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Relativistic framework for microscopic theories of superconductivity.
I. The Dirac equation for superconductors
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(Received 14 October 1997

We present a unified treatment of relativistic effects in superconductors. The relativistically ¢biract
type) single-particle Hamiltonian describing the quasiparticle spectrum of superconductors is deduced from
symmetry considerations and the requirement of the correct nonrelativistic limit. We provide a complete list of
all order parameters consistent with the requirement of Lorentz covariance. This list contains the relativistic
generalizations of the BCS and the triplet order parameters, among others. Furthermore, we present a symme-
try classification of the order parameters according to their behavior under the Lorentz group, generalizing
previous treatments that were based on the Galilei group. The considerations in this paper are based only on the
concepts of pairing and Lorentz covariance. They can therefore be applied to all situations in which pairing
takes place. This includes BCS-type superconductors, as well as the heavy-fermion compounds, high-
temperature superconductors, pairing of neutrons and protons in neutron stars, and superfluid helium 3.
[S0163-182609)11305-5

I. INTRODUCTION Sec. V of the present paper an equation is derived which
allows one to perform such relativistic band-structure calcu-
This is the first in a series of two papers devoted to arations for superconductors.
investigation of the effects of relativity in superconductors. It In spite of the fact that relativity thus obviously is relevant
has been noted before by many authors that relativistic effor a large number of interesting effects in superconductors,
fects can have a profound influence on superconductivity? gnified and covariant relativistic a_lpproach to superconduc-
Spin-orbit coupling, a relativistic effect of second order in tivity has not been worked out, until very recently. In a pre-
vlc, is known to influence the symmetry of the order YioUS papet’ we presented a first step towards such a rela-
parametel;* the spin-susceptibility and the Knight shift, tivistic theory of sgpe_rconductlwty. That theory led to a
magnetic impurities in  superconductdrs, Josephson relativistic generalization of the Bogolubov—-de Gennes
currentst®1the value of the upper critical field:2H,, equations of superconductivity. By performing a weakly

and the magnetooptical response of supercondutiors, rela_1t|V|st|c expansion up to seC(_)nd ordewitc, wherev is a
typical velocity of the particles involved, we found the usual

among other quantities. Relativistic corrections to the Co0:g 4tivistic corrections(spin-orbit coupling, mass-velocity

per pair mass have t_’(fge n evaluated theoretically a_nd Me&brrection, and Darwin termn a form appropriate for su-
sured experimentally*° The self-consistent screening of perconductors. Furthermore, a number of new relativistic

the currents which gives rise to the Meissner effect is due tQqrections of thesameorder inv/c emerged, which exist in
the current-current interactidi?! which is of relativistic superconductors only. These new terms could be identified
origin and of second order w/c. Plasma frequency anoma- a5 the superconducting counterparts of the spin-orbit and the
lies which were observed in some high-temperature supemarwin term, with the pair potential taking the place of the
conductors have been suggested to be due to current-currggttice potential. The appearance of such terms can be traced
interactions as wefl® In the anyonic theory of superconduc- back to the complex interplay between relativistic symmetry
tivity it was recently argued that one needs to start from &reaking and superconducting coherence. The theory has
relativistic Lagrangian in order to obtain a complete descrip-meanwhile been shown to lead to potentially observable ef-
tion of the Meissner effe In studying the electrodynamics fects on, e.g., the energy spectrum of a supercondiiciod
of vortices in high-temperature superconductors it was founén the magneto-optical response of superconductots.
necessary to employ a relativistically covariant wave equa- The present paper provides a more general approach to
tion in order to explain the experimental d&farhe relativ-  relativistic effects in superconductors. It is organized as fol-
istically covariant theory presented in the present paper prdews: after this introduction we show, in Sec. II, how the
vides a unified framework within which such effects can beDirac equation is generalized to describe superconductors by
interpreted and analyzed. introducing the order parameters ax 4 matrices into the
Moreover, whenever there are elements with atomic numpirac Hamiltonian.
berZ=40 in the lattice”> the band structure has to be calcu-  In Secs. Ill and IV we present a detailed analysis of the
lated using relativistic method8-?®Many interesting super- resulting Hamiltonian. We discuss Lorentz covariance of the
conductors, e.g., the heavy-fermion compounds and the higlfermalism and investigate the behavior of the order param-
temperature superconductors, do indeed contain very heawters under Lorentz transformations. This leads to a classifi-
elements, such as mercurg £ 80), uranium Z=92), bis- cation of all possible order parameters with respect to their
muth (Z=83), thallium =81), platinum £=78), etc. In  behavior under the operations of the Lorentz group. Next we
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show that these order parameters can be interpreted in terriie physical significance of this construction is easily seen
of the symmetries of the underlying Cooper pair states. Thidy considering a homogeneous electron gas, where spin and
gives rise to a relativistic generalization of the concepts ofnomentum are good quantum numbergnié)=|k7), then
singlet and triplet superconductivity and allows one to|Tng)=|-k|), |Pno)=|-kT), and|PTno)=|k|). Tak-
specify what kind of physics is described by the various oring into account that each of the two-particle states is a Slater

der parameters. ) o _ determinant, the configuration-space representationSpf
In Sec. V we discuss the diagonalization of the Hamil-igkes the form

tonian. This leads to a set of differential equations which
generalize the Bogolubov—-de Gennes equations of the non- (r,r'[S)=[@k(r)@_(r")+ ¢ k(N ex(r)1(x;®x,— x,
relativistic theory.

While the present paper thus deals with the Dirac equa- ®x1), (6)

tion for superconductors, the second paper of this s€riespere thep,(r) are normal-state single-particle wave func-
will treat the Pauli equation for superconductors. In that patjons and they,, are the usual spin functions. Obviously, the
per we take up the topic of weakly relativigtig correctiqns tospatial part ofS) is an even function under exchange of the
the conventional theory of superconductivity and discussyg particles, while the spin part is odd. This state describes
some observable consequences of the new terms. the conventional singlet Cooper pair’® Representing the

Unfortunately, the respective terminologies of relativity pg i spinors ag: = (1,0)T andy, = (0,1), this can be writ-
and superconductivity are rather different and there is littlgg, 55 ! !

overlap in the literature on these apparently distinct fields of
physics. To aid the nonspecialist, we have therefore included 19 =[erMe_«(r+o_ (Dot IMy (7)
two sections in which we briefly review some pertinent as-
pects of the microscopic theory of inhomogeneous supercorwith
ductors(Sec. Il A) and of relativistic covariancéSec. Il A).

It should be stressed from the outset that we do not at- N o 1
tempt to formulate a fully relativistimteractingfield theory My == -1 0/

of superconductivity: We quantize only the electron degrees _ ) )
of freedom and treat the external fields as classical fields! e other three states are even functions of the spin variables

Furthermore, the effects of relativity are considered only ornd 0dd functions of the spatial coordinates. They describe
the single-particle level, i.e., on the level of the triplet Cooper pairs, as found in superfluid helium(Ref.
Bogolubov—de Gennes equations. A relativistic treatment of/) and, possibly, orgamc.superconducférland heavy-
the interaction is beyond the scope of the present paper, afermion compound®’ The spin parts of the triplet states are
though we offer some remarks concerning this topic in SeciéPresented by

®

VC.
N 10
| T+)—my= : ©)
Il. GENERAL FRAMEWORK FOR A RELATIVISTIC 00
THEORY OF SUPERCONDUCTIVITY
. 0 O
A. A basis for the nonrelativistic order parameter |T—)—>m3::( 0 1) , (10

In the nonrelativistic case it is well known that the order
parametefOP) structure is determined by very general sym- 0
metry considerations, as follow$73* Cooper pairing takes |T0>*>|:h4::( ) (11
place between single-particle states which are, for any given 10
state|na), constructed by application of the time-reversal These matrices form the basis for many approaches to super-
and parity operators. Ifi stands for a complete set of quan- conductivity. In particular, the Balian-Werthamer parametri-
tum numbers needed to label a normal-state eigenfunctioRation for the order parameter of triplet superconductors is

we thus have the states simply a linear combination of the matricés+), |T—),
. . . and|T0).%%4! The fact that the singlet OP is composed of
Ino), |Tno), |Pno), |PTno) (D) time-reversed single-particle states is the basis for the theory

of impurities in BCS superconductats*® Furthermore, the

available for pairing, wherd and P are the time-reversal : ) ;
) . . e above defined statg®)—(5) were taken as a starting point
and parity operators, respectively. The possible pairing states . o ;
) ) r investigations of the order-parameter symmetry in uncon-
of the superconductor can then be characterized in terms of .. :
these states &k 34 ventional superconductors, e.g., in Refs. 31-34.

Multiplying these matrices from the left and from the
right with spinors whose entries are functionsrofyields a

|S)=Ina.Tna) = [PTna,Pno), @ real-space representation of the OP which is commonly used
B . in the Bogolubov—de Gennes equatitisnd in the density-
[T+)=Ino,Pna), (3 functional theory of superconductivit}:*+*-4*Since this

o . will be of considerable importance below, we demonstrate it
|T—)=|PTno,Tno), (4 explicitly for the singlet case. The conventional
Bogolubov—de Gennes Hamiltonian for a singlet supercon-
|TO)=|no, Tno)+|PTne,Pno). (5)  ductor ig?
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N B 3 2 N p? rﬁi , such as, for example, the set of the three Pauli matrices
Huon-re= | d°r - Yo(D)| 5 0D =1 4,(r) and the 2<2 unit matrix.
- j d3r d3r/[AT (r,r)x; () +H.cl, B. A basis for the relativistic order parameter
(12) We are now in a position to formulate the relativistic gen-

eralization of the Bogolubov—de Gennes Hamilton{d®)

where they,, are second quantized field operataréy) is  or, equivalently, the superconducting generalization of the

the lattice potentialA; (r,r') is the pair potential, and the Dirac Hamiltonian. Proceeding in the spirit of a single-

expectation value ofm(r,r’)z ()¢, (r') is the (nonlo- pgrticle theory it is ob_vious, that the firgte., the Schre

cal) singlet OP* In Sec. V C the role of this Hamiltonian in dinge part of Eq.(12) is to be replaced by the correspond-

density-functional theory for superconductors is further dising Dirac Hamiltonian. In analogy to Eq15) the second

cussed. part can always be expressed in terms of a general and as yet
The terms in Eq(12) referring to superconductivity can undetermined X4 matrix M (r,r'), i.e.,

be rewritten as

J Ar a3 A% (1 1) % () I:|=Jd3r V(r)[cy-p+mc+qy*A, IV (r)
1 -
1 _ 3r 43,7 T ’ ’
:EJ d3r d3r’ () Zf d>r dr '[P (r)M(r,r")¥(r')+H.cl],
X<¢T)T( 4o (l/lT) . -
g ) V=1 0/\y whereW(r) is a four-component field operatfirac-spinor

and similarly for its Hermitian conjugate. We have made useoperatof, ¥ (r):=¥'(r)y° and A, is the electromagnetic
here of the fact that the pair potential for a singlet state igour-potentiat®>!
even under interchange of)(andr’. This is guaranteed
because the spin part of the singlet state is an odd function of 1
the spins, and the full pair potential, having the symmetries A= (—(v(r)—,u),—A). (17)
of a fermionic pair wave function, must be odd under patrticle q
exchange.

It is seen that the matri¢8) appears naturally in Eq13). g is the charge of the particles involved. In writing the
In exactly the same way the matricé8—(11) appear in the above, we made use of the summation convention, i.e., a
generalization of the Bogolubov—de Gennes equations teummation ovegreekindices which appear once as an upper
triplet superconductors, as demonstrated explicitly in Refand once as a lower index is implied. We now expand the
41. The corresponding pair potentials are odd functions ofnatrix M(r,r’) in a basis set of 16 linearly independent

the spatial coordinates. _ ?x4 matricesM; with expansion coefficientd* (r,r’):
In the most general case, all these OP are present simul-

taneously. Then all the order parameters enter the Hamil-
tonian, multiplied by the appropriate pair fields and the su-

T \/ ’ N —ApT
perconducting term in the Hamiltonian becomes PHOM )P (r)=wi(r)

; A;‘(r,r')mj}\wr').
(18)

N\ T r’
(1)fd3rfd3r’<%( )) > Aj(r,r')rhj(%( /))’
2 Py(r)) 7 gy(r') Just as in the nonrelativistic case, in principle, any complete
(14 set of 4<4 matrices can be chosen as a basis for this expan-
sion. Below we employ one particular such set, namely that

of the;y matrices defined by Eq§19)—(34). This set will be
shown to ensure relativistic covariance of the formaligfn
Sec. lll) and to permit an interpretation of the physics of the
aired states analogous to Eq8)—(5) (cf. Sec. I\). For
larity we display below only those matrix entries which are
different from zero:

where rhj are the four matrices defined in Eq®8)—(11).

Since m, and m; have only one entry, the factor 1/2 is
present only forj=1,4. [We can replace it by (1+ dj2
+ dj3) to have a closed expression for all cages.

It is by no means necessary to use this particular set
matrices. Any linear combination of thefrespectively, of
the state$2)—(5)] can be used just as well. Writing the gen-

eral OP as
1
lﬂT(r))TA (%(r/)) B
! 15 1
(wlm MO g ) (49 . . 19
with an arbitrary 2<2 matrix m(r,r’), we can expand -1

r?](r,r’) in any complete basis in spin space instead of the
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These 16 matrices are linearly independent and hence con-
stitute a complete set in which everyx4l matrix can be

expanded? The labeling of they matrices refers to the
transformation behavior of the corresponding OP under Lor-
entz transformations, as will be explained in Sec. Il B and in
Table I.

Clearly, the nonrelativistic limit of Eq.(16) is the
Bogolubov—de Gennes Hamiltonian for singkatd triplet
OP (Refs. 43 and 4)l(the spin degrees of freedom are natu-
rally contained in the relativistic frameworkwhile the non-
superconducting limitall A;—0) is the conventional Dirac
Hamiltonian.

We can now also see another reason, why it is useful to
introduce the matrix notation for the order parameter: The
corresponding terms in the Hamiltonian are all of the form

spinor-(4X4 matrix)-spinor-field, (35

just as are the terms of the Dirac Hamiltonian. In particular,
the pairing fieldsA; and the electromagnetic fiel, enter
the Hamiltonian on the same footing. The four-current den-

sity is defined, as usual, by*=c¥y*¥, while the order
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TABLE I. This table is a complete list of all order-parameter matrices which are consistent with the requirement of Lorentz covariance.
The first column denotes the transformation behavior of the OP. The second column contains the familiar bilinear covariants of the
conventional Dirac equation. The third column contains the corresponding anomalous bilinear covariants. Every individual component of
each entry in this table is @44 matrix. The labelSE, SO, TE, andTO, assigned to each component of the anomalous bilinear covariants
refer to the spin characte6€ singlet, T=triplet) and the behavior under space inversi@=(even,O=o0dd) of the corresponding pairs.

These labels are explained in detail in Secs. IVB and IV C.

Transformation behavior Conventional bilinear covariants Anomalous bilinear covariants
under Lorentz transformations of the Dirac equation of @Q)

P(r)...¥(r) TIr) ... ¥(r)
Scalar 1 7 (SB

\<>
= o
> So)

(%2}

m

~ :y 1 SO
Four vector vh= 52 = ?V
,]\2/ SO
23
Y ~3 SO
™
Pseudoscalar Yo =iy0915253 r=inpynuniny (SO
y5y° TO
~252,1
i Yy o mmn TE
Axial four vector Y5y m=| " . — 335
LR R W= | e
¥y TE
Antisymmetric tensor o= ;#V:
5051 5032 5053 c0°1 c0°2  ~0°3
0 vy Yy 0 Wi N NN
_ 2021 ~1n 2 ~ 123 AR A Aq A Aq A
O T R T AT
%% —y1y? y3y® LR R T 0 223
f0n3  ~in3  nong W TN NN
v A vy 0 ~0°3 ~1°3 ~2"3
-wv N N O

0 TO TO T
TO 0 TE TE
TO TE 0 TE
O TE TE O

parameters are analogously given Eyy=‘I’TI\A/Ij‘I’. The . SYMMETRY ANALYSIS WITH RESPECT
four-current density and the order parameters are thus also TO THE LORENTZ GROUP

treated in a parallel way. This is particularly appealing from A Bilinear covariants of the conventional Dirac equation

the point of view of the density-functional theory of

superconductivit?444-49 where the Bogolubov—de  Every relativistic theory needs to be covariant, i.e., the
Gennes equations become the Kohn-Sham equations for segquations must have the same form in every inertial system.
perconductors and the order parameters enter the formalisive, therefore, have to verify that our equations are form
as “anomalous densities,” in addition to the normal densityinvariant under Lorentz transformations, i.e., invariant
n(r) and, if necessary, the current dengityVe call Eq.(16)  modulo a Lorentz transformation of the arguments. This is
the generalized Dirac—Bogolubov—de Gennes Hamiltoniamlearly the case for the conventional Dirac thedty:3i.e.,
because it contains the Dirac—Bogolubov—de Gennes Hamilwithout the terms containing th&;. To determine whether
tonian previously suggestétas a special case. the additional terms in Eq.16) are covariant, we need to
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explicitly study their transformation behavior under LorentzDirac equation. They are listed in the second column of
transformations. Table I. Their construction and a detailed analysis of their
In principle, a discussion of Lorentz invariance should beproperties is found in many standard textbooks on relativistic
based on the Lagrangian density and not the Hamiltoniaguantum field theory®>:>®Together they have 16 compo-
because the former is invariant itself, while the latter isfot. nents. Since we had only 16 matrices to start with, we have
The Hamiltonian formulation, though, is much more com-exhausted all possible combinations. For the Dirac equation
mon and convenient in solid-state physics. Since the Lathere are exactly these five and no other bilinear covariants.
grangian densityL is related to the HamiltonianH Their importance stems from the fact that the Hamiltonian
=[d° H by (or the Lagrangianneeds to be expressed in terms of these
bilinear covariants in order to be manifestly covariant itself.
- L Furthermore, since there is just a small number of different
H:Z ‘pi?_ﬁ* (36) bilinear covariants, one can classify all interactions with re-
: ) spect to the bilinear covariants which one needs for a proper
all terms in£ which do not depend og, [such as the terms description. It turns out, that almost every interaction can be
describing superconductivity in EQL6)] appear i and£  described in terms of just one bilinear covariant. The most
with opposite sign, but the same transformation behaviorprominent exception is the weak interaction of high-energy
We can thus carry on with the Hamiltonian formulation, if physics. A description of this interaction requires the pres-
we keep in mind that the actual invariant quantity is theence of a(polan four vectorand an axial four vector in the
Lagrangian density. Lagrangian. Since under a spatial reflection the former picks
The prescription how to perform a Lorentz transformationup a relative sign with respect to the latter, the weak inter-
for Dirac spinors can be found in many textboGR§-%3If  action violates parity invariancé:>® We have discussed
V¥ is the original spinor, then the spinor in a moving inertial these facts at length because they will turn out to be highly
system is related to it via relevant for the superconducting case as well.

V' (x')=5¥(x), (37)

— [ ! ’ H H
wherex=(ctr) andx’=(ct’,r’) are the space-time coordi-  \yq first consider the transformation behavior of the OP
nates in the original and the new inertial system, respec;

tively. For a transformation to an inertial system movingforT?d Wlltth |77 ?lvetn Eq..(B?)h, Itt is a matter of simple
with uniform velocity v, along thek axis k=x,y,z), the matrix multiplication to verify tha
transformation matrix is given by

B. Symmetry classification of all possible order parameters

- VT =(8Y)Tp(SY)=v 7V, (4D
N [0} . w 0 Ok
S=|cosh = |1-sinh = || . , 39 A o :
2 2 o, O i.e., WTy¥ is form invariant under Lorentz transformations.
where 7 can be expressed in terms of tematrices :513}1}3.
The bilinear covariant which is formed with thesematri-
@) _ Uk ces, namely’ 4152V is, on the other handot invariant
tan (39 : i .
2 under Lorentz transformations. As displayed in the second

and frk are the usual 2 Pauli matrices. This form applies column of Table I, it transforms as the componet of the

to finite, homogeneougnot involving translations ortho- ~ antisymmetric tensoo””.

chronous(not involving time reflectionsand pure(not in- A simila_r situation ig found for aI! OP: their transforma-
volving spatial rotations and reflectionisorentz transforma-  tion behavior cannot simply be obtained from their represen-
tions (i.e., “Lorentz boosts’). tation in terms of they matrices in Eqs(19)—(34) and a

One can now form all possible combinations of the Dirac-comparison with the corresponding representation of the

Y matrices and investigate the transformation behavior of th€onventional bilinear covariants in terms of the same matri-
quantitie§°’51'53 ces. The reason for this is, that the OP contlihinstead of

_ o o \FE\PWO. Therefore, it is the transposed transformation
Wy =00y =(SW) "0y (SY) (40)  matrix ST which enters and not, as usual, the Hermitian con-

under Lorentz transformations, wheyestands for any of the JU9ate S'. SinceS is, in general, a complex matrix, this
linearly independent Dirac matrices. Since there are 16 lindifference leads, together with the additiondl to a differ-
early independent 4 4 matrices, one can find 16 such quan- ent transformation behavior, as compared to the conventional
tities which can be classified according to their transformacase. This phenomenon is known also from the nonrelativis-
tion behavior. Exp|icit|y, one finds that one can form atiC triplet OP, where it leads to using the Balian-Werthamer
Sca|ar, a pseudosca|ar,(ao|aﬂ four vector, an axial four matrices instead of the Pauli matrices in order to obtain a
vector and an antisymmetric tensor of rank two. Each ofquantity which transforms as a three vector under spatial
these transforms under Lorentz transformations and spadétations’”#%%°

inversion according to an irreducible representation of the We can, of course, investigate the transformation behav-
Lorentz group” (see Sec. Il C for more detajlsThese five ior under space reflections in the same way. Here the trans-

entities are normally called thbilinear covariantsof the  formation matrix is simplyy® and it is readily verified that
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q,,r;7q,/ :(,}O\I,)T;]( ",YO\I,)E\I,T;]\I, (42) lar is expre_ssed in terms of the unit matrix, while a vector is
expressed in terms of the three Pauli matrices, one finds ma-
is invariant under this operation as well. We conclude thatfices yielding scalar and vector OP simply by multiplication

WT3W is a Lorentz scalar, which does not change sign undeith the nonrelativistic time-reversal matrixr, . The result-
spatial reflections(the latter property excludes a pseudo-ing matrices oy andioyoy,ioyoy,ioyo,, respectively, are
scalar, which would change sigriwe do not need to con- those employed in the Balian-Werthamer parametrization for
sider spatial rotations and translations because they do nthe nonrelativistic OP. In the same spirit all matrices describ-
influence the classification of the bilinear covariafig}>® ing relativistic OP can be obtained from the conventional
These operations do not, in general, leave the underlyin§irac matrices by multiplication with the relativistic time-
lattice of the superconductor invariant. The symmetry grougeversal matrixy*y3. Although this procedure is highly
of the lattice can be used to further classify the ©@P%*®  plausible, its general validity can only be verified by per-
The considerations of the present section can be viewed as #yming the Lorentz transformations as described above.
extension of these works from using the Galilei group to the  Just as in the nonsuperconducting case, the importance of
Lorentz group. the anomalous bilinear covariants stems from the fact that a
In the same way as for thg-OP we can investigate the Lagrangian expressed in terms of them is manifestly covari-
transformation behavior of all the other 15 matrices. To de-ant and from the possibility to classify systems with respect
termine their transformation behavior we perform Lorentzto the appropriate covariants. If for any given superconductor
transformations along all three spatial axes. This allows us tonore then one of the five covariants appear in the Hamil-
distinguish scalars, vectors, and tensors. To further distintonian, a very general symmetry, such as parity, would be
guish between proper scalars and pseudoscalars and betwdwaken.
(polan four vectors and axialpseud four vectors, we also In the spirit of a mean-fiel@Hartree-typg approximation,
need to investigate the behavior under spatial reflections. Thghere one has a linear relation between the particle-particle
covariant quantities one finds in this way will be termedinteraction and the effective single-particle potential, we can
anomalousbilinear covariantS? We summarize the results classify the interaction leading to superconductivity with re-
of this investigation in Table |, where we display the con-spect to the symmetry of the corresponding effective pair
ventional and the anomalous bilinear covariants, classifiegotential. If, for instance, for a certain superconductor only
according to their transformation behavior. the scalar OP is present in the Hamiltonian, the interaction
The 16 components of the five distinct covariant quanti-leading to superconductivity must be such, that the pair fields
ties of the Dirac equation can all be expressed in a wellimultiplying the other bilinear OP’s vanish identically. As we
known way®°® in terms of just five matrices, namely will show below, this example corresponds to the conven-
%, 7%,%2,%®, which form the(polap four vector, and the tional BCS-OP. In this way we can classify the interactions

unit matrix 1, which is the scalar. In just the same way, the@S “Scalar interaction,” “vector interaction,” etc.

16 components of the five distinct anomalous covariants can e can now formulate the following theorefio matter
all be expressed in terms of five matrices, namerWhat the OP symmetry and the detailed nature of the pairing

~0 21 "2 ~3 . interaction leading to superconductivity, there are only five
NS TN TN T Wh'Ch form the(pola) fpur vector, and the. OP with a total of916 corl?nponents, cogsistent with theyprin—
7 matrix, which is the scalar. There is thus a far reachingjpje of general covariance. Each of these is a bilinear form
correspondence between the conventional bilinear covariantg ihe field operatorsP T and W transforming according to
of.the Dirac quation for normal electrons and the apomalougn ireducible representation of the Lorentz grouphis
bilinear ~ covariants (order parametejs of the Dirac—  theorem, derived here by explicit construction of a complete
Bogolubov—de Gennes equation for superconductors. set of matrices, is rederived in Sec. IlIC by purely group-
In view of this correspondence it is not surprising thatiheoretical considerations. The resulting anomalous bilinear

there exists a transformation which, when applied to one ofgyariants are listed in Table I. Using these results we can
the 16 components of the conventional covariants, yields thgow write the Hamiltoniar(16) with Eq. (18) as

corresponding anomalous covariant. If every entry in the sec-

ond column of Table | is multiplied with'5?, there results i _ i

(up to factors*=1) the corresponding entry in the third col- H=f d*r ¥(r)[cy-p+ mc2+qy”“AM]\If(r)

umn. In the case of the pseudoscaydy for instance, we find

21.3.5_°5 ; 3022 1 ~ ~
2/12/3"’}/0"27] , ngeA 2the t_ensor componeng”y becomes __f &3 3 (W T 7A* (r,r)+ 7PAR(rr)
vy y y = —mnnyny. This rule transforms a conventional 2

bilinear covariant in the corresponding anomalous covariant, LA Ny DEA ,
which has the same transformation behavior under Lorentz WAV T+ 7aA R, (1T

boosts and spatial reflections. It summarizes in a concise way TEAY (r )W)+ H.cl. 43)

i . ; +
the lengthy calculations necessary to determine the matrix T AT e

representations of the 14-OP by performing the Lorentz oy every contribution to the superconducting part of the

transformations explicitly. _ Hamiltonian is expressed in terms of covariant quantities: the
This rule, extracted from Table I, can also be arrived at by lar is formed with andA . th q | ith and
means of a generalization of the nonelativistic Balign->ca1ar IS formed wi ty anda, the pseudoscalar with> an

Werthamer prescription for the construction of matrices forAp the four vector withyy andAy,,, the axial vector with
the singlet and triplet OP’s: Observing that ordinarily a sca-»4 andA,, and the tensor, finally, witlp?” andAy ,, .
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Note Athe formal correspondence between the four-vectopicitly, the bilinear form¥ "7 ¥ transforms, for anyy,,
producty*A,,, describing the coupling of the four current, according to the direct product representation of two spinor

¥ y“¥, to the four potentialA,,, and the producizA,,,  'epresentations, i.e.,

. . . T"
describing the _coupllng of the four vector O®,' »{;¥, to [71/20® 7o 115]®[ 7112 o® 7o 1/5]- (47)
the four potentialAy,, .
Equation (43) is one of the central equations of the The resulting product representation is immediately seen to
present work. It constitutes the desired relativistic Hamil-be reducible. Using Eq45) one finds
tonian for superconductors and contains all possible anoma-
lous bilinear covariants. [ 7172 0® T0 1/2]®[ T1/2 0D To 1/2] = T00® To0® T1/2 172
@ 7172 1129 T10P 701

C. Irreducible representations of the Lorentz group (48)

The method used above to determine the relativistic OP i§Ve find that there are two Lorentz scaléwice the identi-
based on explicit expressions for each OP in terms okd 4 cal representationtwo four vectors(twice 71,1, and one
matrix. The main conclusion of the previous section canantisymmetric tensor of rank two contained in the product
however, also be found without any recourse to explicit mafepresentation. An analysis of the proper Lorentz group
trices, simply by exploiting the properties of the irreducible alone does not suffice to distinguish between scalars and
representationéiR’s) of the Lorentz group. To this end we pseudoscalars, or vectors and axial vectors, respectively. We
first recapitulate a number of properties of such IR’'s whichhave therefore obtained two scalars and two vectors. Parity
will be used below?°-52 then serves to further classify these quantities according to

The IR’s of the Lorentz group, denoteg are character- their behavior under space inversion. It should be noted that
ized by two labelsp andg, which can take positive integer exactly the same analysis goes through for the conventional
and half-integer values onlylnfinite dimensional represen- bilinear covariantsP 'V, wherel is any of the 16 conven-
tations characterized by continuous labels exist as well, buional Dirac matrices. As these gquantities are formed with the
are not relevant for the present consideratipiitie dimen-  adjoint spinor they transform according to
sion of the IR 7,4 is (2p+1)(29+1). A four vector, for
instance, transforms according to tfieur-dimensional rep- (732 0® ™12 0®[ T1/2 0P 70 1/2], (49

resentation x . .
where 7, is the complex conjugate representation7gf.

(44) For the Lorentz group an IR is not generally equivalent to its
conjugate IR. It follows immediately that anomalous and
while a four-component Dirac spinor transforms according toconventional bilinear covariants describe distinct physical
the direct sum representation;; o® 74 1/2- objects. The transformation behavior of these objects, how-
Product representations of such IR’s are, in general, reever, depends only on the lab@sindq and is therefore the
ducible, and can be written as a direct sum of irreduciblesame for the conventional as for the anomalous bilinear co-
representations. This is greatly facilitated by noting that theyariants. The resulting classification of the conventional bi-

T1/2 1/2= T1/2 0¥ To 1/2>

IR’s of the Lorentz group satisfy linear covariants into scalars, vectors, and an antisymmetric
tensor of rank two is, of course, not new, but found in many
Toa@Tam= D il - 49 standard textbooks by way of explicit manipulations pf
Jpomsksprn matrices>%-1:53

. L . . As far as the anomalous bilinear covariants are concerned,
Obviously, this is Just.the familiar _rule for the coupling of Eq. (48) constitutes a rederivation of the above theorem by
two angular momentdi.e., for forming the product of two el group-theoretical considerations, without having to

IR's of the rotation group applied, however, to each of the ite gown explicit matrices or Dirac-type equations.
two labels of the IR’s individually. Equatiof4) is a special

case of this rule. Another example is a general tensor of rank
two. Being defined as the direct product of two vectors, it
transforms according to

IV. SYMMETRY ANALYSIS WITH RESPECT
TO DISCRETE SYMMETRIES

A. Discrete symmetries of the Dirac equation

T QT = Too® 711D T10P 701 - 46 . . .
1/2 12 F1/2 1127 007 T1LE F10% T01 (46 We now generalize the considerations of Sec. Il A to the

Here 7o, denotes the identical representation. Symmetric tenrelativistic case, i.e., we construct a symmetry adapted basis
sors transform according to the ten-dimensional direct sunset of two-particle states into which any OP can be ex-
representationqy® 71, (Note that a symmetric tensor of rank panded. In a relativistic situation one hdsee symmetry
two, defined in a four-dimensional vector space, has ten inoperations, instead of two, namely time-reverBabarity P
erendent e-ntri_esAnti.symmet,ric tensors transform accqrd- and charge conjugatio.5*55%Every solution,|n), of the
ing to the six-dimensional IR's,o® 7o (@n antisymmetric  pjrac equation yields four linearly independent states, ac-
tensor in a four-dimensional vector space has six '”dePerb‘ording to
dent entries

The task of enumerating a_II pos§|ble relat_|V|st|c OP_ is In), |'T'n>, |I5n>, |I5'T'n>. (50)
now reduced to finding all distinct IR’s according to which
the anomalous bilinear forms of Dirac spinors transform. Ex-The corresponding charge-conjugate states are
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|Cn>, |C'Tn>, |Cl5n>, |C|51'n>. (51) wheren stands for a cqmplete set qf quantum numbt_ars nec-
essary to label a solution of the Dirac equation. Evidently,

As will turn out below, a complete set of OP’s are only Eq. (57) contains Egs(54) and(2) as special cases. In the
_obtainedﬁsif both types of states, Eq®0) and (S1), are  same way in which1) is mapped onto the matriy, the
|r_1cluded. The BCS prescription for pairing reqwres_that the matrices;;{), to "7]%3 correspond, in this ordefup to global
single-particle states are paired to yield a two-particle Stat?actors+ 1.+1) to the basis states
with zero center-of-mass momentum. The Pauli principle re- -
quires that these two-particle states be antisymmetric under . an oA Aan L aaA
particle exchange. We now construct the appropriate symme- |2)=[ni, Tni)—|PTni,Pni)—[CPTni,CPni)
try adapted basis functions, which are the counterparts to

Egs.(2)—(5) in the nonrelativistic case. To this end, we first +|Cni,CTni), (58)
consider homogeneous systems, in which the momentum is a L o .
good quantum number, and introduce four-component |3)=|ni,CPTni)—|CTni,Pni)—|Tni,CPni)
spinors of the form a L an
+|Cni,PTni), (59
(rlki)=w(r)xi, (52)
where |4y=|ni,CPTni)—|CTni,Pni)+|Tni,CPni)
1 0 0 0 ~|Cni,PTni), (60)
0 1 0 0 Ca L gAA A A oA
xi=| o Xe=|o| xe=| | xe=|g] (53 |5)=|ni,Cni)—|CPni,Pni)+|Tni,CTni)
0 0 0 1 —|CPTni,PTni), (61)

We will refer to the space defined by the labealsi space. It

is the formal generalization of the nonrelativistic spin space. [6)=1ni,Cni)—|CPni,Pni)—[Tni,CTni)

The three symmetry operators act afyy; according +|CI51'ni Isfni) (62)
0% Tl dxl=dixa, Pldxl=d w1, Clexil
= ¢y x4, €tc. Using this notation, the relativistic counterpart 17)=|ni Cni)+|é|5ni I5ni>+|'T'ni C'T’ni)
of the statgS) is, for homogeneous systems, given by ’ ' ’

X L L +|CPTni,PTni), (63

1) = |ki, Tki)— | PTki,Pki)+|CPTki,CPki)
&k, ETK). (54) |8)=|ni,Pni)—|PTni, Tni)+|CPTni,CTni)

It is readily verified that the configuration-space representa- —|Cni,CPni), (64)

tion of this state is

(') =[(r)p_(r")+ d_(r) i(r")]

X(X1® X2~ X2®@ X1T X3® Xa— Xa® X3)-

|9)=|ni,Pni)+|PTni,Tni)+|CPTni,CTni)

+|Cni,CPni), (65)

(85) 110)=ni, Tni)+|PTni, Pni)+ |CPTni,EPni)
(rr’|1) is seen to be even in the spatial coordinates and odd " aa
in thei space coordinates. In this sense it describes the rela- +|Cni,CTni), (66)
tivistic counterpart of a singlet state. Performing the tensor
products of they; yields the matrix |12)=|ni,CPTni)+|CTni,Pni)+|Tni,CPni)
1 +|Cni,PTni), (67)
~1
1] (56) 112)=|ni,EPTni)+|ETni,Pni)—|Tni,EPni)
-1 —|Cni,PTni), (68)
which is justy, as defined in Eq(19). o
In inhomogeneous systerkss not a good quantum num- 113)=[ni,Cni)+|CPni,Pni)—[Tni,CTni)
ber any more. In complete analogy to the nonrelativistic case Aan L AA L
one therefore defines the general basis state as —[CPTni,PTni), (69
|1)=|ni, Tni)—|PTni,Pni)+|CPTni,CPni) |14)=|ni, Tni)+|PTni,Pni)—|CPTni,CPni)

—|Cni,CTni), (57) —|Cni,CTni), (70)
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|15>=|ni,|5ni>+||5'i'ni,'Tni>—|C|5'Tni,é'Tni> acf[ually realized .in natgre depends, therefore, only on the
existence of a suitable interaction.
—|Cni,é|3>ni), (72 In the nonrelativistic limit we only have the states with
zero or twoC operations, i.e., pairs between two positive or
|16>=|ni,|5ni>—||5?ni,?ni>—|él5?ni,éfni> two negativ_e-energy states at our _disposal to form Cooper
pairs. Considering these states it is important to note that the
+|Cni,CPni), (72)  theory is exactly symmetric with respect to the operation of

charge conjugation. To every single-particle state in(Bf)

respectively. The statekl)—|16) are independent of the corresponds one in Eq51) which differs from it just by
choice for the label in the sense that=2,3,4 lead, up to application ofC. Furthermore, as we did not specify the sign
global phase factors, to the same 16 matrices=ak. These of the external potentialA,, we have in fact no way to
matrices are determined only up to within an overall unitarydistinguish superconductivity involving two electrons, mov-
transformation. The same applies, evidently, to the basithg in a lattice of ordinary atoms, from that involving two
states(57)—(72). The present choice is simply a matter of positrons in a lattice composed of anti atoms. It is therefore a
convenience. definite (and rather plausib)eprediction of the theory that in

This connection between the discrete symmetries of then “antiworld” superconductivity takes place between two
Dirac equation and the behavior of the relativistic OP undepositrons instead of two electrons. Since both electrons and
Lorentz transformatior? can now be used to discuss the positrons are solutions of a Dirac equation there are relativ-

physical meaning of the various terms in E43). istic corrections to both types of pairs.
Already to second order in/c, at the weakly relativistic
B. Order parameters invo|ving Charge Conjugation IeVeI, these corrections lead to important effeCtS, such as

. spin-orbit coupling, the Darwin term, etc. From the above

The charge-conjugation operati@ relates positive and  considerations it appears highly plausible that there are such
negative-energy solutions of the Dirac equation to eaclorrections to the order parameters as well, which indeed
other. The nature of the corresponding pairs can be undefyrns out to be the cagsee the second paper in this series
stood by expressing the order parameters in terms of creation |n Table | each matrix is assigned two labels to indicate
and annihilation operators of single-particle states rather thaghe nature of the underlying basis states. $aeoncof these
in terms of field operators. The field operatobshave an |apels refers to the behavior of the pairs under space inver-
expansion of the forrf? sion. The matrices corresponding to the states formed with

4 zero or twoC operations are all even under space inversion.
- These matrices are label&d Those corresponding to pairs
V=3 3 foby, (73 g

p S=1 formed with one application of turn out to be odd under
inversion and are labele@.

where theBéS) annihilate positive energy electrons far
=1,2 and negative energy electrons #¢3,4. The coeffi-
cientfs , can be expressed in terms of solutions of the cor-
responding Dirac equatioli. The order parameters thus con-  In the nonrelativistic case, where spin is a good quantum
tain operators for two positive-energy electrore.g., number, all pair states can be classified as either singlet or
E)E)l)ﬁéz))' two negative-energy electrome.g.,fjf)f)gf)) ora triplet states. This classification is reflected in the form of the

o - (DR (3) 65 pair stateg2)—(5). In the relativistic case, singlet and triplet
positive and a negative-energy electr_(mg., bp. bg™). .It . states lose their meaning because spin is not a good quantum
follows that there are no electron-positron pairs contained iy, per any more. However, as long as a center of inversion
our theory, as these would require terms IiK& (b()". is present, a classification according to the behavior under

The appearance of pair states formed with @hepera-  particle exchange is still possibié! Order parameters

tion, such asgni,Cni), in the basis set thus reflects the pos-Which are even in space and odd in space are the gener-
sibility of pairs consisting of a positive and a negative- alization of triplet OP. Those OP which are oddiispace
energy electron. Such pairs require the pairing interaction t&nd even im space generalize singlet OP.

bridge the gap of B1c2. As this energy is far bigger than the ~ The symmetry ini space can be immediately read off
typical energies of pairing mechanisms discussed in connedtom the matrix representations of the various OP in Egs.
tion with ordinary superconductors, such pairs are unlikely to19)—(34). All matrices satisfyingy'= 7 are even iri space

be realized in solid-state situations. In particular, in the nonand lead to triplet OP’s in the nonrelativistic limit. These
relativistic limit the negative-energy states are completelymatrices correspond to the states 7—16. In Table | these ma-
decoupled from the positive-energy states, so that the paitsices carry aT (for triplet paip as a first label. Matrices

formed with oneC operation do not contribute at all in this satisfying ;;Tz - ;; on the other hand, give rise to singlet

limit. OP in the nonrelativistic limit. These matrices correspond to
On the other hand, it isecessaryo include these pairs in the basis states 1-6. In Table | they carrySyfior a singlet

the formal development of the theory, because without thenpair) as a first label.

one does not recover the complete set of 644matrices. The matrices labele@E in Table | (corresponding to the

Furthermore it should be noted that such pairs are not forstates 8,9,10,14,15,16) describe triplet pairs between two

bidden by either relativity or symmetry. Whether they arepositive or two negative-energy states. These are the relativ-

C. Order parameters involving triplet pairing
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istic generalizations of the Balian-Werthamer matriio%@o-, 010 0
to which they rigorously reducgip to phase factors1, *i
which are a consequence of our definition of thenatrice$ 1 - T -10 0 0 .
in the nonrelativistic limit. _§/d rd’r'[U7(r) U(r')A*(r,r')
0 0 01
D. Order parameters of the generalized BCS-type 00-10
It is perfectly possible to formulate a relativistic theory of = I
superconductivity on the basis of the complete Hamiltonian +H.c].
(43). One would carry on with 16 different order parameters (75)
and the associated pair fields, which transform as the com-
ponents of the various bilinear covariants. This is the BCS version of43) or, equivalently, the relativ-

Obviously, this Hamiltonian leads to very general equa-stic version of(12) and (13). The other OP of the general-
tions of motion whose solution will be rather involved. In ;,q BCS—type,;yE’,, leads to the term

most, if not all, realistic situations the interaction leading to

superconductivity will pick one of the various coupling 0 10 0
channeldi.e., bilinear covarianisand favor ondor a few of
the great variety of order parameters. In the following sec- —l/d*”r d3r’[\IlT(r) -100 0 B() A (e, 1)
tions we will thus not continue with the full equatiga3). 2 voih

We assume instead that the nonelativistic limit of our 0001

equations must describe a singlet superconductor with pair- 0 01 0

ing between two positive-energy states. OP’s with such a

nonrelativistic limit will in the following be termed “order =iy,

parameters of the generalized BCS type.” +H.c.]
For an analysis of triplet superconductors and more exotic (76)

pairs one needs to go back to E43) and select the relevant

terms from Eqs(19)—(34), just as we shall do below for the If (76) is included in Eq.(75), the resulting Hamiltonian

contains all terms which in the nonrelativistic limit reduce to
BCS case. BCS-type OP's, but the L ian it ds to is not
By inspection of Table | we find that only two out of the cova-rig[::te S, but the Lagrangtan It correésponds 1o 1s no

16 possible OP are of the generalized BCS type. One of ther The formulation of the relativistic theory of superconduc-

is the Lorentz scalar, formed using the mauixThe otheris tjyity given in Ref. 29 is a special case of the present formu-
the zeroth component of thgpolan four vector, which is Jation, in which only the center-of-mass degrees of freedom
formed with the matrixng,. of the Cooper pair are considered and only the scalar OP, Eq.
If we took both of these two OP's into account, the re-(74), formed with 7, is included. The nonrelativistic limit of
sulting expression for the Lagrangian would not be covarithe approach of the present section has been shown in Ref.
ant, because;J is only a single component of a bilinear 29 to lead to the standard Bogolubov—de Gennes theory of

covariant. This on its own does not disqualify th8-OP as inhomogeneous superconducfdraith a local OP.
: . : . The essence of this reduction can already be seen from the
a valid OP, but it has the immediate consequence that to

form a covariant quantity we need to combine it with the OpStructure of thep-OP. Using the anticommutation relations
7L, %2, and 7% which were already excluded above, be- of the four components of th#, ¢;, and the symmetry of

. " the pair fieldA(r,r’) under particle exchange, we can re-
cause they correspond to pairs between a positive and fite
negative-energy electron. Therefore we will focus mainly on
the scalar OP in the remainder of this paper. 1
For later reference we now explicitly write out the Hamil- _f d3r d3r " ®T(r) 37\Ir(r’)A* (r,r") (77
tonian containing the generalized BCS-type OP 2

as

() =VT(r) 7 (r), (74 J d3r d3r [ (r) ha(r') + ghg(1) gha(r N JA* ().
(78)

namely Here we have essentially performed the steps in reverse,
which led from Eq.(12) to Eq. (13) in the nonrelativistic
case. We now see the physical significance of the matrix

entries in7. The first productys(r) ,(r'), is just the rela-
tivistic counterpart to the familiag(r),(r’), to which it

A~ _ 3 - ~ i AM
H f dr ¥ (n[ey-p+mc+qy AuW(r) rigorously reduces in the nonrelativistic limit.
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The second produci/s(r)¥,(r’), is the analogous term There are several conditions the transformati88) has to
for the lower components of the Dirac spinor. Since in asatisfy?*’° First of all it needs to be unitari.e., preserve
relativistic theory upper and lower components must behe normalization of the quasiparticle wave functipasd
treated on the same footing, the appearance of these termsdanonical(i.e., preserve the anticommutation relations of the
highly plausible. In the nonrelativistic limit the lower com- field operators’® Unitarity requires that
ponents are by a factor af/c smaller than the upper com-
ponents. Therefore, the second product, being of order 3 N .

(v/c)?, does not contribute in this limit. d rZ [oijk (N (D) + Ui (DU 0 (N ]= i 650

From these considerations it follows that it is not neces- (84)
sary to appeal to the discrete symmetries of the Dirac equa-
tion in order to identify the relativistic generalization of the gnd
BCS OP, as we have done in the beginning of this subsec-
tion. It is sufficient to look at the upper left corner of the

various 7 matrices, which must be of the form f d3r2 [vijk (N Ui (1) + Ui (Nvij e (1) ]=0,

0 1 (85
(—1 0)’ (79" \while the conditions

in order to reduce to the BCS OR,(r) ¢ (r’) in the non-

relativistic limit. Obviously, both ways to identify the rela- E [Uijk(r)vi*/-k(f')+Uﬁk(r)ui/1k(r')]:0 (86)
tivistic generalization of the BCS OP lead to the same result. ki .

V. THE RELATIVISTIC and

BOGOLUBOV —-DE GENNES EQUATIONS

A. Relativistic Bogolubov-Valatin transformation ; [Uﬁk(r)ui’jk(r,)+Uijk(r)vrrjk(r,)]: Sio(r=r’)
i

Equation(75) defines the Dirac—Bogolubov—de Gennes (87

Hamiltonian for the generalized BCS—OP. This Hamil- o . .
tonian can be diagonalized by a unitary canonical transforénsure that the transformation is canonical. As in the nonrel-
mation from the field operator® (r) to new operators, . ativistic case, it turns out that the same relations are also

(Usually these new operators are labejgdn the literature o_btained b_y demanding that the solutions of the resulting
on superconductivity. We usg in order to avoid confusion Single-particle equations be complete and orthonofftia.

. . LA L Explicitly we find that completeness of the solutions follows,
with the Dirac matricesy.) In the nonrelativistic case, the picTy b

: . ; . L= if the transformation is canonical, while orthonormality fol-
transformation which diagonalizes E@.2) is given by the lows, if it is unitary y
Bogolubov-Valatin transformatidf®-5¢ : '

B. Dirac—Bogolubowde Gennes equations

1= (uJrag—uvr)*al), (80)
¥l ; ()3 —oklr) g Further conditions on the coefficients;(r) anduvj,(r)
follow from demanding that the Hamiltoniai@5) be diago-
nal in the new creation and annihilation operatajs:
n(D=3 UdDag +odn*al). (81 peraiage
where the coefficients,(r) andv,(r) are determined from H=Z Ejka;‘kaijr Eo, (89
jk

the requirement that the transformed Hamiltonian be diago-

nal. Obviously, the spin of the quasiparticles enters the trans-

formation only in a fixed combination. To treat magnetic Whe_Le_IEO 1S ':he ground-state energy alnd g _crr]eate and
impurities, spin-orbit coupling, triplet pairing, etc., this trans- 2NNihilate elementary excitationdogolons with energy

formation needs to be replaced by the more generafFik- In the same way as in the nonrelativistic cASene
formL:3741.4345,69 finds from Eqgs.(83) and (88) that theu;j(r) and vjj,(r)

which diagonalize Eq(75) satisfy a set of coupled integrod-
ifferential equations of the Bogolubov—de Gennes type.

— * ) . . . . K
llff(f)—zz [U k(N askt v 7o ag], (82)  These equations are most conveniently written in a matrix
7 notation as
where the spin degrees of freedom are involved in the trans-
formation as well. In the relativistic case, the spinlike quan- A D , ,
ujk(r) ujk(r)
tum numberso and 7 have to be replaced by component . . =Eji . (89
labels of the Dirac spinors. The relativistic generalization of -D*  —p* ) \o(r) vk(r)

Eq. (82) is thus ) . T
Hereh is the kernel of the Dirac Hamiltonian

(r)= y Lok !
wi(N) =24 [ui(Da+ofinaj) (83) A 3cy prm@A-50+a A (90
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The termmc3(1— 5°) arises from subtractinmc from the ~ (DFT). ?44%4~%In the DFT for superconductors the interac-
energy eigenvalues of E¢75) before diagonalization, i.e., tion leading to superconductivity and the Coulomb interac-
measuring the energies relative to the rest enefyys an  tion are formally eliminated in favor of suitably choosen

integral operator that contains the pair potential as kernel effective pair,A(r,r’), and latticep(r), potentials. The po-
tentialsv(r) andA(r,r’) are determined self-consistently as

3, A functionals of the density and the order parameter, by solv-
D= | dr" ... A(r,r") 7. (91 ing the Kohn-Sham Bogolubov—de Gennes equations. These
9 g \ :
) o _effectice potentials can thus be viewed as a convenient way
For the case of a local pair potential it reduces to the multitg deal with the interactions at harfd:4144-49

plicative operaton (R) 7, whereR is the center-of-mass co- That such relativistic calculations can become necessary
ordinate of the Cooper pairs. Each entry in the matrix in Eqfor realistic superconductors containing heavy elements is

(89) is thus a 4x 4 matrix. Accordingly, the four-component exemplified by the results of Singh and co-work&syho

spinorsuj(r) anduvj(r) are given by performed(conventiongl relativistic band-structure calcula-
tions for Ba(Sn,Sbh)@ and concluded that the absence of
Ugjk V1jk superconductivity in these materials is due to relativistic ef-
Ugji V2jk fects on the band structure. The Dirac—Bogolubov—de
Uji(r) = vj(r)= (920  Gennes equations derived above provide the opportunity to
Usjk Usjk improve such calculations by treating the effects of relativity
Ugjk Vajk and superconductivity on the same footing.

A proper relativistic DFT for superconductors has not

L lubov—d i i een formulated as yet. The main reason for this is the prob-
generalization of the Bogolubov—de Gennes equation. It Wilig, ¢ \ariational stability of the relativistic electron gas

in the following be referred.to as Fhe Dirac.—Bogqubov—dewhich’ from a purists point of view, is only partly solved,
Gennes equation. We can immediately verify that a numbeéven for normali.e., nonsuperonductipgystems? It is not

of important special cases is contained correctly in®8):  he intention of the present paper to tackle this question for

(i) The nonrelativistic limit is obta!ned if we neglect the the superconducting case. It is, however, a definite conse-
'OW.ef two components of the splr.]o.[.ﬁ!((r) and vik(r), . quence of the present paper that the Kohn-Sham equations of
which are small in the weakly relativistic limit and zero in any conceivable relativistic DFT for superconductonsist

the nonrelativistic case. Thex8 equation(89) then reduces | 5ye the algebraic form of Eq. (89n lieu of a microscopic

to a 4x4 equation, which is identical to the nonrelativistic e ; : ;

. ' ; prescription how to determine the effective potentiajsand
4x4 spin-Bogolubov—de Gennes equaﬁaﬁ?v69(||) Inthe A in this “Kohn-Sham-Dirac—Bogolubov—de Gennes”
nonsuperconducting limiO=0, we obtain the conventional o ation, we suggest that they be treated either as adjustable
Dirac Hamiltonians for electrons and holési) In thelocal 33 meters to model realistic materials, as, e.g., in Refs. 74
limit the integral operatoP becomes a multiplicative opera- ;4 75, or by parametrizing them in terms of the underlying

tor A(r) and we obtain the local version of the Dirac— ghitals of the system under study as, e.g., in Refs. 47 and
Bogolubov—de Gennes equation, derived in Ref. 29.

Equations of a similar algebraic form as E89) were
previously proposed in the context of nuclear physics and of
Hartree-Fock-Bogolubov theory by Kucharek and Rirand VI. SUMMARY AND OUTLOOK
by Zimdahl’? The present derivation within the framework , _ o
of superconductivity and density-functional theory, the de- 1€ main results of this work are summarized in Table |
tailed symmetry analysis of the order parameter, and the i@"d Ed.(43). In Table | we classified all possible order pa-
vestigation of the weakly relativistic limit and its conse- rameters consistent Wlth the requirement of rel_atlwstlc cova-
quences, presented in the present and the following gaper,iance, according to their tra_msformatlon behavior under Ifor-
however, are not contained in these older works. entz transformations. This table therefore generalizes
previous symmetry classifications of the order parameter
from the Galilei group to the Lorentz group. The table con-
tains the relativistic generalizations of the standard BCS or-
The nonrelativistic Hamiltoniaif12) is the starting point der parameter, as well as that of the tripléBalian-
for many microscopic investigations of superconductivity, of Werthamey order parameters. It also predicts that there are
which we can just discuss a feff5%73-7° several other types of order parameters which have not yet
In the nonrelativistic case the potentialg) andA(r,r’) been considered in the literature on superconductivity.
appearing in Eq(12) are either used as parameters in order Equation (43) contains all these order parameters in a
to simulate, e.g.,, superconducting multilayers andmanifestly covariant fashion. It expresses the theorem that all
heterostructuréé "> or determined microscopically in a self- order parameters have to transform like bilinear covariants of
consistent fashion. The first approach can be used in thihe Dirac equation in order to ensure Lorentz invariance.
relativistic case as well. If, for example, one of the two ma- Many of these results are derived from more than one
terials at the interface contains heavy atoms, a relativistiwiewpoint. In particular, the classification of all relativistic
description is called for. OP’s as scalar, four vector, etc., expressed in the above theo-
The self-consistent numerical calculations are often doneem and Table I, follows from either one of the following
in a mean-field framewofR’5-7°% or, more recently, methods:(i) A decomposition of bilinear forms of Dirac
using the apparatus of the density-functional theoryspinors according to irreducible representations of the Lor-

Equation(89) with Egs.(90)—(92) constitutes the relativistic

C. Density-functional aspects
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entz group. This method is completely general and algebrazase of proper superconductors. Other situations to which
ically extremely simple. However, it does not yield explicit our results apply are superfluid helium®%3* nuclear
expressions for the ORii) The construction of explicit ma- matter®® and the pairing of neutrons and protons in neutron
trices having the indicated transformation properties. Suclstars®2

matrices in turn can be found in at least three wdija) By In order to predict observable consequences of the rela-
making educated guesses as to the form of the matrix, foltivistic terms it is advisable to proceed to the weakly relativ-
lowed by verification through explicit Lorentz transforma- istic limit. This will be the subject of the second paper in this
tions. This method is laborious but explicitib) By gener-  series, in which a number of reduction techniques are applied
alizing the Balian-Werthamer  construction (i.e.,  to the Dirac—Bogolubov—de Gennes equations. These meth-
multiplication of the Pauli matrices with the nonrelativistic ods allow one to recover the familiar nonrelativistic equa-
time-reversal matrixto the relativistic domairti.e., multipli-  tions in zeroth order and to derive relativistic corrections in
cation of Dirac matrices with the relativistic time-reversal higher order ofy/c. Explicit forms for these corrections will
matrix). (iic) By forming linear combinations of pair states be derived and it will be pointed out in which situations they
constructed using the discrete symmetries of the Dirac equare relevant for realistic superconductors.

tion, instead of the Lorentz group.

The latter construction allows for a physical interpretation
of the 16 order parameters, leading to the distinction between
between triplet and singlet pairs and to identifying pairs in- Many helpful discussions with M. lders, S. Kurth, T.
volving positive and negative-energy solutions of the DiracKreibich, M. Marques, J. Annett, and B. L. Gyorffy are
equation. gratefully acknowleged. This work has benefited from col-

We identified one of the 16 order parameters as the reldaborations within, and has been partially funded by, the
tivistic version of the BCS order parameter. The HamiltonianHCM network “Ab-initio (from electronic structure) calcu-
containing this order parameter was diagonalized. The resultation of complex processes in materials (Contract No.
ing single-particle equations can be regarded as the DiraERBCHRXCT930369)and the program ‘Relativistic ef-
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