspondinglyra'r 2 (q'0). It

FIG. 1. The interband excitation energiesE/E0 for the two-band
CDE ~full lines! and SDE ~dashed lines! as a function of
hvq/E0 (V51,Vex50.1). Energetically highest CDE~SDE! is
r 1(s2).
ur-

-

-

-

m-

es

becomesr 1 for largerq. As a consequence, the weight of th
respective CDE peak shifts fromE2

r to E1
r near resonance

The crossover is determined by the Coulomb repulsion
ergy V.

We have summarized these results in Table I, toget
with the polarization rules.

In addition, due to the higher order terms in the expans
of the energy denominatorDi(k,q), structure will appear in
the resonant spectra, which does not obey the conventi
‘‘selection rules.’’ Mixed combinations of intra and inter
band SDEs2-modes become observable inparallel polariza-
tion. They are commonly associated in experiments w
‘‘SPE.’’ In perpendicularpolarization only higher order con
tributions consisting of simultaneously propagating CDE a
SDE are predicted.

Additional features may arise due to hybridization of int
and intraband modes. In Ref. 3 the effect of hybridizati
between different branches of the excitation spectra has b
studied as a result of an asymmetry in the confinement
tential. In contrast, we want to point out here, that even
symmetric confinement, interaction-induced hybridizati
between intraband and interband modes will occur wh
considering corrections to the ‘‘mean-field’’ approximatio
@cf. Eq. ~6!#. This is of particular importance in view of th
fact that signatures of the hybridization have been obser
in experiment.7

Quantum wires in the two-band limit have been stud
experimentally by Gon˜i et al.7 Signatures of the interban
CDE’s have been detected by these measurements, w
have to be assigned energetically to the modes den
above asr 6 @at energyE6

r (0)].3 The structure denoted a
‘‘SPE’’ has to be associated with the above-mentioned co
bination of inter and intraband SDEs. In particular, theinter-
band ‘‘SPE’’ appearing in the spectra at energies near a
slightly aboveE0 ('3 meV) has to be associated withs2 .
In addition, by analyzing the data in Figs. 2 and 3 of Ref
(q'0), we find full consistency with the predicted crossov
behavior when approaching resonance~Table I!.

More recent experiments on quantum wires with seve
subbands occupied10,11 reveal considerably rich structur
concerning especially interband transitions. Signature in
polarized out-of-resonance Raman spectra of the h
energy, so-called depolarization-shifted CDE betwe
nearest-neighbored subbands has been reported in this w
Also, signatures of the corresponding SDE’s were detec
in the depolarized spectra at small wave numbers. They
pear roughly at an energy about a factor of two smal
From this, we estimate our above interaction matrix elem
V'1, which corresponds roughly to the energetic interba
distance. Closer to resonance, a branch of excitations~asso-

TABLE I. Collective interband modes observable in Ram
scattering in lowest order.

Nonresonant Resonant

E1
r all q largeq polarized

E2
r small q polarized

E1
s small q depolarized

E2
s largeq all q depolarized
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ciated in that work with ‘‘SPE’’! has been found in both
polarizations corresponding to energies which increase w
increasing wave number. According to our findings, the
can be associated with the antisymmetric SDEs2 which
contains the exchange interaction. Consistent with this in
pretation, its dispersion is}q2 but only in the regionhqv
,E0AVex @cf. Eq. ~11!#. From the very small energy differ
ences between these and the SDEs1 observed in the depo
larized spectra,11 which have a very small negative curv
ture, we estimateVex to be at least an order of magnitud
smaller thanV. More detailed analysis of the experiment
data, and more experiments on quantum wires with two
cupied subbands, would provide clearer evidence for the
energetically low-lying excitation branchesE2

r and E1
s ,

which have negative slopes as a function ofq.
Comparing with previous theoretical RPA work, whic

applies only out-off-resonance, we find our present res
consistent with the earlier findings for the CDE.3 Some in-
vestigation of intersubband SDE has been performed wi
a HFA.4 Our present theory extends these results consi
on
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ably and clarifies their physical meaning. We provide an a
lytical framework that treats both, intra and interband ex
tations on an equal and transparent footing. Furthermore,
to the bosonization technique, our theory allows a system
and quantitative study of the behavior of the peak streng
in the Raman spectrawhen approaching resonance. Most
importantly, our model provides insight into the physical n
ture of the excitations observed in the Raman spectra, and
have demonstrated that the ‘‘SPE’’ in quantum wires can
consistently understood within the framework of collecti
excitations.
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