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Relativistic framework for microscopic theories of superconductivity.
II. The Pauli equation for superconductors

K. Capelle and E. K. U. Gross
Institut für Theoretische Physik, Universita¨t Würzburg, Am Hubland, D-97074 Wu¨rzburg, Germany

~Received 14 October 1997!

It is shown that the interplay between relativity and coherence, found in superconductors with heavy ele-
ments, leads to a number of interesting and previously unknown effects. In particular, several types of spin-
orbit coupling are shown to exist only in superconductors. Explicit expressions describing these effects are
derived using a covariant formulation of the theory of superconductivity. It is demonstrated that relativistic
effects can become relevant, e.g., in high-temperature and heavy-fermion superconductors, superconducting
heterostructures, and rotating superconductors.@S0163-1829~99!11205-0#
a
rs
e
w

-

on

a
a
6
a
se
gl
o-

a
a
in

-
.,
te
th
e
o
r.
ra
in
d-
-
ay
tin

t
n-

am
t

pe
o

od

on-
nal
to a
al

es-
ss

it
d in
.
ro-
. III
uce

su-
ond-
he
the

nd,
IV

t on

n
s in

ich
ge-
I. INTRODUCTION

This is the second in a series of two papers devoted to
investigation of the effects of relativity in superconducto
In the preceding paper,1 henceforth referred to as paper I, w
studied the Dirac equation for superconductors. It was sho
there that the order parameters~OP’s! describing supercon
ductivity can be represented in terms of 434 matrices en-
tering the Dirac Hamiltonian on the same footing as the c

ventional ĝ matrices of the Dirac theory. By performing
symmetry analysis with respect to the Lorentz group it w
found that only five different types of OP’s, with a total of 1
components, are consistent with the requirement of cov
ance.~This is to be contrasted with the nonrelativistic ca
where one has two types of OP’s, namely those for sin
and triplet superconductivity, with a total of four comp
nents!. The five relativistic OP’s transform as a scalar,
pseudoscalar, a four vector, an axial four vector and an
tisymmetric tensor of rank two, respectively. These OP’s
clude the relativistic generalization of the BCS~singlet! and
the Balian-Werthamer~triplet! OP, among others.

Our study is motivated by the fact that relativity influ
ences many properties of superconductors, such as, e.g
Knight shift, the upper critical field, the order-parame
symmetry, the Meissner effect, the band structure,
magneto-optical response, etc. However, in most of th
situations relativity constitutes a small perturbation acting
an unperturbed, essentially nonrelativistic, superconducto
is, therefore, not always necessary to employ the full Di
equation. Considerable simplification is achieved by mak
the transition to the weakly relativistic limit, i.e., by expan
ing to order (v/c)2. Not only does this simplify the equa
tions, it also yields further insight into the subtle interpl
between relativistic symmetry breaking and superconduc
coherence. The present paper therefore deals mainly with
derivation of weakly relativistic corrections to the conve
tional theory of superconductivity.

The simplest possible case, that of a local order par
eter, treated within the conventional Pauli approximation
the Dirac equation, was already studied in our earlier pa
Ref. 2. In the present paper we go in three respects bey
the treatment of that work. Firstly, we use reduction meth
PRB 590163-1829/99/59~10!/7155~11!/$15.00
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which are both more reliable in higher orders and more c
venient for numerical calculations than the conventio
Pauli approximation. Secondly, we apply these methods
more general relativistic Hamiltonian containing a nonloc
pair potential instead of a local one. This allows us to inv
tigate the effects of relativity not only on the center-of-ma
motion but also on theinternal degrees of freedom of the
Cooper pair. Thirdly, we study the weakly relativistic lim
of several types of relativistic order parameters not studie
Ref. 2, but contained in the general formalism of paper I

The present paper is organized as follows: Sec. II int
duces the Dirac–Bogolubov–de Gennes equation. In Sec
we discuss a variety of methods which can be used to red
the Dirac equation to the form of a Schro¨dinger equation
plus correction terms. These methods are generalized to
perconducters and used to obtain zeroth-, first-, and sec
order approximations. In zeroth order we recover t
Bogolubov–de Gennes equations, in first order appears
interaction with magnetic fields and in second order we fi
among others, several spin-orbit-type terms. Finally, Sec.
is devoted to a first analysis of these terms and their effec
realistic superconductors.

II. THE DIRAC –BOGOLUBOV –DE GENNES EQUATIONS

The conventional 434 Dirac-Hamiltonian~-density!, ĥd ,
is defined by3,4

ĥdFªĝ0@cĝp1mc2~12ĝ0!1qĝmAm#F5EF, ~1!

where E is the energy measured relative tomc2, Am

5(V/q,2A) is the four potential5 and ĝm stands for the
usualĝ matrices.3,4 Here and in the following a summatio
over repeated upper and lower greek indices, such a
ĝmAm , is implied.

The conventional Bogolubov–de Gennes equation, wh
is the basic equation of the microscopic theory of inhomo
neous superconductors, reads6,7

S ĥs d̂

d̂† 2ĥs*
D S uk~r !

vk~r !
D 5EkS uk~r !

vk~r !
D , ~2!
7155 ©1999 The American Physical Society
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where uk(r ) and vk(r ) are particle- and hole amplitude
respectively.ĥs is the Schro¨dinger Hamiltonian

ĥs5
p2

2m
1V~r !. ~3!

The integral operator

d̂5E d3r 8 . . . D~r ,r 8! ~4!

contains the pair potential as kernel. For the case of a lo
pair potential it reduces to the multiplicative operatorD(R),
where R is the center-of-mass coordinate of the Coop
pairs.

In our earlier paper2 and in paper I of this series we hav
shown that the proper relativistic generalization of t
Bogolubov–de Gennes equation is given by the 838 equa-
tion

S ĥd D

D † 2ĥd*
D S ujk~r !

v jk~r !
D 5EjkS ujk~r !

v jk~r !
D , ~5!

which we called the Dirac–Bogolubov–de Gennes equa
~DBdGE!. Here hd is the Dirac Hamiltonian, as defined i
Eq. ~1! andD is the integral operator

Dªd̂ĥ5E d3r 8 . . . D~r ,r 8!ĥ ~6!

with the 434 matrix

ĥ5S 0 1 0 0

21 0 0 0

0 0 0 1

0 0 21 0

D 5S i ŝy 0

0 i ŝy
D . ~7!

The particle and hole amplitudesujk and v jk are four-
component~Dirac! spinors with componentsui jk andv i jk .

In the terminology of I, the matrixĥ leads to the scala
OP of the generalized BCS type, defined as

x~r ,r 8!ªCT~r !ĥC~r 8!. ~8!

It is this OP which is the direct relativistic generalization
the BCS singlet OP. In I we derived 15 further OP’s whi
describe more complicated pairing states of the superc
ductor. In the present paper we are mainly concerned w
BCS-type pairing and therefore focus on theĥ-OP. We re-
turn to the other 15 OP’s in Sec. IV D.

III. WEAKLY RELATIVISTIC APPROXIMATION

A. Conventional Pauli method

In order to identify weakly relativistic corrections to th
conventional theory of superconductivity one needs to
duce the Dirac-type equation~5! to the form of a
Schrödinger-type equation plus correction terms of vario
orders inv/c. To this end we first briefly discuss the met
ods available for this purpose in the case of the conventio
Dirac Hamiltonian. Introducing the vector of the Pauli m
al

r

n

n-
th

-

s

al

tricess and writing the four-component spinorF in terms of
two two-component spinors,f andx, as

F~r !5S f~r !

x~r !
D , ~9!

Eq. ~1! can be written in terms of two 232 equations as

Vf1cs–px5Ef,

cs–pf1~V22mc2!x5Ex. ~10!

Herep stands for@p2(q/c)A#.
For this Hamiltonian there exists a large variety of me

ods which can be used to generate weakly relativistic
proximations. All of them are based on the observation t
in the weakly relativistic limit the two components of th
spinorx, denoted the small components, are by a factorv/c
smaller than those off, which are consequently termed th
large components. The small components can therefore
approximately eliminated from the equation, reducing t
434 Dirac equation to a 232 equation of the Schro¨dinger
type. The elimination can be performed in orders of, e
v/c, where each order contributes relativistic corrections
the zero order, i.e., Schro¨dinger, case.

This program is implemented directly in the convention
Pauli method~CPM! in which one solves the second equ
tion of Eq. ~10! for x and substitutes the result into the firs
This yields an equation for the large componentsf only:

FV1cs–p
1

E2~V22mc2!
cs–pGf5Ef. ~11!

Expanding to second order inv/c and evaluating the deriva
tives leads to the well-known Darwin-, spin-orbit- and mas
velocity corrections.3,8–11

The counterpart of Eq.~11! in the superconducting case
immediately found from Eq.~5! to be

F S V i ŝyd̂

2 i ŝyd̂* 2V
D 1S csp 0

0 2c~sp!* D
3S E2~V22mc2! 2 i ŝyd̂

i ŝyd̂* E1~V22mc2!
D 21

3S csp 0

0 2c~sp!* D G S uL

vL
D 5ES uL

vL
D , ~12!

which can be rewritten as



e

d

m

he
a
an
n

ic

ne
m
o
a

en
d
to
he
co
n
ll

T
t

ed

e
w

ot
m

k,
l, so

yti-

to

y in
-

rd
con-

c

for

PRB 59 7157RELATIVISTIC FRAMEWORK FOR . . . . II. . . .
F S V i ŝyd̂

2 i ŝyd̂* 2V
D 2

1

2mS sp 0

0 2~sp!* D

3S V2E

2mc2
21

i ŝyd̂

2mc2

2
i ŝyd̂*

2mc2
2

V1E

2mc2
11

D 21

S sp 0

0 2~sp!* D G
3S uL

vL
D 5ES uL

vL
D . ~13!

In these equationsuL andvL are the large components of th
DBdGE~the indicesjk are suppressed for notational clarity!.
Each is itself a two-component spinor. Equation~13! is still
exactly equivalent to the original DBdGE~5!. According to
the prescription of the CPM one now proceeds to expan
orders of

V2E

2mc2
,

V1E

2mc2
and

d̂

2mc2
, ~14!

and analytically performs the inversion in every order.
Although the CPM is a standard method, it suffers fro

several drawbacks:12,13 ~i! Already in second order ofv/c,
the effective Hamiltonian obtained after elimination of t
small components, contains the energy to be calculated
thus does not have the form of an eigenvalue problem
more. ~ii ! The large components of the Dirac Hamiltonia
alone are not normalized, only the full~four-component! so-
lutions are. It is, however, these large components wh
become eigenfunctions of the Pauli Hamiltonian.~iii ! The
Darwin term, as obtained by the CPM, is not Hermitian.~iv!
Detailed evaluation of the three correction terms mentio
above shows that they lead, in the presence of a Coulo
potential, to variationally unstable Hamiltonians. The reas
for this lies in the bad convergence properties of the exp
sions used in the CPM~cf. Sec. III D below!.

Similar problems show up in the Foldy-Wouthuys
transformation~FWT!. While this used to be a standar
method for obtaining weakly relativistic approximations
Dirac-type equations,3 recent research has shown that in t
presence of Coulomb potentials the method amounts to
structing wave functions which are extremely singular a
not normalizable.9 Recent studies and reviews thus genera
advise against employing the FWT.9,10,13–15

In order to avoid the problems of the CPM and the FW
in the superconducting case, we turn to more sophistica
modifications of the CPM. The first of these, the modifi
Pauli method~MPM!,12,16 is mathematically very similar to
the CPM and solves problems~i!–~iii !. We employ this
method in Sec. III C of the present work. In Sec. III D w
generalize to superconductors a reduction method which
designed specifically to solve problem~iv!, namely the regu-
lar approximation of Baerends and co-workers.13,14,17

As an additional complication the inversion itself is n
trivial any more because in the superconducting case the
in
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trix to be inverted contains the nonlocal integral operatord̂.
This complication was not present in our previous wor2

because we then assumed the pair potential to be loca
that d̂ became the multiplicative operatorD(R). In Sec. III C
we describe a way to perform the required inversion anal
cally to any required order inv/c.

B. First order in v/c:
The spin–Bogolubov–de Gennes equation

Determining the first- and zero-order approximation
Eq. ~13! is straightforward, because~a! all four above-
mentioned problems of the CPM manifest themselves onl
higher than first order and~b! the terms containing the in
verse of the integral operatord̂, too, contribute only to the
second and higher orders. Setting

V2E

2mc2
[

V1E

2mc2
[

d̂

2mc2
[0 ~15!

the matrix inversion becomes trivial. After straightforwa
algebra, which is essentially the same as in the nonsuper
ducting case3,8,12 one finds, to first order, the following 434
equation:

S h i ŝyd̂

2 i ŝyd̂* 2h* D S uL

vL
D 5ES uL

vL
D , ~16!

where

ĥ5
p2

2m
1V2m0sB ~17!

is the generalization of Eq.~3! in the presence of magneti
fields andm05\q/2mc is the Bohr magneton. Equation~16!
is the spin–Bogolubov–de Gennes equation6,18 for the case
of a nonlocal pair potentialD(r ,r 8). The large components
of the Dirac spinors become Pauli spinors with entries
spin-up and spin-down

uL~r !5S u↑sk~r !

u↓sk~r !
D ~18!

and correspondingly forvL . Heres andt are spin-quantum
numbers. Written out as a 434 equation, Eq.~16! thus be-
comes

S h↑↑ h↑↓ 0 d̂

h↓↑ h↓↓ 2d̂ 0

0 2d̂† 2h↑↑* 2h↑↓*

d̂† 0 2h↓↑* 2h↓↓*

D S u↑sk~r !

u↓sk~r !

v↑sk~r !

v↓sk~r !

D
5EksS u↑sk~r !

u↓sk~r !

v↑sk~r !

v↓sk~r !

D , ~19!

where
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htt85F 1

2mS 2 i\¹1
e

c
A~r ! D 2

1V~r !Gdtt82m0@sB~r !#tt8 .

~20!

We note in passing that the same equation is also found
completely nonrelativistic calculation from the spi
dependent Bogolubov-Valatin transformation.6,18,19

Ct~r !5(
sk

@utsk~r !ask1vtsk* ~r !ask
† #. ~21!

The zero-order approximation is obtained from Eq.~19!
by settingA[B[0. In this case the 434 equation~19! re-
duces to the conventional 232 Bogolubov–de Gennes equ
tion of the theory of inhomogeneous superconductors.6 We
have thus verified that our theory has the correct nonrela
istic limit.

Note that while there are first-order corrections from t
electromagnetic potentials, namely the Zeeman te
(\q/2mc)sB and the vector-potential term inp5@p
2(q/c)A#, there are no such terms arising from the p
potential. This is a consequence of the form of the matrixĥ
which characterizes the relativistic generalization of
BCS-OP. In Sec. IV D we discuss the circumstances wh
can lead to first-order corrections containing the pair pot
tial.

C. Second order inv/c: the modified Pauli approximation

Using the CPM in higher than first order leads to the fo
difficulties discussed in Sec. III A. The first three of these
solved by a modification of the CPM.12,16 In the following
we briefly outline this modification for the nonsupercondu
ing case before generalizing it to superconductors. The s
ing point is Eq.~11!, which is written as

M̂ ~E!f~r !5Ef~r !, ~22!

whereM̂ (E) is the operator on the left-hand side of Eq.~11!.
Note that M̂ (E) is not a standard Hamiltonian because
contains the ‘‘eigenvalue’’E. Since the four-componen
wave functionF(r ) was properly normalized, the large com
ponents alone are not. The difference

12E d3r f~r !* f~r !5E d3r x~r !* x~r ! ~23!

is of second order inv/c and can thus not be neglecte
beyond first order.

The first step of the MPM consists in rewriting Eq.~11!
as12,16

~24!

Choosing

V5S 12
\2¹2

8m2c2D ~25!
a

v-

m

r

e
h
-

r
e

-
rt-

t

leads to a properly normalizedf8(r ). It is this function
which becomes the nonrelativistic Pauli spinor, not the ori
nal f(r ). Equation~24! is still not an eigenvalue equation
However, operating with

V225S 11
\2¹2

4m2c2D 1O~v/c!4 ~26!

on

M̂ 8~E!f8~r !5Ef8~r ! ~27!

leads to

V22M̂ 8~E!f8~r !5Ef8~r !1E
\2¹2

4m2c2
f8~r !1O~v/c!4.

~28!

The second term on the right-hand side in Eq.~28! now
cancels, to order (v/c)2, the energy-dependent term on th
left-hand side. After expansion ofM (E) to first order in

V2E

2mc2
}

v2

c2
, ~29!

one finds from Eq.~28!

S 11
\2¹2

8m2c2D FV~r !1
1

2m
spS 11

V~r !

2mc2D spG
3S 11

\2¹2

8m2c2D f8~r !5Ef8~r !. ~30!

Evidently, the first two above-mentioned problems of t
CPM are now taken care of. It turns out that the third, t
nonhermiticity of the Darwin term, does not require any fu
ther treatment. Unlike Eq.~22!, Eq. ~30! already yields the
correct, Hermitian, Darwin term.20 Evaluating Eq.~30! up to
second order inv/c leads, after straightforward algebra
manipulations,12 to

H p2

2m
1V~r !2m0sB~r !

1
1

4m2c2F\2

2
¹2V~r !1\s~¹V!3p

2
p4

2mG J f8~r !5Ef8~r !. ~31!

The first line is just the first-order Hamiltonian~17!, while
the second line contains the usual Darwin-, spin-orbit c
pling ~SOC!, and mass-velocity corrections.

In the superconducting case one can employ essent
the same method to generate relativistic corrections. The
erator V is generalized to be a 232 matrix acting on the
particle- and hole components of the DBdGE eigenfunctio
The manipulations of Eq.~11! described above have to b
repeated, now starting with Eq.~12!. However, this equation
requires the inversion of
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ŴªS E2~V22mc2! 2 i ŝyd̂

i ŝyd̂* E1~V22mc2!
D ~32!

rather thanE2(V22mc2), as required in Eq.~11!. We thus
have to invertŴ and, in particular, the integral operatord̂,
before we can employ the machinery of the MPM. To th
end we make use of the following relation for operatorsA
andB:

~A1B!215A212A21BA211A21BA21BA212•••,
~33!

which allows us to replace the inversion ofA1B by an
infinite series21 in which each term requires the inversion
A only. We now decomposeŴ according to

~34!
In this way we achieve a decomposition where, loos
speaking,A contains the information about relativity, whil
B contains that about superconductivity. The matrixA can be
tu
ic
e
pp

lu
y

trivially inverted. Furthermore, it contains all factors ofmc2,
so that each term in the series~33! contributes as many fac
tors of 1/c2 as it contains factors ofA21. The matrix B,
containing the integral operatord̂, need not be inverted at al
To obtain the second-order approximation to Eq.~13! we
have to go to order 1/c4 in Eq. ~33!. It is readily found from
Eqs.~33! and ~34! that to this order

Ŵ215
1

2mc2S 12
E2V

2mc2
2 isy

d̂

2mc2

isy

d̂*

2mc2
2S 11

E1V

2mc2D D 1O~1/c6!.

~35!

Inserting this result in Eq.~12! we can proceed with the
MPM, as above. We first define properly normalized Bog
ubov spinors by

S uL8

vL8
DªS V 0

0 V
D S uL

vL
D ~36!

and then eliminate the energy-dependent term on the
hand side of Eq.~12!. The counterpart of Eq.~30! is found to
be
S 11
\2¹2

8m2c2D F S V i ŝyd̂

2 i ŝyd̂* 2V
D 1

1

2mS spS 11
V

2mc2D sp sp
i ŝyd̂

2mc2
~sp!*

2~sp!*
i ŝyd̂*

2mc2
sp 2~sp!* S 11

V

2mc2D ~sp!*
D G S 11

\2¹2

8m2c2D S uL8

vL8
D

5ES uL8

vL8
D , ~37!
o
ion
a-

r-
ap-

of
c-
which is a proper eigenvalue equation and has the struc
of a Bogolubov–de Gennes-type equation for the part
and hole amplitudesuL8 andvL8 . Note that, as is always th
case for Bogolubov–de Gennes-type equations, the u
left corner of the matrix equation~37! corresponds to the
nonsuperconducting result~30!. By going through the same
algebra as in the nonsuperconducting case, we can eva
the various derivatives and matrix products in~37!. Keeping
only terms of second order in 1/c we finally obtain

F S h i ŝyd̂

2 i ŝyd̂* 2h* D 1
1

4m2c2S ĥ2 d̂2

d̂2
† 2ĥ2*

D G S uL8

vL8
D

5ES uL8

vL8
D , ~38!

where

ĥ25
\2

2
¹2V~r !1\s~¹V!3p2

p4

2m
~39!
re
le

er

ate

and

d̂25E d3r 8spD~r ,r 8!sp8 . . . ~ isy!

2
1

2E d3r 8@p2D~r ,r 8!1D~r ,r 8!p82# . . . ~ isy!.

~40!

Here the prime inp8 stands for a derivative with respect t
r 8. In analogy to the Dirac–Bogolubov–de Gennes equat
~5! we call Eq.~38! the Pauli-Bogolubov–de Gennes equ
tion ~PBdGE!.

The relativistic correction terms ofĥ2 andd̂2 are the main
result of the present paper. By comparison with Eq.~31! the
terms ofĥ2 are seen to be the conventional relativistic co
rections in this order. In the superconducting case they
pear twice, once throughĥ2 and once through2ĥ2* . The

terms ofd̂2 , on the other hand, are relativistic corrections
the sameorder in 1/c existing in superconductors only. Se



nd

-

n
b-

e
ng
e

A

e

Th

e
u

p-

o
lle
e

ic
,
n-

Eq.

er-

the
of
-

in
a-

p-
of

on-

of

es
ns

-

ate
s.
the

on

vy
-
GE
s.

7160 PRB 59K. CAPELLE AND E. K. U. GROSS
tion IV is devoted to a first analysis of the properties a
consequences of these weakly relativistic corrections.

Note that the decomposition~34! is not the only one lead
ing to the final result~38!. Choosing

A5S E2~V022mc2! 2 i ŝyd̂0

i ŝyd̂0* E1~V022mc2!D , ~41!

whereV0 is the spatially constant part ofV(r ) and d̂0 is the
integral operator

d̂05E d3r 8 . . . uD~r ,r 8!u ~42!

containing the modulus of the pair potential as kernel, a
defining B5W2A, another suitable decomposition is o
tained. After a lengthy calculation the matrixA can be in-
verted analytically up to second order inv/c. Its inverse is,
to this order, of the form~35!, however withV0 and d̂0

substituted forV and d̂. The second term in the series~33!
then contains the contributions of the spatially depend
part of V(r ) and the phase of the pair potential. Evaluati
this term to second order inv/c as well, leads to the sam
final expression as the simpler decomposition~34!, namely
to Eq. ~38!.

D. The regular approximation

Before we proceed to a discussion ofĥ2 andd̂2 , we have
to return to the problems of the Pauli elimination method.
demonstrated explicitly, the MPM solves problems~i!–~iii !
of the CPM, for both the superconducting and the nonsup
conducting case. Problem~iv!, the variational instability of
the resulting Hamiltonian, still needs to be addressed.
source of this problem is the expansion in

V2E

2mc2
}

v2

c2
, ~43!

which is small whenv/c is small, but large close to th
nucleus. This leads to convergence problems and related
physical behavior of the Pauli Hamiltonian. Similarly, kee
ing only the first two terms in the expansion~33! is not
justified, unless

iBi!iAi , ~44!

wherei•i is the operator norm.22 However, this condition is
not satisfied ifE2V is of the same order as 2mc2. Very
close to the nucleus,E2V can even get larger than 2mc2

and neither the conventional, nor the modified Pauli meth
converge. These difficulties are avoided, e.g., in the so-ca
regular approximation.13,14,17In this method one rewrites th
fraction in Eq.~11! according to

1

E2~V22mc2!
[

1

2mc2S 11
E2V

2mc2D 21

[
1

2mc22V
S 11

E

2mc22V
D 21

~45!
d

nt

s

r-

e

n-

d
d

and proceeds to expand in

E

2mc22V~r !
. ~46!

Evidently, this term is small not only in the nonrelativist
domain, wheremc2@V(r ), but also close to the nucleus
whereV(r ) is large. It thus constitutes a much better expa
sion parameter as the more conventional choice,
~43!.13,14,17

The regular approximation is readily generalized to sup
conductors. First, the matrix to be inverted in Eq.~12! is
rewritten according to

S E2~V22mc2! 2 i ŝyd̂

i ŝyd̂* E1~V22mc2!
D 21

5
1

2mc22VS E

2mc22V
11 2

2ŝyd̂

2mc22V

2ŝyd̂*

2mc22V

E

2mc22V
21

D 21

.

~47!

The inversion itself proceeds along the same lines as in
case of the MPM. The expansion, finally, is in powers
E/(2mc22V) and d̂/(2mc22V). In the nonsuperconduct
ing case, one often limits oneself to the zero-order term
this expansion, leading to the zero-order regular approxim
tion ~ZORA!. A conceptually new feature of the regular a
proximation is that it no longer is an expansion in orders
v/c. As a consequence, the ZORA Hamiltonian already c
tains relativistic corrections to arbitrary high order in 1/c.
The same is true for the superconducting generalization
the ZORA. One finds, from Eqs.~47! and ~12!,

S ĥz1V iŝyd̂

2 i ŝyd̂* 2ĥz* 2V
D S uL

vL
D 5ES uL

vL
D , ~48!

where

ĥz5sp
mc2

2mc22V
sp. ~49!

Equation~48! is denoted the ZORA-Bogolubov–de Genn
equation~ZBdGE!. Clearly, there are zero-order correctio
arising from the lattice potential,V(r ), ~which do not have
the form of the conventional spin-orbit terms, etc.! but none
from the pair potentialD(r ,r 8). In higher orders, there ap
pear also corrections containingD(r ,r 8).

On physical grounds, we expect that in most solid-st
situations only the~modified! Pauli method, and hence Eq
~38!–~40!, are needed. In solids, the core electrons screen
Coulomb potential of the nuclei, so that for the conducti
electrons~which are involved in superconductivity! Pauli-
type expansions are sufficient. In materials with very hea
elements in the lattice, problem~iv! can also become rel
evant in solid-state applications. In this case, the ZBd
~48! provides a viable alternative to Pauli-type procedure
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IV. ANALYSIS OF THE
PAULI –BOGOLUBOV –DE GENNES EQUATIONS

A. Interpretation of the correction terms

The weakly relativistic correction terms in the PBdG
containing the pair potential, as given in Eq.~40!, can be
rewritten in a more transparent way. First, we specialize
finite systems, so that one can perform partial integrati
without occurrence of surface terms. It is then readily fou
that

d̂25E d3r 8i s@pD~r ,r 8!#3p8 . . . i ŝy

2
1

2E d3r 8@~p1p8!2D~r ,r 8!# . . . i ŝy . ~50!

Here the momentum operators act only on the directly
lowing quantities, as indicated explicitly by the bracke
Similar terms are also found in the Pauli approximation
the relativistic Breit equation for two-electron atoms.23 In the
present context we deal with single-particle equations,
the nonlocality of the pair potential reflects the two-partic
aspects of the Cooper pair. We now introduce relative
center-of-mass coordinates,s andR, according to

s~r ,r 8!ªr2r 8 ~51!

and

R~r ,r 8!ª
r1r 8

2
. ~52!

We use the same symbol for the pair potential expresse
the coordinates of the individual particles,D(r ,r 8), and ex-
pressed in center-of-mass and relative coordinates,D(s,R).
Equation~50! then becomes

d̂25E d3r 8@ d̂2
~1!~s,R!1d̂2

~2!~s,R!1d̂2
~3!~s,R!# . . . i ŝy ,

~53!

where the integration is still overr 8. The three terms in the
kernel of Eq.~53! can now be interpreted physically:

d̂2
~1!~s,R!ª\s•@¹RD~s,R!#3p8 ~54!

is a spin-orbit type term with respect to the orbital motion
the center-of-mass coordinate. It will in the following b
denoted as the anomalous24 spin-orbit coupling term~ASOC!
for the center-of-mass degrees of freedom~C-ASOC!.

d̂2
~2!~s,R!ª

\

2
s•@¹sD~s,R!#3p8, ~55!

on the other hand, is a spin-orbit type term with respec
the relative motionof the two electrons in the Cooper pai
This term will be referred to as the anomalous spin-or
coupling term for the relative degrees of freedom~R-ASOC!.

Having classified the ASOC terms with respect to the
bital motion, we now turn to the spin degrees of freedo
There exist at least three spinlike quantum numbers wh
are of relevance for superconductors. The first is the t
spin of the Cooper pair. As we discuss only singlet pairs
the present paper, this is always zero. The second is the
o
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of the individual electrons in the pair. Finally, there is th
spinlike label for the Bogolons, the quasiparticles created
breaking Cooper pairs.@In Eqs. ~18!–~21! the latter two
quantum numbers are denotedt and s, respectively.# The
spin involved in both C-ASOC and R-ASOC is the electr
spin. It is coupled to the orbital motion of the individua
electrons in the presence of the pair potentialD(s,R). The
effect described by these terms is the additional spin-o
coupling which originates from thecoherentmotion of the
two electrons in the Cooper pair. In the absence of cohere
D(s,R)[0 and only the conventional SOC, arising from th
lattice potential,v(r ), remains.

In many situations the modulus of the pair potential
spatially constant and its phase depends only on the ce
of-mass coordinate, so that the full pair potential can be w
ten as

D~s,R!5D̄eif~R!, ~56!

whereD̄ is a real-valued constant. Such a pair potential
scribes, e.g., supercurrents in thin films.6 For a pair potential
of the form~56! and sufficiently close to the critical tempera
ture, the supercurrents are proportional to the gradient of
phase of the order parameter, viz.,

j s~R!}uD̄u2¹Rf~R!. ~57!

Therefore,

d̂2
~1!~s,R!}s•@ j s3p8#, ~58!

which shows that the C-ASOC term can alternatively be
terpreted as a coupling of the spin to the supercurrents.

Due to the termj s3p8, the expectation value of Eq.~58!
is roughly proportional to the ratiovsv/c2, wherevs is the
velocity associated with the supercurrents~the phase of the
condensate! andv is that of the quasiparticle excitations~the
Bogolons!. This is to be contrasted with the ratiov2/c2,
which appears in the expectation value of the conventio
relativistic corrections contained inĥ2 . The MPM for super-
conductors generates the leading terms in an expansio
both of these parameters.

The R-ASOC term can, along similar lines, be interpre
as a coupling of the spin to the internal currents due to
coherent relative motion of the electrons in the Cooper p

The third term in Eq.~53! contains second derivative
with respect to the center-of-mass coordinate and is given

d̂2
~3!~s,R!ª

\2

2
¹R

2D~s,R!. ~59!

Being the counterpart to the conventional Darwin term, t
term is referred to as the anomalous Darwin term~ADT!.

Note that two types of relativistic corrections one mig
have expected are not present. First, there is no anoma
Darwin term containing second derivatives with respect
the relative coordinate. Thus, in contrast to the ASOC ter
R-ASOC and C-ASOC, there is no ‘‘R-ADT,’’ but only a
‘‘C-ADT’’ term. This is consistent with the requirement o
the correct local limit, to be discussed in Sec. IV C. Furth
more, there is no superconducting counterpart to the m
velocity correction. This is physically reasonable because
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mass-velocity correction is entirely of kinematic origin a
thus independent of the presence or absence of externa
tentials.

B. Discussion of consequences of the relativistic corrections

The various relativistic corrections can be classified
cording to whether they lead to the breaking of symmetr
or not. The mass-velocity correction, the conventional a
the anomalous Darwin terms do not break any symmetrie
compared to a nonrelativistic superconductor. Retaining o
these terms in the equations constitutes the supercondu
analog to the familiar ‘‘scalar relativistic’’ approximation o
ten applied in relativistic electronic structure calculations
is generally found that the relativistic effect on the kine
energy, i.e., the mass-velocity correction, is far more imp
tant than the Darwin term. As they do not break any symm
tries, the main effect of these terms is of a quantitative
ture. Examples are the relativistic mass correction
the Cooper pair, which was already measur
experimentally25–28 and the relativistic shift in the energ
spectrum of a superconductor, predicted in Ref. 2.

In Refs. 25–28 the experimental data for the mass
hancement of the Cooper pair, obtained using a techn
based on rotating superconductors, were interpreted on
basis ofad hocsubstitution of relativistic mass correction
into the BCS equations. It turned out that this procedure
very delicate and is likely to miss corrections arising fro
the internal dynamics of the Cooper pair. Indeed, a quan
tive explanation of the experimental data could not
achieved in this way.25–28 Note that our equation~39! pre-
dicts that such a mass enhancement takes placeandallows to
evaluate it on the same footing with the effects of the inter
Cooper pair dynamics and superconducting coherence.

The spin-orbit terms, on the other hand, couple the spi
the orbital degrees of freedom and, therefore, break the r
tional invariance in spin space. This symmetry breaking
a large number of important consequences, such as the
bridization of singlet and triplet states, the lifting of dege
eracies, the orientation of the macroscopic magnetiza
relative to the lattice in ferromagnetic solids and the int
duction of the total angular-momentum quantum numbej,
instead of the individual quantum numbersl ands.

The effect of these consequences of the conventional S
on various properties of superconductors has been wo
out in detail by many authors. From these investigations
known that, e.g., SOC can lead to a finite Knight shift atT
50, which is in striking contrast to the BCS prediction
zero Knight shift atT50.29–31 The conditions for coexist-
ence of magnetism and superconductivity are also stron
influenced by SOC.32,33 Furthermore, SOC can induce J
sephson currents in situations where none would be pre
nonrelativistically.34–37 The value of the upper critical field
in particular the influence of Pauli paramagnetic limiting,
known to be significantly affected by SOC.38,39 Moreover,
the magneto-optical response of both normal and super
ductors is changed in the presence of SOC. In particular,
absorption of light with left-handed polarization differs fro
that of light with right-handed polarization. This phenom
enon, termed dichroism, is mainly due to SOC.40–43

With the exception of dichroism, all these effects were,
yet, analyzed on the basis of the conventional SOC only
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each case the ASOC terms provide an additional sourc
spin-orbit coupling which has a very different temperatu
behavior as compared to the conventional SOC. For the c
of the absorption of polarized light we have meanwhile
vestigated the effects of SOC and ASOC in detail41–43 and
found that ASOC indeed constitutes an additional, pot
tially observable, source of dichroism, which is distinguish
by its temperature dependence and unique coherence fac

Finally, the symmetry of the order parameter is strong
influenced by SOC.34,44–48The ASOC terms, containing th
pair potential itself, can obviously have a similar effect.
particular, the spin-orbit coupling with respect to the relati
coordinate of the two electrons in the Cooper pair, R-ASO
suggests that a classification according to the total ang
momentum of the pairj, instead of its orbital componentl,
may be more important than previously thought. The co
mon classification intos-wave andd-wave superconductivity
refers to the internal symmetry of the Copper pair, i.e., to
relative coordinate. In order to discuss the symmetry prop
ties of the OP one usually decomposes it in contributio
which transform according to the irreducible representati
of the point group of the crystal.47,48 Specializing momen-
tarily to the case of a homogeneous system, such a dec
position is achieved by Fourier transformingD(s) with re-
spect to the relative coordinates and expandingD(k)
according to

D~k!5(
lm

clm~ uku!Ym
l ~ k̂!, ~60!

where Ym
l denotes the spherical harmonics andk̂ is a unit

vector in the direction ofk. The approximation

clm~ uku!→cm~kF!d l ,2 , ~61!

which restricts attention to the Fermi surface and retains o
the l 52 spherical harmonic, then leads to the much d
cussed case ofd-wave superconductivity. The point group o
the crystal is taken into account by replacing the spher
harmonics by symmetry adapted basis functions of the p
group.47 It is tempting to speculate that the difficulties e
countered in uniquely assigning the OP in the hig
temperature superconductors and the heavy-fermion c
pounds a value ofl ~Refs. 34,44,48! may be partially due to
the fact that, as a consequence of R-ASOC, the internal
grees of freedom actually have to be classified accordingj.
Whether or not this classification is mandatory depends
course, on the actual magnitude of the various SOC ter
We, therefore, now turn to a brief discussion of the circu
stances under which SOC and ASOC can be relevant
realistic superconductors.

The energy contribution due to SOC, as described by
second term in Eq.~39!, is known to rise approximately a
Zeff

4 , where the effective nuclear charge is given byZeff5Z
2z. The shielding correctionz takes into account that th
core electrons screen the nuclear Coulomb poten
Normal-state calculations show that for elements withZ
.40 inclusion of the SOC is essential. Every hig
temperature superconductor and all heavy-fermion syst
contain such elements.
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To assess the importance of the ASOC terms we rep
the gradients of the pair potential by suitable averages,
cording to

¹RD~s,R!→
^D&
j

, ~62!

where^D& is the average energy gap andj is the coherence
length. For a superconductor with a coherence length wh
is, e.g., 100 times smaller and an energy gap which is
times larger than for typical BCS-type superconducto
ASOC becomes 104 times more important. These numeric
values are typical of the high-temperature superconducto

The fact that the magnitude of ASOC hence does
depend primarily on the presence of heavy atoms~i.e., high
Z), but also on typical superconducting properties such aj,
implies that ASOC can be relevant even when SOC alon
not. Relativity might therefore be important for a larger cla
of materials than previously thought. Such a situation is
alized, e.g., in the vortex state of a superconductor cont
ing light atoms. Here SOC is small, sinceZ is small, while
C-ASOC is large because¹RD(s,R) is large in the vortices.
Similar considerations apply to superconducting heterost
tures where@¹RD(s,R)#/D(s,R) becomes large at the inte
faces.

R-ASOC, on the other hand, can be expected to be im
tant for an OP with a complicated internal structure, such
the OP describing anisotropic superconductivity, the Ful
Ferrel state, coexistence of superconductivity and mag
tism, etc., because in these cases¹sD(s,R) is enhanced, as
compared to homogeneouss-wave order parameters.

It should finally be stressed that, although the abso
magnitude of SOC and ASOC is small in most materials,
effects produced by them can be quite large. The SO
induced splitting of bands can, e.g., lead to band gaps of
order of 0.1 eV or more,49 which is due to the symmetry
breaking effect of the conventional SOC. A similar effe
might occur also for the ASOC terms. Further situations
which SOC and ASOC can play a role are mentioned
Sec. V.

C. Relation to the previous formulation of the relativistic
theory of superconductivity

In a previous paper2 we presented a relativistic theory o
superconductivity for superconductors with alocal pair po-
tential. A local formulation is, of course, not able to hand
the internal degrees of freedom of the Cooper pair, but i
adequate to treat macroscopic inhomogeneities, such as
faces, vortices, etc.

The corresponding OP was expressed in terms of the
trix ĥ, as given in Eq.~7! of the present paper, according

x~r !5C~r !ThC~r !, ~63!

whereC(r … is a four component solution to the Dirac equ
tion. This is the local version of the BCS-type OP defined
Eq. ~8!.

In the present paper we are mainly concerned with
nonlocal case, for which we used the MPM to gener
weakly relativistic corrections. In Ref. 2, on the other han
we used the CPM for alocal pair potential and, being face
ce
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with the above-mentioned problems of the CPM, employ
perturbation theory to construct an energy-independent
Hermitian Hamiltonian.

The local limit of the first term in Eq.~40! is obtained
from the replacement

D~r ,r 8!→D~r 8!d~r2r 8! ~64!

and yields

~sp!@D~r !~sp!#w~r !~ isy!

5„pD~r !…„pw~r !…~ isy!1D~r !p2w~r !~ isy!

1 i s„pD~r !…3„pw~r !…~ isy!, ~65!

wherew(r ) is an arbitrary test function and the right-han
side follows from the properties of the Pauli matrices. T
corresponding limit of the second term in Eq.~40! is

2
1

2
@p2

„D~r !w~r !…1D~r !p2w~r !#~ isy!

52
1

2
„p2D~r !…w~ isy!2D~r !p2w~r !~ isy!

2„pD~r !…„pw~r !…~ isy!. ~66!

The sum of both is thus

F i s„pD~r !…3p2
1

2
„p2D~r !…Gw~r !~ isy!, ~67!

which is the relativistic correction for a local pair potential
derived in Ref. 2. In view of the different methods used
both approaches this agreement constitutes a useful co
tency test.

Note that the correct local limit is obtained from th
R-ASOC, C-ASOC, and ADT contributions, as described
Sec. IV A. The presence of a further ADT containing deriv
tives with respect to therelativecoordinate would be impos
sible to reconcile with the requirement of the correct loc
limit. Indeed, postulating the appearance of an anomalo
Darwin term of the form

d̂2
~4!~s,R!ªa

\2

2
¹s

2D~s,R! ~68!

in Eq. ~53! and determining the factora from the require-
ment of the correct local limit, it is found that the only solu
tion is a[0. Our treatment of the nonlocal pair potenti
with the MPM automatically yields the corrrect ADT.

Concluding this section we point out that while Ref.
was the first to provide a microscopic derivation of a sp
orbit term containing the pair potential, Ueda and Rice50 pre-
viously suggested such a term on group-theoretical grou
However, their result is limited top-wave superconductivity
in a cubic crystal and contains phenomenological coe
cients.

D. Inclusion of the second OP of the generalized BCS-type

In I we discussed in detail which types of OP and p
potentials can be included in a relativistic theory of sup
conductivity without violating covariance. It turned out th
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only two of the 16 OP components are consistent with
requirement of BCS-type pairing. The first, transforming a
scalar under Lorentz transformations, isx(r ,r 8), as defined
in Eq. ~8!.

The other, transforming as the zeroth component of a f
vector, is

xV
0~r ,r 8!ªCT~r !ĥV

0C~r 8!, ~69!

whereĥV
0 is defined as

ĥV
05S 0 1 0 0

21 0 0 0

0 0 0 21

0 0 1 0

D 5S i ŝy 0

0 2 i ŝy
D . ~70!

The associated pair potential isDV0(r ,r 8) @cf. Eqs.~74! and
~75! of paper I#. Although retaining only the zeroth compo
nent of the four vector is not Lorentz invariant,51 it is inter-
esting to investigate the weakly relativistic corrections due
the second OP of the generalized BCS type. We can inc
this OP in the DBdGE simply by replacingD, as defined in
Eq. ~6!, by

D85E d3r 8 . . . @D~r ,r 8!ĥ1DV0~r ,r 8!ĥV
0 #. ~71!

Defining

D6~r ,r 8!ªD~r ,r 8!6DV0~r ,r 8! ~72!

and repeating the steps of the MPM, we find a slightly d
ferent form of the weakly relativistic corrections.

In zeroth and first order the only change is thatD(r ,r 8) is
replaced everywhere byD1(r ,r 8). This merely amounts to a
redefinition of the pair potential, without changing the stru
ture of the equations. In second order, however, the struc
does change. Namely, in all correction termsD(r ,r 8) is re-
placed byD2(r ,r 8), so that now twodifferentpair potentials
appear in the PBdGE.

In the same way the other 14 OP’s derived in I can
included as well. All OP matrices which are of the form

S X 0

0 YD , ~73!

whereX andY are 232 matrices, lead to increasingly com
plex combinations of pair potentials and 232 matrices in the
weakly relativistic correction terms. The OP’s of this for
were shown in I to describe the relativistic generalization
singlet and triplet pairs, formed from two positive- or tw
negative-energy solutions of the Dirac equation.

OP’s containing off-diagonal entries in Eq.~73!, on the
other hand, describe pairs composed of a positive an
negative-energy state. While it is unlikely that such pa
exist in solid-state situations, their existence is not forbidd
by relativity. Such OP’s lead to off-diagonal entries in t
matrices

S csp 0

0 2c~sp!* D ~74!

appearing in the course of the CPM or the MPM@cf. Eq.
~12!# and thus to relativistic corrections offirst order in v/c,
e
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i.e., of the same order as the Zeeman term and the vec
potential term.

Note that the pairing interaction would have to bridge t
energy gap of 2mc2 to yield pairs consisting of anE.0 and
anE,0 solution of the Dirac equation. If such an interactio
exists, the leading corrections will be of first order. Howev
the order parameters describing pairs composed of a pos
and a negative-energy solution of the Dirac equation are
trix elements between states differing in energy by, typica
2mc2 and thus expected to be very small.

Normally any given interaction leading to supercondu
tivity will lead to only one type of OP. If several distinc
OP’s are present in one system this will result in a comp
cated phase diagram, with more than one superconduc
phase. It follows from the above that the effect of relativ
then depends on the phase under consideration. This m
be relevant for the heavy-fermion compounds UPt3 and
U12xThxBe13 which do indeed contain extremely heavy a
oms and display several distinct superconducting phases34

V. CONCLUSION AND OUTLOOK

The main result of this paper is the derivation of weak
relativistic correction terms to the ordinary theory of sup
conductivity, as given in Eqs.~39!, ~40!, and~53!. The exis-
tence of such terms is a necessary consequence of form
ing the underlying theory of pairing in a Lorentz invaria
fashion.

The conventional~nonrelativistic! theory of superconduc
tivity was shown to be the nonrelativistic limit of our theor
This identification allowed us to employ various reducti
procedures which generate weakly relativistic correctio
from the Dirac equation, in order to derive such correctio
for superconductors. Three reduction procedures, the c
ventional Pauli approximation, the modified Pauli appro
mation, and the regular approximation were generalized
superconductors and compared with each other.

The resulting weakly relativistic corrections are of tw
types. First, one finds the usual spin-orbit, Darwin-, a
mass-velocity corrections, which are well known from t
normal state. Second, there appear counterparts to these
rections containing the pair potential in place of the latt
potential. The latter type of corrections exists only in sup
conductors and was previously unknown.

We interpret the corrections in terms of the influence
relativity on the coherent motion of the electrons in the Co
per pair. A first analysis of the significance of the term
indicates that they may be relevant for high-temperature
perconductors, heavy-fermion compounds, and superc
ducting heterostructures.

In all of the above we neither had to specify the prec
nature of the interaction leading to pairing, nor the type
the particles involved. Therefore, just as is the case for pa
I, the application of our results is not limited to proper s
perconductors, but extends to any situation in which pair
takes place. Apart from BCS-type and unconventional sup
conductivity this also includes, e.g., superfluidity in heliu
3.19,52 Other circumstances in which pairing and relativi
may play a role simultaneously are the BCS model
nuclear matter,53 and astrophysical situations, such as pairi
of neutrons and protons in neutron stars.54,55
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