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Three-band model of high-Tc superconductivity
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Department of Physics, University of Utah, Salt Lake City, Utah 84112

~Received 15 September 1998!

We reduce the three-band model of planar CuO2 to a single-band ofcompositefermions. We obtain hopping
parametersteff(Rij), repulsive potentialsUeff andV(Ri j ), and the superexchange interactionsJ(Ri j ) necessary
for both antiferromagnetism and superconductivity. The ratios of these quantities are determined by a unique
parameterx'3.9tpd /Udd . Pairing symmetry crosses over from ‘‘extendeds’’ to ‘‘ d’’ as function of carrier
concentration. We show why only the latter survives near the antiferromagnetic point.
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INTRODUCTION

In earlier studies we reduced the three-band ‘‘lim
model’’ of copper-oxide planes to a one-band model
which compositecharged particles interacted solely throu
a hard-core zero-range repulsion.1 The limit in question con-
sists of takingtpd /Udd→0 while keepingtpd

2/2Udd[t* , the
unit of energy, finite. The present theory is for nonzero v
ues oftpd /Udd and it is far more compelling. Among othe
results possible to obtain at finite values oftpd /Udd , we
arrive at a reliable formula for the strength of the super
change interaction—at present the leading candidate me
nism for high-Tc superconductivity. We also determine th
for tpd /Udd approaching or exceeding 0.5, what was fo
merly the hard-core repulsionUeff may become quite
‘‘squishy’’ or even soft.

We exhibit the eigenstates and the self-energies of
charged composite particles and their effective hopping
rameter teff(Rij). We find also that they repel via a wea
two-body scalar interaction potentialV(Ri j ) and the finite
zero-range interactionUeff . Our calculated superexchang
interactionJ(Ri j ) is of the right sign and magnitude to pro
mote both antiferromagnetism and high-Tc superconductiv-
ity. We arrive at these conclusions using orthogonal orbit
identifying the low-lying statesof a three-band model o
electrons with those of a one-band model of interacti
composite, charge carriers.2 The interactions affecting thes
entities are obtained in a Born-Oppenheimer-type schem
lowest order of perturbation theory, but when the errors
estimated they are found acceptably small.

Already in Ref. 1 the calculated energies were found to
naturally expressible as multiples of the unit of energy,t* .
An additional feature is that their ratios are uniquely det
mined by a second parameter defined asx[2tpdT(0)/Udd
@with T(0)'1.9 given in Table I# which we now take to be
nonzero.3 Aside from the scale of energy determined byt* ,
x is the sole adjustable parameter with which to fit all kno
features of the microscopic model to the actual materi
Nevertheless there does remain a meaningful, paramete
smallness in which to expand, viz:«50.146... . As defined
in Table I,« provides an estimate of the strength of interc
interactions relative to intracell energies. We calculate
hopping parameters exactly toO(«) and the interactions ex
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actly to O(«2). Terms that are higher order in« are calcu-
lable in principle, but they tend to be unreasonably comp
cated and are not retained in the present work. Already
procedure yields a model that differs in some important
pects from the more familiar one-bandt-J and Hubbard-like
models.4

Far from constituting a special approach, the three-b
model of the title5 ~or some similar version! has to be the
starting point for any realistic model of CuO2. As commonly
formulated,2 it is a version of the Hubbard model modified6

to incorporate the chemical composition and physical pr
erties of the specific materials. The ‘‘symmetric’’ Coulom
interaction we shall favor here~see below for the definition!
is restricted to the copper ions; we shall assume there is
corresponding two-body interaction on the oxygens. A
though the form of the Coulomb interaction is not an ess
tial feature of the model, its absence from the oxygen ions
In fact, the procedure could not be implemented if a tw
body force on the oxygen ions were to be included. As t
omission is physically justifiable,7 the result is not just an-
other ‘‘toy’’ model.

The well-known geometric structure of the copper-oxi
planes is easily visualized as follows: coppers lying on
square~sq! lattice of lattice parametera0 are separated by th
‘‘ligand’’ ~interstitial! oxygen ions. The basic unit cell con
sists of two oxygen ions and a single copper ion. On
latter, a singled(x22y2) orbital is involved. For oxygens
lying on an horizontal line it is thep(x), and on a vertical, it
is thep(y) orbitals which participate—hence the nomenc
ture ‘‘three-band model.’’5 ~Arguably, ‘‘three-orbital
model’’ would be more descriptive.! In the simplest version,
which is what we use here, an overlap matrix elementtpd
connects thed orbital to any of its four nearest-neighbo
oxygen orbitals or, conversely, an oxygen orbital to either
the two nearest-neighbor copper ion orbitals. Any copp
copper bonds or oxygen-oxygen overlaps are ignored.
two-body Coulomb repulsionUdd is triggered whenever two
electrons8 or two holes occupy a common copper orbita
The interaction stabilizes the valence of each copper ion
its optimum value Cu21, the occupancy being set at on
electron on the 3d(x22y2) orbital and none on the 4s or-
bital. As there is no such valence stability requirement on
oxygen ions we ignore the Coulomb repulsion of the el
trons or holes which occupy them. Thus, with just the tw
7166 ©1999 The American Physical Society
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PRB 59 7167THREE-BAND MODEL OF HIGH-Tc SUPERCONDUCTIVITY
physical quantitiestpd and Udd as parameters, the initia
three-band Hamiltonian is

H52tpd(
i ,s

~ci ,s
1 ai 1d,s1H.c.!1H2 , ~1!

wherei stands for the position of any ofN copper ions on the
lattice (n,m)a0 , d5(6a0/2,0) or (0,6a0/2), ands is the
electron spin coordinate↑ or ↓. The ‘‘symmetric’’ two-body
interactions are

H25U(
i

@2~ci ,↑
1 ci ,↑2

1
2 !~ci ,↓

1 ci ,↓2
1
2 !1 1

2 #, ~2!

using U[2
1Udd . H2 involves only Cu sites, as previousl

noted. Because it is invariant under charge conjugation~i.e.,
it is ‘‘symmetric’’ !, the electron occupancy need only b
investigated from three to a maximum six electrons/cell. T
range 0–3 is related by symmetry.

Actually the physically interesting range is considerab
narrower. Forp-doped superconductors, e.g., La22ySryCuO4
~y determining the fraction of electrons removed from t
antiferromagnet,9! the electron occupancy ranges from 4.5
5 electrons per unit cell; forn-doped superconductors, e.g
Nd22yCeyCuO4,

9 it ranges from 5 to 5.5. At precisely 5 elec
trons per unit cell the ground state is that of anS51/2 anti-
ferromagnetic insulator of the Ne´el type;10 very near 5/cell, it
changes into an incommensurate antiferromagnet or a
glass.10 At occupancies 4 and 6 the ground states are o
nary nonmagnetic insulating states, which are analyzed c
pletely, to leading orders in«, in the present paper. Howeve
experimentally, it is at intermediate values between 4.5
4.9 and between 5.1–5.5 electrons/cell, that hi
temperature superconductivity occurs.

The present work has limited goals. We shall be co
cerned principally with outlining the nature of the compos
charge carriers and calculating the parameters entering
dynamics. We obtain our results by reducing the initial thr
band Hamiltonian in a way that is independent of elect
concentration. The accuracy is good, but not exact, as w
include interactions as small asO(«2) relative to the larges
energies, but no smaller.

Once the form of the model is determined we solve
exactly for 4N, 4N11, and 4N12 electrons~or 6N, 6N
21, and 6N22 electrons.! Although this is rather far from
the important region centered about 5N, the results are in-
teresting. For 4N12 electrons the pair ground state, if
were bound, would haves- ~and not d-! wave symmetry.
However, for binding to occur,x would need to be unaccep

TABLE I. Intra- and intersite matrix elementsT(Ri j ) and their
squares, at small distances. This table yields ra
T(1,1)/T(0,1)[t8/t520.17 and T(0,2)/T(0,1)[t9/t
520.10. Note:«[T(0,1)/T(0)50.14622.

R(n,m)a0 T(R) T2(R)

~0,0! 1.916 182 8 3.6718
~61,0! or ~0,61! 0.280 185 9 0.0785
~61,61! 20.047 013 5 0.0022
~62,0! or ~0,62! 20.027 450 1 0.00075
e

in
i-
-

d
-

-

eir
-
n
do

t

ably large. We extend the two-body solution, using a me
field BCS~Ref. 11! approximation, to (41n)N electrons. A
rather low-Tc superconducting phase, with extendeds-wave
pairing, is found. ItsTc peaks nearv50.4. This s-wave
phase is superseded by a decidedly more robustd-wave
phase in the range 0.5,v,0.9.12 We have determined tha
this crossover froms-wave tod-wave pairing is rooted in the
nearest-neighbor geometry of the superexchange interac
and is unrelated to any other consideration.

It was stated in the recent review of the experimental d
on copper-oxide monolayers by Kastneret al.10 that ‘‘...After
a decade of research, there is still no consensus as to
correct theory of the kind of superconductivity found in th
copper oxides.’’ Perhaps the reason is that while highTc
superconductivity is found in the range 0.7,v,1.3, it is just
here that mean-field theory fails, especially in two dime
sions. For in this range there is a competition between
metallic/superconducting and antiferromagnetic correlati
and fluctuations have proven difficult to analyze. We a
note that our calculations, as presented here, are ins
ciently refined to explain why thep types are sturdier super
conductors than are then types. These are important issu
left, perforce, to future investigations. In the present pap
we concentrate on thep types.

Although a number of extensive computational-numeri
studies have brought out the desired correlations, as h
some analytical theories~using ‘‘slave’’ bosons or fermions,!
these calculations have typically usedad hocvalues for the
model parameters. Therefore they are not directly usefu
the present context. Hopefully, future studies will bene
from detailed microscopic relations, such as those we de
in the present work, whereby the ratios of a multitude
effective one-band parameters:t,t8,t9,...,V,J,Ueff are
known as functions of a few variables. In the present sim
fied case, there is just a single variablex to be determined by
fitting to experiment. The composite nature of the cha
carriers and the existence of other low-lying compos
states, such as the local triplet states, are also all subje
experimental and to numerical verification.

I. AN OVERVIEW OF THE REDUCTION

In our original work1 we used the lattice Fourier trans
forms of the vertical@p(y)# and horizontal@p(x)# orbitals,
i.e., the oxygen bands, with which to construct two sets
operators: thea’s and theb’s. Although thea’s hybridize
with the coppers~represented byci ,s operators,! the b’s are
totally disconnected and constitute a zero-energy, zero-w
band capable of accommodating up to two noninteract
electrons per site. Throughout this work, we shall assume
b band is filled. A brief recapitulation of the earlier resul
together with an extensive discussion of our recent findi
follows next.

The Hamiltonian is decomposed into three parts.1 Aside
from Hb50 which decouples from the rest and carries
energy,H local5( i 51

N Hi incorporates the hybridization within
each cell andH in5 1

2 ( i( j Þ iH(Ri j ) includes all remaining
intercell interactions. The individual cells are centered on
N points of the originalsq lattice. The lattice parameter re
mainsa0 .

What renders an accurate reduction possible is

s
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7168 PRB 59D. C. MATTIS
‘‘smallness’’ of H(Ri j ) for Ri j Þ0, each being explicitly pro-
portional to T(Ri j )5(1/N)(k#BZeik•Ri j v(k), the lattice
Fourier transform of the structure factor:

v~k!52Acos2~1/2!kx1cos2~1/2!ky. ~3!

The T’s are calculated and summarized in Table I. The
numbers carry some implications. The cell-diagonalHi are
explicitly }T(0) and the magnitudes of their eigenvalues
either }T2(0)t* or }U. The intercell Hi j are explicitly
}T(Ri j ), and being off-diagonal in the representation
site-centered states, yield energy corrections}T2(Ri j ). This
is smaller than the site-diagonal energies by almost two
ders of magnitude. It follows that such multicenter terms
T(Ri j )T(Rjk)T(Rki) which arise in third or higher-order per
turbation theory, are much smaller still and may be saf
neglected for our present purposes.

What is more, examination of Table I flags a possib
error associated with the neglect of long-distance bon
Consider the hopping terms listed in the middle column. W
invoke an obvious sum rule:(all RT(R)52&. However,
summing the terms listed in Table I going out as far as th
neighbors, we get just 2.739 for this quantity, a discrepa
of '0.1. Thus, the total of the contributions from more d
tant bonds actually exceeds the strength of individ
second-nearest-neighbor bonds. This discrepancy stro
suggests a need to retain hopping terms out to long distan

Not surprisingly, the literature abounds with differing e
timates of the magnitudes and the signs for these sm
bonds. In their numerical study of the spectral density of
charge carriers, Eder, Ohta, and Sawaztky~Ref. 2! used ra-
tios significantly different from those in Table I, viz
teff(1,1)/teff(0,1)5t8/t520.35 and teff(0,2)/teff(0,1)5t9/t
510.25, while in a recent study of the extended van Ho
singularity, Yin, Gong, and Leung~Ref. 5! took t8/t
520.3 andt9/t50.2. It is not known whether inclusion o
longer-ranged bonds in either of these calculations wo
change the sign of the optimumt9 or double the magnitude
of the optimumt8.

For the two-body interactions, it is the last column that
relevant. Summing the terms in Table I one obtains 3.9
whereas a sum rule requires(RT2(R)54 instead. Clearly
the neglect of more distant bonds is easier to justify in t
case. Nevertheless, wherever it is practicable we endeav
retain all the bonds in our calculations.

II. STATES OF A CELL

With two electrons permanently occupying the quiesc
b band, one can insert up to an additional four electrons w
the aid of the 16 states per cell constructed out of the hyb
ized a andc operators. These states are listed explicitly b
low. We distinguish the eight low-energy states (E}
2tpd

2 /U) from the eight high-energy statesE}U.
Electron occupancy is measured by a charge quan

numberq set arbitrarily to zero at 4 electrons/cell. Gener
izing earlier work, we exhibit next all cell-centered eige
states and eigenvalues exactly, foregoing the simplificati
based onU@tpd . The salient results are recapitulated
Table II for ready reference.

~0! Two-particle states:only the two electrons associate
e

e

f

r-
s

y

s.
e

d
y

-
l
ly

es.

ll
e

e

ld

5,

s
to

t
h
d-
-

m
-

s

with the b band are present. We define this asu2,i &, with i
serving to identify the cell, and assign charge quantum nu
ber q512 to this configuration. The energy is high:E2
5U.

~1! A low-energy three-particle doublet: u3s,i )
51/A11p3

2(ci ,s
1 1p3a i ,s

1 )u2,i & with p35tpdT(0)/(U2E3)

and low energy E35 1
2 U2A( 1

2 U)21@ tpdT(0)#2[Ue3 .
This last serves to define the dimensionless energye3 . The
charge isq511. The high-energy partner of this state is t
following doublet:

~2! u3s,i )exc[21/A11p3
2(a i ,s

1 2p3ci ,s
1 )u2,i &, high

energy, Ẽ35 1
2 U1A( 1

2 U)21@ tpdT(0)#2[Uẽ3 , charge
q511.

~3! There are six four-particle states; all withq50. The
low-energy state is a singlet:

u4,i )5
1

A2~11p4
2!

@ci ,↑
1 a i ,↓

1 1a i ,↑
1 ci ,↓

1

1p4~a i ,↑
1 a i ,↓

1 1ci ,↑
1 ci ,↓

1 !#u2,i &,

where p452tpdT(0)/(U2E4) and E45 1
2 U

2A( 1
2 U)21@2tpdT(0)#2[Ue4 . We use it to form the neu-

tral background in the usualp-type high-temperature supe
conductors. Its high-energy partner is also a singlet:

~4!

u4,i )exc521/A2~11p4
2!@a i ,↑

1 a i ,↓
1 1ci ,↑

1 ci ,↓
1

2p4~ci ,↑
1 a i ,↓

1 1a i ,↑
1 ci ,↓

1 !#u2,i &,

with high energy:Ẽ45 1
2 U1A( 1

2 U)21@2tpdT(0)#2[Uẽ4 .
~5! The q50 triplets have low energy,etripl[0. The first

is u4↑↑,i )5ci ,↑
1 a i ,↑

1 u2,i &, the second is u4↑↓,i )
51/&(ci ,↑

1 a i ,↓
1 1ci ,↓

1 a i ,↑
1 )u2,i &, and the third is u4↓↓,i )

5ci ,↓
1 a i ,↓

1 u2,i &.

TABLE II. The 16 eigenstates of a cell: a summary. We lab
each cell state by its leading configuration. In assigning charge
assume the presence,ab initio, of two electrons in the zero-width
zero-energyb states, as indicated schematically byu2&, on a back-
ground of positive ionic charges. The most relevant compo
states are indicated by an asterisk~* !. These are the low-lying sta
bly bound states, involved in conductivity, superconductivity, a
antiferromagnetism, for which we compute the intersite hopp
and interaction parameters in the text.

Relative
Chargeq State~Schematic! Degeneracy

E: High O(U),
or Low O(t* )

12 u2& ~0 in text! 1 High
11 ci ,s

1 u2& ~1! 2 Low
11 a i ,s

1 u2& ~2! 2 High
0 ci ,s

1 a i ,s8
1 u2& ~3 and 5! 4 Low*

0 ci ,↑
1 ci ,↓

1 u2& ~4 and/or 6! 1 High
0 a i ,↑

1 a i ,↓
1 u2& ~4 and/or 6! 1 High

21 ci ,s
1 a i ,↑

1 a i ,↓
1 u2& ~7! 2 Low*

21 a i ,s
1 ci ,↑

1 ci ,↓
1 u2& ~8! 2 High

22 ci ,↑
1 ci ,↓

1 a i ,↑
1 a i ,↓

1 u2& ~9! 1 High*
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~6! The final member of theq50 family is a singlet of
high energy: u48,i )exc51/&(ci ,↑

1 ci ,↓
1 2a i ,↑

1 a i ,↓
1 )u2,i &, with

energyE485U, e4851.
~7! Two sets of doublets belong toq521. The low-

energy doublet is the more important:u5s,i )
[1/A11p5

2(ci ,s
1 a i ,2s

1 a i ,s
1 1p5ci ,s

1 ci ,2s
1 a i ,s

1 )u2,i &, with p5

5p3 and e55e3 . This is the ‘‘composite’’ state most di
rectly involved in charge transport, antiferromagnetism, a
superconductivity in CuO2.

~8! Its high-energy partner is u5s,i )exc

[21/A11p5
2(ci ,s

1 ci ,2s
1 a i ,s

1 2p5ci ,s
1 a i ,2s

1 a i ,s
1 )u2,i &, ẽ5

5ẽ3 .
~9! Finally, the state of maximal occupancy is the sing

state: u6,i )5ci ,↑
1 ci ,↓

1 a i ,↑
1 a i ,↓

1 u2,i &. It has high energy,E6

5U, and a charge numberq522.
For any specifiedq and spin the stable configuration o

any cell is the one having the lowest energy compatible w
these quantum numbers. Being subject to decay, hig
energy states are intrinsically unstable.13 In equilibrium only
the stable states are observed. This ‘‘stability principle’’ c
be used to determine the equilibrium configurations as e
trons are added to, or subtracted from, the material. The
lowing example illustrates the principle for fewer than fi
electrons per cell, i.e., in thep-type materials.

For this case the most useful starting point or ‘‘vacuum
is a product state of Zhang-Rice singlets14 @the low-energy
u4,i )’s#, one at each site. This configuration has total cha
Q5S iqi50, by definition. Adding an electron to thei th site
costs a minimum energyE52E4 and transforms it to a dou
blet u5s,i ), ~7 above,! with qi521 ands5↑ or ↓. Amus-
ingly, removal of an electron from this vacuum proceeds
an entirely different process.15

The addition of a larger numbernN of electrons decrease
the total chargeQ from its initial value of zero to2nN and
introduces doublets of type 7, the ‘‘composite particles’’
our theory, onnN distinct sites. There is no ambiguity in th
assignment as excited doublets of type 8 are never adva
geous and singlet states of type 9 are always more cost
energy. In fact, 2E5!U1E4 regardless of the value ofx. In
the p-type materials the states 9 are only accessed virtua
However, they do play an important role oncen.1, in the
n-type materials.

At n51 precisely, the ground state is that of a spin-1
antiferromagnetic insulator with a superexchange param
J(Ri j ), connecting spins at distinct sitesRi andRj .

10 It is a
‘‘charge-transfer’’-type insulator not because of a fille
band, but because charge transport, which we calculate n
is prohibited between any two cells which have the sa
valence.

III. INCLUDING H ij , CHOOSING ENERGY UNITS

Both transport and intersite interactions are mediated
Hi j , explicitly proportional to the ‘‘bare’’ hopping param
eters2tpdT(Ri j ):

Hi j 52tpdT~Ri j !(
s

$~ci ,s
1 a j ,s1H.c.!1~cj ,s

1 a i ,s1H.c.!%.

~4!
d

t

h
r-

n
c-
l-

’

e

y

f

ta-
in

y.

er

xt,
e

y

Now, Hi j has matrix elements connecting any initial config
ration of a product state such asum,i ) ^ um8, j ), to as many
as 255 target configurations. Most of these vanish, as
conservation laws serve to greatly reduce the number of
lowed target configurations; to wit: Hi j in Eq. ~4! con-
serves bothV i j 5(s(ci ,s

1 ci ,s1a j ,s
1 a j ,s) andV j i separately,

hence it conserves total chargeQi j 5V i j 1V j i and ‘‘pseudo-
charge’’Qi j8 5V i j 2V j i for the two sites. Moreover,Hi j con-
serves the joint~total! spin angular momentum of the tw
sites.

As an example of the use of these selection rules, cons
the effects ofH int5

1
2 SSHi j on the energy of the ‘‘vacuum’’

state, in second-order perturbation theory. The selection r
permit each initial stateu0)…[u4,i ) ^ u4,j ) to connect to just
four target states, thereby eliminating several hundred po
bilities. The four finalist candidate states are

u1)…[
1

&
$u3↑,i ! ^ u5↓, j )2u3↓,i ) ^ u5↑, j )%,

u2)…[
1

&
$u3↑,i !exĉ u5↓, j )2u3↓,i )exĉ u5↑, j )%,

u3)…[
1

&
$u3↑,i ! ^ u5↓, j )exc2u3↓,i ) ^ u5↑, j )exc%,

u4)…[
1

&
$u3↑,i !exĉ u5↓, j )exc2u3↓,i )exĉ u5↑, j )exc%.

Of these, the matrix elements„(1uHi j u0)…5„(4uHi j u0)…50
both vanish by symmetry. Hence, the entire second-or
contribution to the energy ofu0!… comes from just two matrix
elements, those connectingu0!… with u2!… and with u3!…. We
then calculate,

DE44~Ri j !52
2tpd

2 T2~Ri j !

U22E4
S 12p4

2

11p4
2D 2

.

Now, in expressing quantities such as this, it is natura
use t* [tpd

2 /2U as the unit of energy~just as it was in the
limit model!, and to definex[tpdT(0)/U as the sole, non-
trivial, parameter of the theory. Assuming onlyutpdu,Udd
we see the widest physically permissible range for this
rameter is 0,x,3.8. In this work we assumex is O(1), i.e.,
neither→0 nor→`.
With these substitutionsDE simplifies to

DE44~Ri j !52
4t* T2~Ri j !

122e4
S 12p4

2

11p4
2D 2

52
4t* T2~Ri j !

~1116x2!3/2,

~5!

so that the total energy of the plane of 4’s is

E05NE41
1

2
N (

RÞ0
DE44~R!

5Nt* H T2~0!

x2 @12A1116x2#2
2K0

2

~1116x2!3/2J , ~6!
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7170 PRB 59D. C. MATTIS
where K0
2[(RÞ0T2(R)542T2(0)50.3282... sums al

DE44 interactions.

IV. AN ERROR ANALYSIS

The above allows us to estimate some errors intrinsic
this theory. Atx50, the ratio of the total two-site contribu
tions DE44 to that of the site-diagonal energy is 0.3282/
33.6718)52.2%; atx51 it has dropped to,1%. Third-
and higher-order contributions involving two, three or mo
sites, each carry additional factors ofT(R) with RÞ0. Re-
gardless of the value ofx, all are smaller than theDE44
contributions by additional factors of«.

The original limit model1 was anchored to the limitx
→0. We have now determined thatx need not be zero, no
even small. The true parameter of smallness, as mentione
the Introduction, is«. To leading order in« the energies
consist of just the site-diagonal terms, which are compu
exactly, and of the more numerous two-site interactio
which are computed toO(«2). In addition, off-diagonal
terms connect degenerate configurations. These off-diag
terms are responsible both for charge transport and
the ‘‘transverse’’ interactions in superexchange, i.
1
2 J(Ri j )(Si

1Sj
21H.c.). We examine the transport paramete

first and the exchange terms subsequently.

V. CHARGE TRANSPORT

Charge transport necessitates charge transfer. Con
the product state of two sites havingq’s which differ by61,
e.g., u0)…[u4,i ) ^ u5↑, j ). This particular initial state con
nects to 11 target states consistent with the selection rule
which just one, the permutation:u1)…[u5↑,i ) ^ u4,j ), is de-
generate withu0!…. For the given initial state, this is the onl
target state involved in real~not virtual! charge transfer from
site Rj to siteRi , to leading order in«.

The matrix element ofHi j connectingu0!… to u1!… yields
the ‘‘effective hopping’’ parameter, which allows a five
electron cell withq521 to propagate in the background
cells havingq50.16 After some calculation we find this ef
fective hopping parameter to carry a sign which is explici
opposite to that of the ‘‘bare’’ matrix element in Eq.~4!:

teff
54~Ri j !512t* T~0!T~Ri j !

~p41p5!~11p4p5!

x~11p4
2!~11p5

2!

[t* F54~x!T~Ri j !. ~7!

This expression also serves to defineF54(x), used in later
expressions. By symmetry, the hopping parameter for
called ‘‘holes,’’ i.e., for the propagation of aq50 cell of
type u4,i ) in an antiferromagnetic sea ofq521 cells of type
u5s, j ), is numerically the same as above, beingF45(x)
5F54(x). This remark is germane for those theories or n
merical studies that examine the propagation and interact
of such ‘‘holes’’ in the highly correlated region near th
antiferromagnetic point.17

The propagation of au5s,i ) in a sea ofu6,j )’s ~or vice
versa! is required for the study ofn-doped materials. In this
case the signagreeswith that of the bare quantity in Eq.~4!,
o

in

d
,

al
or
,
s

der

of

o-

-
ns

teff
56~Ri j !524t* T~0!T~Ri j !

p5

x~11p5
2!

[t* F56~x!T~Ri j !.

~8!

The difference in signs between the two scenarios is sign
cant. Insofar as it permutes the density of states at the res
tive band edges it distinguishes the hopping behavior o
dilute gas of 5’s in a background of 4’s from that in a bac
ground of 6’s. However, becauseT(Ri j ) converges so
slowly, we should not consider just nearest- and ne
nearest-neighbor matrix elements. Rather, we shall cons
an ‘‘effective band structure’’ which retains them all. In th
respect our reduction differs from thet-t8-J models of the
literature4 in which only nearest- and next-nearest-neighb
hops are retained. What is more, the ratio of the varioust’s is
not arbitrary but is a consequence of the hybridization, a
Table I.

The above transfer-matrix elements are first order in
T(Ri j ), hence in«. Clearly there are three-center terms su
as (kT(Rik)T(Rk j) which are }«2 and four-center terms
which are higher-order still. These can interfere with t
first-order hopping terms. Preliminary results show th
three-center termscansignificantly modify Eqs.~7!, ~8!, and
~10!, hence Figs. 1 and 2. The modofications depend on
value ofn. We shall report on this elsewhere.

VI. WEAK-COUPLING LIMIT

It is instructive to solve the three-band model of nonint
acting electrons, i.e., to examine the weak-coupling lim
One setsH250 at the outset and solves for the free fermi
states ofH. ~The algebraic details are left as an exercise
the reader.!

Three bands are found. One is theb band, consisting of
the decoupled linear combination of oxygen orbitals. T
other two have dispersion«6(k)56utpduv(k). For an elec-
tron filling factor in the rangen54 – 6 electrons/cell, both
the b band and the2utpduv(k) band are filled. Only the
1utpduv(k) band is partly occupied. Except for trivial sca
factors, the density of states of this last is that of Fig. 1.
the rangen55 – 6 electrons per cell it is desirable to descri
transport in terms of holes. There the density of states
inverted~i.e., the sign of the Bloch energies is changed!.

As we shall see shortly, in strong coupling the analysis
practically identical. The principal differences, as seen i

FIG. 1. Dimensionless one-particle density of statesr(w) ap-
propriate tov(k) in Eq. ~3!.
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mediately below, consist of the replacement of«1(k) above
by t* F54v(k) in the rangen54 – 5, and byt* F56v(k)
~which carries the change in sign intrinsically! in the range
5–6. In addition, in strong coupling the entities are subjec
interactions, as calculated below, which could modify th
dispersion considerably.

VII. SELF-ENERGIES AND BLOCH ENERGIES

The total energyE0 calculated in Eq.~6! is an absolute
minimum.18 The replacement of a singleu4,i ) cell by au5↑ j )
raises it in the amount:

DE55E52E41(
R

@DE54~R!2DE44~R!#.

We call this the self-energy of the composite particle, i.e.
the stable charged cell (q521). The summandDE44(R)
was given in Eq.~5!, while DE54(R) is the energy of inter-
action between theq521 cell u5s, j ) and aq50 cell u4,i )
at distanceR. After some algebra, we find the latter to be

DE54~R!52 1
2 T2~R!t* H 1

122e4
S 12p4

2

11p4
2D 2

1
1

122e5
S 12p5

2

11p5
2D 2

1
3

12e4
S 1

11p4
2D S 12p5

2

11p5
2D 2

1
3

2e4
S p4

2

11p4
2D S 12p5

2

11p5
2D 2

1
3

22e422e5
S ~2p52p42p4p5

2!2

~11p4
2!~11p5

2!2 D
1

3

12e422e5
S ~11p5

222p4p5!2

~11p4
2!~11p5

2!2 D J . ~9!

We subtractDE44(R) and sum onR. It is noteworthy that the
resulting sum lowers the bare cell energyE52E4 by only
2.5% at most. Higher-order corrections carry additional f
tors O(«) and are justifiably neglected.

In first-order perturbation theory the ‘‘effective’’ ban
structure of the composite particle is found using the app
priate plane-wave linear combination of degenerate sta
This leads to the Fourier transform ofT(R), i.e.,v(k). Then
the Bloch energyDE5(k) is

DE5~k!5DE51t* F54~x!@v~k!2T~0!#, ~10!

obtained by combining Eq.~7! and v(k) given in Eq.~3!.
This expression incorporates the self-energyDE5 . Note that
T(0)5^v(k)&BZ is the average or ‘‘center of gravity’’ o
v(k) over the Brillouin zone.

The dimensionless density of states

r~w![
1

N (
k

d„w2 1
2 v~k!…

corresponding to this dispersion is plotted in Fig. 1. We dr
the reader’s attention to several interesting features:~A! the
van Hove logarithmic ‘‘nesting’’ singularity, atw51, lies
higher than the half-filling point located atw1/2'0.874.~B!
o
r

f

-

-
s.

At 85% of half-filling, w50.810.~C! The center of gravity
of the band is at 0.908, and~D! its maximum is at&
52.828.

We show occupancy~n! as a function of a dimensionles
Fermi level~m! in Fig. 2. Figures 1 and 2 are relevant to th
one-body properties of the composite charge carriers
also characterize the electronic band structure in weak c
pling, as discussed in the preceding section.

At high density@n5O(1)# the composite particles wil
interact strongly with one another, prior to their condensat
into the correlated insulating antiferromagnetic phase. T
features labeled~A!–~D! above, which are exact in wea
coupling, can be affected by such interactions. Even the
sition of the van Hove singularity relative tow1/2 may be
reversed for the quasiparticles in strong coupling, if the tw
body correlations5,19 are properly taken into account.

The bandwidthWeff5DE5(p,p)2DE5(0,0) is a monotoni-
cally decreasing function ofx. Its maximum is'32.5t* at
x50. Using Eq.~10! we plotweff(x)5Weff /t* as a function of
x in Fig. 3.

Figure 1 illustrates a substantial asymmetry between b
tom and top of the band. This asymmetry can also be ex
ined analytically. Consider a dilute ‘‘gas’’ of 5’s in a back
ground of 4’s. Expand Eq.~10! near the band minimum a
kp5(p,p). Measuringk from kp , we obtain

FIG. 2. Occupancyn as a function of dimensionless Fermi e
ergy m, based on the density of states in Fig. 1.~The average
number of particlesper cell is 41n.!

FIG. 3. Energies~in units of t* ! as functions of the parameterx.
Top curve: bandwidthweff(x). Descending middle curve: zero-rang
repulsion u(x). Ascending curve:J(0,1)2V(0,1)5T2(0,1)@J(x)
2V(x)#'T2(0,1)J(x), measuring thenet attractive potential of
two nearest-neighbor composite particles in a spin singlet state
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DE5~k!5DE5~kp!1Cuku. ~11!

In two dimensions, linear dispersion implies a linear dens
of-states:r(w)}w. Surely this unusual dispersion relates
some or all of the anomalous properties of the material
fact, a low density of states interferes with Cooper pairing
low carrier densities and, in conjunction with a zero-ran
potential we discuss below, inhibits the formation of bou
states in a dilute gas of 5’s.20 Next, we examine the two
cell interactions, which come in two varieties: scalar a
vector ~exchange!.

VIII. SCALAR TWO-BODY POTENTIALS

If two 5↑’s are introduced into the sea of 4’s, the one atRi
and the other atRj ,21 the total excitation energyDE↑↑ de-
pends on their separation and is not precisely equal to
constant 2DE5 . The difference defines the two-body sca
effective potential energy, a nontrivial function ofx:

V55,4~Ri j !5DE↑↑~Ri j !1DE44~Ri j !22DE54~Ri j !.
~12!

For the interesting and nontrivial case ofp-type materials,
this constitutes a weak repulsive potential.22 In the nontrivial
case, we find

V55,4~Ri j !53t* T2~Ri j !H 2
1

122e4
S ~12p4

2!

~11p4
2!

D 2

2
1

122e5
S ~12p5

2!

~11p5
2!

D 2

1
1

~11p4
2!~11p5

2!2

3F ~12p5
2!2

12e4
1

~2p52p42p4p5
2!2

22e422e5

1
~11p5

222p4p5!2

12e422e5
1

p4
2~12p5

2!2

2e4
G J

[t* T2~Ri j !V~x!. ~12a!

V(x) decreases fairly rapidly from its maximum value 3
x50,23 to insignificantly small values at allx>1. Because
T2(R) is small and decreases rapidly with distance,V55(Ri j )
is totally insignificant beyond nearest-neighbor sites. In a
event, forx>0.21 this scalar potential is exceeded by t
attractive force of superexchange computed in the follow
section. The magnitude of the attractive potential for a sin
pair, J(0,1)2V(0,1), is plotted in Fig. 3. Thex dependences
of V(x) and J(x) are illustrated in Figs. 4 and 5, respe
tively.

IX. EXCHANGE FORCES

The interaction energy of two 5’s of specifically oppos
spins is V↑↓(Ri j )5DE↑↓(Ri j )1DE44(Ri j )22DE54(Ri j ).
We shall identify this as a Heisenberg interaction. After co
putingDE↑↓(Ri j ), which has contributions from target stat
u4,i ) ^ u6,j ) and u4,i )exĉ u6,j ) ~and similar configurations
with i⇔ j ,! we finally derive the superexchange parame
J(Ri j )[2@V55,4(Ri j )2V↑↓(Ri j )#, which is the coefficient in
J(Ri j )(Si•Sj2

1
4 ). It is
-

n
t

e

d

e
r

t

y

g
le

-

r

J~Ri j !54t* T2~Ri j !H 2
1

122e5
S ~12p5

2!

~11p5
2!

D 2

1
1

~11p4
2!~11p5

2!2 F ~2p52p42p4p5
2!2

22e422e5

1
~11p5

212p4p5!2

11e422e5
G J [t* T2~Ri j !J~x!. ~13!

Alternatively, the superexchange parameterJ can be found
by subtracting the energy of a singlet pair from that of t
triplet calculated in the previous section, with an identic
result.

The superexchange interactionJ(Ri j ) pertains to the pair
of sitesi and j in question and is independent of the state
all the other sites. Hence it is the same whether the two
are imbedded in a sea of 4’s or 6’s, and one needs not
tinguish the two scenarios. Like the scalar potentialV(Ri j ),
it is also principally confined to nearest-neighbor cells by
factor T2(Ri j ) which decreases rapidly with distance. B
causeJ(0)50, superexchange was perforce absent in
original version of the limit model.

In principle we could also obtain coefficients of thre
body spin termsSi•(Sj3Sk), but as three-center interaction
are explicitly higher order in« they are well beyond the
scope of this theory and are omitted. Experimentally too,
spin-wave dispersion in the antiferromagnetic insulatorn
51) has been extremely well fitted with just neare
neighbor interactions.10

Unlike an attractive scalar interaction, the two-spin sup
exchange interaction cannot promote a substantial ch

FIG. 4. Detail of Fig. 3:V(0,1)/t* 5T2(0,1)V(x).

FIG. 5. Detail of Fig. 3:J(0,1)/t* 5T2(0,1)J(x).
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PRB 59 7173THREE-BAND MODEL OF HIGH-Tc SUPERCONDUCTIVITY
density or dielectric instability. However, it can render t
sea of composite fermions unstable against antiferrom
netism, whether commensurate or incommensurate or, re
the metallic phase unstable against superconductivity.
magnitude~'0.1 eV! in the copper-oxide materials has be
extensively documented.10

For two 5’s in a mutual spin singlet configuration at d
tanceR in a p-type material,V(R)2J(R) is the interaction
potential. Our calculations show this interaction to be attr
tive for all x.0.21. Figure 3 compares the magnitu
uV(R)2J(R)u, evaluated at nearest-neighbor distance, w
other quantities.

X. ADDITIVITY OF POTENTIALS: AN EFFECTIVE
HAMILTONIAN

Within the present scheme all two-body potentials and
kinetic ~i.e., hopping! energies are additive. Nonadditiv
three- and four-body forces and corrections to hopping m
trix elements are all higher order in« than those which are
retained. It is now possible to restrict attention to the 5
which are the composite charge carriers of the model, an
analyze their motions and interactions in a background o
4’s or all 6’s, by means of a generic Hamiltonian valid
eithern- or p-type materials:

Heff5t* H F~x! (
i , j ,s

T~Ri j !~di ,s
1 dj ,s1H.c.!

1 1
2 V~x!(

i , j
T2~Ri j !ninj1u~x!(

i
ni ,↑ni ,↓

1 1
2 J~x!(

i , j
T2~Ri j !~Si•Sj2

1
4 ninj !J , ~14!

in which d1 replaces a background cell by a 5. The bac
ground cells are the 4’s forp-type doping, the 6’s for the
n-type. Conversely,d annihilates a 5 and replaces it by th
appropriate background cell. The quantitiesF differ for n-
and p-type materials, as doV and u. Only J remains the
same in both cases.

Being associated with an odd number of fermions, thed’s
satisfy anticommutation relations. They live on thesq lattice.
The occupation number operators areni ,s5di ,s

1 di ,s and ni

5(sni ,s . Spin operatorsSi act on the spin degrees of free
dom of the 5’s. They are constructed with the aid of the Pa
matrices s as follows: Si5

1
2 (d1)•s•(d), where (d1)

[(di ,↑
1 ,di ,↓

1 ) and (d)5(dl ,↓

di ,↑). The resemblance of Eq.~14! to

the t-J model is somewhat coincidental, as the hopp
range is effectively unbounded and the zero-range pote
Ueff(x)5t*u(x) might not necessarily qualify as a hard cor

However, this reduction does not tell the whole sto
Any of the one-cell excitations listed in Table II may co
tribute to thermal, transport, and optical properties. There
many mentions of ‘‘excitons’’ in the literature, which jus
relate to these excited states. However, if we wish to und
stand conductivity, superconductivity, and antiferroma
netism the reduced one-band modelHeff provides the most
pertinent information.

All energies now scale explicitly witht* and all, except
for the zero-range potentialUeff(x), have now been derived
g-
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,
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explicitly, as functions ofx andR. Finally, we turn to this
zero-range interaction potential, the ‘‘effective Hubbard
teraction,’’ in the following section.

XI. HARD CORE OR SOFT?

Figure 3 compares the zero-range interactionu(x) ~see
middle curve! with the other relevant energies inp-type ma-
terials as function ofx. This quantity is also shown in greate
detail in Fig. 6. ~A similar calculation ofu in the n-type
materials is omitted here for the sake of brevity.! We find
that although it is indeed a ‘‘hard core’’ potential at smallx,
u(x) rapidly becomes insignificant forx.1.5. In that case,
this ‘‘soft core’’ can be handled in perturbation theory, e
cept for filling factorn near 1.

The explanation of why some antiferromagnetic lattic
‘‘melt’’ at doping levels as small as a few %, may be co
nected to this observation.~For example, La2CuO41d, an
antiferromagnetic insulator with Ne´el temperature 300 K a
d50, becomes metallic atd50.02.!24 If it is sufficiently
small, u(x) fails to stabilize the antiferromagnetic insulat
and favors the metallic phase, oncen deviates from 1. We
next deriveu(x) in two stages.

First we calculate the contributionDE55(Ri j ) to the inter-
action energy of a singlet pair of 5’s,u i j )[A1/2$u5↑,i )
^ u5↓, j )2u5↓,i ) ^ u5↑, j )%, arising from admixing with the
two target states A1/2$u6,i ) ^ u4,j )1u4,i ) ^ u6,j )% or
A1/2$u6,i ) ^ u4,j )exc1u4,i )exĉ u6,j )%, both of which corre-
spond toqi522 andqj50 ~or vice versa!. By direct calcu-
lation, to second order in« we find

DE55~Ri j !52T2~Ri j !H M1
2

U1E422E5
1

M2
2

2U2E422E5
J ,

~15!

where

M152
2t~112p4p51p5

2!

~11p5
2!A2~11p4

2!
,

M252
2t~p422p51p4p5

2!

~11p5
2!A2~11p4

2!
.

We now defineUeff by comparison with the one-band Hub
bard model used in semiphenomenological studies in highTc
superconductivity since the early days of the field.25 Assum-

FIG. 6. Detail of Fig. 3:u(x).
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7174 PRB 59D. C. MATTIS
ing the matrix element for the process 515→416 is ex-
actly equal to the one-particle hoppingteff5t*F(x)T(Rij) and
the excitation energy is a uniqueUeff , the interaction energy
in this Hubbard model would be

DE55~Ri j !522
teff
2

Ueff
,

with

teff5t* F~x!T~Ri j !. ~16!

Finally, equating Eq.~15! to Eq. ~16! yields the desired
quantity,Ueff[t*u(x).

XII. MANY-BODY EIGENSTATES

Now that all the parameters entering Eq.~14! have been
determined, we face the question of how to construct
eigenstates and eigenvalues ofHeff . Although an exact solu-
tion is perfectly feasible for two composite particles~5’s! in
a sea of 4’s or 6’s, it is essentially impossible to find
closed-form solution for more than 2. Therefore, at fin
density we shall appeal to a mean-field BCS approxima
for our preliminary results.

Recall that a pair of 5’s in a relative spin triplet config
ration is subject only to weak but repulsive potentials. Th
if there is a bound state it must be sought in the sing
sector.

Because of the rapid dropoff ofT2(Ri j ) with increasing
distanceRi j , it is sensible to restrict the potentials just to t
on-site and nearest-neighbor interactions appropriate
pair of fermions in a spin singlet state.

However, thehopping matrix elements, being propor
tional to T(Ri j ), do not drop off as rapidly as do the
squares. In fact, it is necessary to retain all non-near
neighbor hopping terms. Fortunately, it is possible to ref
mulate the problem in momentum space with the aid of
~10!.

A low-lying two-body bound state may develop oncex
exceeds a critical value. This critical value is dependent
the relative strengths ofJ, Ueff and of the hopping matrix
elements, all of which depend onx. The bound state is writ-
ten in the form (1/AN)(kCkd↑

1(k)d↓
1(k)u0&&, where u0&&

stands for the ‘‘vacuum’’~product state of all 4’s,! k is mea-
sured from the band minimum at~p,p! for p-type materials,
andCk is an even function ofk satisfying the integral equa
tion

@2«~k!2E#Ck1@V~x!2J~x!#T2~1,0!
1

N

3(
k8

@cos~kx2kx8!1cos~ky2ky8!#Ck8

1ueff~x!
1

N (
k8

Ck850, ~17!

where for thep-type materials«(k)[DE5(kx2p,ky2p)
2DE5(p,p) and the binding energy is2E>0. Noting that
the kernel is the sum of two separable kernels, one infers
form of the wave function:
e

n

,
t

a

t-
-
.

n

he

Ck5norm3
a1b coskx1c cosky

2«~k!1uEu
. ~18!

Here b5c defines the ‘‘extendeds-wave’’ solution, anda
50, b52c, thed-wave solution.~The oddp-wave solutions
correspond to spin triplets and are not allowed.!

There are only three linear homogeneous equations~in
a,b,c! to be solved. That is because the potentials, unlike
hopping terms, fall off quickly with distance. Had we ke
next-nearest-neighbor interactions, the numerator in Eq.~18!
would be augmented byb8 cos 2kx1c8 cos 2ky and there
would be five equations in the five unknowns. Our calcu
tions show that coefficients of the extra terms inb8 and c8
are considerably smaller than those ofb andc and are legiti-
mately discarded.

A solution of the 333 matrix requires the vanishing of
secular determinant with two distinct roots. The first yield

112@V~x!2J~x!#T2~1,0!@G22G3#50, ~19!

and corresponds to ad-wave solution, while the second
s-wave, solution yields

112@V~x!2J~x!#T2~1,0!@G21G3#

1u~x!$G012@V~x!2J~x!#T2~1,0!

3@G0~G21G3!22G1
2#%50. ~20!

Here theG’s are

G0~xuE!5
1

N (
k#BZ

1

2«~k!1uEu
,

G1~xuE!5
1

N (
k#BZ

coskx

2«~k!1uEu
,

G2~xuE!5
1

N (
k#BZ

cos2 kx

2«~k!1uEu

and

G3~xuE!5
1

N (
k#BZ

coskx cosky

2«~k!1uEu
.

In general, Eq.~19! has no solution forx,xc and similarly
for Eq. ~20!. We have calculated the above integrals for t
p-type materials and used them to estimatexc . Our calcula-
tions yield minimum valuesxc56.913 for s pairing in Eq.
~20! and xc'9 for d pairing in Eq. ~19!. Although the
s-pairing solution sets in earlier and is clearly more sta
than the d-pairing solution, neither type solution exis
within the physically reasonable range, 0,x,3.8. To ex-
tend the analysis to a finite density of charge carriers we n
turn to the self-consistent BCS equations.11

XIII. CRITICAL TEMPERATURE AND THE GAP

We start from the equation for the energy gap at tempe
ture T,

Dp52
1

N (
k

V̂p,k

Dk

2Ek
tanh~ 1

2 bEk!,
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Dp5a1b cospx1c cospy , ~21!

in which all the potentials are included inV̂p,k , b51/kBT,
Ek5A«k

21Dk
2, and «k[«(k)2m is the energy measure

from a Fermi levelm within the band. Once again there a
two types of solutions: thes wave withaÞ0 andb5c, and
the d wave with a50 andc52b. At Tc the gap vanishes
and the secular determinant decouples into two equat
identical to Eqs.~19! and ~20!. Only the definition of the
Green functions has been changed.26 They are now functions
of x, Tc andm:

G0~bcum!5
1

N (
k#BZ

1

2«k
tanh

1

2
bc«k ,

G1~bcum!5
1

N (
k#BZ

coskx

2«k
tanh

1

2
bc«k ,

G2~bcum!5
1

N (
k#BZ

cos2 kx

2«k
tanh

1

2
bc«k ,

and

G3~bcum!5
1

N (
k#BZ

coskx cosky

2«k
tanh

1

2
bc«k . ~22!

We solve each equation numerically forTc(m). As might be
expected from the preceding two-particle calculation, in
p-type materials there are no solutions of either symmetry
m near the bottom of the band, for any physically reasona
value of x. However, asm is increased, we start to find a
s-paired solution~corresponding to mediocre values ofTc!
for m ranging from 1/5 to 1/2@we are using convenient di
mensionless units, in which the energy of the van Hove s
gularity is v(k)51; cf. Figs. 1 and 2#. This solution dis-
appears beyondm50.5, owing to a factor (coskx1cosky)

2 in
the integrand which multiplies the density of states. This
the relevant structure factor fors pairing in this lattice. It
vanishes at the van Hove singularity and effective
quenchess pairing at midband, while the low density o
states at the bottom of the band has the same effect. Co
quently, we look to thed-pairing solution for an explanation
of high-Tc superconductivity.

For m.0.7 we find only thed-paired solutions. Here the
corresponding factor in the integrand is essentially (cokx
2cosky)

2, which is also small at the band edges but fin
near the singularity. In our calculations, thed-paired solu-
tions yield values ofTc which rise slowly but monotonically
with increasing Fermi energy, to a maximum asm→1.27

In Fig. 7 we plotTc for d pairing, as function ofx, at m
50.85. This corresponds to a filling factorn of some 90%,
sufficiently far from the antiferromagnetic phase boundary
ensure that the results are not spurious. We find theT50 gap
parameterb by solving Eq.~19! using the Green functions,

G2~bum!5
1

N (
k#BZ

cos2 kx

2Ek
ns

e
r

le

-

s

se-

o

and

G3~bum!5
1

N (
k#BZ

coskx cosky

2Ek
, ~23!

where

Ek5A«k
21b2~coskx2cosky!2.

At the few points where we checked,b was approximately
3/2Tc , although in general the ratio of this gap parameter
Tc appears to be a function ofm.

CONCLUSION AND FUTURE PLANS

With experimental knowledge of such quantities asTc , b,
J, Weff , etc., it should be possible to determinet* and x
unambiguously for a given copper-oxide material. We are
the process of making this fit.

Despite initial skepticism, the existence ofd pairing high-
Tc superconductivity in copper-oxide materials has by n
been confirmed in innumerable experiments. The present
culations favor it unambiguously at midband~but not at the
band edges! over the more conventionals pairing, primarily
as a consequence of the nearest-neighbor structure facto
future work we shall revisit the model near the antiferroma
netic phase boundary, with the aid of appropriate many-b
methods. We have examined interference of the higher-o
multisite hopping terms with the leading-order hoppi
terms, to the extent that this affects the band structure of
composites and report on this elsewhere. Finally, we int
to reexamine the various simplifying assumptions underly
the present work.

Our principal result, presented in this paper, consists
the demonstration that the properties of the low-lying sta
of the 3N orbitals in a copper-oxide plane are faithfully re
resented by justN composite states of a single-band mod
and their many interactions, as summarized in Eq.~14!. We
showed that it is possible for large numbers of physica
important quantities, hopping parameters and interaction
tentials, to be linked by a few parameters—just two in o
simplified model: one being nontrivial parameterx, and the
other, just unit of energyt* .

FIG. 7. kTc(x) in units of t* , as obtained from thed-pair solu-
tion of the BCS equation, Eq.~21!, at filling factorn50.9.
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1Originally based on orthogonal orbitals, the limit model yielded
first only repulsive zero-range interactions and thus no plaus
explanation for high-Tc superconductivity. With the introduction
of nonorthogonal orbitals it proved possible to extract an attr
tive superexchange interaction, albeit of undetermined stren
The original studies are in D. C. Mattis, Phys. Rev. Lett.74,
3676~1995!; Mod. Phys. Lett. B8, 1387~1994!. Optical absorp-
tion within this model was analyzed in D. C. Mattis and J. M
Wheatley, ibid. 9, 1107 ~1995!. Nonorthogonal orbitals were
introduced into the limit model by D. C. Mattis and J. M
Wheatley, Phys. Rev. B52, 15 103~1995!.

2The variety of three-band models includes H. Eskeset al.,
Physica C160, 424~1989!; M. S. Hybertsenet al., Phys. Rev. B
41, 11 068~1990!; L. F. Feineret al., ibid. 53, 8751~1996!; R.
Eder, Y. Ohta, and G. A. Sawatzky,ibid. 55, R3414~1997! inter
alia. Earlier works include A. Fujimori and F. Minami,ibid. 30,
957 ~1984!; G. A. Sawatsky and J. W. Allen, Phys. Rev. Le
53, 2339 ~1984!; J. Zaanen, G. A. Sawatsky, and J. W. Alle
ibid. 55, 418 ~1985!; A. Fujimori, Phys. Rev. B39, 793 ~1989!;
F. Mila, ibid. 38, 11 358~1988!; A. K. McMahan, R. M. Martin,
and S. Satpathy,ibid. 38, 6650 ~1988!; H. Eskes, L. H. Tjeng,
and G. A. Sawatsky,ibid. 41, 288~1990!. All differ in approach
and detail from one another and from the present work.

3We estimatex to be close to the upper limit in the range 0.5,x
,3 for the known copper-oxide-based materials.

4A thorough review of recent work on standard~and variant! Hub-
bard andt-J models is given by E. Dagotto, Rev. Mod. Phy
66, 763 ~1994!.

5‘‘Band’’ is actually a misnomer, as models based on atomic
bitals and incorporating two-body correlations are unrelated
familiar one-electron band-structure calculations. The latter
found to have shortcomings in CuO@see J. Ghijsenet al., Phys.
Rev. B38, 11 322~1988!#, and thus,a fortiori, in CuO2, owing
to the neglect of dynamic correlations. Attempts to rectify the
shortcomings have had some limited success, e.g., the ‘‘s
boson’’ band-structure approach for Y-Ba-Cu-O by M. Biagi
Phys. Rev. Lett.77, 4066~1996! identifies a van Hove singular
ity 25 meV below the Fermi level in qualitative accord with th
photoemission spectrum, which locates it some 19 meV be
the Fermi level, e.g., K. Gofronet al., ibid. 73, 3302 ~1994!.
However, a number of authors have ascribed this ‘‘extended
Hove singularity’’ to the many-body correlations. See N. Bu
et al., ibid. 72, 705 ~1994!!; E. Dagottoet al., ibid. 73, 728
~1994!; and most recently W.-G. Yin, C.-D. Gong, and P. W
Leung, ibid. 81, 2534 ~1998!. If they are correct, this phenom
enon would be only remotely related to the spectrum of o
particle Bloch energies. Last but not least, there is disagreem
whether this singularity is even a feature which is shared byall
copper-oxide-based high-Tc materials, or whether it is an acc
dental, and therefore less interesting, property of some of th
see S. LaRosaet al., Phys. Rev. B56, R525~1997!.

6J. Hubbard, Proc. R. Soc. London, Ser. A277, 237 ~1964!; the
modifications to accommodate two species of ions are along
lines proposed some time ago by V. Emery, Phys. Rev. Lett.58,
2794 ~1987!; P. W. Anderson, Science235, 1196~1987!.

7The interaction of two extra electrons in an oxygen 2p orbital has
to be weak, since these ions are known to accommodate
lences 2, 1, and 0 with equal ease whenever the chemical po
tial is positioned near the energy of the singly occupiedp
orbital.
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8According to the Pauli principle they have, perforce, oppos
spins.

9H. Takagi, Y. Tokura, and S. Uchida, Physica C162-164, 1101
~1989!; S. Uchida, H. Takagi, and Y. Tokura,ibid. 162-164,
1677 ~1989!.

10The antiferromagnetic phase of the copper oxides has been
tensely analyzed by a variety of theoretical and numerical ma
body techniques and fitted to experiment in such papers a
Keimer et al., Phys. Rev. B46, 14 034 ~1992!; see the most
recent review by M. A. Kastener, R. J. Birgeneau, G. Shira
and Y. Endoh, Rev. Mod. Phys.70, 897 ~1998!. In the present
paper, we are concerned mainly with the metallic and/or sup
conducting phase, and make no attempt to examine the ant
romagnetic insulating phase which, experimentally, is o
stable at or nearn51, i.e., five electronsper cell.

11Here we follow J. R. Schrieffer,Theory of Superconductivity
~Benjamin, New York, 1964!, Chap. 2.

12While the present theory is developed for bothp- and n-type
materials, the actual calculations in the text are all for t
former, given their greater utility. However, the interested rea
can easily obtain similar results for the latter or can request th
from the author.

13However, for completeness, all statesincluding the high-energy
states are required in the perturbation theory.

14F. C. Zhang and T. M. Rice, Phys. Rev. B37, 3759~1988!.
15Taking away an electron from thetth cell and putting the cell into

the u3s,i ) configuration would yieldqi511 at a cost of energy
E32E4 which is the same asE52E4 . However, because it is
energetically cheaper to remove a zero-energy electron from
filled b band, theu3s,i ) are not automatically accessed if w
just specifyqi511 and thus do not play the same importa
role in the model as do theu5s,i ) for qi521. ~They do play a
role as virtual states accessed in the perturbation theory.!

16The remaining ten matrix elements connect the initial state
states of higher energy and thus, to leading order, enter onl
the self-energy of theq521 cell.

17E.g., M. W. Long and X. Zotos, Phys. Rev. B48, 317 ~1993!.
18By a property of second-order perturbation theory, it is, in fac

lower bound to the exact ground-state energy of the model.
19Some experimental observations have identified an ‘‘exten

van Hove singularity’’ some 10–30 meVbelow the Fermi level
rather than lying above it: K. Gofronet al., J. Phys. Chem.
Solids 54, 1193 ~1993!; Phys. Rev. Lett.73, 3302 ~1994! in
Y-B-Cu-O, D. S. Dessauet al., ibid. 71, 2781 ~1993!; D. M.
King et al., ibid. 73, 3298 ~1994! in Bi-Sr-Ca-Cu-O; and T.
Yokoyaet al., ibid. 76, 3009~1996! in the noncuprate Sr2RuO4,
p-type materials. While this may appear to contradict the sp
trum illustrated in Figs. 1 and 2 of the present work, we note t
some published computer simulations, molecular dynam
and/or exact diagonalization studies on small clusters, base
simplet-t8-J models do fit these observations and ascribe sh
in the positions of the singularities to the dynamics of t
strongly interacting particles; see discussion in Ref. 5.

20Because of the difference in signs, the motional energy of 5’s
a background of 6’s has its minimum atk50. Expansion about
k50 yields DE5(k)5const1k2/2M , which in two dimensions
yields an unexceptional, constant, density-of-states near
band edge.

21In the spirit of the Born-Oppenheimer approximation we fix t
particles at the specified sites for the purpose of calculating t
interactions.
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22However, if two 5↑’s are introduced into the sea of 6’s the tot
excitation energyDE↑↑ does not depend on their separation a
the scalar potential vanishes:V55,6(R)[0, at allx.

23V(R) was believed to vanish in the limit model, Ref. 1, becau
the last term in@ # in Eq. ~12a! does not evenappearat x50.
However, now we are calculating at finitex, retaining all the
terms and then proceeding to the limitx→0 and by l’Hopital’s
rule this term is nonzero—indeed, maximal—in the limitx
→0, although it is never large nor even comparable toUeff .

24C. Y. Chenet al., Phys. Rev. B43, 1 ~1991!.
25E.g., A. E. Ruckenstein, P. J. Hirschfeld, and J. Appel, Phys. R

B 36, 857 ~1987!.
26Although the BCS equations are identical to those for the tw
e

v.

-

body bound state, now the interactions are no longer be
treated precisely, but in what has been termed a general
Hartree-Fock approximation. Both they, and the energies«k ,
should be renormalized. At higher densities, the antiferrom
netic correlations should be taken into account. Finally, fluct
tions play a non-negligible role in two dimensions. These i
portant considerations are all beyond the scope of the pre
work but will be addressed elsewhere.

27Of course, these solutions do not take into account the increa
competition with antiferromagnetic correlations as the bound
to the antiferromagnetic phase is approached. The observeddrop
in Tc from its maximum nearn50.85 toTc50 at the magnetic
phase boundary should also flow from a comprehensive the


