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Three-band model of highT . superconductivity

D. C. Mattis
Department of Physics, University of Utah, Salt Lake City, Utah 84112
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We reduce the three-band model of planar GtaDa single-band ofompositefermions. We obtain hopping
parameters.4(R;), repulsive potentialt) .« andV(R;;), and the superexchange interactidR;;) necessary
for both antiferromagnetism and superconductivity. The ratios of these quantities are determined by a unique
parametex~3.%,4/Uqq. Pairing symmetry crosses over from “extendgdto * d” as function of carrier
concentration. We show why only the latter survives near the antiferromagnetic point.
[S0163-182699)00110-1

INTRODUCTION actly to O(¢?). Terms that are higher order inare calcu-
lable in principle, but they tend to be unreasonably compli-
In earlier studies we reduced the three-band “limit cated and are not retained in the present work. Already this
model” of copper-oxide planes to a one-band model inprocedure yields a model that differs in some important as-
which compositecharged particles interacted solely throughpects from the more familiar one-band and Hubbard-like
a hard-core zero-range repulsibiihe limit in question con- models’ o _
sists of taking ,q/U 44— 0 while keeping ;22U 4,=t*, the Far from constituting a special approach, the three-band
unit of energy, finite. The present theory is for nonzero val-model of the titlé (or some similar versionhas to be the
ues oft../U .. and it is far more compellina. Amona other Starting point for any realistic model of CyQAs commonly
pd” -3 - © comPEting 9 formulated? it is a version of the Hubbard model modiffed
results possible to obtain at finite values tgf;/Uyq, We '

arrive at a reliable formula for the strength of the superex—to incorporate the chemical composition and physical prop-

change interaction—at present the leading candidate mechgftIes of the specific materials. The “symmetric’” Coulomb

nism for highT.. superconductivity. We also determine that interaction we shall favor heresee below for the definition
g c SUper y- v is restricted to the copper ions; we shall assume there is no
for t,4/Uqq approaching or exceeding 0.5, what was for-

: ) corresponding two-body interaction on the oxygens. Al-
[”ef'Y th”e hard-core repulsiot)e; may become quite ,4,gh the form of the Coulomb interaction is not an essen-
squishy” or even soft. _ tial feature of the model, its absence from the oxygen ions is.
We exhibit the eigenstates and the self-energies of thg, fact, the procedure could not be implemented if a two-
charged composite particles and their effective hopping paphody force on the oxygen ions were to be included. As this
rameterte(R;). We find also that they repel via a weak omission is physically justifiabléthe result is not just an-
two-body scalar interaction potentid(R;;) and the finite  other “toy” model.
zero-range interactiotJ . Our calculated superexchange The well-known geometric structure of the copper-oxide
interactionJ(R;;) is of the right sign and magnitude to pro- planes is easily visualized as follows: coppers lying on a
mote both antiferromagnetism and high-superconductiv- square(sg) lattice of lattice parametex, are separated by the
ity. We arrive at these conclusions using orthogonal orbitals;ligand” (interstitia) oxygen ions. The basic unit cell con-
identifying the low-lying statesof a three-band model of sists of two oxygen ions and a single copper ion. On the
electrons with those of a one-band model of interactinglatter, a singled(x?—y?) orbital is involved. For oxygens
composite, charge carrietsThe interactions affecting these lying on an horizontal line it is the(x), and on a vertical, it
entities are obtained in a Born-Oppenheimer-type scheme iis the p(y) orbitals which participate—hence the nomencla-
lowest order of perturbation theory, but when the errors aréure “three-band model.® (Arguably, “threeorbital
estimated they are found acceptably small. model” would be more descriptiveln the simplest version,
Already in Ref. 1 the calculated energies were found to bavhich is what we use here, an overlap matrix elemiggt
naturally expressible as multiples of the unit of enerdy,  connects thed orbital to any of its four nearest-neighbor
An additional feature is that their ratios are uniquely deter-oxygen orbitals or, conversely, an oxygen orbital to either of
mined by a second parameter definedxas2t,4T(0)/Uyq  the two nearest-neighbor copper ion orbitals. Any copper-
[with T(0)~1.9 given in Table ] which we now take to be copper bonds or oxygen-oxygen overlaps are ignored. The
nonzerc® Aside from the scale of energy determinedtby  two-body Coulomb repulsiobl 44 is triggered whenever two
x is the sole adjustable parameter with which to fit all knownelectrong or two holes occupy a common copper orbital.
features of the microscopic model to the actual materialsThe interaction stabilizes the valence of each copper ion at
Nevertheless there does remain a meaningful, parameter it optimum value Cf", the occupancy being set at one
smallness in which to expand, viz:=0.146.... As defined electron on the 8(x?>—y?) orbital and none on thestor-
in Table |, & provides an estimate of the strength of intercellbital. As there is no such valence stability requirement on the
interactions relative to intracell energies. We calculate thexygen ions we ignore the Coulomb repulsion of the elec-
hopping parameters exactly @(e) and the interactions ex- trons or holes which occupy them. Thus, with just the two
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TABLE . Intra- and intersite matrix elemen®(R;;) and their  ably large. We extend the two-body solution, using a mean-
squares, at small distances. This table vyields ratiosfield BCS(Ref. 11 approximation, to (4 »)N electrons. A

T(1,1)/T(0,1)=t'/t=—-0.17 and T(0,2)/T(0,1)=t"t  rather lowT, superconducting phase, with extendedave
=—0.10. Note:e=T(0,1)/T(0)=0.14622. pairing, is found. ItsT, peaks neaw=0.4. This swave

5 phase is superseded by a decidedly more rolokstve
R(n.m)ag T(R) T(R) phase in the range 0<& <0.91% We have determined that
(0,0 1.916 182 8 36718 this crossover frons-wave tod-wave pairing is rooted in the
(+1,0 or (0,+1) 0.2801859 0.0785 nearest-neighbor geometry of the superexchange interactions
(+1,+1) —0.0470135 0.0022 and is unrelated_ to any other co_nS|derat|on. _
(+2.0) or (0.+2) 0.027450 1 0.0007 It was stated in the recent review of the experimental data

on copper-oxide monolayers by Kastreral ° that “...After
a decade of research, there is still no consensus as to the
physical quantitiest,q and Uyq as parameters, the initial correct theory of the kind of superconductivity found in the
three-band Hamiltonian is copper oxides.” Perhaps the reason is that while High-
superconductivity is found in the range 60 <<1.3, it is just
here that mean-field theory fails, especially in two dimen-
H=—tpe> (C ,ai+ 5,1 H.C)+Hy, (1) sions. For in this range there is a competition between the
e metallic/superconducting and antiferromagnetic correlations

wherei stands for the position of any Ncopper ions on the and fluctuations have _proven difficult to analyze. We also_
lattice (n,m)a,, 6=(*ay/2,0) or (0ay/2), ando is the hote that our calculations, as presented here, are insuffi-

electron spin coordinaté or |. The “symmetric” two-body ~ ciently refined to explain why thp types are sturdier super-
interactions are conductors than are thetypes. These are important issues
left, perforce, to future investigations. In the present paper,
we concentrate on the types.
Ha=U> [2(ccii—3)(c ¢ —3)+3], 2 Although a number of extensive computational-numerical
' studies have brought out the desired correlations, as have
using U=3Uyq4. H, involves only Cu sites, as previously Some analytical theorie(ﬂsing “slave” bosons or fermions,
noted. Because it is invariant under charge conjugaiien,  these calculations have typically usad hocva_lues for the _
it is “symmetric”), the electron occupancy need only be Mmodel parameters. Therefore they are not cmectly useful in
investigated from three to a maximum six electrons/cell. Théhe present context. Hopefully, future studies will benefit
range 0-3 is related by symmetry. from detailed microscopic relations, su'ch as those we derive
Actually the physically interesting range is considerablyin the present work, whereby the ratios of a multitude of
narrower. Fop-doped superconductors, e.g.,LgSr,cuQ,  effective one-band parameters.,t’,t",....V,J,Us are
(y determining the fraction of electrons removed from theknown as functions of a few variables. In the present simpli-
antiferromagnet) the electron occupancy ranges from 4.5 tofied case, there is just a single variakie be determined by
5 electrons per unit cell; fon-doped superconductors, e.g., fitting to experiment. The composite nature of the charge
Nd,_,Ce,Cu0,,° it ranges from 5 to 5.5. At precisely 5 elec- carriers and the existence of other low-lying composite
trons per unit cell the ground state is that of & 1/2 anti-  States, such as the local triplet states, are also all subject to
ferromagnetic insulator of the etype® very near 5/cell, it ~ €xperimental and to numerical verification.
changes into an incommensurate antiferromagnet or a spin

glass™® At occup_anpies 4_ and 6 the grpund states are ordi- I. AN OVERVIEW OF THE REDUCTION
nary nonmagnetic insulating states, which are analyzed com- o _ _
pletely, to leading orders ig, in the present paper. However,  In our original work we used the lattice Fourier trans-

experimentally, it is at intermediate values between 4.5 anfiorms of the vertical p(y)] and horizontal p(x)] orbitals,
4.9 and between 5.1-5.5 electrons/cell, that highdi.e., the oxygen bands, with which to construct two sets of
temperature superconductivity occurs. operators: thexr's and theg's. Although theca’s hybridize
The present work has limited goals. We shall be con-with the coppergrepresented byg; , operatory, the 8's are
cerned principally with outlining the nature of the compositetotally disconnected and constitute a zero-energy, zero-width
charge carriers and calculating the parameters entering thedand capable of accommodating up to two noninteracting
dynamics. We obtain our results by reducing the initial three€lectrons per site. Throughout this work, we shall assume the
band Hamiltonian in a way that is independent of electron8 band is filled. A brief recapitulation of the earlier results
concentration. The accuracy is good, but not exact, as we dogether with an extensive discussion of our recent findings
include interactions as small &(£2) relative to the largest follows next.
energies, but no smaller. The Hamiltonian is decomposed into three parfsside
Once the form of the model is determined we solve itfrom Hz=0 which decouples from the rest and carries no
exactly for 4N, 4N+1, and N+2 electrons(or 6N, 6N energy,H,oca,zzi'\‘:lHi incorporates the hybridization within
—1, and &N—2 electrons. Although this is rather far from each cell and—|m=%2i21¢iH(Rij) includes all remaining
the important region centered aboull 5the results are in- intercell interactions. The individual cells are centered on the
teresting. For M+ 2 electrons the pair ground state, if it N points of the originalsq lattice. The lattice parameter re-
were bound, would have- (and not d) wave symmetry. mainsa,.
However, for binding to occux would need to be unaccept-  What renders an accurate reduction possible is the
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“smallness” of H(R;;) for R;; # 0, each being explicitly pro- TABLE Il. The 16 eigenstates of a cell: a summary. We label
portional to T(Rij): (]_/N)EkCBZe'k'Rijw(k)' the lattice  each cell state by its leading configuration. In assigning charge we
Fourier transform of the structure factor: assume the presencah initio, of two electrons in the zero-width,
zero-energys states, as indicated schematically [BY;, on a back-
w(k)=2\/CO§(1/2)kX+c052(1/2)ky. 3) ground of positive ionic charges. The most relevant composite

states are indicated by an aster{Zk These are the low-lying sta-

The T's are calculated and summarized in Table I. Theséjly bound states, involved in conductivity, superconductivity, and

numbers carry some implications. The cell-diagoHalare antifgrromagnetism, for Whi.Ch we compute the intersite hopping

explicitly «T(0) and the magnitudes of their eigenvalues areand interaction parameters in the text,
. 2 . . .

either o« T=(0)t* or «U. '_rhe mte(ceIIHij are expllc_ltly Relative E: High O(U),

«T(R;;), and being off-diagonal in the representation of

site-centered states, yield energy correcti@rﬁ(Rij). This

Chargeq State(Schematig Degeneracy or Low O(t*)

is smaller than the site-diagonal energies by almost two or- +2 [2) (0 in tex 1 High
ders of magnitude. It follows that such multicenter terms as +1 ¢y 12 (D) 2 Low
T(R;j) T(R;) T(Ry;) which arise in third or higher-order per-  +1 a’, 2 (2) 2 High
turbation theory, are much smaller still and may be safely o craai*o, [2) (3 and 5 4 Low*
neglected for our present purposes. 0 Ciﬂcm’ 2) (4 and/or 6 1 High
What is more, examination of Table | flags a possible g aai | |2) (4 andlor 6 1 High
error associated with the neglect of long-distance bonds. _; ¢ttt |2 (7) 2 Low*
. . . . . Lo T

Consider the hopping terms listed in the middle column. We _ O -
invoke an obvious sum ruleS 4 gT(R)=2v2. However ! oGt 2 ® 2 High
al REAT) — & 2 =2 ¢ ichalal [2)(9) 1 Highr

summing the terms listed in Table | going out as far as third
neighbors, we get just 2.739 for this quantity, a discrepancy
of ~0.1. Thus, the total of the contributions from more dis-

tant bonds actually exceeds the strength of individua ina to identify th I and . h i
second-nearest-neighbor bonds. This discrepancy strong rving fo 1den 'fy € cell, and assign charge quan .um_ num-
er g=+2 to this configuration. The energy is higk;,

suggests a need to retain hopping terms out to long distances:

Not surprisingly, the literature abounds with differing es- — = . ) .
timates of the magnitudes and the signs for these small @) _A IoJ\rN-energ+y three-partlcle doublet:|30,i)
bonds. In their numerical study of the spectral density of the~ 1V1+ps(ciy+ p3ai,o)|2!|> with p3=1,4T(0)/(U—Ejs)
charge carriers, Eder, Ohta, and SawazfRef. 2 used ra- and low energy E;=3U— \/(%U)2+[tpdT(O)]ZEUe3.
tios significantly different from those in Table I, viz: This last serves to define the dimensionless energyThe
ter(1,1)/te(0,1)=t'/t=—0.35 and tx(0,2)k(0,1)=t"/t  charge isqy= + 1. The high-energy partner of this state is the
=+0.25, while in a recent study of the extended van Hovefollowing doublet:
singularity, Yin, Gong, and LeungRef. 5 took t'/t 2 |30,i)ex=—U1+p3(a;,—paci,)|2i),  high
=—0.3 andt”/t=0.2. Itis not known whether inclusion of E.—lu4+ \/(lU)2+[t LI'(O)]2£’U”e charge
longer-ranged bonds in either of these calculations Woult?_ 9, Es=2 2 pd 3 9
change the sign of the optimutfi or double the magnitude
of the optimumt’.

For the two-body interactions, it is the last column that is
relevant. Summing the terms in Table | one obtains 3.995,

Ivvith the 8 band are present. We define this|ag), with i

(3) There are six four-particle states; all with=0. The
low-energy state is a singlet:

1

whereas a sum rule requir&sT?(R)=4 instead. Clearly 14,) = [chat +alch
the neglect of more distant bonds is easier to justify in this ' m BIELL T ELTELL
case. Nevertheless, wherever it is practicable we endeavor to 4

retain all the bonds in our calculations. +palei e el )]2i),

where Ps=2t,4T(0)/(U—Ey) and E,=3U

- \/(%U)2+[2tpdT(0)]ZEUe4. We use it to form the neu-
With two electrons permanently occupying the quiescentral background in the usugktype high-temperature super-

B band, one can insert up to an additional four electrons witltonductors. Its high-energy partner is also a singlet:

the aid of the 16 states per cell constructed out of the hybrid- (4)

ized @ andc operators. These states are listed explicitly be-

Il. STATES OF A CELL

low. We distinguish the eight low-energy state& o |41) exe= — 1IN2(1+ pi)[aﬁaﬁﬁciﬂciﬁ
—t24/U) from the eight high-energy stat&<U. - +' . C
Electron occupancy is measured by a charge quantum —pa(ciyail T aiic ) )][2i),

numberq set arbitrarily to zero at 4 electrons/cell. General- = ~ . 5

izing earlier work, we exhibit next all cell-centered eigen- With high energy:E,=3zU + V3u) +[2t,4T(0)"=U%,.

states and eigenvalues exactly, foregoing the simplifications (5) Theq=0 triplets have low energyg,=0. The first

based onU>t,q. The salient results are recapitulated inis [411,i)=cja;|2i), the second is |47],i)

Table I for ready reference. =1NV2(c o' +¢ a))]2)), and the third is|4]],i)
(0) Two-particle statesonly the two electrons associated :Cﬂaf1|2’i>-
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(6) The final member of thg=0 family is a singlet of Now, H;; has matrix elements connecting any initial configu-
high energy: [4',i)ex=1V2(c;" " — ;" i )[2i), with  ration of a product state such fs,i)®|m’,j), to as many
energyE,=U, e;=1. as 255 target configurations. Most of these vanish, as two

(7) Two sets of doublets belong tg=—1. The low- conservation laws serve to greatly reduce the number of al-

energy doublet is the more important:|5¢,i) lowed target configurations; to wit: Hj; in Eq. (4) con-
=11+ p(c a] o' +psct.c al)|2i), with ps  Serves both); =3 ,(c] ¢ .+, ,) andQ;; separately,
=p, and es=e;. This is the “composite” state most di- hence it conserves total char@g = ();;+;; and “pseudo-
rectly involved in charge transport, antiferromagnetism, anc¢tharge” Qj; = Q;; — ;; for the two sites. MoreoveH;; con-

superconductivity in Cu@ serves the join{total) spin angular momentum of the two
(8) Its  high-energy  partner is |50,i)e SIS _ _

=—1\1+p2(c’ ¢ o —pscl ot ol )|20) Bs As an example of the use of these selection rules, consider

=%, hoThTeThe hoehmeThe the effects oH,= 323 H;; on the energy of the “vacuum”

(9) Finally, the state of maximal occupancy is the singletState’_ in seco_nd_—order perturba_tion thgory. The selectipn rules
state: |61i):Ci+TCi+Lai+Tai+l|21i>' It has high energyEg; Permit each initial Stat@))5!4,!)®!4,j) to connect to just
—U, and a ch’arg'e nhmber: —2 fqg( target states,.the.reby ehmmatmg several hundred possi-

For any specifiedj and spin the stable configuration of bilities. The four finalist candidate states are
any cell is the one having the lowest energy compatible with 1
these quantum numbers. Being subject to decay, higher- _ = : N : :
energy states are intrinsically unstabtdn equilibrium only = 1/2{|3T’|)®|5l'1) 3L.D@[51.0)}
the stable states are observed. This “stability principle” can
be used to determine the equilibrium configurations as elec- 1
trons are added to, or subtracted from, the material. The fol-  [2))=—{|31,)exc@|51,]) ~|3].i)exc®|57.i)},
lowing example illustrates the principle for fewer than five V2
electrons per cell, i.e., in thetype materials.

For this case the most useful starting point or “vacuum” 1
is a product state of Zhang-Rice singlétithe low-energy 13))=—{[31.1)®|5..])exc—|31.1)®[57,]) exa
|4,i)’s], one at each site. This configuration has total charge V2
Q=2,q;=0, by definition. Adding an electron to thi¢h site

costs a minimum energlyfs — E, and transforms it to a dou- 1 : : . .

blet |50-,i), (7 abo\/e)’ with q=-— 1 ando-:T or l Amus- |4))= 5{|3T1| )eXC®|5l1J)eXC_ |3la|)exc®|5TaJ)exc}-
ingly, removal of an electron from this vacuum proceeds by

an entirely different process. Of these, the matrix element§1|H;;|0))=((4|H;;|0))=0

The addition of a larger numbei of electrons decreases both vanish by symmetry. Hence, the entire second-order
the total charge® from its initial value of zero to- vN and  contribution to the energy d0)) comes from just two matrix
introduces doublets of type 7, the “composite particles” of elements, those connectifi@) with |2)) and with|3)). We
our theory, onwN distinct sites. There is no ambiguity in this then calculate,
assignment as excited doublets of type 8 are never advanta-

geous and singlet states of type 9 are always more costly in ZtEde(Rij) 1- pﬁ 2

energy. In fact, E;<U + E, regardless of the value af In ABu(Rij)=— U-2E, \1+ p‘21 :

the p-type materials the states 9 are only accessed virtually.

However, they do play an important role onge-1, in the Now, in expressing quantities such as this, it is natural to
n-type materials. uset*=t2/2U as the unit of energyjust as it was in the

At v=1 precisely, the ground state is that of a spin-1/2jnit model), and to definex=t,4T(0)/U as the sole, non-
antlferromagnet}c msglator thh_ a su.perexchanglg pgrametqﬁviaL parameter of the theory. Assuming orjiiye<Ugq
J(R;j), connecting spins at distinct sit€§ andR;. " Itis @ e see the widest physically permissible range for this pa-

“charge-transfer’-type insulator not because of a filled ;;meteris @ x<3.8. In this work we assumeis 0(1), iie.
band, but because charge transport, which we calculate neXtaiher— 0 nor o T

is prohibited between any two cells which have the SaM&ujith these substitutionA E simplifies to
valence.

1-pj
1+p;

2 arTA(Ry)
S (A+1ed)¥
®)

At*T%(R;))
AE (R =~ 1—-2
CHOOSING ENERGY UNITS €4

Il INCLUDING Hj;,

Both transport and intersite interactions are mediated by o
H;;, explicitly proportional to the “bare” hopping param- SO that the total energy of the plane of 4's is
eters—tpqT(Rj)):

1
Eo=NEs+ 5N AELR)
2 Rz0

2K?2
[1—@]——““1&2)3 } 6)

Hij = _tpdT(Rij)z {(CiJ’r(,aj’(,-i- H.C.)+(Cj-f0.a’i'0.+ HC)} TZ(O)
7 4) =Nt*[

XZ
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where K3=3g.,T?(R)=4—T2(0)=0.3282... sums all D.o.s.
AE,, interactions.

e

IV. AN ERROR ANALYSIS

w

The above allows us to estimate some errors intrinsic to
this theory. Atx=0, the ratio of the total two-site contribu-
tions AE,, to that of the site-diagonal energy is 0.3282/(4

n

X 3.6718)=2.2%; atx=1 it has dropped to<1%. Third- 1 —

and higher-order contributions involving two, three or more L N

sites, each carry additional factors BfR) with R#0. Re- — |

gardless of the value of, all are smaller than thAE,, 0.2 0.4 0.6 0.8 [ 1.2 1.4 "

contributions by additional factors af

The original limit mode! was anchored to the limik
—0. We have now determined thatheed not be zero, nor
even small. The true parameter of smallness, as mentioned in
the Introduction, ise. To leading order ine the energies 56/ \_ _ gtk . Ps  _ .« .
consist of just the site-diagonal terms, which are computed tei(Rij) =~ 4" T(OT(Ry)) x(1+ p2) =) T(Ry).
exactly, and of the more numerous two-site interactions, )]
which are computed t®(s2). In addition, off-diagonal S
terms connect degenerate configurations. These off-diagonahe difference in signs between the two scenarios is signifi-
terms are responsible both for charge transport and fofant. Insofar as it permutes the density of states at the respec-
the “transverse” interactions in superexchange, i.e.live band edges it distinguishes the hopping behavior of a
%J(Rij)(S+Sj_+ H.c.). We examine the transport parametersdilute gas of 5's in a background of 4's from that in a back-

first and the exchange terms subsequently. ground of &’s. However, becausg(R;;) converges so
slowly, we should not consider just nearest- and next-

nearest-neighbor matrix elements. Rather, we shall construct
V. CHARGE TRANSPORT an “effective band structure” which retains them all. In this

| . ;
Charge transport necessitates charge transfer. ConsidrerSpeCt our reduction differs from thet’-J models of the

: . ; . iteraturé in which only nearest- and next-nearest-neighbor
the produ_ct s?ate of tV.VO S|te's hawqg; Wh'f:h. Q|ffer by =1, hops are retained. What is more, the ratio of the vartais
e.g., |0))=|4,)®|57,j). This particular initial state con-

nects to 11 target states consistent with the selection rules, gpt arbitrary but is a consequence of the hybridization, as in

T . - . S able I.
which just one, the permut.at|0||1.1)_)'=|5T,|)®|4,J), is de- The above transfer-matrix elements are first order in the
generate wit0)). For the given initial state, this is the only

. . . T(R;;), hence ine. Clearly there are three-center terms such
target state involved in re@hot virtual) charge transfer from ! - 2
. . ; : as Z,T(Ri) T(Ry;) which arexg“ and four-center terms
site R; to siteR;, to leading order ire. !

The matrix element of,; connecting|0)) to |1)) yields which are higher-order still. These can interfere with the
the “effective hopping” pgrameter which allows a five- first-order hopping tgrm_s_. Prel|m|nary results show that
electron cell withg= —1 to propagat’e in the background of three-center termsan significantly modify Eqs(7), (8), and

) 6 X X : (10), hence Figs. 1 and 2. The modofications depend on the
cells havingg=0."" After some calculation we find this ef-

) X ; o .—. value of v. We shall report on this elsewhere.
fective hopping parameter to carry a sign which is explicitly
opposite to that of the “bare” matrix element in E@):

FIG. 1. Dimensionless one-particle density of stgiéa) ap-
propriate tow(k) in Eq. (3).

VI. WEAK-COUPLING LIMIT

t84R,) = + 20 T(O)T(Ry) (Pat p5)2(1+ p4I12)5) It is instructive to solve the three-band model of noninter-
X(1+pg)(1+ps) acting electrons, i.e., to examine the weak-coupling limit.
One setH,=0 at the outset and solves for the free fermion
=t* Dy (X) T(Ry)). (7)  states oH. (The algebraic details are left as an exercise for
the readeb.
This expression also serves to defibe,(x), used in later Three bands are found. One is tBeband, consisting of

expressions. By symmetry, the hopping parameter for sothe decoupled linear combination of oxygen orbitals. The
called “holes,” i.e., for the propagation of g=0 cell of  other two have dispersiof. (k)= * [t 4w (k). For an elec-
type|4,) in an antiferromagnetic sea qf= — 1 cells of type  tron filling factor in the ranger=4-6 electrons/cell, both
|50,j), is numerically the same as above, beifgs(x) the B band and the—|[t,q|w(k) band are filled. Only the
=®g,(x). This remark is germane for those theories or nu-+ |tpd|w(k) band is partly occupied. Except for trivial scale
merical studies that examine the propagation and interactiorfactors, the density of states of this last is that of Fig. 1. In
of such “holes” in the highly correlated region near the the rangev=5-6 electrons per cell it is desirable to describe
antiferromagnetic point’ transport in terms of holes. There the density of states is
The propagation of #&a,i) in a sea of|6,j)’s (or vice inverted(i.e., the sign of the Bloch energies is changed

versa is required for the study afi-doped materials. In this As we shall see shortly, in strong coupling the analysis is
case the sigagreeswith that of the bare quantity in E¢4), practically identical. The principal differences, as seen im-
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mediately below, consist of the replacementqf(k) above
by t*®5,w(k) in the ranger=4-5, and byt* ®gew(k)
(which carries the change in sign intrinsicalip the range

5-6. In addition, in strong coupling the entities are subjectto  ; /
interactions, as calculated below, which could modify their /’

dispersion considerably.

VIl. SELF-ENERGIES AND BLOCH ENERGIES

The total energyg, calculated in Eq(6) is an absolute
minimum?® The replacement of a singld,i) cell by a|51j)
raises it in the amount:

AEs=Es—E4+ ER: [AEs(R) —AE(R)].

Occupancy
2

Vs

N

0.5 /////
A__ﬂ——””’//////

0.2 0.4 0.6 0.8 1 1.2 1.4

U

FIG. 2. Occupancy as a function of dimensionless Fermi en-
ergy u, based on the density of states in Fig. 1The average
number of particleper cell is 4+ v.)

We call this the self-energy of the composite particle, i.e., of

the stable charged celgE —1). The summand\E 4(R)
was given in Eq(5), while AEs4(R) is the energy of inter-
action between thg=—1 cell |50,j) and ag=0 cell |4,)
at distanceR. After some algebra, we find the latter to be

1-p3\?

1+p42

AEs(R)=— %TZ(R)t*[

1-2e,
2 3 2
l-¢,

1-p?
1+ p?

1
1+p;

1-p?
1+pé

N 1
1-2eg

1-pg)?

1+p§

H
1+pf1

3

3
2—e,—2eg

(2ps—p4— p4p§)2)
(1+p3)(1+p3)2

3 (1+p§—2p4p92)]

+
1_ e4_ 265

(1+p3)(1+pd)? ©

We subtracA E 4(R) and sum orR. It is noteworthy that the
resulting sum lowers the bare cell energy—E, by only

2.5% at most. Higher-order corrections carry additional fac

tors O(e) and are justifiably neglected.

In first-order perturbation theory the “effective” band
structure of the composite particle is found using the appro-

At 85% of half-filling, w=0.810.(C) The center of gravity
of the band is at 0.908, an(D) its maximum is atv2
=2.828.

We show occupancyy) as a function of a dimensionless
Fermi level(u) in Fig. 2. Figures 1 and 2 are relevant to the
one-body properties of the composite charge carriers and
also characterize the electronic band structure in weak cou-
pling, as discussed in the preceding section.

At high density[ v=0(1)] the composite particles will
interact strongly with one another, prior to their condensation
into the correlated insulating antiferromagnetic phase. The
features labeledA)—(D) above, which are exact in weak
coupling, can be affected by such interactions. Even the po-
sition of the van Hove singularity relative tw,, may be
reversed for the quasiparticles in strong coupling, if the two-
body correlations*® are properly taken into account.

The bandwidtiVq4=AEs(,7) —AE5(0,0) is a monotoni-
cally decreasing function aof. Its maximum is~32.5* at
x=0. Using Eq.(10) we plotwg(X) =W, /t* as a function of
xin Fig. 3.

Figure 1 illustrates a substantial asymmetry between bot-
tom and top of the band. This asymmetry can also be exam-

ined analytically. Consider a dilute “gas” of 5's in a back-

ground of 4’'s. Expand Eq.10) near the band minimum at
k.= (m,m). Measuringk from k., we obtain

priate plane-wave linear combination of degenerate states.

This leads to the Fourier transform ©R), i.e., (k). Then
the Bloch energyAEg(K) is

AE5(K)=AEs+t* Dgy(x)[w(k)=T(0)], (10

obtained by combining Eq.7) and w(k) given in Eq.(3).
This expression incorporates the self-enefdys;. Note that
T(0)=(w(k))g; is the average or “center of gravity” of
w(k) over the Brillouin zone.

The dimensionless density of states

mmEizém—%w»
N <

Energies

175
E a4

\ 15
15

\1')
2

(¢4

x
0.5 1.5 2 2.5

FIG. 3. Energiesin units oft*) as functions of the parameter

corresponding to this dispersion is plotted in Fig. 1. We drawrop curve: bandwidthv,(X). Descending middle curve: zero-range

the reader’s attention to several interesting featuig@sthe
van Hove logarithmic “nesting” singularity, aiv=1, lies
higher than the half-filling point located at;,,~0.874.(B)

repulsionu(x). Ascending curve:J(0,1)—V(0,1)=T2(0,1)[ J(x)
—V(x)]=T?(0,1)J(x), measuring thenet attractive potential of
two nearest-neighbor composite particles in a spin singlet state.
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AE5(k)=AEg(k,)+ClK|. (11) v

In two dimensions, linear dispersion implies a linear density- \
of-states;p(w)ocw. Surely this unusual dispersion relates to N
some or all of the anomalous properties of the material. In \
fact, a low density of states interferes with Cooper pairing at 112 \ 6 1l8 202 204 ¥
low carrier densities and, in conjunction with a zero-range
potential we discuss below, inhibits the formation of bound
states in a dilute gas of 58. Next, we examine the two-
cell interactions, which come in two varieties: scalar and
vector (exchangg

=]
o

[*5Y
n

>

\

y.] T —
a

Fal
U=

o]

VIIl. SCALAR TWO-BODY POTENTIALS

, , FIG. 4. Detail of Fig. 3:V(0,1)/t* =T2(0,1)V(x).
If two 57's are introduced into the sea of 4’s, the on®&at

and the other aR .21 the total excitation energyE, de- 1 (1-p?)\2
pends on their separation and is not precisely equal to the J(Rj)=4t* TZ(R”)+ - _g
constant AE;. The difference defines the two-body scalar 1-2es | (1+ps)
effective potential energy, a nontrivial function xif

P 9y N 1 (2ps—Pa—P4p3)?

Vss ARij) = AE;(Rij) + AE4(Ri)) —2AEs4(Ry)). ) (1+p)(1+ps)?|  2—es—2es
12

_ , . _ (1+ps+2paps)?|| |,

For the interesting and nontrivial case ptype materials, 1te, 2e. =t*T4(Ri))I(x). (13

this constitutes a weak repulsive potentfaln the nontrivial

case, we find

Alternatively, the superexchange parameteran be found
by subtracting the energy of a singlet pair from that of the

R 1 (l—pﬁ) 2 triplet calculated in the previous section, with an identical
V55 ARij) =3t T*(Ryj)| — 1-2e,\ (11 pD) result.
4 The superexchange interactid(R;;) pertains to the pair
I

1 (1- pf;) 2 1 of sitesi andj in question and is independent of the state of
- + Il the other sites. Hence it is the same whether the two 5's

1-2e5\ (1+p2 1+p3)(1+pd)? at o : .
51 (1+ps) (1+p2)(1+ps) are imbedded in a sea of 4's or 6's, and one needs not dis-

(1-pd)?  (2ps—Pa—Pap3)® tinguish the two scenarios. Like the scalar poterieR ),
X 1—e > e, _Je it is also principally confined to nearest-neighbor cells by a
4 4 5

factor T2(Rij) which decreases rapidly with distance. Be-
(1+ p§—2p4p5)2 pﬁ(l—pg)ZH causeJ(0)=0, superexchange was perforce absent in the
J’_

original version of the limit model.
In principle we could also obtain coefficients of three-

(129 body spin terms5; - (S; X S,), but as three-center interactions

are explicitly higher order ire they are well beyond the
V(x) decreases fairly rapidly from its maximum value 3 atscope of this theory and are omitted. Experimentally too, the
x=0, to insignificantly small values at a=1. Because spin-wave dispersion in the antiferromagnetic insulater (
T2(R) is small and decreases rapidly with distari¢gy(R;;) =1) has been extremely well fited with just nearest-
is totally insignificant beyond nearest-neighbor sites. In anyheighbor interaction®
event, forx=0.21 this scalar potential is exceeded by the Unlike an attractive scalar interaction, the two-spin super-

attractive force of superexchange computed in the followingsxchange interaction cannot promote a substantial charge
section. The magnitude of the attractive potential for a single

1_e4_295 _e4

=t*T4(R;j)V(X).

pair, J(0,1)—V(0,1), is plotted in Fig. 3. Th& dependences J
of V(x) and J(x) are illustrated in Figs. 4 and 5, respec- L~
tively. 105 7

o~

1+ /
- :

D
»
Uyl

IX. EXCHANGE FORCES

The interaction energy of two 5’s of specifically opposite 1.4 1 6/
spins is V; (Rj)=AE;|(Rj) + AE4(Rij)) —2AEs«(Ryj). 7
We shall identify this as a Heisenberg interaction. After com- /
puting AE; | (Rj;), which has contributions from target states /
|4j)®]6,j) and |4,i)e®|6,j) (and similar configurations
with i<j,) we finally derive the superexchange parameter
J(Rij)=2[Vs5 {Rij) —V;,(Rjj) ], which is the coefficient in

®
J

o
4
¢

(>
o]
w

=]

o
[\
1]

/

FIG. 5. Detail of Fig. 3:J(0,1)A* =T?(0,1)J(x).

£
U=

©
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density or dielectric instability. However, it can render the u(x)
sea of composite fermions unstable against antiferromag- ;.
netism, whether commensurate or incommensurate or, render \
the metallic phase unstable against superconductivity. Its

magnitude(=~0.1 eV) in the copper-oxide materials has been 0.8 \\

»n

fury

extensively documented.
For two 5’s in a mutual spin singlet configuration at dis- o.

>

tanceR in a p-type material V(R) —J(R) is the interaction . \\

potential. Our calculations show this interaction to be attrac- N T~

tive for all x>0.21. Figure 3 compares the magnitude ., —

|[V(R)—J(R)|, evaluated at nearest-neighbor distance, with I

other quantities. 15 ] 275 T
X. ADDITIVITY OF POTENTIALS: AN EFFECTIVE FIG. 6. Detail of Fig. 3:(x).

HAMILTONIAN .. . . .
explicitly, as functions ok andR. Finally, we turn to this

Within the present scheme all two-body potentials and theero-range interaction potential, the “effective Hubbard in-
kinetic (i.e., hopping energies are additive. Nonadditive teraction,” in the following section.
three- and four-body forces and corrections to hopping ma-
trix elements are all higher order mthan those which are XI. HARD CORE OR SOFT?
retained. It is now possible to restrict attention to the 5's,
which are the composite charge carriers of the model, and to Figure 3 compares the zero-range interactign) (see
analyze their motions and interactions in a background of almiddle curve with the other relevant energies atype ma-
4's or all 6's, by means of a generic Hamiltonian valid in terials as function ok. This quantity is also shown in greater
eithern- or p_type materials: detail in F|g 6. (A similar calculation ofu in the n-type
materials is omitted here for the sake of breyityWe find
. that although it is indeed a “hard core” potential at small
Hep=1t* <I>(X)i2 T(Rij))(d; ,dj ,+H.c) u(x) rapidly becomes insignificant for>1.5. In that case,
e this “soft core” can be handled in perturbation theory, ex-
. ) cept for filling factorv near 1.
+5V(><>Z T (Rij)ninﬁu(x)}i: NiNi,y The explanation of why some antiferromagnetic lattices
! “melt” at doping levels as small as a few %, may be con-
N 5 . nected to this observation.(For example, LgCuQ,, 5, an
+§J(X)Z T (Rij)(S-Sj—zminj) 1, (14) antiferromagnetic insulator with Teé temperature 300 K at
! 5=0, becomes metallic af=0.02)* If it is sufficiently
in which d* replaces a background cell by a 5. The back-small, u(x) fails to stabilize the antiferromagnetic insulator
ground cells are the 4's fop-type doping, the 6's for the and favors the metallic phase, onealeviates from 1. We
n-type. Converselyd annihilates a 5 and replaces it by the next deriveu(x) in two stages.

appropriate background cell. The quantit@sdiffer for n- First we calculate the contributiohEss(R;;) to the inter-
and p-type materials, as d& andu. Only J remains the action energy of a singlet pair of 5'$jj)=\1/2{|51,i)
same in both cases. ®|5],j)—15/,i)®|51,j)}, arising from admixing with the

I_3eing a_ssociated yvith an pdd number_ of fermions,_cﬂse two target states 1/2{|6,)®|4,j)+|4i)®|6,)} or
satisfy anticommutation relations. They I|ve+on gudattice. [1/2{|6,i) ® |4, )exct |41 ) exc®|6,j)}, both of which corre-
The occupation number operators arg,=d; ,di, andn;  spond tog;=—2 andg;=0 (or vice versa By direct calcu-

=Z,Nj ;. Spin operators; act on the spin degrees of free- |ation, to second order ia we find
dom of the 5’s. They are constructed with the aid of the Pauli

matrices o as follows: S=3(d")-o-(d), where @) M2 M3

T—— di AEss(Rij))=—T3(Rj;) +
=(d;’;.d;’)) and (d)=(d”). The resemblance of E¢L4) to 550 WU+E,—2Es 2U—E,—2Es|’
the t-J model is somewhat coincidental, as the hopping (15

range is effectively unbounded and the zero-range potentigihere
Ui(¥)=t*u(x) might not necessarily qualify as a hard core.

However, this reduction does not tell the whole story. 2t(1+2p,4ps+ pé)
Any of the one-cell excitations listed in Table Il may con- M= — > ==
tribute to thermal, transport, and optical properties. There are (1+pd)V2(1+p3)
many mentions of “excitons” in the literature, which just
relate to these excited states. However, if we wish to under- Mo 2t(ps—2ps+ P4p3)
stand conductivity, superconductivity, and antiferromag- 2= 2y o11n2)
netism the reduced one-band modte); provides the most (1+ps)v2(1+pi)
pertinent information. We now definelU .4 by comparison with the one-band Hub-

All energies now scale explicitly witlt* and all, except bard model used in semiphenomenological studies in fiigh-
for the zero-range potentidl .+(x), have now been derived superconductivity since the early days of the figldAssum-
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ing the matrix element for the processt5—4+6 is ex- a+ b cosk,+c cosk,
actly equal to the one-particle hoppibg=t* ®(x)T(R;) and W =normx 25(K) F|E| : (18)
the excitation energy is a uniql&., the interaction energy
in this Hubbard model would be Here b=c defines the “extended-wave” solution, anda
=0, b=—c, thed-wave solution(The oddp-wave solutions
tgﬁ correspond to spin triplets and are not allowed.
AEss(Rii):_ZU_ﬁ’ There are only three linear homogeneous equatiams
¢ a,b,0 to be solved. That is because the potentials, unlike the
with hopping terms, fall off quickly with distance. Had we kept
next-nearest-neighbor interactions, the numerator in(Eg).
ter=t* P(X) T(R;)). (160 would be augmented by’ cos X+c' cosX, and there

would be five equations in the five unknowns. Our calcula-
tions show that coefficients of the extra termsbihand ¢’

are considerably smaller than thosebadndc and are legiti-
mately discarded.

XIl. MANY-BODY EIGENSTATES A solution of the 33 matrix requires the vanishing of a

Now that all the parameters entering Efi4) have been secular determinant with two distinct roots. The first yields
determined, we face the question of how to construct the 2 .
eigenstates and eigenvaluesHhf . Although an exact solu- 1+2[VO) =JC0JTHL0L G2~ G,]=0, (19
tion is perfectly feasible for two composite particlégss) in and corresponds to d-wave solution, while the second,
a sea of 4's or 6's, it is essentially impossible to find as-wave, solution yields
closed-form solution for more than 2. Therefore, at finite
density we shall appeal to a mean-field BCS approximation 1+2[V(x)=I(x)]T(1,0[G,+ G3]

for our preliminary results. _ 2
Recall that a pair of 5’s in a relative spin triplet configu- HU(){Go+2[V(x)—I(x)]T*(1,0

Finally, equating Eq.(15) to Eg. (16) yields the desired
guantity, Ugg=t*u(x).

ration is subject only to weak but repulsive potentials. Thus, X[Gg(Gy+Gg)—2G2]}=0. (20)
if there is a bound state it must be sought in the singlet
sector. Here theG's are
Because of the rapid dropoff dfz(Rij) with increasing
distanceR;; , it is sensible to restrict the potentials just to the Go(X|E)= i 2 ;
on-site and nearest-neighbor interactions appropriate to a 0 N &8z 2e(k) +|E|’

pair of fermions in a spin singlet state.

However, thehopping matrix elements, being propor- 1 cosk,
tional to T(R;;), do not drop off as rapidly as do their Gl(X|E):ﬁk§ZW+|E|'
squares. In fact, it is necessary to retain all non-nearest- -

neighbor hopping terms. Fortunately, it is possible to refor- 1 cok,
mulate the problem in momentum space with the aid of Eq. Gy(X|E)=— > =———
(10). N &8z 2e(k) + |E]

A low-lying two-body bound state may develop ornke gng
exceeds a critical value. This critical value is dependent on
the relative strengths af, U+ and of the hopping matrix 1 cosk, cosk,
elements, all of which depend on The bound state is writ- Ga(X[E)= ngz 2e(K) +|E|
ten in the form (L/N)=,¥,d7 (k)d] (k)|0)), where |0)) N
stands for the “vacuum’{product state of all 4'$ .k is mea-  In general, Eq(19) has no solution fox<x. and similarly
sured from the band minimum &, 7) for p-type materials, for Eq. (20). We have calculated the above integrals for the
and¥, is an even function ok satisfying the integral equa- P-type materials and used them to estimate Our calcula-
tion tions yield minimum valuex,=6.913 fors pairing in Eq.
(200 and x.,~9 for d pairing in Eg. (19). Although the
1 s-pairing solution sets in earlier and is clearly more stable
[26(K)—E]¥,+[V(X)—I()]T4(1,0 N than the d-pairing solution, neither type solution exists
within the physically reasonable range<<3.8. To ex-
, , tend the analysis to a finite density of charge carriers we next
X% [cosky—ky) +cogky —ky) ¥ turn to the self-consistent BCS equatidhs.

1 XIll. CRITICAL TEMPERATURE AND THE GAP
T Uer(X) g 2 Wi =0, (17
k/

We start from the equation for the energy gap at tempera-

where for thep-type materialse(k)=AEs(ky—m k,—m) el
—AEg(,7) and the binding energy is E=0. Noting that 1 A
. : R ‘
the kernel is the sum of two separable kernels, one infers the A=— _Ek: Vp,kZEktan”%BEk)a

form of the wave function: P N



PRB 59 THREE-BAND MODEL OF HIGHT, SUPERCONDUCTIVITY 7175

A,=a+b cosp,+ccospy, (22) Te
in which all the potentials are included inp,k, B=1kgT, 004 /
Ek=\/sk2+A2k, and g =¢(k)—u is the energy measured /
from a Fermi levely within the band. Once again there are 6063 Vd
two types of solutions: the wave witha#0 andb=c, and /
the d wave witha=0 andc=—h. At T. the gap vanishes 002 y
and the secular determinant decouples into two equations /
identical to Eqgs.(19) and (20). Only the definition of the 001 ]
Green functions has been chang®@hey are now functions //
of x, T, and u: x
1.8 2.2 2.4 2.6 2.8
1 1 FIG. 7. kT,(x) in units oft*, as obtained from thd-pair solu-
Go(Bd =1 2, 5—tanhs Beex, tion of the BCS equation, Eq21), at filling factor »=0.9.
N kCBzZ 28k 2
1 cosk, 1 and
Gi(Belw) =15 2 tanh Beex,
NkcBZ 28k 2
- 1 cosk, cosk,
Galbluw)=15 2 ——c (23
1 cogk, 1 kB2 k
GaBel )= 2 —5-— tanhs Beex,
KCBz k where

and

Ex= V&g +b?(cosk,—cosk,)2.

1 cosk, cosk, 1
Ga(Belp)= NKE — .. @anh;Beex. (22 At the few points where we checkel,was approximately
3/2T ., although in general the ratio of this gap parameter to

T. appears to be a function g@f.

CBz 2gy

We solve each equation numerically fB¢(x). As might be
expected from the preceding two-particle calculation, in the

p-type materials there are no solutions of either symmetry for CONCLUSION AND FUTURE PLANS

w near the bottom of the band, for any physically reasonable . N

value ofx. However, asu is increased, we start to find an _ With experimental knowledge of such quantitiesTas b,
s-paired solution(corresponding to mediocre values Bf) % Weir, €tc., it should be possible to determitie and x
for u ranging from 1/5 to 1/4we are using convenient di- Unambiguously for a given copper-oxide material. We are in
mensionless units, in which the energy of the van Hove sinthe process of making this fit. S

gularity is w(k)=1; cf. Figs. 1 and 2 This solution dis- Despite initial _sl_<ep_t|C|sm, the exlstencedapalrlng high-
appears beyong = 0.5, owing to a factor (cd§<+cosky)2 in  Tc superconductivity in copper-oxide materials has by now
the integrand which multiplies the density of states. This is?€en confirmed in innumerable experiments. The present cal-
the relevant structure factor fax pairing in this lattice. It ~ culations favor it unambiguously at midbafiolit not at the
vanishes at the van Hove singularity and effectivelyPand edgesover the more conventionalpairing, primarily
guenchess pairing at midband, while the low density of @S @ consequence of the nearest-neighbor structure factor. In
states at the bottom of the band has the same effect. Condgture work we shall revisit the model near the antiferromag-
quently, we look to thel-pairing solution for an explanation Netic phase boundary, with the aid of appropriate many-body
of high-T,, superconductivity. methods. We have examined interference of the higher-order

For u>0.7 we find only thed-paired solutions. Here the Multisite hopping terms with the leading-order hopping
corresponding factor in the integrand is essentially {gos terms, to the extent that this affects the band structure of the
—cosk,)?, which is also small at the band edges but finiteComposites and report on this elsewhere. Finally, we intend
near the singularity. In our calculations, thiepaired solu- O reexamine the various simplifying assumptions underlying
tions yield values off; which rise slowly but monotonically he present work. o o
with increasing Fermi energy, to a maximum @s- 1.2’ Our principal result, presented in this paper, consists in

In Fig. 7 we plotT, for d pairing, as function ok, at u the demonstration that the properties of the low-lying states

" Cc ) 3 . . . .
—0.85. This corresponds to a filling facterof some 90%, of the 3N orbitals in a copper-oxide plane are faithfully rep-

sufficiently far from the antiferromagnetic phase boundary td€S€nted by jusN composite states of a single-band model

ensure that the results are not spurious. We find'th® gap and their many _interact_ions, as summarized in @4). W?
parameteb by solving Eq.(19) using the Green functions, showed that it is possible for large numbers of physically
important quantities, hopping parameters and interaction po-

2 tentials, to be linked by a few parameters—just two in our
Gy(blp)= i 2 cos ky simplified model: one being nontrivial parameterand the
2 N«Csz 2Ey other, just unit of energy*.
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Loriginally based on orthogonal orbitals, the limit model yielded at ®According to the Pauli principle they have, perforce, opposite

first only repulsive zero-range interactions and thus no plausible
explanation for highF. superconductivity. With the introduction
of nonorthogonal orbitals it proved possible to extract an attrac-
tive superexchange interaction, albeit of undetermined strength.
The original studies are in D. C. Mattis, Phys. Rev. L&,
3676(1995; Mod. Phys. Lett. B3, 1387(1994). Optical absorp-
tion within this model was analyzed in D. C. Mattis and J. M.
Wheatley, ibid. 9, 1107 (1995. Nonorthogonal orbitals were
introduced into the limit model by D. C. Mattis and J. M.
Wheatley, Phys. Rev. B2, 15 103(1995.

2The variety of three-band models includes H. Eslatsal,
Physica C160, 424(1989; M. S. Hybertseret al, Phys. Rev. B
41, 11 068(1990; L. F. Feineret al,, ibid. 53, 8751(1996; R.
Eder, Y. Ohta, and G. A. Sawatzkipid. 55, R3414(1997 inter
alia. Earlier works include A. Fujimori and F. Minamibid. 30,
957 (19849; G. A. Sawatsky and J. W. Allen, Phys. Rev. Lett.
53, 2339(1984); J. Zaanen, G. A. Sawatsky, and J. W. Allen,
ibid. 55, 418(1985; A. Fujimori, Phys. Rev. B39, 793(1989;
F. Mila, ibid. 38, 11 358(1988; A. K. McMahan, R. M. Martin,
and S. Satpathyibid. 38, 6650(1988; H. Eskes, L. H. Tjeng,
and G. A. Sawatskyibid. 41, 288(1990. All differ in approach
and detail from one another and from the present work.

SWe estimatex to be close to the upper limit in the range €.%
<3 for the known copper-oxide-based materials.

4A thorough review of recent work on standaghd variant Hub-
bard andt-J models is given by E. Dagotto, Rev. Mod. Phys.
66, 763(19949.

5«Band” is actually a misnomer, as models based on atomic or-
bitals and incorporating two-body correlations are unrelated to
familiar one-electron band-structure calculations. The latter are
found to have shortcomings in CU®ee J. Ghijseet al, Phys.
Rev. B38, 11 322(1988], and thusa fortiori, in CuG,, owing
to the neglect of dynamic correlations. Attempts to rectify these
shortcomings have had some limited success, e.g., the “slave

spins.

9H. Takagi, Y. Tokura, and S. Uchida, Physical62-164 1101

(1989; S. Uchida, H. Takagi, and Y. Tokurdbid. 162-164
1677(1989.

10The antiferromagnetic phase of the copper oxides has been in-

tensely analyzed by a variety of theoretical and numerical many-
body techniques and fitted to experiment in such papers as B.
Keimer et al, Phys. Rev. B46, 14 034 (1992; see the most
recent review by M. A. Kastener, R. J. Birgeneau, G. Shirane,
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