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Relativistic framework for microscopic theories of superconductivity.
I. The Dirac equation for superconductors

K. Capelle and E. K. U. Gross
Institut für Theoretische Physik, Universita¨t Würzburg, Am Hubland, D-97074 Wu¨rzburg, Germany

~Received 14 October 1997!

We present a unified treatment of relativistic effects in superconductors. The relativistically correct~Dirac-
type! single-particle Hamiltonian describing the quasiparticle spectrum of superconductors is deduced from
symmetry considerations and the requirement of the correct nonrelativistic limit. We provide a complete list of
all order parameters consistent with the requirement of Lorentz covariance. This list contains the relativistic
generalizations of the BCS and the triplet order parameters, among others. Furthermore, we present a symme-
try classification of the order parameters according to their behavior under the Lorentz group, generalizing
previous treatments that were based on the Galilei group. The considerations in this paper are based only on the
concepts of pairing and Lorentz covariance. They can therefore be applied to all situations in which pairing
takes place. This includes BCS-type superconductors, as well as the heavy-fermion compounds, high-
temperature superconductors, pairing of neutrons and protons in neutron stars, and superfluid helium 3.
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I. INTRODUCTION

This is the first in a series of two papers devoted to
investigation of the effects of relativity in superconductors
has been noted before by many authors that relativistic
fects can have a profound influence on superconductiv
Spin-orbit coupling, a relativistic effect of second order
v/c, is known to influence the symmetry of the ord
parameter,1–4 the spin-susceptibility and the Knight shift,5,6

magnetic impurities in superconductors,7 Josephson
currents,1,8–10 the value of the upper critical field,11,12 Hc2 ,
and the magnetooptical response of superconductors,13–15

among other quantities. Relativistic corrections to the C
per pair mass have been evaluated theoretically and m
sured experimentally.16–19 The self-consistent screening o
the currents which gives rise to the Meissner effect is due
the current-current interaction,20,21 which is of relativistic
origin and of second order inv/c. Plasma frequency anoma
lies which were observed in some high-temperature su
conductors have been suggested to be due to current-cu
interactions as well.22 In the anyonic theory of supercondu
tivity it was recently argued that one needs to start from
relativistic Lagrangian in order to obtain a complete desc
tion of the Meissner effect.23 In studying the electrodynamic
of vortices in high-temperature superconductors it was fo
necessary to employ a relativistically covariant wave eq
tion in order to explain the experimental data.24 The relativ-
istically covariant theory presented in the present paper
vides a unified framework within which such effects can
interpreted and analyzed.

Moreover, whenever there are elements with atomic nu
berZ*40 in the lattice,25 the band structure has to be calc
lated using relativistic methods.26–28Many interesting super
conductors, e.g., the heavy-fermion compounds and the h
temperature superconductors, do indeed contain very he
elements, such as mercury (Z580), uranium (Z592), bis-
muth (Z583), thallium (Z581), platinum (Z578), etc. In
PRB 590163-1829/99/59~10!/7140~15!/$15.00
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Sec. V of the present paper an equation is derived wh
allows one to perform such relativistic band-structure cal
lations for superconductors.

In spite of the fact that relativity thus obviously is releva
for a large number of interesting effects in superconducto
a unified and covariant relativistic approach to supercond
tivity has not been worked out, until very recently. In a pr
vious paper29 we presented a first step towards such a re
tivistic theory of superconductivity. That theory led to
relativistic generalization of the Bogolubov–de Genn
equations of superconductivity. By performing a weak
relativistic expansion up to second order inv/c, wherev is a
typical velocity of the particles involved, we found the usu
relativistic corrections~spin-orbit coupling, mass-velocity
correction, and Darwin term! in a form appropriate for su-
perconductors. Furthermore, a number of new relativis
corrections of thesameorder inv/c emerged, which exist in
superconductors only. These new terms could be identi
as the superconducting counterparts of the spin-orbit and
Darwin term, with the pair potential taking the place of th
lattice potential. The appearance of such terms can be tra
back to the complex interplay between relativistic symme
breaking and superconducting coherence. The theory
meanwhile been shown to lead to potentially observable
fects on, e.g., the energy spectrum of a superconductor29 and
on the magneto-optical response of superconductors.13–15

The present paper provides a more general approac
relativistic effects in superconductors. It is organized as f
lows: after this introduction we show, in Sec. II, how th
Dirac equation is generalized to describe superconductor
introducing the order parameters as 434 matrices into the
Dirac Hamiltonian.

In Secs. III and IV we present a detailed analysis of t
resulting Hamiltonian. We discuss Lorentz covariance of
formalism and investigate the behavior of the order para
eters under Lorentz transformations. This leads to a clas
cation of all possible order parameters with respect to th
behavior under the operations of the Lorentz group. Next
7140 ©1999 The American Physical Society
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show that these order parameters can be interpreted in t
of the symmetries of the underlying Cooper pair states. T
gives rise to a relativistic generalization of the concepts
singlet and triplet superconductivity and allows one
specify what kind of physics is described by the various
der parameters.

In Sec. V we discuss the diagonalization of the Ham
tonian. This leads to a set of differential equations wh
generalize the Bogolubov–de Gennes equations of the
relativistic theory.

While the present paper thus deals with the Dirac eq
tion for superconductors, the second paper of this seri30

will treat the Pauli equation for superconductors. In that
per we take up the topic of weakly relativistic corrections
the conventional theory of superconductivity and disc
some observable consequences of the new terms.

Unfortunately, the respective terminologies of relativ
and superconductivity are rather different and there is li
overlap in the literature on these apparently distinct fields
physics. To aid the nonspecialist, we have therefore inclu
two sections in which we briefly review some pertinent a
pects of the microscopic theory of inhomogeneous superc
ductors~Sec. II A! and of relativistic covariance~Sec. III A!.

It should be stressed from the outset that we do not
tempt to formulate a fully relativisticinteractingfield theory
of superconductivity: We quantize only the electron degr
of freedom and treat the external fields as classical fie
Furthermore, the effects of relativity are considered only
the single-particle level, i.e., on the level of th
Bogolubov–de Gennes equations. A relativistic treatmen
the interaction is beyond the scope of the present paper
though we offer some remarks concerning this topic in S
V C.

II. GENERAL FRAMEWORK FOR A RELATIVISTIC
THEORY OF SUPERCONDUCTIVITY

A. A basis for the nonrelativistic order parameter

In the nonrelativistic case it is well known that the ord
parameter~OP! structure is determined by very general sy
metry considerations, as follows:31–34 Cooper pairing takes
place between single-particle states which are, for any gi
state uns&, constructed by application of the time-revers
and parity operators. Ifn stands for a complete set of qua
tum numbers needed to label a normal-state eigenfunc
we thus have the states

uns&, uT̂ns&, uP̂ns&, uP̂T̂ns& ~1!

available for pairing, whereT̂ and P̂ are the time-reversa
and parity operators, respectively. The possible pairing st
of the superconductor can then be characterized in term
these states as31–34

uS&5uns,T̂ns&2uP̂T̂ns,P̂ns&, ~2!

uT1&5uns,P̂ns&, ~3!

uT2&5uP̂T̂ns,T̂ns&, ~4!

uT0&5uns,T̂ns&1uP̂T̂ns,P̂ns&. ~5!
ms
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The physical significance of this construction is easily se
by considering a homogeneous electron gas, where spin
momentum are good quantum numbers. Ifuns&5uk↑&, then
uT̂ns&5u2k↓&, uP̂ns&5u2k↑&, and uP̂T̂ns&5uk↓&. Tak-
ing into account that each of the two-particle states is a Sl
determinant, the configuration-space representation ofuS&
takes the form

^r ,r 8uS&5@wk~r !w2k~r 8!1w2k~r !wk~r 8!#~x↑^ x↓2x↓

^ x↑!, ~6!

where thewk(r ) are normal-state single-particle wave fun
tions and thexs are the usual spin functions. Obviously, th
spatial part ofuS& is an even function under exchange of t
two particles, while the spin part is odd. This state descri
the conventional singlet Cooper pair.35,36 Representing the
Pauli spinors asx↑5(1,0)T andx↓5(0,1)T, this can be writ-
ten as

^r ,r 8uS&5@wk~r !w2k~r 8!1w2k~r !wk~r 8!#m̂1 ~7!

with

m̂1ªS 0 1

21 0D . ~8!

The other three states are even functions of the spin varia
and odd functions of the spatial coordinates. They desc
triplet Cooper pairs, as found in superfluid helium 3~Ref.
37! and, possibly, organic superconductors38 and heavy-
fermion compounds.39 The spin parts of the triplet states a
represented by

uT1&→m̂2ªS 1 0

0 0D , ~9!

uT2&→m̂3ªS 0 0

0 1D , ~10!

uT0&→m̂4ªS 0 1

1 0D . ~11!

These matrices form the basis for many approaches to su
conductivity. In particular, the Balian-Werthamer parame
zation for the order parameter of triplet superconductors
simply a linear combination of the matricesuT1&, uT2&,
and uT0&.40,41 The fact that the singlet OP is composed
time-reversed single-particle states is the basis for the the
of impurities in BCS superconductors.42,43 Furthermore, the
above defined states~2!–~5! were taken as a starting poin
for investigations of the order-parameter symmetry in unc
ventional superconductors, e.g., in Refs. 31–34.

Multiplying these matrices from the left and from th
right with spinors whose entries are functions ofr , yields a
real-space representation of the OP which is commonly u
in the Bogolubov–de Gennes equations43 and in the density-
functional theory of superconductivity.21,41,44–49Since this
will be of considerable importance below, we demonstrat
explicitly for the singlet case. The convention
Bogolubov–de Gennes Hamiltonian for a singlet superc
ductor is43
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Ĥnon-rel5E d3r(
s

cs
†~r !F p2

2m
1v~r !2mGcs~r !

2E d3r d3r 8@D↑↓* ~r ,r 8!x̂↑↓~r ,r 8!1H.c.#,

~12!

where thecs are second quantized field operators,v(r ) is
the lattice potential,D↑↓(r ,r 8) is the pair potential, and the
expectation value ofx̂↑↓(r ,r 8)ªc↑(r )c↓(r 8) is the ~nonlo-
cal! singlet OP.43 In Sec. V C the role of this Hamiltonian in
density-functional theory for superconductors is further d
cussed.

The terms in Eq.~12! referring to superconductivity ca
be rewritten as

E d3r d3r 8D↑↓* ~r ,r 8!x̂↑↓~r ,r 8!

5
1

2E d3r d3r 8D↑↓* ~r ,r 8!

3S c↑

c↓
D TS 0 1

21 0D S c↑

c↓
D ~13!

and similarly for its Hermitian conjugate. We have made u
here of the fact that the pair potential for a singlet state
even under interchange of (r ) and r 8. This is guaranteed
because the spin part of the singlet state is an odd functio
the spins, and the full pair potential, having the symmetr
of a fermionic pair wave function, must be odd under parti
exchange.

It is seen that the matrix~8! appears naturally in Eq.~13!.
In exactly the same way the matrices~9!–~11! appear in the
generalization of the Bogolubov–de Gennes equations
triplet superconductors, as demonstrated explicitly in R
41. The corresponding pair potentials are odd functions
the spatial coordinates.

In the most general case, all these OP are present si
taneously. Then all the order parameters enter the Ha
tonian, multiplied by the appropriate pair fields and the
perconducting term in the Hamiltonian becomes

S 1

2D E d3r E d3r 8S c↑~r !

c↓~r !
D T

(
j

D j~r ,r 8!m̂j S c↑~r 8!

c↓~r 8!
D ,

~14!

where m̂j are the four matrices defined in Eqs.~8!–~11!.
Since m̂2 and m̂3 have only one entry, the factor 1/2
present only forj 51,4. @We can replace it by1

2 (11d j 2
1d j 3) to have a closed expression for all cases.#

It is by no means necessary to use this particular se
matrices. Any linear combination of them@respectively, of
the states~2!–~5!# can be used just as well. Writing the ge
eral OP as

S c↑~r !

c↓~r !
D T

m̂~r ,r 8!S c↑~r 8!

c↓~r 8!
D ~15!

with an arbitrary 232 matrix m̂(r ,r 8), we can expand
m̂(r ,r 8) in any complete basis in spin space instead of
-
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m̂j , such as, for example, the set of the three Pauli matr
and the 232 unit matrix.

B. A basis for the relativistic order parameter

We are now in a position to formulate the relativistic ge
eralization of the Bogolubov–de Gennes Hamiltonian~12!
or, equivalently, the superconducting generalization of
Dirac Hamiltonian. Proceeding in the spirit of a singl
particle theory it is obvious, that the first~i.e., the Schro¨-
dinger! part of Eq.~12! is to be replaced by the correspon
ing Dirac Hamiltonian. In analogy to Eq.~15! the second
part can always be expressed in terms of a general and a
undetermined 434 matrix M̂ (r ,r 8), i.e.,

Ĥ5E d3r C̄~r !@cĝ•p1mc21qĝmAm#C~r !

2
1

2E d3r d3r 8@CT~r !M̂ ~r ,r 8!C~r 8!1H.c.#,

~16!

whereC(r ) is a four-component field operator~Dirac-spinor
operator!, C̄(r )ªC†(r )ĝ0 and Am is the electromagnetic
four-potential50,51

Am5S 1

q
„v~r !2m…,2AD . ~17!

q is the charge of the particles involved. In writing th
above, we made use of the summation convention, i.e
summation overgreekindices which appear once as an upp
and once as a lower index is implied. We now expand
matrix M̂ (r ,r 8) in a basis set of 16 linearly independe
434 matricesM̂ j with expansion coefficientsD j* (r ,r 8):

CT~r !M̂ ~r ,r 8!C~r 8!5CT~r !F(
j

D j* ~r ,r 8!M̂ j GC~r 8!.

~18!

Just as in the nonrelativistic case, in principle, any comp
set of 434 matrices can be chosen as a basis for this exp
sion. Below we employ one particular such set, namely t
of the ĥ matrices defined by Eqs.~19!–~34!. This set will be
shown to ensure relativistic covariance of the formalism~cf.
Sec. III! and to permit an interpretation of the physics of t
paired states analogous to Eqs.~2!–~5! ~cf. Sec. IV!. For
clarity we display below only those matrix entries which a
different from zero:

ĥªS 1

21

1

21
D , ~19!
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ĥV
0
ªS 1

21

21

1
D , ~20!

ĥV
1
ªS 1

21

21

1
D , ~21!

ĥV
2
ªS i

i

2 i

2 i
D , ~22!

ĥV
3
ªS 21

21

1

1
D , ~23!

ĥ5
ªS 1

21

1

21
D 5 i ĥĥV

0 ĥV
1 ĥV

2 ĥV
3 , ~24!

ĥA
0
ªS 1

21

21

1
D 5ĥĥ5ĥV

0 , ~25!

ĥA
1
ªS 1

21

21

1

D 5ĥĥ5ĥV
1 , ~26!

ĥA
2
ªS i

i

2 i

2 i

D 5ĥĥ5ĥV
2 , ~27!

ĥA
3
ªS 21

21

1

1
D5ĥĥ5ĥV

3 , ~28!
ĥT
01
ªS 21

1

21

1
D 5ĥĥV

0 ĥV
1 , ~29!

ĥT
02
ª2S i

i

i

i
D 5ĥĥV

0 ĥV
2 , ~30!

ĥT
03
ªS 1

1

1

1
D 5ĥĥV

0 ĥV
3 , ~31!

ĥT
12
ªS i

i

i

i
D 5ĥĥV

1 ĥV
2 , ~32!

ĥT
13
ª2S 1

1

1

1

D 5ĥĥV
1 ĥV

3 , ~33!

ĥT
23
ªS i

2 i

i

2 i

D 5ĥĥV
2 ĥV

3 . ~34!

These 16 matrices are linearly independent and hence
stitute a complete set in which every 434 matrix can be
expanded.52 The labeling of theĥ matrices refers to the
transformation behavior of the corresponding OP under L
entz transformations, as will be explained in Sec. III B and
Table I.

Clearly, the nonrelativistic limit of Eq.~16! is the
Bogolubov–de Gennes Hamiltonian for singletand triplet
OP ~Refs. 43 and 41! ~the spin degrees of freedom are nat
rally contained in the relativistic framework!, while the non-
superconducting limit~all D j→0) is the conventional Dirac
Hamiltonian.

We can now also see another reason, why it is usefu
introduce the matrix notation for the order parameter: T
corresponding terms in the Hamiltonian are all of the form

spinor•~434 matrix!•spinor• f ield, ~35!

just as are the terms of the Dirac Hamiltonian. In particul
the pairing fieldsD j and the electromagnetic fieldAm enter
the Hamiltonian on the same footing. The four-current de
sity is defined, as usual, byj m5cC̄ĝmC, while the order
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TABLE I. This table is a complete list of all order-parameter matrices which are consistent with the requirement of Lorentz cov
The first column denotes the transformation behavior of the OP. The second column contains the familiar bilinear covariant
conventional Dirac equation. The third column contains the corresponding anomalous bilinear covariants. Every individual comp
each entry in this table is a 434 matrix. The labelsSE, SO, TE, andTO, assigned to each component of the anomalous bilinear covar
refer to the spin character (S5singlet, T5triplet) and the behavior under space inversion (E5even,O5odd) of the corresponding pairs
These labels are explained in detail in Secs. IV B and IV C.

Transformation behavior Conventional bilinear covariants Anomalous bilinear covariants
under Lorentz transformations of the Dirac equation of Eq.~43!

C̄(r ) . . . C(r ) CT(r ) . . . C(r 8)

Scalar 1 ĥ (SE)

Four vector ĝ m5Sĝ 0

ĝ 1

ĝ 2

ĝ 3

D ĥV
m5SĥV

0

ĥV
1

ĥV
2

ĥV
3

D SSE

SO

SO

SO
D

Pseudoscalar ĝ55 i ĝ0ĝ1ĝ2ĝ3 ĥ55 i ĥĥV
0 ĥV

1 ĥV
2 ĥV

3 (SO)

Axial four vector ĝ 5ĝ m5Sĝ 5ĝ 0

ĝ 5ĝ 1

ĝ 5ĝ 2

ĝ 5ĝ 3

D ĥA
m5ĥĥ5ĥV

m STO

TE

TE

TE

D
Antisymmetric tensor 2 i ŝmn5 ĥT

mn5

S 0 ĝ 0ĝ 1 ĝ 0ĝ 2 ĝ 0ĝ 3

2ĝ 0ĝ 1 0 ĝ 1ĝ 2 ĝ 1ĝ 3

2ĝ 0ĝ 2 2ĝ 1ĝ 2 0 ĝ 2ĝ 3

2ĝ 0ĝ 3 2ĝ 1ĝ 3 2ĝ 2ĝ 3 0

D ĥS 0 ĥV
0ĥV

1 ĥV
0ĥV

2 ĥV
0ĥV

3

2ĥV
0ĥV

1 0 ĥV
1ĥV

2 ĥV
1ĥV

3

2ĥV
0ĥV

2 2ĥV
1ĥV

2 0 ĥV
2ĥV

3

2ĥV
0ĥV

3 2ĥV
1ĥV

3 2ĥV
2ĥV

3 0

D
S 0 TO TO TO

TO 0 TE TE

TO TE 0 TE

O TE TE 0

D
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parameters are analogously given byx̂ j5CTM̂ jC. The
four-current density and the order parameters are thus
treated in a parallel way. This is particularly appealing fro
the point of view of the density-functional theory o
superconductivity,21,41,44–49 where the Bogolubov–de
Gennes equations become the Kohn-Sham equations fo
perconductors and the order parameters enter the forma
as ‘‘anomalous densities,’’ in addition to the normal dens
n(r ) and, if necessary, the current densityj . We call Eq.~16!
the generalized Dirac–Bogolubov–de Gennes Hamilton
because it contains the Dirac–Bogolubov–de Gennes Ha
tonian previously suggested29 as a special case.
lso

su-
sm

n
il-

III. SYMMETRY ANALYSIS WITH RESPECT
TO THE LORENTZ GROUP

A. Bilinear covariants of the conventional Dirac equation

Every relativistic theory needs to be covariant, i.e., t
equations must have the same form in every inertial syst
We, therefore, have to verify that our equations are fo
invariant under Lorentz transformations, i.e., invaria
modulo a Lorentz transformation of the arguments. This
clearly the case for the conventional Dirac theory,50,51,53i.e.,
without the terms containing theD j . To determine whether
the additional terms in Eq.~16! are covariant, we need to
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explicitly study their transformation behavior under Loren
transformations.

In principle, a discussion of Lorentz invariance should
based on the Lagrangian density and not the Hamilton
because the former is invariant itself, while the latter is no50

The Hamiltonian formulation, though, is much more co
mon and convenient in solid-state physics. Since the
grangian densityL is related to the HamiltonianH
5*d3r H by

H5(
i

ċ i

]L
ċ i

2L, ~36!

all terms inL which do not depend onċ i @such as the terms
describing superconductivity in Eq.~16!# appear inH andL
with opposite sign, but the same transformation behav
We can thus carry on with the Hamiltonian formulation,
we keep in mind that the actual invariant quantity is t
Lagrangian density.

The prescription how to perform a Lorentz transformati
for Dirac spinors can be found in many textbooks.50,51,53 If
C is the original spinor, then the spinor in a moving inert
system is related to it via

C8~x8!5ŜC~x!, ~37!

wherex5(ct,r ) andx85(ct8,r 8) are the space-time coord
nates in the original and the new inertial system, resp
tively. For a transformation to an inertial system movi
with uniform velocity vk along thek axis (k5x,y,z), the
transformation matrix is given by

Ŝ5F coshS v

2 D 12sinhS v

2 D S 0 ŝk

ŝk 0
D G , ~38!

where

tanhS v

2 D5
vk

c
~39!

and ŝk are the usual 232 Pauli matrices. This form applie
to finite, homogeneous~not involving translations!, ortho-
chronous~not involving time reflections! and pure~not in-
volving spatial rotations and reflections! Lorentz transforma-
tions ~i.e., ‘‘Lorentz boosts’’!.

One can now form all possible combinations of the Dira
ĝ matrices and investigate the transformation behavior of
quantities50,51,53

C̄8ĝC8[C8†ĝ0ĝC8[~SC!†ĝ0ĝ~SC! ~40!

under Lorentz transformations, whereĝ stands for any of the
linearly independent Dirac matrices. Since there are 16
early independent 434 matrices, one can find 16 such qua
tities which can be classified according to their transform
tion behavior. Explicitly, one finds that one can form
scalar, a pseudoscalar, a~polar! four vector, an axial four
vector and an antisymmetric tensor of rank two. Each
these transforms under Lorentz transformations and sp
inversion according to an irreducible representation of
Lorentz group54 ~see Sec. III C for more details!. These five
entities are normally called thebilinear covariantsof the
e
n

-
-

r.

l

c-

-
e

-
-
-

f
ce
e

Dirac equation. They are listed in the second column
Table I. Their construction and a detailed analysis of th
properties is found in many standard textbooks on relativi
quantum field theory.50,51,53 Together they have 16 compo
nents. Since we had only 16 matrices to start with, we h
exhausted all possible combinations. For the Dirac equa
there are exactly these five and no other bilinear covaria

Their importance stems from the fact that the Hamilton
~or the Lagrangian! needs to be expressed in terms of the
bilinear covariants in order to be manifestly covariant itse
Furthermore, since there is just a small number of differ
bilinear covariants, one can classify all interactions with
spect to the bilinear covariants which one needs for a pro
description. It turns out, that almost every interaction can
described in terms of just one bilinear covariant. The m
prominent exception is the weak interaction of high-ene
physics. A description of this interaction requires the pr
ence of a~polar! four vectorand an axial four vector in the
Lagrangian. Since under a spatial reflection the former pi
up a relative sign with respect to the latter, the weak int
action violates parity invariance.51,53 We have discussed
these facts at length because they will turn out to be hig
relevant for the superconducting case as well.

B. Symmetry classification of all possible order parameters

We first consider the transformation behavior of the O
formed with ĥ. Given Eq. ~38!, it is a matter of simple
matrix multiplication to verify that

C8TĥC85~ŜC!Tĥ~ŜC![CTĥC, ~41!

i.e., CTĥC is form invariant under Lorentz transformation
ĥ can be expressed in terms of theĝ matrices asĝ1ĝ3.

The bilinear covariant which is formed with theseĝ matri-
ces, namelyC̄ĝ1ĝ3C, is, on the other hand,not invariant
under Lorentz transformations. As displayed in the seco
column of Table I, it transforms as the componentŝ13 of the
antisymmetric tensorŝmn.

A similar situation is found for all OP: their transforma
tion behavior cannot simply be obtained from their repres
tation in terms of theĝ matrices in Eqs.~19!–~34! and a
comparison with the corresponding representation of
conventional bilinear covariants in terms of the same ma
ces. The reason for this is, that the OP containCT instead of
C̄[C†ĝ0. Therefore, it is the transposed transformati
matrix ŜT which enters and not, as usual, the Hermitian co
jugate Ŝ†. Since Ŝ is, in general, a complex matrix, thi
difference leads, together with the additionalĝ0, to a differ-
ent transformation behavior, as compared to the conventio
case. This phenomenon is known also from the nonrelati
tic triplet OP, where it leads to using the Balian-Wertham
matrices instead of the Pauli matrices in order to obtai
quantity which transforms as a three vector under spa
rotations.37,40,55

We can, of course, investigate the transformation beh
ior under space reflections in the same way. Here the tra
formation matrix is simplyĝ0 and it is readily verified that
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C8TĥC85~ ĝ0C!Tĥ~ ĝ0C![CTĥC ~42!

is invariant under this operation as well. We conclude t
CTĥC is a Lorentz scalar, which does not change sign un
spatial reflections~the latter property excludes a pseud
scalar, which would change sign!. We do not need to con
sider spatial rotations and translations because they do
influence the classification of the bilinear covariants.50,51,53

These operations do not, in general, leave the underly
lattice of the superconductor invariant. The symmetry gro
of the lattice can be used to further classify the OP.1,33,56–58

The considerations of the present section can be viewed a
extension of these works from using the Galilei group to
Lorentz group.

In the same way as for theĥ-OP we can investigate th
transformation behavior of all the other 15 matrices. To
termine their transformation behavior we perform Loren
transformations along all three spatial axes. This allows u
distinguish scalars, vectors, and tensors. To further dis
guish between proper scalars and pseudoscalars and be
~polar! four vectors and axial~pseudo! four vectors, we also
need to investigate the behavior under spatial reflections.
covariant quantities one finds in this way will be term
anomalousbilinear covariants.59 We summarize the result
of this investigation in Table I, where we display the co
ventional and the anomalous bilinear covariants, classi
according to their transformation behavior.

The 16 components of the five distinct covariant quan
ties of the Dirac equation can all be expressed in a w
known way50,53 in terms of just five matrices, namel
ĝ0,ĝ1,ĝ2,ĝ3, which form the~polar! four vector, and the
unit matrix 1, which is the scalar. In just the same way, t
16 components of the five distinct anomalous covariants
all be expressed in terms of five matrices, nam
ĥV

0 ,ĥV
1 ,ĥV

2 ,ĥV
3 , which form the~polar! four vector, and the

ĥ matrix, which is the scalar. There is thus a far reach
correspondence between the conventional bilinear covari
of the Dirac equation for normal electrons and the anomal
bilinear covariants ~order parameters! of the Dirac–
Bogolubov–de Gennes equation for superconductors.

In view of this correspondence it is not surprising th
there exists a transformation which, when applied to one
the 16 components of the conventional covariants, yields
corresponding anomalous covariant. If every entry in the s
ond column of Table I is multiplied withĝ1ĝ3, there results
~up to factors61) the corresponding entry in the third co
umn. In the case of the pseudoscalarĝ5, for instance, we find
ĝ1ĝ3ĝ55ĥ5, while the tensor componentĝ0ĝ2 becomes
ĝ1ĝ3ĝ0ĝ252ĥĥV

0 ĥV
2 . This rule transforms a conventiona

bilinear covariant in the corresponding anomalous covari
which has the same transformation behavior under Lore
boosts and spatial reflections. It summarizes in a concise
the lengthy calculations necessary to determine the ma
representations of the 16ĥ-OP by performing the Lorentz
transformations explicitly.

This rule, extracted from Table I, can also be arrived at
means of a generalization of the nonelativistic Balia
Werthamer prescription for the construction of matrices
the singlet and triplet OP’s: Observing that ordinarily a s
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lar is expressed in terms of the unit matrix, while a vector
expressed in terms of the three Pauli matrices, one finds
trices yielding scalar and vector OP simply by multiplicatio
with the nonrelativistic time-reversal matrixi ŝy . The result-
ing matricesi ŝy and i ŝyŝx ,i ŝyŝy ,i ŝyŝz , respectively, are
those employed in the Balian-Werthamer parametrization
the nonrelativistic OP. In the same spirit all matrices desc
ing relativistic OP can be obtained from the convention
Dirac matrices by multiplication with the relativistic time
reversal matrixĝ1ĝ3. Although this procedure is highly
plausible, its general validity can only be verified by pe
forming the Lorentz transformations as described above.

Just as in the nonsuperconducting case, the importanc
the anomalous bilinear covariants stems from the fact th
Lagrangian expressed in terms of them is manifestly cov
ant and from the possibility to classify systems with resp
to the appropriate covariants. If for any given superconduc
more then one of the five covariants appear in the Ham
tonian, a very general symmetry, such as parity, would
broken.

In the spirit of a mean-field~Hartree-type! approximation,
where one has a linear relation between the particle-par
interaction and the effective single-particle potential, we c
classify the interaction leading to superconductivity with r
spect to the symmetry of the corresponding effective p
potential. If, for instance, for a certain superconductor o
the scalar OP is present in the Hamiltonian, the interact
leading to superconductivity must be such, that the pair fie
multiplying the other bilinear OP’s vanish identically. As w
will show below, this example corresponds to the conve
tional BCS-OP. In this way we can classify the interactio
as ‘‘scalar interaction,’’ ‘‘vector interaction,’’ etc.

We can now formulate the following theorem:No matter
what the OP symmetry and the detailed nature of the pair
interaction leading to superconductivity, there are only fi
OP with a total of 16 components, consistent with the pr
ciple of general covariance. Each of these is a bilinear fo
of the field operatorsCT and C transforming according to
an irreducible representation of the Lorentz group.This
theorem, derived here by explicit construction of a compl
set of matrices, is rederived in Sec. III C by purely grou
theoretical considerations. The resulting anomalous bilin
covariants are listed in Table I. Using these results we
now write the Hamiltonian~16! with Eq. ~18! as

Ĥ5E d3r C̄~r !@cĝ•p1mc21qĝmAm#C~r !

2
1

2E d3r d3r 8$CT~r !@ĥD* ~r ,r 8!1ĥ5DP* ~r ,r 8!

1ĥV
mDVm* ~r ,r 8!1ĥA

mDAm* ~r ,r 8!

1ĥT
mnDT,mn* ~r ,r 8!#C~r 8!1H.c.%. ~43!

Now every contribution to the superconducting part of t
Hamiltonian is expressed in terms of covariant quantities:
scalar is formed withĥ andD, the pseudoscalar withĥ5 and
DP , the four vector withĥV

m andDVm , the axial vector with

ĥA
m andDAm and the tensor, finally, withĥT

mn andDT,mn .
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Note the formal correspondence between the four-ve
product ĝmAm , describing the coupling of the four curren
C̄ĝmC, to the four potential,Am , and the productĥV

mDVm ,

describing the coupling of the four vector OP,CTĥV
mC, to

the four potential,DVm .
Equation ~43! is one of the central equations of th

present work. It constitutes the desired relativistic Ham
tonian for superconductors and contains all possible ano
lous bilinear covariants.

C. Irreducible representations of the Lorentz group

The method used above to determine the relativistic O
based on explicit expressions for each OP in terms of a 434
matrix. The main conclusion of the previous section c
however, also be found without any recourse to explicit m
trices, simply by exploiting the properties of the irreducib
representations~IR’s! of the Lorentz group. To this end w
first recapitulate a number of properties of such IR’s wh
will be used below.60–62

The IR’s of the Lorentz group, denotedt, are character-
ized by two labels,p andq, which can take positive intege
and half-integer values only.~Infinite dimensional represen
tations characterized by continuous labels exist as well,
are not relevant for the present considerations.! The dimen-
sion of the IRtpq is (2p11)(2q11). A four vector, for
instance, transforms according to the~four-dimensional! rep-
resentation

t1/2 1/25t1/2 0^ t0 1/2, ~44!

while a four-component Dirac spinor transforms according
the direct sum representationt1/2 0% t0 1/2.

Product representations of such IR’s are, in general,
ducible, and can be written as a direct sum of irreduci
representations. This is greatly facilitated by noting that
IR’s of the Lorentz group satisfy

tpq^ tnm5 %
up2nu<k<p1n
uq2mu< l<q1m

tkl . ~45!

Obviously, this is just the familiar rule for the coupling o
two angular momenta~i.e., for forming the product of two
IR’s of the rotation group!, applied, however, to each of th
two labels of the IR’s individually. Equation~44! is a special
case of this rule. Another example is a general tensor of r
two. Being defined as the direct product of two vectors
transforms according to

t1/2 1/2^ t1/2 1/25t00% t11% t10% t01. ~46!

Heret00 denotes the identical representation. Symmetric t
sors transform according to the ten-dimensional direct s
representationt00% t11 ~note that a symmetric tensor of ran
two, defined in a four-dimensional vector space, has ten
dependent entries!. Antisymmetric tensors transform accor
ing to the six-dimensional IR’st10% t01 ~an antisymmetric
tensor in a four-dimensional vector space has six indep
dent entries!.

The task of enumerating all possible relativistic OP
now reduced to finding all distinct IR’s according to whic
the anomalous bilinear forms of Dirac spinors transform. E
or

-
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e
e
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plicitly, the bilinear formCTĥ iC transforms, for anyĥ i ,
according to the direct product representation of two spi
representations, i.e.,

@t1/2 0% t0 1/2# ^ @t1/2 0% t0 1/2#. ~47!

The resulting product representation is immediately seen
be reducible. Using Eq.~45! one finds

@t1/2 0% t0 1/2# ^ @t1/2 0% t0 1/2#5t00% t00% t1/2 1/2

% t1/2 1/2% t10% t01.
~48!

We find that there are two Lorentz scalars~twice the identi-
cal representation!, two four vectors~twice t1/21/2) and one
antisymmetric tensor of rank two contained in the prod
representation. An analysis of the proper Lorentz gro
alone does not suffice to distinguish between scalars
pseudoscalars, or vectors and axial vectors, respectively.
have therefore obtained two scalars and two vectors. Pa
then serves to further classify these quantities accordin
their behavior under space inversion. It should be noted
exactly the same analysis goes through for the conventio
bilinear covariantsC̄ĜC, whereĜ is any of the 16 conven-
tional Dirac matrices. As these quantities are formed with
adjoint spinor they transform according to

@t1/2 0* % t1/2 0* ^ @t1/2 0% t0 1/2#, ~49!

wheretpq* is the complex conjugate representation oftpq .
For the Lorentz group an IR is not generally equivalent to
conjugate IR. It follows immediately that anomalous a
conventional bilinear covariants describe distinct physi
objects. The transformation behavior of these objects, h
ever, depends only on the labelsp andq and is therefore the
same for the conventional as for the anomalous bilinear
variants. The resulting classification of the conventional
linear covariants into scalars, vectors, and an antisymme
tensor of rank two is, of course, not new, but found in ma
standard textbooks by way of explicit manipulations ofĝ
matrices.50,51,53

As far as the anomalous bilinear covariants are concern
Eq. ~48! constitutes a rederivation of the above theorem
purely group-theoretical considerations, without having
write down explicit matrices or Dirac-type equations.

IV. SYMMETRY ANALYSIS WITH RESPECT
TO DISCRETE SYMMETRIES

A. Discrete symmetries of the Dirac equation

We now generalize the considerations of Sec. II A to t
relativistic case, i.e., we construct a symmetry adapted b
set of two-particle states into which any OP can be
panded. In a relativistic situation one hasthree symmetry
operations, instead of two, namely time-reversalT̂, parity P̂

and charge conjugationĈ.50,51,53Every solution,un&, of the
Dirac equation yields four linearly independent states,
cording to

un&, uT̂n&, uP̂n&, uP̂T̂n&. ~50!

The corresponding charge-conjugate states are



ly

he
ta
re
d

m
s
st
is

en

ce

r

ta

od
e
so

-
as

ec-
tly,
e

7148 PRB 59K. CAPELLE AND E. K. U. GROSS
uĈn&, uĈT̂n&, uĈP̂n&, uĈP̂T̂n&. ~51!

As will turn out below, a complete set of OP’s are on
obtained if both types of states, Eqs.~50! and ~51!, are
included.63 The BCS prescription for pairing requires that t
single-particle states are paired to yield a two-particle s
with zero center-of-mass momentum. The Pauli principle
quires that these two-particle states be antisymmetric un
particle exchange. We now construct the appropriate sym
try adapted basis functions, which are the counterpart
Eqs.~2!–~5! in the nonrelativistic case. To this end, we fir
consider homogeneous systems, in which the momentum
good quantum number, and introduce four-compon
spinors of the form

^r uki&5fk~r !x i , ~52!

where

x15S 1

0

0

0

D x25S 0

1

0

0

D x35S 0

0

1

0

D x45S 0

0

0

1

D . ~53!

We will refer to the space defined by the labeli asi space. It
is the formal generalization of the nonrelativistic spin spa
The three symmetry operators act onfkx i according
to50,51 T̂@fkx1#5fk* x2 , P̂@fkx1#5f2kx1 , Ĉ@fkx1#
5fk* x4 , etc. Using this notation, the relativistic counterpa
of the stateuS& is, for homogeneous systems, given by

u1&5uki,T̂ki&2uP̂T̂ki,P̂ki&1uĈP̂T̂ki,ĈP̂ki&

2uĈki,ĈT̂ki&. ~54!

It is readily verified that the configuration-space represen
tion of this state is

^rr 8u1&5@fk~r !f2k~r 8!1f2k~r !fk~r 8!#

3~x1^ x22x2^ x11x3^ x42x4^ x3!.

~55!

^rr 8u1& is seen to be even in the spatial coordinates and
in the i space coordinates. In this sense it describes the r
tivistic counterpart of a singlet state. Performing the ten
products of thex i yields the matrix

S 1

21

1

21

D , ~56!

which is justĥ, as defined in Eq.~19!.
In inhomogeneous systemsk is not a good quantum num

ber any more. In complete analogy to the nonrelativistic c
one therefore defines the general basis state as

u1&5uni,T̂ni&2uP̂T̂ni,P̂ni&1uĈP̂T̂ni,ĈP̂ni&

2uĈni,ĈT̂ni&, ~57!
te
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er
e-
to
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e

wheren stands for a complete set of quantum numbers n
essary to label a solution of the Dirac equation. Eviden
Eq. ~57! contains Eqs.~54! and ~2! as special cases. In th
same way in whichu1& is mapped onto the matrixĥ, the
matricesĥV

0 to ĥT
23 correspond, in this order,~up to global

factors61,6 i ) to the basis states

u2&5uni,T̂ni&2uP̂T̂ni,P̂ni&2uĈP̂T̂ni,ĈP̂ni&

1uĈni,ĈT̂ni&, ~58!

u3&5uni,ĈP̂T̂ni&2uĈT̂ni,P̂ni&2uT̂ni,ĈP̂ni&

1uĈni,P̂T̂ni&, ~59!

u4&5uni,ĈP̂T̂ni&2uĈT̂ni,P̂ni&1uT̂ni,ĈP̂ni&

2uĈni,P̂T̂ni&, ~60!

u5&5uni,Ĉni&2uĈP̂ni,P̂ni&1uT̂ni,ĈT̂ni&

2uĈP̂T̂ni,P̂T̂ni&, ~61!

u6&5uni,Ĉni&2uĈP̂ni,P̂ni&2uT̂ni,ĈT̂ni&

1uĈP̂T̂ni,P̂T̂ni&, ~62!

u7&5uni,Ĉni&1uĈP̂ni,P̂ni&1uT̂ni,ĈT̂ni&

1uĈP̂T̂ni,P̂T̂ni&, ~63!

u8&5uni,P̂ni&2uP̂T̂ni,T̂ni&1uĈP̂T̂ni,ĈT̂ni&

2uĈni,ĈP̂ni&, ~64!

u9&5uni,P̂ni&1uP̂T̂ni,T̂ni&1uĈP̂T̂ni,ĈT̂ni&

1uĈni,ĈP̂ni&, ~65!

u10&5uni,T̂ni&1uP̂T̂ni,P̂ni&1uĈP̂T̂ni,ĈP̂ni&

1uĈni,ĈT̂ni&, ~66!

u11&5uni,ĈP̂T̂ni&1uĈT̂ni,P̂ni&1uT̂ni,ĈP̂ni&

1uĈni,P̂T̂ni&, ~67!

u12&5uni,ĈP̂T̂ni&1uĈT̂ni,P̂ni&2uT̂ni,ĈP̂ni&

2uĈni,P̂T̂ni&, ~68!

u13&5uni,Ĉni&1uĈP̂ni,P̂ni&2uT̂ni,ĈT̂ni&

2uĈP̂T̂ni,P̂T̂ni&, ~69!

u14&5uni,T̂ni&1uP̂T̂ni,P̂ni&2uĈP̂T̂ni,ĈP̂ni&

2uĈni,ĈT̂ni&, ~70!



r
s

of

th
de
e

ac
de
ti
ha

or
n-

s
e-
n
e
ne

t
on
el
a
s

e

fo
re

the

th
or
per
the
of

n

v-
o
e a

o
and
tiv-

as
ve
uch

eed
s
te

ver-
ith

on.
s
r

um
t or
he
t

ntum
ion
der

-

ff
qs.

e
ma-

et
to

two
tiv-

PRB 59 7149RELATIVISTIC FRAMEWORK FOR . . . . I. . . .
u15&5uni,P̂ni&1uP̂T̂ni,T̂ni&2uĈP̂T̂ni,ĈT̂ni&

2uĈni,ĈP̂ni&, ~71!

u16&5uni,P̂ni&2uP̂T̂ni,T̂ni&2uĈP̂T̂ni,ĈT̂ni&

1uĈni,ĈP̂ni&, ~72!

respectively. The statesu1&–u16& are independent of the
choice for the labeli in the sense thati 52,3,4 lead, up to
global phase factors, to the same 16 matrices asi 51. These
matrices are determined only up to within an overall unita
transformation. The same applies, evidently, to the ba
states~57!–~72!. The present choice is simply a matter
convenience.

This connection between the discrete symmetries of
Dirac equation and the behavior of the relativistic OP un
Lorentz transformations64 can now be used to discuss th
physical meaning of the various terms in Eq.~43!.

B. Order parameters involving charge conjugation

The charge-conjugation operationĈ relates positive and
negative-energy solutions of the Dirac equation to e
other. The nature of the corresponding pairs can be un
stood by expressing the order parameters in terms of crea
and annihilation operators of single-particle states rather t
in terms of field operators. The field operatorsC have an
expansion of the form:53

C5(
p

(
s51

4

f s,pb̂p
~s! , ~73!

where the b̂p
(s) annihilate positive energy electrons fors

51,2 and negative energy electrons fors53,4. The coeffi-
cient f s,p can be expressed in terms of solutions of the c
responding Dirac equation.53 The order parameters thus co
tain operators for two positive-energy electrons~e.g.,
b̂p

(1)b̂p
(2)), two negative-energy electrons~e.g., b̂p

(3)b̂p
(3)) or a

positive and a negative-energy electron~e.g., b̂p
(1)b̂p

(3)).65 It
follows that there are no electron-positron pairs contained
our theory, as these would require terms likeb̂p

(1) (b̂p
(3))†.

The appearance of pair states formed with oneĈ opera-
tion, such asuni,Ĉni&, in the basis set thus reflects the po
sibility of pairs consisting of a positive and a negativ
energy electron. Such pairs require the pairing interactio
bridge the gap of 2mc2. As this energy is far bigger than th
typical energies of pairing mechanisms discussed in con
tion with ordinary superconductors, such pairs are unlikely
be realized in solid-state situations. In particular, in the n
relativistic limit the negative-energy states are complet
decoupled from the positive-energy states, so that the p
formed with oneĈ operation do not contribute at all in thi
limit.

On the other hand, it isnecessaryto include these pairs in
the formal development of the theory, because without th
one does not recover the complete set of 16 434 matrices.
Furthermore it should be noted that such pairs are not
bidden by either relativity or symmetry. Whether they a
y
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actually realized in nature depends, therefore, only on
existence of a suitable interaction.

In the nonrelativistic limit we only have the states wi
zero or twoĈ operations, i.e., pairs between two positive
two negative-energy states at our disposal to form Coo
pairs. Considering these states it is important to note that
theory is exactly symmetric with respect to the operation
charge conjugation. To every single-particle state in Eq.~50!
corresponds one in Eq.~51! which differs from it just by
application ofĈ. Furthermore, as we did not specify the sig
of the external potential,Am , we have in fact no way to
distinguish superconductivity involving two electrons, mo
ing in a lattice of ordinary atoms, from that involving tw
positrons in a lattice composed of anti atoms. It is therefor
definite~and rather plausible! prediction of the theory that in
an ‘‘antiworld’’ superconductivity takes place between tw
positrons instead of two electrons. Since both electrons
positrons are solutions of a Dirac equation there are rela
istic corrections to both types of pairs.

Already to second order inv/c, at the weakly relativistic
level, these corrections lead to important effects, such
spin-orbit coupling, the Darwin term, etc. From the abo
considerations it appears highly plausible that there are s
corrections to the order parameters as well, which ind
turns out to be the case~see the second paper in this serie!.

In Table I each matrix is assigned two labels to indica
the nature of the underlying basis states. Thesecondof these
labels refers to the behavior of the pairs under space in
sion. The matrices corresponding to the states formed w
zero or twoĈ operations are all even under space inversi
These matrices are labeledE. Those corresponding to pair
formed with one application ofĈ turn out to be odd unde
inversion and are labeledO.

C. Order parameters involving triplet pairing

In the nonrelativistic case, where spin is a good quant
number, all pair states can be classified as either single
triplet states. This classification is reflected in the form of t
pair states~2!–~5!. In the relativistic case, singlet and triple
states lose their meaning because spin is not a good qua
number any more. However, as long as a center of invers
is present, a classification according to the behavior un
particle exchange is still possible.34,1 Order parameters
which are even ini space and odd inr space are the gener
alization of triplet OP. Those OP which are odd ini space
and even inr space generalize singlet OP.

The symmetry ini space can be immediately read o
from the matrix representations of the various OP in E
~19!–~34!. All matrices satisfyingĥT5ĥ are even ini space
and lead to triplet OP’s in the nonrelativistic limit. Thes
matrices correspond to the states 7–16. In Table I these
trices carry aT ~for triplet pair! as a first label. Matrices
satisfying ĥT52ĥ, on the other hand, give rise to singl
OP in the nonrelativistic limit. These matrices correspond
the basis states 1–6. In Table I they carry anS ~for a singlet
pair! as a first label.

The matrices labeledTE in Table I ~corresponding to the
states 8,9,10,14,15,16) describe triplet pairs between
positive or two negative-energy states. These are the rela
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istic generalizations of the Balian-Werthamer matricesi ŝys,
to which they rigorously reduce~up to phase factors61, 6 i

which are a consequence of our definition of theĥ matrices!
in the nonrelativistic limit.

D. Order parameters of the generalized BCS-type

It is perfectly possible to formulate a relativistic theory
superconductivity on the basis of the complete Hamilton
~43!. One would carry on with 16 different order paramete
and the associated pair fields, which transform as the c
ponents of the various bilinear covariants.

Obviously, this Hamiltonian leads to very general equ
tions of motion whose solution will be rather involved.
most, if not all, realistic situations the interaction leading
superconductivity will pick one of the various couplin
channels~i.e., bilinear covariants! and favor one~or a few! of
the great variety of order parameters. In the following s
tions we will thus not continue with the full equation~43!.

We assume instead that the nonelativistic limit of o
equations must describe a singlet superconductor with p
ing between two positive-energy states. OP’s with suc
nonrelativistic limit will in the following be termed ‘‘order
parameters of the generalized BCS type.’’

For an analysis of triplet superconductors and more ex
pairs one needs to go back to Eq.~43! and select the relevan
terms from Eqs.~19!–~34!, just as we shall do below for th
BCS case.

By inspection of Table I we find that only two out of th
16 possible OP are of the generalized BCS type. One of t

is the Lorentz scalar, formed using the matrixĥ. The other is
the zeroth component of the~polar! four vector, which is

formed with the matrixĥV
0 .

If we took both of these two OP’s into account, the r
sulting expression for the Lagrangian would not be cova

ant, becauseĥV
0 is only a single component of a bilinea

covariant. This on its own does not disqualify theĥV
0-OP as

a valid OP, but it has the immediate consequence tha
form a covariant quantity we need to combine it with the O
ĥV

1 , ĥV
2 , and ĥV

3 which were already excluded above, b
cause they correspond to pairs between a positive an
negative-energy electron. Therefore we will focus mainly
the scalar OP in the remainder of this paper.

For later reference we now explicitly write out the Ham
tonian containing the generalized BCS-type OP

x̂~r ,r 8!5CT~r !ĥC~r 8!, ~74!

namely

Ĥ5E d3r C̄~r !@cĝ•p1mc21qĝmAm#C~r !
n
s

-

-

-

r
ir-
a

ic

m

-
i-

to

a
n

~75!

This is the BCS version of~43! or, equivalently, the relativ-
istic version of~12! and ~13!. The other OP of the genera
ized BCS-type,ĥV

0 , leads to the term

~76!

If ~76! is included in Eq.~75!, the resulting Hamiltonian
contains all terms which in the nonrelativistic limit reduce
BCS-type OP’s, but the Lagrangian it corresponds to is
covariant.

The formulation of the relativistic theory of supercondu
tivity given in Ref. 29 is a special case of the present form
lation, in which only the center-of-mass degrees of freed
of the Cooper pair are considered and only the scalar OP,
~74!, formed withĥ, is included. The nonrelativistic limit of
the approach of the present section has been shown in
29 to lead to the standard Bogolubov–de Gennes theor
inhomogeneous superconductors43 with a local OP.

The essence of this reduction can already be seen from
structure of theĥ-OP. Using the anticommutation relation
of the four components of theC, c i , and the symmetry of
the pair fieldD(r ,r 8) under particle exchange, we can r
write

1

2E d3r d3r 8CT~r !ĥC~r 8!D* ~r ,r 8! ~77!

as

E d3r d3r 8@c1~r !c2~r 8!1c3~r !c4~r 8!#D* ~r ,r 8!.

~78!

Here we have essentially performed the steps in reve
which led from Eq.~12! to Eq. ~13! in the nonrelativistic
case. We now see the physical significance of the ma
entries inĥ. The first product,c1(r )c2(r 8), is just the rela-
tivistic counterpart to the familiarc↑(r )c↓(r 8), to which it
rigorously reduces in the nonrelativistic limit.
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The second product,c3(r )c4(r 8), is the analogous term
for the lower components of the Dirac spinor. Since in
relativistic theory upper and lower components must
treated on the same footing, the appearance of these ter
highly plausible. In the nonrelativistic limit the lower com
ponents are by a factor ofv/c smaller than the upper com
ponents. Therefore, the second product, being of or
(v/c)2, does not contribute in this limit.

From these considerations it follows that it is not nec
sary to appeal to the discrete symmetries of the Dirac eq
tion in order to identify the relativistic generalization of th
BCS OP, as we have done in the beginning of this subs
tion. It is sufficient to look at the upper left corner of th
variousĥ matrices, which must be of the form

S 0 1

21 0D , ~79!

in order to reduce to the BCS OPc↑(r )c↓(r 8) in the non-
relativistic limit. Obviously, both ways to identify the rela
tivistic generalization of the BCS OP lead to the same res

V. THE RELATIVISTIC
BOGOLUBOV –DE GENNES EQUATIONS

A. Relativistic Bogolubov-Valatin transformation

Equation ~75! defines the Dirac–Bogolubov–de Genn
Hamiltonian for the generalized BCS-OPĥ. This Hamil-
tonian can be diagonalized by a unitary canonical trans
mation from the field operatorsC(r ) to new operatorsak .
~Usually these new operators are labeledgk in the literature
on superconductivity. We useak in order to avoid confusion
with the Dirac matricesĝ.) In the nonrelativistic case, th
transformation which diagonalizes Eq.~12! is given by the
Bogolubov-Valatin transformation43,66–68

c↑~r !5(
k

„uk~r !ak↑2vk~r !* ak↓
†
…, ~80!

c↓~r !5(
k

„uk~r !ak↓1vk~r !* ak↑
†
…, ~81!

where the coefficientsuk(r ) andvk(r ) are determined from
the requirement that the transformed Hamiltonian be dia
nal. Obviously, the spin of the quasiparticles enters the tra
formation only in a fixed combination. To treat magne
impurities, spin-orbit coupling, triplet pairing, etc., this tran
formation needs to be replaced by the more gen
form1,37,41,43,45,69

ct~r !5(
sk

@utsk~r !ask1vtsk* ~r !ask
† #, ~82!

where the spin degrees of freedom are involved in the tra
formation as well. In the relativistic case, the spinlike qua
tum numberss and t have to be replaced by compone
labels of the Dirac spinors. The relativistic generalization
Eq. ~82! is thus

c i~r !5(
jk

@ui jk~r !ajk1v i jk* ~r !ajk
† #. ~83!
e
s is

er

-
a-

c-

lt.

r-

o-
s-

al

s-
-

f

There are several conditions the transformation~83! has to
satisfy.49,70 First of all it needs to be unitary~i.e., preserve
the normalization of the quasiparticle wave functions! and
canonical~i.e., preserve the anticommutation relations of t
field operators!.70 Unitarity requires that

E d3r(
i

@v i jk~r !v i j 8k8
* ~r !1ui jk~r !ui j 8k8

* ~r !#5dkk8d j j 8

~84!

and

E d3r(
i

@v i jk~r !ui j 8k8~r !1ui jk~r !v i j 8k8~r !#50,

~85!

while the conditions

(
k j

@ui jk~r !v i 8 jk
* ~r 8!1v i jk* ~r !ui 8 jk~r 8!#50 ~86!

and

(
k j

@ui jk* ~r !ui 8 jk~r 8!1v i jk~r !v i 8 jk
* ~r 8!#5d i i 8d~r2r 8!

~87!

ensure that the transformation is canonical. As in the non
ativistic case, it turns out that the same relations are a
obtained by demanding that the solutions of the result
single-particle equations be complete and orthonormal.45,49

Explicitly we find that completeness of the solutions follow
if the transformation is canonical, while orthonormality fo
lows, if it is unitary.

B. Dirac–Bogolubov–de Gennes equations

Further conditions on the coefficientsui jk(r ) andv i jk(r )
follow from demanding that the Hamiltonian~75! be diago-
nal in the new creation and annihilation operatorsajk :

H5(
jk

Ejkajk
† ajk1E0 , ~88!

whereE0 is the ground-state energy and theajk create and
annihilate elementary excitations~Bogolons! with energy
Ejk . In the same way as in the nonrelativistic case,43 one
finds from Eqs.~83! and ~88! that theui jk(r ) and v i jk(r )
which diagonalize Eq.~75! satisfy a set of coupled integrod
ifferential equations of the Bogolubov–de Gennes ty
These equations are most conveniently written in a ma
notation as

S ĥ D

2D* 2ĥ*
D S ujk~r !

v jk~r !
D 5EjkS ujk~r !

v jk~r !
D . ~89!

Hereh is the kernel of the Dirac Hamiltonian

ĥ5ĝ0@cĝ•p1mc2~12ĝ0!1qĝmAm#. ~90!
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The termmc2(12ĝ0) arises from subtractingmc2 from the
energy eigenvalues of Eq.~75! before diagonalization, i.e.
measuring the energies relative to the rest energy.D is an
integral operator that contains the pair potential as kerne

D5E d3r 8 . . . D~r ,r 8!ĥ. ~91!

For the case of a local pair potential it reduces to the mu
plicative operatorD(R)ĥ, whereR is the center-of-mass co
ordinate of the Cooper pairs. Each entry in the matrix in E
~89! is thus a 434 matrix. Accordingly, the four-componen
spinorsujk(r ) andv jk(r ) are given by

ujk~r !5S u1 jk

u2 jk

u3 jk

u4 jk

D v jk~r !5S v1 jk

v2 jk

v3 jk

v4 jk

D . ~92!

Equation~89! with Eqs.~90!–~92! constitutes the relativistic
generalization of the Bogolubov–de Gennes equation. It
in the following be referred to as the Dirac–Bogolubov–
Gennes equation. We can immediately verify that a num
of important special cases is contained correctly in Eq.~89!:
~i! The nonrelativistic limit is obtained if we neglect the
lower two components of the spinorsujk(r ) and v jk(r ),
which are small in the weakly relativistic limit and zero
the nonrelativistic case. The 838 equation~89! then reduces
to a 434 equation, which is identical to the nonrelativist
434 spin-Bogolubov–de Gennes equation.43,45,69 ~ii ! In the
nonsuperconducting limit, D[0, we obtain the conventiona
Dirac Hamiltonians for electrons and holes.~iii ! In the local
limit the integral operatorD becomes a multiplicative opera
tor D(r ) and we obtain the local version of the Dirac
Bogolubov–de Gennes equation, derived in Ref. 29.

Equations of a similar algebraic form as Eq.~89! were
previously proposed in the context of nuclear physics and
Hartree-Fock-Bogolubov theory by Kucharek and Ring71 and
by Zimdahl.72 The present derivation within the framewo
of superconductivity and density-functional theory, the d
tailed symmetry analysis of the order parameter, and the
vestigation of the weakly relativistic limit and its cons
quences, presented in the present and the following pap30

however, are not contained in these older works.

C. Density-functional aspects

The nonrelativistic Hamiltonian~12! is the starting point
for many microscopic investigations of superconductivity,
which we can just discuss a few.43,69,73–79

In the nonrelativistic case the potentialsv(r ) andD(r ,r 8)
appearing in Eq.~12! are either used as parameters in ord
to simulate, e.g., superconducting multilayers a
heterostructures74,75 or determined microscopically in a sel
consistent fashion. The first approach can be used in
relativistic case as well. If, for example, one of the two m
terials at the interface contains heavy atoms, a relativi
description is called for.

The self-consistent numerical calculations are often d
in a mean-field framework43,76–79,69 or, more recently,
using the apparatus of the density-functional the
i-

.
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~DFT!. 21,41,44–49In the DFT for superconductors the intera
tion leading to superconductivity and the Coulomb intera
tion are formally eliminated in favor of suitably choose
effective pair,D(r ,r 8), and lattice,v(r ), potentials. The po-
tentialsv(r ) andD(r ,r 8) are determined self-consistently a
functionals of the density and the order parameter, by so
ing the Kohn-Sham Bogolubov–de Gennes equations. Th
effectice potentials can thus be viewed as a convenient
to deal with the interactions at hand.21,41,44–49

That such relativistic calculations can become necess
for realistic superconductors containing heavy elements
exemplified by the results of Singh and co-workers,28 who
performed~conventional! relativistic band-structure calcula
tions for Ba(Sn,Sb)O3 and concluded that the absence
superconductivity in these materials is due to relativistic
fects on the band structure. The Dirac–Bogolubov–
Gennes equations derived above provide the opportunit
improve such calculations by treating the effects of relativ
and superconductivity on the same footing.

A proper relativistic DFT for superconductors has n
been formulated as yet. The main reason for this is the pr
lem of variational stability of the relativistic electron ga
which, from a purists point of view, is only partly solved
even for normal~i.e., nonsuperonducting! systems.25 It is not
the intention of the present paper to tackle this question
the superconducting case. It is, however, a definite con
quence of the present paper that the Kohn-Sham equation
any conceivable relativistic DFT for superconductorsmust
have the algebraic form of Eq. (89!. In lieu of a microscopic
prescription how to determine the effective potentialsAm and
D in this ‘‘Kohn–Sham–Dirac–Bogolubov–de Gennes
equation, we suggest that they be treated either as adjus
parameters to model realistic materials, as, e.g., in Refs
and 75, or by parametrizing them in terms of the underly
orbitals of the system under study as, e.g., in Refs. 47
48.

VI. SUMMARY AND OUTLOOK

The main results of this work are summarized in Tabl
and Eq.~43!. In Table I we classified all possible order p
rameters consistent with the requirement of relativistic co
riance, according to their transformation behavior under L
entz transformations. This table therefore generali
previous symmetry classifications of the order parame
from the Galilei group to the Lorentz group. The table co
tains the relativistic generalizations of the standard BCS
der parameter, as well as that of the triplet~Balian-
Werthamer! order parameters. It also predicts that there
several other types of order parameters which have not
been considered in the literature on superconductivity.

Equation ~43! contains all these order parameters in
manifestly covariant fashion. It expresses the theorem tha
order parameters have to transform like bilinear covariant
the Dirac equation in order to ensure Lorentz invariance.

Many of these results are derived from more than o
viewpoint. In particular, the classification of all relativist
OP’s as scalar, four vector, etc., expressed in the above t
rem and Table I, follows from either one of the followin
methods:~i! A decomposition of bilinear forms of Dirac
spinors according to irreducible representations of the L
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entz group. This method is completely general and alge
ically extremely simple. However, it does not yield explic
expressions for the OP.~ii ! The construction of explicit ma
trices having the indicated transformation properties. S
matrices in turn can be found in at least three ways:~iia! By
making educated guesses as to the form of the matrix,
lowed by verification through explicit Lorentz transform
tions. This method is laborious but explicit.~iib! By gener-
alizing the Balian-Werthamer construction ~i.e.,
multiplication of the Pauli matrices with the nonrelativist
time-reversal matrix! to the relativistic domain~i.e., multipli-
cation of Dirac matrices with the relativistic time-revers
matrix!. ~iic! By forming linear combinations of pair state
constructed using the discrete symmetries of the Dirac eq
tion, instead of the Lorentz group.

The latter construction allows for a physical interpretati
of the 16 order parameters, leading to the distinction betw
between triplet and singlet pairs and to identifying pairs
volving positive and negative-energy solutions of the Dir
equation.

We identified one of the 16 order parameters as the r
tivistic version of the BCS order parameter. The Hamilton
containing this order parameter was diagonalized. The res
ing single-particle equations can be regarded as the D
equivalent of the Bogolubov–de Gennes equations.

All our considerations in this paper are based on the c
cepts of pairing and Lorentz invariance. They can theref
be applied whenever pairing takes place, not merely in
a-

h

l-

l

a-

n
-
c

a-
n
lt-
ac

-
e
e

case of proper superconductors. Other situations to wh
our results apply are superfluid helium 3,37,41 nuclear
matter,80 and the pairing of neutrons and protons in neutr
stars.81,82

In order to predict observable consequences of the r
tivistic terms it is advisable to proceed to the weakly relat
istic limit. This will be the subject of the second paper in th
series, in which a number of reduction techniques are app
to the Dirac–Bogolubov–de Gennes equations. These m
ods allow one to recover the familiar nonrelativistic equ
tions in zeroth order and to derive relativistic corrections
higher order ofv/c. Explicit forms for these corrections wil
be derived and it will be pointed out in which situations th
are relevant for realistic superconductors.
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discussed in detail in Sec. IV B and the second paper in
series.

64From the discussion in Sec. II A it follows that the same conn
tion exists also in the nonrelativistic theory of superconductivi
Linear combinations of pair states constructed from the disc

symmetries of the Schro¨dinger equation (T̂ and P̂) are repre-
sented in spin space by combinations of matrices which refl
the behavior of the OP under spatial rotations~singlet: scalar,
triplet: vector!.

65It follows that there are no electron-positron pairs contained

our theory, as these would require terms likeb̂p
(1) (b̂p

(3))†. Note
that electron-positron pairs would yield neither supercurre
nor a Meissner effect.
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