PHYSICAL REVIEW B VOLUME 59, NUMBER 10 1 MARCH 1999-II

Relativistic framework for microscopic theories of superconductivity.
[I. The Pauli equation for superconductors

K. Capelle and E. K. U. Gross
Institut fir Theoretische Physik, UniversttaVirzburg, Am Hubland, D-97074 Waburg, Germany

(Received 14 October 1997

It is shown that the interplay between relativity and coherence, found in superconductors with heavy ele-
ments, leads to a number of interesting and previously unknown effects. In particular, several types of spin-
orbit coupling are shown to exist only in superconductors. Explicit expressions describing these effects are
derived using a covariant formulation of the theory of superconductivity. It is demonstrated that relativistic
effects can become relevant, e.g., in high-temperature and heavy-fermion superconductors, superconducting
heterostructures, and rotating superconduc{@®@8163-182629)11205-(

[. INTRODUCTION which are both more reliable in higher orders and more con-
venient for numerical calculations than the conventional
This is the second in a series of two papers devoted to aRauli approximation. Secondly, we apply these methods to a
investigation of the effects of relativity in superconductors.more general relativistic Hamiltonian containing a nonlocal
In the preceding papérhenceforth referred to as paper |, we Pair potential instead of a local one. This allows us to inves-
studied the Dirac equation for superconductors. It was showHdate the effects of relativity not only on the center-of-mass
there that the order parametd@P's) describing supercon- Mmotion but also on thenternal degrees of freedom of the
ductivity can be represented in terms ok 4 matrices en- Cooper pair. Thirdly, w_e_st_udy the weakly relativistic I|_m|t_
tering the Dirac Hamiltonian on the same footing as the con®f several types of relativistic order parameters not studied in

; - . . . Ref. 2, but contained in the general formalism of paper |I.
ventional y matrices of the Dirac theory. By performing a g present paper is organized as follows: Sec. Il intro-

symmetry analysis with respect to the Lorentz group it wagy,ces the Dirac—Bogolubov—de Gennes equation. In Sec. Ill
found that only five different types of OP’s, with a total of 16 \\e giscuss a variety of methods which can be used to reduce
components, are consistent with the requirement of covarie Dirac equation to the form of a Schinger equation
ance.(ThiS is to be contrasted with the nonrelativistic Casep|us correction terms. These methods are genera“zed to su-
where one has two types of OP’s, namely those for singleperconducters and used to obtain zeroth-, first-, and second-
and triplet superconductivity, with a total of four compo- order approximations. In zeroth order we recover the
nentg. The five relativistic OP’s transform as a scalar, aBogolubov—de Gennes equations, in first order appears the
pseudoscalar, a four vector, an axial four vector and an arinteraction with magnetic fields and in second order we find,
tisymmetric tensor of rank two, respectively. These OP’s in-among others, several spin-orbit-type terms. Finally, Sec. IV
clude the relativistic generalization of the B&Sngle) and is devoted to a first analysis of these terms and their effect on
the Balian-Werthameftriplet) OP, among others. realistic superconductors.

Our study is motivated by the fact that relativity influ-

ences many properties of superconductors, such as, e.g., tneTHE DIRAC —BOGOLUBOV —DE GENNES EQUATIONS
Knight shift, the upper critical field, the order-parameter

symmetry, the Meissner effect, the band structure, the The conventional % 4 Dirac-Hamiltonian(-density, hy,
magneto-optical response, etc. However, in most of thesg defined by*

situations relativity constitutes a small perturbation acting on

an unperturbed, essentially nonrelativistic, superconductor. It R _n ~ _

is, theF;efore, not always nyecessary to emIOIoE)/ the full Dirac a® = Yol cyp+ me(L 70 TAY*AP=EP, (1)
equation. Considerable simplification is achieved by makingynere E is the energy measured relative toc, A
the transition to the weakly relativistic limit, i.e., by expand- —(VIg,—A) is the four potentidl and 7* stands for t/r;e

ing to order ¢/c)?. Not only does this simplify the equa- - e i _ .
tions, it also yields further insight into the subtle interplay USu@ly matrices.” Here and in the following a summation

between relativistic symmetry breaking and superconductinGVer repeated upper and lower greek indices, such as in
coherence. The present paper therefore deals mainly with thig“A,, , is implied.

derivation of weakly relativistic corrections to the conven-  The conventional Bogolubov—de Gennes equation, which
tional theory of superconductivity. is the basic equation of the microscopic theory of inhomoge-

The simplest possible case, that of a local order paramAeous superconductors, reds

eter, treated within the conventional Pauli approximation to
the Dirac equation, was already studied in our earlier paper, ( hy d ) U(r) u(r)
Ref. 2. In the present paper we go in three respects beyond N . ( ): k( ) 2
the treatment of that work. Firstly, we use reduction methods d" —h%/\vkr) vi(r)
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where u(r) and v, (r) are particle- and hole amplitudes, triceso and writing the four-component spindr in terms of

respectively h is the Schrdinger Hamiltonian two two-component spinorg) and y, as
. p?
hS=%+V(r) (3) d)(r)
_ O (r)= : C)
The integral operator x(r)
azf d3’ . A(rr) (4)  Eq.(1) can be written in terms of two22 equations as
contains the pair potential as kernel. For the case of a local
pair potential it reduces to the multiplicative operatdiR), Vé+co-my=Ed,
where R is the center-of-mass coordinate of the Cooper
pairs.

In our earlier papérand in paper | of this series we have bt (V—2 -E 1
shown that the proper relativistic generalization of the co-mpt( me)x=Ex. (10
Bogolubov—de Gennes equation is given by the8equa-
tion Here 7 stands fofl p—(q/c)A].

A D For this Hamiltonian there exists a large variety of meth-
hq Uji(T) . Uji(r) ®) ods which can be used to generate weakly relativistic ap-
DT —h% ) \ojK(r) Ik vik(r))’ proximations. All of them are based on the observation that

. . _in the weakly relativistic limit the two components of the
which we called the Dirac—Bogolubov—-de Gennes equatioRpinor y, denoted the small components, are by a faster
(DBAGE). Hereh, is the Dirac Hamiltonian, as defined in gmgajler than those ap, which are consequently termed the

Eq. (1) andD is the integral operator large components. The small components can therefore be
approximately eliminated from the equation, reducing the
D::&};:f d3r’ .. A(r )y (6)  4x4 Dirac equation to a 22 equation of the Schdinger
type. The elimination can be performed in orders of, e.g.,
with the 4X 4 matrix v/c, where each order contributes relativistic corrections to

the zero order, i.e., Schilinger, case.

0O 1 0 O This program is implemented directly in the conventional
1.0 0 O i 0 Pauli method(CPM) in which one solves the second equa-
n= :( y R ) i (7)  tion of Eq.(10) for x and substitutes the result into the first.

0 0 0 1 0 oy This yields an equation for the large componedgtsnly:
0 0 -1 0

The particle and hole amplitudesy, and v;, are four- 1

componentDirac) spinors with components;;, anduv;y . Vt+com————co-m|p=Ed. (11)

In the terminology of I, the matrixy leads to the scalar E—-(V-2m?)
OP of the generalized BCS type, defined as
X(r ) =T W (r'). ®) Expanding to second order irfc and evaluating the deriva-

tives leads to the well-known Darwin-, spin-orbit- and mass-
It is this OP which is the direct relativistic generalization of velocity corrections:®~**
the BCS singlet OP. In | we derived 15 further OP’s which ~ The counterpart of Eq11) in the superconducting case is
describe more complicated pairing states of the supercorimmediately found from Eq(5) to be
ductor. In the present paper we are mainly concerned with

BCS-type pairing and therefore focus on theDP. We re-

turn to the other 15 OP’s in Sec. IV D. \Y ioyd (C(rﬂ' 0 )
. +
—io,d* -V 0 —c(om*
lll. WEAKLY RELATIVISTIC APPROXIMATION )
A. Conventional Pauli method < E—(V—2m(:2) _'Gyd )
In order to identify weakly relativistic corrections to the ioyd* E+(V-2mc)
conventional theory of superconductivity one needs to re- 0
duce the Dirac-type equatiort5) to the form of a % com UL —E UL (12)
Schralinger-type equation plus correction terms of various 0 —c(om* UL v}’

orders inv/c. To this end we first briefly discuss the meth-
ods available for this purpose in the case of the conventional
Dirac Hamiltonian. Introducing the vector of the Pauli ma- which can be rewritten as
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trix to be inverted contains the nonlocal integral operator

Vv i 0 This complication was not present in our previous work,
loy _i( o ) because we then assumed the pair potential to be local, so
—ioyd* -V 2m{ 0 —(om* thatd became the multiplicative operata(R). In Sec. 111 C
we describe a way to perform the required inversion analyti-
cally to any required order in/c.
V-E oy o
ome ome o 0 . B. First order in v/c: .
X o . The spin—-Bogolubov-de Gennes equation
- _
_ ioyd _ V+E + 0 (om) Determining the first- and zero-order approximation to
2mc? 2mc? Eq. (13 is straightforward, becauséa) all four above-
mentioned problems of the CPM manifest themselves only in
y uc =E( UL) (13 higher than first order an¢b) the terms containing the in-
UL v ) verse of the integral operat«ﬁl’, too, contribute only to the

. second and higher orders. Setting
In these equations, andv, are the large components of the

DBAGE (the indicegk are suppressed for notational clajity V—_E V4+E d

Each is itself a two-component spinor. Equatids) is still = = =0 (15)
exactly equivalent to the original DBAGE). According to 2mé@ 2mcé@ 2mc?
gﬁﬁeprrsez?nptlon of the CPM one now proceeds to expand Irt]he matrix inversion becomes trivial. After straightforward

algebra, which is essentially the same as in the nonsupercon-
- ducting cas&®!?one finds, to first order, the following>4
V—-E V+E d tion:
’ and , (14) equation:
2mcé? 2mdc@ 2mc?

_ o ( h iaya)(uL) (uL)

and analytically performs the inversion in every order. . - =E , (16
Although the CPM is a standard method, it suffers from —ig,d*  —h* /v UL

several drawback&-3 (i) Already in second order af/c,

the effective Hamiltonian obtained after elimination of the

small components, contains the energy to be calculated and

thus does not have the form of an eigenvalue problem any h=-—+V—pu,0B (17

more. (i) The large components of the Dirac Hamiltonian 2m

alone are not normalized, only the fifbur-componentso- is the generalization of Ed3) in the presence of magnetic

lutions are. It is, however, these large components Whic'?ields andu~=7%a/2mcis the Bohr maaneton. Equatidhe
become eigenfunctions of the Pauli Hamiltonidii) The ;oo spi#EBogqolubov—de Gennes gquaﬁci’(?'rfo(rq thchas)e

Darwin term, as obtained by the CPM, is not Hermitiéin) (g a nonlocal pair potentiah(r,r'). The large components

where

Detailed evaluation of the thrge correction terms mentioned 11 pirac spinors become Pauli spinors with entries for
above shows that they lead, in the presence of a Coulomp :
. L o pin-up and spin-down
potential, to variationally unstable Hamiltonians. The reason
for this lies in the bad convergence properties of the expan-
sions used in the CPNEf. Sec. IlI D below. UL(F)Z(
Similar problems show up in the Foldy-Wouthuysen
transformation(FWT). While this used to be a standard
m_ethod for obtal_nlng weakly relativistic approximations to numbers. Written out as ax44 equation, Eq(16) thus be-
Dirac-type equation$recent research has shown that in the
: comes

presence of Coulomb potentials the method amounts to con-
structing wave functions which are extremely singular and A

ka(r)) 18

ul(rk(r)

and correspondingly fay, . Hereo and = are spin-quantum

not normalizablé.Recent studies and reviews thus generally iy By 0 d Ugok(T)

advise against employing the FW#213-15 h, h, -d 0 Uy oi(F)
In order to avoid the problems of the CPM and the FWT ~t . . 7

in the superconducting case, we turn to more sophisticated 0 —d" —hj —hj v1ok(r)

modifications of the CPM. The first of these, the modified at 0 —h* —h* U ok(T)

Pauli method MPM),'21€is mathematically very similar to M H

the CPM and solves problem@)—(iii). We employ this Uy k(1)

method in Sec. Il C of the present work. In Sec. IlID we Uy (1)

generalize to superconductors a reduction method which was =E, Lok (19)

designed specifically to solve problgim), namely the regu- 7| viok(r)

lar approximation of Baerends and co-work&tsH!’ v Lok(r)

As an additional complication the inversion itself is not
trivial any more because in the superconducting case the mavhere
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2 leads to a properly normalize@'(r). It is this function

+V(r)} S —pmoloB(r)]..  which becomes the nonrelativistic Pauli spinor, not the origi-
(20) nal ¢(r). Equation(24) is still not an eigenvalue equation.
However, operating with
We note in passing that the same equation is also found in a
completely nonrelativistic calculation from the spin-
dependent Bogolubov-Valatin transformatfot¥:1° 0 2=

h,.= ! inv eA
S ﬁ —1 +E (r)

2v2
1+

+0O(v/c)* (26)

4m?c?

w,<r>=§[umk<r>a,,k+v¢0k<r>azk]. (29 On
M'(E)¢'(r)=Eg¢'(r) (27)

The zero-order approximation is obtained from EDP)
by settingA=B=0. In this case the %4 equation(19) re- leads to
duces to the conventional¥2 Bogolubov—de Genngs equa- H2v2
tion of the theory of inhomogeneous superconductdfge P AN , 4
have thus verified that our theory has the correct nonrelativ- Q7 MAB) (N =Ed'(N+ E—4m2c2 ¢'(r)+0(v/c).
istic limit. (28)
Note that while there are first-order corrections from the ) o
electromagnetic potentials, namely the Zeeman terndNne second term on the right-hand side in E28) now
(hg/2mc)oB and the vector-potential term ing=[p  cancels, to ordery/c)?, the energy-dependent term on the
—(g/c)A], there are no such terms arising from the pairleft-hand side. After expansion & (E) to first order in

potential. This is a consequence of the form of the maﬁ;rix

which characterizes the relativistic generalization of the V_Eocv_z (29)
BCS-OP. In Sec. IVD we discuss the circumstances which 2mc®  c?’
can lead to first-order corrections containing the pair poten- )
tial. one finds from Eq(28)

C s o o . o 2y2 1 V(r)

. Second order inv/c: the modified Pauli approximation + — V(r)+ —om| 1+ -

Using the CPM in higher than first order leads to the four 8m-c 2m 2mc
difficulties discussed in Sec. Il A. The first three of these are 2y2
solved by a modification of the CPH:® In the following x| 1+ )¢’(r)=E¢>’(r). (30)
we briefly outline this modification for the nonsuperconduct- 8m?c?

ing case before generalizing it to superconductors. The star

ing point is Eq.(11), which is written as Evidently, the first two above-mentioned problems of the

CPM are now taken care of. It turns out that the third, the
~ B nonhermiticity of the Darwin term, does not require any fur-
M(E)p(r)=Edg(r), 22 ther treatment. Unlike Eq22), Eq. (30) already yields the

whereM (E) is the operator on the left-hand side of Egjl). correct, Hermit?an, Darwin terff. EvaIL_Jating Eq(30) up to .
? ) L .. second order irv/c leads, after straightforward algebraic

Note thatM(E) is not a standard Hamiltonian because 'tmanipulationslz to

contains the “eigenvalue”E. Since the four-component '

wave function® (r) was properly normalized, the large com- {

: o
ponents alone are not. The difference =—+V(r)— pooB(r)

2m
1—f dr ¢(r)*¢(r)=f dr x(N*x(r) (23 1 [ﬁz
—VV(r)+he(VV)Xp
4m?c? 2
is of second order irv/c and can thus not be neglected
beyond first order. p*
81-2[-?66 first step of the MPM consists in rewriting Ed.1) - ﬁH @' (r)=Eg¢’'(r). (3D
ad?
. The first line is just the first-order Hamiltonigid7), while
QM (E)Q ™ Q¢(r) = EQé(r). the second line contains the usual Darwin-, spin-orbit cou-
S— — pling (SO0, and mass-velocity corrections.
:=M'(E) =¢'(r) =¢'(r) In the superconducting case one can employ essentially
(24)  the same method to generate relativistic corrections. The op-
Choosing erator() is generalized to be a>22 matrix acting on the

particle- and hole components of the DBAdGE eigenfunctions.

72y2 The manipulations of Eq(11l) described above have to be
O=|1-—— (25) repefated, now starFing with E€¢L2). However, this equation
8m?c? requires the inversion of
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E—(V—2ma) —ioud trivially inverted. Furthermore, it contains all factorsraic?,
W:= . Y (320  so that each term in the seri€3) contributes as many fac-
io,d* E+(V-2mc) tors of 1£% as it contains factors oA~1. The matrix B,

rather tharE— (V—2md), as required in Eq11). We thus ~ containing the integral operatdr need not be inverted at all.
have to invertV and, in particular, the integral operatsy ~ |© oPtain the second-order approximation to i) we

before we can employ the machinery of the MPM. To thisgave ;0390 tg g;derr] & in ﬁq (3?' It is readily found from
end we make use of the following relation for operatérs gs.(33) and(34) that to this order
andB: -

E-V . d
(A+B) 1=A1-AlBA1+AIBA IBA 1 ..., . 1| 2meom@
(33 Wil=—— . +0(1/c®)
i , , 2me?|  d* E+V
which allows us to replace the inversion 8f+B by an ioy— —|1+—
infinite seried! in which each term requires the inversion of 2mc? 2mc?
A only. We now decompos\%/ according to (39
B Inserting this result in Eq(12) we can proceed with the
W = 9me? 10 E-V _wyd MPM, as above. We first define properly normalized Bogol-
= ome + o ubov spinors by
0 -1 oy dt E+V
G oy
=A =B =
Ulr_ 0 Q UL ( )

(34)
In this way we achieve a decomposition where, looselyand then eliminate the energy-dependent term on the left-
speaking A contains the information about relativity, while hand side of Eq(12). The counterpart of Eq30) is found to
B contains that about superconductivity. The mafigan be be

iod
A onw| 1+ ——|ow aw—y(aw)* ,
( #2y2 % ioyd| 1 2mc? 2mc? ( £2v2 (uL)
1+ . — ] 1+——||
sm?c?/| \ —ig,d* -V 2m ( )*i&yd* (om*| 14 v )( " 8m?c?/ \v|
— o agT — o7 —— |\
2mc? 2mc?
ul
:E(Ut)' (37)
L

which is a proper eigenvalue equation and has the structurend
of a Bogolubov—de Gennes-type equation for the particle
and hole amplitudes, andv| . Note that, as is always the ~ [ 3, o, .
case for Bogolubov—de Gennes-type equations, the upper 92~ | @7 oPA(r.r)op’ ... (ioy)
left corner of the matrix equatio37) corresponds to the 1
nonsuperconducting resu80). By going through the same _ _f 3 T2A(r 1)+ A(r.r')p’2 ;
algebra as in the nonsuperconducting case, we can evaluate 2 dIPA ) +AT P - (Toy).
the various derivatives and matrix productd&7). Keeping (40)
only terms of second order indive finally obtain
Here the prime irp’ stands for a derivative with respect to

( h i&ya) 1 [hy, d, ) (uﬁ) r'. In analogy to the Dirac—Bogolubov—de Gennes equation
~ A +—l & N ] 5) we call Eq.(38) the Pauli-Bogolubov—de Gennes equa-
_iO'yd* —h* 4m202 d; _h32\- v, 'E|o)n (PBdGBq ( ) g q

(38)  result of the present paper. By comparison with 84) the

terms ofh, are seen to be the conventional relativistic cor-
where rections in this order. In the superconducting case they ap-

pear twice, once through, and once through- ﬁ’z‘. The

terms ofd,, on the other hand, are relativistic corrections of
(39 : S
the sameorder in 1€ existing in superconductors only. Sec-

( u[) The relativistic correction terms &, andd, are the main

2

R 4
ho=V2V(1) +ha(VV) X p-

L
2m
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tion 1V is devoted to a first analysis of the properties andand proceeds to expand in
consequences of these weakly relativistic corrections.
Note that the decompositiqi34) is not the only one lead- E
ing to the final resul{38). Choosing m (46)
E—(Vo—2mc?) —ioydo Evidently, this term is small not only in the nonrelativistic
A= i I E+(Vo—2md?) |+ (4D domain, wheremc®>V(r), but also close to the nucleus,
whereV/(r) is large. It thus constitutes a much better expan-

_ . n sion parameter as the more conventional choice, Eq.
whereV is the spatially constant part &f(r) andd, is the  (43) 131417

integral operator The regular approximation is readily generalized to super-
conductors. First, the matrix to be inverted in Ed2) is
aozf a3 A (42) rewritten according to
LA -1
containing the modulus of the pair potential as kernel, and E—(V—2mc?) —ioyd
defining B=W-—A, another suitable decomposition is ob- o g* E+(V—2md)
tained. After a lengthy calculation the matrx can be in- Y
verted analytically up to second orderatic. Its inverse is, E _(}ya -1
to this order, of the form(35), however withV, and d, 1 chz_v+1 T om@_v
substituted foV andd. The second term in the serié33) = ~
then contains the contributions of the spatially dependent 2mc-V —oyd E 1
part of V(r) and the phase of the pair potential. Evaluating ‘mE—-V  2mE-V
this term to second order in/c as well, leads to the same
final expression as the simpler decompositi@d), namely (47)
to Eq. (39). The inversion itself proceeds along the same lines as in the
o case of the MPM. The expansion, finally, is in powers of
D. The regular approximation E/(2mc—V) and d/(2mcZ—V). In the nonsuperconduct-

Before we proceed to a discussionfgfandd,, we have ing case, one often limits oneself to the zero-order term in
to return to the problems of the Pauli elimination method. AsthiS €xpansion, leading to the zero-order regular approxima-
demonstrated explicitly, the MPM solves problefils-(ii) 10N (ZORA). A conceptually new feature of the regular ap-
of the CPM, for both the superconducting and the nonsupefroximation is that it no longer is an expansion in orders of
conducting case. Problefiv), the variational instability of v/c. As a consequence, the ZORA Hamiltonian already con-

the resulting Hamiltonian, still needs to be addressed. ThEINS relativistic corrections to arbitrary high order irc.1/

source of this problem is the expansion in The same is true for the superconducting generalization of
the ZORA. One finds, from Eq$47) and(12),
V-E o 43) A v ioyd
x—, + [ u u
2mc@  ¢? ‘o Aay ( : =E( L), (48)
—ioyd* —h;—V/\vL UL

which is small whenv/c is small, but large close to the
nucleus. This leads to convergence problems and related unhere
physical behavior of the Pauli Hamiltonian. Similarly, keep-

ing only the first two terms in the expansidB3) is not mc

justified, unl h,=om———omn. 49
justified, unless z PmZ_V (49)

IBll<[All. (44 Equation(48) is denoted the ZORA-Bogolubov—de Gennes

where||-|| is the operator norrf? However, this condition is equation(ZBdGE). Clearly, there are zero-order corrections
not satisfied ifE—V is of the same order asn®c®. Very  arising from the lattice potentia¥(r), (which do not have
close to the nucleu—V can even get larger tham? the form of the conventional spin-orbit terms, ¢tout none
and neither the conventional, nor the modified Pauli methodrom the pair potentialA(r,r’). In higher orders, there ap-
converge. These difficulties are avoided, e.g., in the so-callegear also corrections containiagr,r’).

regular approximatiofi®>'#17In this method one rewrites the ~ On physical grounds, we expect that in most solid-state

fraction in Eq.(11) according to situations only thémodified Pauli method, and hence Egs.
(38)—(40), are needed. In solids, the core electrons screen the
1 1 / E—v) ! Coulomb potential of the nuclei, so that for the conduction

electrons(which are involved in superconductivjtyPauli-
type expansions are sufficient. In materials with very heavy
-1 elements in the lattice, probleitiv) can also become rel-
(45) evant in solid-state applications. In this case, the ZBdGE
(48) provides a viable alternative to Pauli-type procedures.

= 1
E-(v_2m® 2m@| " 2me

L

EchZ—v\lJr om-V
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IV. ANALYSIS OF THE of the individual electrons in the pair. Finally, there is the
PAULI -BOGOLUBOV -DE GENNES EQUATIONS spinlike label for the Bogolons, the gquasiparticles created by
breaking Cooper pairg.In Egs. (18)—(21) the latter two
guantum numbers are denotedand o, respectivelyl The
The weakly relativistic correction terms in the PBAGE spin involved in both C-ASOC and R-ASOC is the electron
containing the pair potential, as given in E40), can be spin. It is coupled to the orbital motion of the individual
rewritten in a more transparent way. First, we specialize talectrons in the presence of the pair potentigk,R). The
finite systems, so that one can perform partial integrationgffect described by these terms is the additional spin-orbit
without occurrence of surface terms. It is then readily foundcoupling which originates from theoherentmotion of the
that two electrons in the Cooper pair. In the absence of coherence
A(s,R)=0 and only the conventional SOC, arising from the
azzf d3 /i pA(r,r')]xp’ .. .i(}y lattice potentialp(r), remains. _ o
In many situations the modulus of the pair potential is
1 A spatially constant and its phase depends only on the center-
- Ef d*'[(p+p')?A(r,r")]...ioy. (50)  of-mass coordinate, so that the full pair potential can be writ-
ten as
Here the momentum operators act only on the directly fol- .
lowing quantities, as indicated explicitly by the brackets. A(sR)=Ae"*R), (56)
Similar terms are also found in the Pauli approximation to — ) )
the relativistic Breit equation for two-electron atoAidn the ~ WhereA is a real-valued constant. Such a pair potential de-
present context we deal with single-particle equations, butcribes, e.g., supercurrents in thin filfnSor a pair potential
the nonlocality of the pair potential reflects the two-particle©f the form(56) and sufficiently close to the critical tempera-
aspects of the Cooper pair. We now introduce relative andure, the supercurrents are proportional to the gradient of the

center-of-mass coordinatesand R, according to phase of the order parameter, viz.,

S(r,r')=r—r’ (51) js(R)*|A[2VRro(R). (57)

and Therefore,

A. Interpretation of the correction terms

R(rrym (52 A (sR) %o [joxp'], (59)

2
) ) which shows that the C-ASOC term can alternatively be in-
We use the same symbol for the pair potential expressed '{érpreted as a coupling of the spin to the supercurrents.

the coordinates of the individual particles(r,r’), and ex- Due to the ternj X p’, the expectation value of E€58)
pressgd in center-of-mass and relative coordinat¢s,R). is roughly proportional to the ratio.w/c?, wherev, is the
Equation(50) then becomes velocity associated with the supercurrefttse phase of the
A A . . A condensateandv is that of the quasiparticle excitatiofthe
dzzf dr'[dY(s,R)+dY(sR)+dP (sR)] . . .ioy, Bogolong. This is to be contrasted with the ratig?/c?,
(53) which appears in the expectation value of the conventional
) o ) relativistic corrections contained ﬁnz The MPM for super-
where the integration is still oym’. The three terms in the onductors generates the leading terms in an expansion in
kernel of Eq.(53) can now be interpreted physically: both of these parameters.
- The R-ASOC term can, along similar lines, be interpreted
(1) — , N, . ,
dz'(sR):=ho-[VRA(SR)JXPp (54 as a coupling of the spin to the internal currents due to the
is a spin-orbit type term with respect to the orbital motion of coherent relative motion of the electrons in the Cooper pair.
the center-of-mass coordinate. It will in the following be ~ The third term in Eq.(53) contains second derivatives
denoted as the anomaldtispin-orbit coupling ternfASOC) with respect to the center-of-mass coordinate and is given by
for the center-of-mass degrees of freed@@rASOO.

- h?
" A d5”(s.R):=— VRA(SR). (59)
d; (s,R)::Em[VSA(s,R)]Xp’, (55
Being the counterpart to the conventional Darwin term, this
on the other hand, is a spin-orbit type term with respect taerm is referred to as the anomalous Darwin t¢ADT).
the relative motionof the two electrons in the Cooper pair.  Note that two types of relativistic corrections one might
This term will be referred to as the anomalous spin-orbithave expected are not present. First, there is no anomalous
coupling term for the relative degrees of freed@RaASOQ. Darwin term containing second derivatives with respect to
Having classified the ASOC terms with respect to the orthe relative coordinate. Thus, in contrast to the ASOC terms,
bital motion, we now turn to the spin degrees of freedom.R-ASOC and C-ASOC, there is no “R-ADT,” but only a
There exist at least three spinlike quantum numbers whicHC-ADT” term. This is consistent with the requirement of
are of relevance for superconductors. The first is the totathe correct local limit, to be discussed in Sec. IV C. Further-
spin of the Cooper pair. As we discuss only singlet pairs inmore, there is no superconducting counterpart to the mass-
the present paper, this is always zero. The second is the spielocity correction. This is physically reasonable because the
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mass-velocity correction is entirely of kinematic origin and each case the ASOC terms provide an additional source of
thus independent of the presence or absence of external pspin-orbit coupling which has a very different temperature
tentials. behavior as compared to the conventional SOC. For the case
of the absorption of polarized light we have meanwhile in-
B. Discussion of consequences of the relativistic corrections  vestigated the effects of SOC and ASOC in détaff and

The various relativistic corrections can be classified aciound that ASOC indeed constitutes an additional, poten-

cording to whether they lead to the breaking of symmetrie ially observable, source of dichroism, which is distinguished
or not. The mass-velocity correction, the conventional an y its temperature dependence and unique coherence factors.

the anomalous Darwin terms do not break any symmetries as ﬂFlnaIch,j tge Ssggmﬁ%_?; thzso(r)dcert parametetr 1S 'strotzgly
compared to a nonrelativistic superconductor. Retaining only"uencea by : e erms, containing the

these terms in the equations constitutes the superconducti |r_potent|al |tsglf, can obwo_usly _have a similar effect. _In
analog to the familiar “scalar relativistic” approximation of- P rtlcglar, the spin-orbit coupllng with respect to _the relative
ten applied in relativistic electronic structure calculations. Itcoordlnate of the two (.allectr_ons in the .Cooper pair, R-ASOC,
is generally found that the relativistic effect on the kinetic suggests that a classification according to the total angular

energy, i.e., the mass-velocity correction, is far more impor-momentum of the pal, instead of its orbital component

tant than the Darwin term. As they do not break any symme-may be more i_mp(_)rtant than previously thought. Thg com-
mon classification int@-wave andd-wave superconductivity

tries, the main effect of these terms is of a quantitative na- ! S
ture. Examples are the relativistic mass correction fmrefers to the internal symmetry of the Copper pair, i.e., to the

the Cooper pair, which was already measurea{.e“”‘t'vfe tck:]oogjllgate. In ordﬁr tg discuss the ":,y_mmetrty'tp))r?per—
experimentally®?8 and the relativistic shift in the energy 'ehs. Et € ; one usaga yt tehcompcc)isesbll in contri tutllons
spectrum of a superconductor, predicted in Ref. 2. which transtorm according to the Ifreducible representations

In Refs. 25—28 the experimental data for the mass en(—)f the point group of the crystdl:*® Specializing momen-

hancement of the Cooper pair, obtained using a techni u‘@”'Y. to t'he case of a homogeneous systgm, sugh a decom-
per p g d sition is achieved by Fourier transformiags) with re-

based on rotating superconductors, were interpreted on e . . .
basis ofad hocsubstitution of relativistic mass corrections SP€Ct 1O the relative coordinate and expandinga (k)
into the BCS equations. It turned out that this procedure i_@ccordlng to
very delicate and is likely to miss corrections arising from
the internal dynamics of the Cooper pair. Indeed, a quantita- _ Lo
tive explanation of the experimental data could not be A(k)_% Cim(kDYm(k), (60)
achieved in this wag®> 2 Note that our equatiof39) pre-
dicts that such a mass enhancement takes jgladallows to
evaluate it on the same footing with the effects of the interna
Cooper pair dynamics and superconducting coherence.
The spin-orbit terms, on the other hand, couple the spin to
the orbital degrees of freedom and, therefore, break the rota- Cim([k]) = cm(ke) 8 2, (62)
tional invariance in spin space. This symmetry breaking has
a large number of important consequences, such as the hyhich restricts attention to the Fermi surface and retains only
bridization of singlet and triplet states, the lifting of degen-the I=2 spherical harmonic, then leads to the much dis-
eracies, the orientation of the macroscopic magnetizatiogussed case a-wave superconductivity. The point group of
relative to the lattice in ferromagnetic solids and the intro-the crystal is taken into account by replacing the spherical
duction of the total angular-momentum quantum numper, harmonics by symmetry adapted basis functions of the point
instead of the individual quantum numbérands. group?’ It is tempting to speculate that the difficulties en-
The effect of these consequences of the conventional SOcpuntered in uniquely assigning the OP in the high-
on various properties of superconductors has been worke@mperature superconductors and the heavy-fermion com-
out in detail by many authors. From these investigations it igoounds a value of (Refs. 34,44,4Bmay be partially due to
known that, e.g., SOC can lead to a finite Knight shifffat the fact that, as a consequence of R-ASOC, the internal de-

=0, which is in striking contrast to the BCS prediction of grees of freedom actually have to be classified accordifg to
zero Knight shift atT=0.2%3! The conditions for coexist- Whether or not this classification is mandatory depends, of

ence of magnetism and superconductivity are also stronglgourse, on the actual magnitude of the various SOC terms.
influenced by SOG?%* Furthermore, SOC can induce Jo- We, therefore, now turn to a brief discussion of the circum-
sephson currents in situations where none would be preseftances under which SOC and ASOC can be relevant for
nonrelativistically>*~3" The value of the upper critical field, realistic superconductors.
in particular the influence of Pauli paramagnetic limiting, is ~ The energy contribution due to SOC, as described by the
known to be significantly affected by SO&3° Moreover, second term in Eq(39), is known to rise approximately as
the magneto-optical response of both normal and supercore. Where the effective nuclear charge is givenzy=Z
ductors is changed in the presence of SOC. In particular, the z. The shielding correctio takes into account that the
absorption of light with left-handed polarization differs from core electrons screen the nuclear Coulomb potential.
that of light with right-handed polarization. This phenom- Normal-state calculations show that for elements with
enon, termed dichroism, is mainly due to S&C* >40 inclusion of the SOC is essential. Every high-
With the exception of dichroism, all these effects were, agemperature superconductor and all heavy-fermion systems
yet, analyzed on the basis of the conventional SOC only. Irtontain such elements.

Yvhere Y}, denotes the spherical harmonics dnds a unit
vector in the direction ok. The approximation
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To assess the importance of the ASOC terms we replaceith the above-mentioned problems of the CPM, employed
the gradients of the pair potential by suitable averages, agerturbation theory to construct an energy-independent and

cording to Hermitian Hamiltonian.
The local limit of the first term in Eq(40) is obtained
A from th | t
VRA(S,R)H%, 62 rom the replacemen
A(r,r")=A(r")s(r—r") (64)

where(A) is the average energy gap aads the coherence

length. For a superconductor with a coherence length whicﬁmd yields

is, e.g., 100 times smaller and an energy gap which is 100 (op)[A(r)(op)Je(r)(iay)
times larger than for typical BCS-type superconductors, y
ASOC becomes T0times more important. These numerical =(pA(r))(pcp(r))(ioy)+A(r)p2go(r)(iay)
values are typical of the high-temperature superconductors. _ :
The fact that the magnitude of ASOC hence does not +ia(PA(N)X (pe(r))(iay), (65

depend primarily on the presence of heavy atdnes, high  where o(r) is an arbitrary test function and the right-hand

Z), but also on typical superconducting properties suck,as side follows from the properties of the Pauli matrices. The
implies that ASOC can be relevant even when SOC alone igorresponding limit of the second term in E¢0) is

not. Relativity might therefore be important for a larger class

of materials than previously thought. Such a situation is re- 1, ) )
alized, e.g., in the vortex state of a superconductor contain- — 5P AM )+ AP e(r](iay)
ing light atoms. Here SOC is small, sinZeis small, while

C-ASOC is large becausegA(s,R) is large in the vortices. 1, ) ) i

Similar considerations apply to superconducting heterostruc- =" §(p A(r)e(ioy) —A(r)pTe(r)(iay)
tures wherd VRA(s,R) J/A(s,R) becomes large at the inter-

faces. —(PA(r)(pe(r))(ioy). (66)

R-ASOC, on the other hand, can be expected to be imporT

. X : he sum of both is thus
tant for an OP with a complicated internal structure, such as u 1S Tl

the OP describing anisotropic superconductivity, the Fulde- 1

Eerrel state, coexisjcence of superconduptivity and magne- io(pA(r))x p—E(pzA(r)) e(r)(ioy), (67)
tism, etc., because in these caSga(s,R) is enhanced, as

compared to homogeneosavave order parameters. which is the relativistic correction for a local pair potential as

It should finally be stressed that, although the absolutglerived in Ref. 2. In view of the different methods used in
magnitude of SOC and ASOC is small in most materials, theyoth approaches this agreement constitutes a useful consis-
effects produced by them can be quite large. The SOCtency test.
induced splitting of bands can, e.g., lead to band gaps of the Note that the correct local limit is obtained from the
order of 0.1 eV or moré} which is due to the symmetry- R-ASOC, C-ASOC, and ADT contributions, as described in
breaking effect of the conventional SOC. A similar effect Sec. IV A. The presence of a further ADT containing deriva-
might occur also for the ASOC terms. Further situations intives with respect to theelative coordinate would be impos-
which SOC and ASOC can play a role are mentioned insible to reconcile with the requirement of the correct local
Sec. V. limit. Indeed, postulatingthe appearance of an anomalous

Darwin term of the form
C. Relation to the previous formulation of the relativistic 52
- theory of superconductivity o 8(24)(S,R)==01?V§A(S,R) (68)

In a previous papémwe presented a relativistic theory of
superconductivity for superconductors witHogal pair po-  in Eq. (53) and determining the factar from the require-
tential. A local formulation is, of course, not able to handle ment of the correct local limit, it is found that the only solu-
the internal degrees of freedom of the Cooper pair, but it igjon is «=0. Our treatment of the nonlocal pair potential
adequate to treat macroscopic inhomogeneities, such as syith the MPM automatically yields the corrrect ADT.
faces, vortices, etc. _ Concluding this section we point out that while Ref. 2

The corresponding OP was expressed in terms of the Magas the first to provide a microscopic derivation of a spin-
trix 7, as given in Eq(7) of the present paper, according to orbit term containing the pair potential, Ueda and Riqee-

viously suggested such a term on group-theoretical grounds.
x(D)=¥(r) 9P (r), (63)  However, their result is limited tp-wave superconductivity
in a cubic crystal and contains phenomenological coeffi-

whereW(r) is a four component solution to the Dirac equa- jants.

tion. This is the local version of the BCS-type OP defined in
Eq. (8).

In the present paper we are mainly concerned with the
nonlocal case, for which we used the MPM to generate In | we discussed in detail which types of OP and pair
weakly relativistic corrections. In Ref. 2, on the other hand,potentials can be included in a relativistic theory of super-
we used the CPM for focal pair potential and, being faced conductivity without violating covariance. It turned out that

D. Inclusion of the second OP of the generalized BCS-type
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only two of the 16 OP components are consistent with tha.e., of the same order as the Zeeman term and the vector-
requirement of BCS-type pairing. The first, transforming as gpotential term.

scalar under Lorentz transformations xiér,r’), as defined Note that the pairing interaction would have to bridge the
in Eq. (8). energy gap of ¢ to yield pairs consisting of aE>0 and
The other, transforming as the zeroth component of a fouanE<0 solution of the Dirac equation. If such an interaction
vector, is exists, the leading corrections will be of first order. However,
0 o the order parameters describing pairs composed of a positive
Xv(r, ) =W (r)py¥(r'), (69 and a negative-energy solution of the Dirac equation are ma-

trix elements between states differing in energy by, typically,

“o :
where 7y is defined as 2mc? and thus expected to be very small.

0O 1 0 O Normally any given interaction leading to superconduc-
o~ tivity will lead to only one type of OP. If several distinct
~0_ -1 00 0 _ 1oy 0 (70) OP’s are present in one system this will result in a compli-
N 0O 0 0 -1 0 —i&y ' cated phase diagram, with more than one superconducting

0 01 0 phase. It follows from the above that the effect of relativity
then depends on the phase under consideration. This might

The associated pair potential 4,(r,r’) [cf. Eqs.(74) and  be relevant for the heavy-fermion compounds {Rnd
(75) of paper ]. Although retaining only the zeroth compo- U, _,Th,Be;; which do indeed contain extremely heavy at-
nent of the four vector is not Lorentz invariatitit is inter-  oms and display several distinct superconducting ph¥ses.
esting to investigate the weakly relativistic corrections due to
the second OP of the generalized BCS type. We can include
this OP in the DBAGE simply by replaciri, as defined in V. CONCLUSION AND OUTLOOK

Ea. (6), by The main result of this paper is the derivation of weakly

. ~ relativistic correction terms to the ordinary theory of super-
D'ZJ A ALY g A(r )9l (7D conductivity, as given in Eq€39), (40), and(53). The exis-
- tence of such terms is a necessary consequence of formulat-
Defining ing the underlying theory of pairing in a Lorentz invariant
, , , fashion.

A= (r,r)=A(rr) = Avo(r,r’) (72) The conventionalnonrelativisti¢ theory of superconduc-
and repeating the steps of the MPM, we find a slightly dif-tivity was shown to be the nonrelativistic limit of our theory.
ferent form of the weakly relativistic corrections. This identification allowed us to employ various reduction

In zeroth and first order the only change is thgt,r') is  procedures which generate weakly relativistic corrections
replaced everywhere by, (r,r’). This merely amounts to a from the Dirac equation, in order to derive such corrections
redefinition of the pair potential, without changing the struc-for superconductors. Three reduction procedures, the con-
ture of the equations. In second order, however, the structungentional Pauli approximation, the modified Pauli approxi-
does change. Namely, in all correction terth&,r’) is re-  mation, and the regular approximation were generalized to
placed byA _(r,r’), so that now twdlifferentpair potentials  superconductors and compared with each other.
appear in the PBAGE. The resulting weakly relativistic corrections are of two

In the same way the other 14 OP’s derived in | can betypes. First, one finds the usual spin-orbit, Darwin-, and
included as well. All OP matrices which are of the form  mass-velocity corrections, which are well known from the

normal state. Second, there appear counterparts to these cor-
(X 0) (73) rections containing the pair potential in place of the lattice
o Y/ potential. The latter type of corrections exists only in super-

: : . conductors and was previously unknown.
whereX andY are 2<2 matrices, lead to increasingly com- P y

| binati f pair potental &2 matri i th We interpret the corrections in terms of the influence of
piex combinations of pair potentials an m"f‘ fices in the relativity on the coherent motion of the electrons in the Coo-
weakly relativistic correction terms. The OP’s of this form

h in | to d ibe th lativisti lizati fper pair. A first analysis of the significance of the terms
werelz ? °"é”t"_” I to e_scrlf € %rfe a 'V'ts Ic gen_f_ra 1za |c3[n %%ndicates that they may be relevant for high-temperature su-
Singlet and triplet pairs, formed from two positive- or two perconductors, heavy-fermion compounds, and supercon-
negative-energy solutions of the Dirac equation.

\ 9 : o ducting heterostructures.

OP’s containing off-d|a}gonal entries in EG3), on the In all of the above we neither had to specify the precise
other.hand, describe paurs cqm_poseq of a positive anq flature of the interaction leading to pairing, nor the type of
negative-energy state. Wh|le It is “.”""e'y t_hat such PalSe particles involved. Therefore, just as is the case for paper

exist in §ql|d-state situations, their existence Is not for_bldderL the application of our results is not limited to proper su-
by rglatmty. Such OP’s lead to off-diagonal entries in the perconductors, but extends to any situation in which pairing
matrices takes place. Apart from BCS-type and unconventional super-

comw 0 conductivity this also includes, e.qg., superfluidity in helium

( *) (74 31°%2 Other circumstances in which pairing and relativity

0 —c(om may play a role simultaneously are the BCS model of

appearing in the course of the CPM or the MAM. Eq.  nuclear matter® and astrophysical situations, such as pairing

(12)] and thus to relativistic corrections 6ifst orderin v/c,  of neutrons and protons in neutron strs>
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