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Quantum dynamics of two-dimensional vortex pairs with arbitrary total vorticity

Vittorio Penna
Condensed Matter Section, International Center of Theoretical Physics, Strada Costiera 11, 34100-Trieste, Italy
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Quantum dynamics of a vortex pair is investigated by considering the pair Hamiltonian within various,
unequivalent algebraic frameworks. First the vortex pair spectrum is constructed in the standard contest of the
e(2)-like dynamical symmetry and its degeneracy is thoroughly examined. Then Berry’s phase phenomenon is
studied through an su(1,1) realization of the pair Hamiltonian when its parameters are assumed to be time
dependent, whereas the Feynman-Onsager quantization conditions are recovered by means of symmetry argu-
ments within a third approach based on a magneticlike description of the vortex pair. Finally, it is shown how
recasting the dynamical algebra in terms of two-particle realizations of both su(2) and su(1,1) provides the
correct approach for the quantization of the model Hamiltonian accounting for the pair scattering from a
disklike obstacle.@S0163-1829~99!09109-2#
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I. INTRODUCTION

An attempt to investigate the quantum dynamics~QD! of
superfluid vortices was performed by Fetter in Ref. 1.
considered a three-dimensional~3D! vortex model where the
vorticity field is nonzero on an array of parallel strings a
assumed that the vortex interactions were dominated
transversal string oscillations. The crucial feature is that
pair of coordinates involved by the local description of ea
point of a vortex line are canonically conjugate allowed
quantize the system via the canonical procedure.

The complexity of the problems inherent in the quantiz
tion of the vortex field theory together with their extrem
formal character2 have certainly contributed to discourag
for a long time, the investigation of the quantum aspects
vortex dynamics in the context of condensed-matter phys

The only exception to this statement3 is represented by the
special case of 2D pointlike massless vortices, which
derived from the standard field theory of 2D ideal fluids
the extreme case where the vorticity field is restricted to a
of isolated points.

Before discussing the motivations that prompt further
vestigations of VQD it is interesting to review the work d
voted to 2D vortex dynamics during the past two decad
The attention raised by its quantum version is principally d
to the vexed question whether pointlike vortices might e
hibit, when dynamically quantized, statistics with a fraction
character. A thorough account of this problem can be fou
in Refs. 4–7 whereas in Ref. 8 an effective theory of
quantum vortices on a Josephson junctions array is wor
out from the quantum-phase model Hamiltonian. Furt
contributions aimed at investigating 2D dynamically qua
tized vortices concern the influence of the boundary effe
on VQD,9 the ordering problem arising from the quantizati
process,10 the possibility that the vortex pair inherits anyo
like statistics when its dynamics is issued from that of t
charges in a transverse magnetic field,11 and the emergenc
of pointlike vortices with quantized dynamical degrees
freedom from a second quantizeduCu4-field theory.12

Surprisingly, apart from recent developments, such a c
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densed survey represents more or less the whole work
voted to the 2D VQD in the past 15 years, despite the h
quantity of theoretical work concentrated, during the sa
period, on the 2D vortex topic in relation to type-II supe
conductor physics,13 the Kosterlitz-Thouless transition
theory,14,15 and the investigations through Feynman’s var
tional approach16 on vortex emergence from the native s
perfluid background.

A renewed interest for 2D vortex dynamics has be
prompted by the recent experimental developments in
context of both superfluidity and superconductivity.17 The
great improvements concerning the measurement techni
and the observations of microscopic processes should re
quantum aspects of vortex dynamics viable to experime
detection.

There are at least four experimental situations that
interesting in respect to VQD. For example, devices wh
thin films of superfluid4He are adsorbed on porous materia
such as vycor glasses. The porous structure endows4He
films with the multiply connected geometry of a Riema
surface thus confining the vortex gas of superfluid films o
network of 2D cylinderlike connected domains~the surface
handles! with very small sizes.18 The fact that the specia
geometry makes vortices interacting at the mesoscopic sc
of the vycor structure is expected to emphasize the effec
quantizing vortex interactions. This, in fact, as entailed
the standard form of the vortex Hamiltonian, depends on
distance between vortex positions which is the quantity t
must be quantized. The depicted scenery is further com
cated by the effect of the curvature that, as in the case w
boundaries confine the fluid, introduces nonlinear terms
the energy that represent virtual vortex contributions.9

The second situation where vortex structures are imp
tant is the superconductor physics. Point vortices~vortex
lines! arising in 2D~3D! superconductors strongly influenc
conductance measurements of the current. The presen
the medium of pinning centers makes them undergo quan
tunneling phenomena that strongly affect vortex moveme
through the medium.19 The ensuing liquidlike behavior o
the vortex system affects the supercurrent decay by indu
voltage variations,20 but it depends, in turn, on interaction
among vortices as well as on interactions of vortices b
7127 ©1999 The American Physical Society
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7128 PRB 59VITTORIO PENNA
with the medium impurities and with the medium boun
aries. Similar effects are observed in superfluid currents
ring, while vortex creation phenomena, possibly due to
quantum tunneling effect, occur when superflows cross a
croscopic orifice.21

Finally, vortex dynamics is largely studied in th
Josephson-junction arrays,22 where experiments reveal a ric
scenery of phenomena such as high-energetic vortices ex
iting ballistic motion, vortex-driven voltage turbulence, a
vortex lattice melting.

A characteristic feature of the literature on VQD is t
fact that the attention has been mainly concentrated on
pairs of identical vortices, namely vortex-vortex~VV ! pairs
as well as antivortex-antivortex~AA ! pairs. Their deep quan
tum nature ensuing from the fact that both VV and AA i
teractions involve quantized intervortex distances4 has origi-
nated the idea of characterizing a pair of identical vortic
~and, more in general, a gas of identical vortices! by frac-
tional statistics. Concerning this point VA pairs were cons
ered uninteresting since no exotic statistics is expected f
distinguishable objects such as vortices and antivortices
addition to this, VA pairs arising in physical systems exhi
a vortex charge which is equal and opposite to the antivo
charge. This fact implies that the VA distance is n
quantized9 thus making their dynamics apparently trivial.

VA pairs are instead basic for understanding the statist
properties of excited superfluids. These are achieved
mean-field techniques that seem to entail an intrinsic
classic scenery. The standard renormalization procedure
obtaining scaling laws is illustrative of this when the habitu
assumption is made to consider each VA pair of the vor
gas as immersed in a dielectric background of VA pairs w
smaller size.15 This implies that both VV and AA interac
tions ~the very quantum ones! are embodied, and thus ave
aged, in the dielectric constant. Since the VA pair Ham
tonian possesses a sort of natural, semiclassical structu
that it does not contains any noncommuting quantities, t
quantum effects appear to be a higher-order refinement.

As to the emergence of vortex pairs we wish to recall
main traits of such a phenomenon within superfluid cond
sates and superconductors. The neutrality characterizing
of them at low temperature favors the occurrence of V
pairs when temperature is raised. These, in fact, violate
neutrality just locally and are energetically favored. On t
contrary individual VV and AA pairs represent disfavore
excited states since they entail local accumulation of vor
ity and, for this reason, a higher energy cost. It follows th
AA and VV interactions concern more frequently intera
tions of identical vortices of different VA pairs rather tha
pairs of identical vortices. Interactions of identical vortic
become dominating in superconductors when an exte
magnetic field is switched on. This is able to break the vor
charge neutrality and allows for vortex arrays where the v
tex density is greater than the antivortex one. The decrea
of the antivortex fraction is compensated by the magn
field that can be viewed as a macroscopic backgro
charge. The same effect is achieved in superfluids when
condensate undergoes a uniform rotation.13

The apparent nonquantum character of VA pairs ab
mentioned, disappears as soon as one goes beyond the
plified scenery of the mean-field picture. Indeed the VA d
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namics is as complex as the VV dynamics when any elem
tary effect~e.g., the boundary effects! coupling vortices with
the environment is taken into account.13,23 This is further
confirmed, at the classical level, when the substrate eff
on vortex dynamics are inserted either via an effect
potential,24 or by the explicit introduction of rigid obstacle
in the fluid.25 A possible, unexpected effect is that of provi
ing the customary continuum spectrum of the VA pair, w
a discrete character.9

The purpose of this paper is to provide a complete tre
ment of the vortex pair QD both for the VV case and for t
VA case~the AA case and the VV case are easily shown
be equivalent! and of attracting the attention on the ric
structure characterizing their quantization from the grou
theoretic viewpoint in relation to possible applications.

VQD is studied by means of the spectrum generating
gebra method26 which consists essentially in identifying firs
a complete set of dynamical degrees of freedom formin
Lie algebra~the dynamical algebra! and in constructing then
the Hilbert space of the system by exploiting the unita
irreducible representations of the related Lie group. In t
sense the vortex system is quite interesting due to the
variety of ways in which the vortex coordinates can be str
tured so as to form a dynamical algebra. Remarkably,
possibility of working within different algebraic scheme
does not reduce to the mere freedom of choosing am
different formal approaches trivially equivalent to ea
other. Each algebraic scheme, in fact, sheds light on so
particular feature of the system.

Classical dynamics ofN pointlike vortices is reviewed in
Sec. II together with the symmetries characterizing their m
tion described by the habitualE(2)-like symmetry group.
The procedure adopted for quantizing theN vortex gas and
hence the vortex pair is the standard canonical scheme4,10

concerning the pairs of canonically conjugate coordinates
signed to the points where the vorticity field is nonze
Moreover, the vortex pair dynamics is pictured through
significant geometric form suitable for interpreting the qua
tum spectra.

In Sec. III the QD of two interacting vortices is examine
in the case when the topological charges, namely the vor
ties k1 and k2 of pointlike vortices are arbitrary. Its inte
grable character is clearly manifested by the fact that the
Hamiltonian is a function of the Casimir operator of th
E(2)-like dynamical algebra. After working out explicit
both the eigenstates and the eigenvalues of the energy s
trum, the degeneration due to the high symmetry of the v
tex pair dynamics is analyzed. We show how a complete
of eigenfunctions can be worked out thanks to the possib
of observing one among the numerous constants of motio
the system. As in the case of the Landau spectrum for
electrons acted by a transverse magnetic field, a further q
tum number describing the system symmetry must be in
duced in addition to that describing the pair energy.

In Sec. IV the dynamical algebra is assumed to be su~1,1!.
This leads to reveal unexpected symmetry properties rela
dynamics of vortex pairs with different topological charge
and provides the framework for evaluating Berry’s pha
whenkj and the densityr are possibly time dependent. Re
casting instead the pair Hamiltonian in the magneticlike fo
of Sec. V allows one to derive the Feynman-Onsa
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condition,27,28 on the j th topological chargeskj[hnj /m,
where j 51,2, andm is the helium atom mass, from pur
symmetry considerations.

Finally, Sec. VI is devoted to introducing a two-boso
dynamical algebra which, in addition to give a further insig
on the specific features both of the VA case and of the
case, provides the correct way to approach the pair dynam
when a disklike obstacle is present in the fluid. Our algebr
construction reformulates the resulting disk-pair model
terms of a generalized angular momentum dynamics, lead
a clear geometric picture of the pair-obstacle interaction, p
vides the Hamiltonian in a form exempt from the habitu
ordering problem, and establishes the basis for investiga
the quantum processes. The interest for such a cas
founded as well on the fact that the pair scattering phen
ena can be interpreted as pinning effects on vortices du
the impurities of superfluid substrate.

A final comment is in order as to considering gene
topological chargeskj , despite the standard choice used
the literatureunj u51. The motivations are at least two. Fir
of all, employing arbitrary chargesk1 and k2 involves no
formal complication, whereas it allows one to gain an int
esting general insight when relating the algebraic structu
pertaining to the VV case to those of VA case. Second,
emergence of vortices withunj u.1 can take place in suffi
ciently excited superfluid media as well as in close proxim
of the medium boundary.23 Such a situation is certainly in
teresting since a vortex pair withun1u,un2u.1 provides the
basic framework in which to investigate the exchange
quantaof vorticity between the pair members via quantu
tunneling processes.

II. CANONICAL QUANTIZATION OF THE 2D VORTEX
GAS DYNAMICS

Classical dynamics ofN pointlike vortices in a frictionless
fluid is described by the Hamiltonian29

H~R1, . . . ,Rn!52
r

4p(
iÞ j

kikj lnS uRi2Rju
a D , ~1!

where the parameterkj represents the vorticity carried by th
j th vortex, r is the fluid planar density, and the vectorRj
5(xj ,yj ) describes thej th vortex position in the 2D ambien
space in terms of planar coordinatesxj , yj . The lengtha
represents the vortex core size that is the minimum dista
allowed between a vortex (kj.0) and an antivortex (kj
,0) before coalescence processes take place. The Ha
tonian equations relative to Eq.~1! are standardly derived via
the Poisson brackets30

$F,G%5(
j

1

rkj
S ]F

]xj

]G

]yj
2

]G

]xj

]F

]yj
D , ~2!

involving, in turn, therkj -dependent canonical brackets

$xi ,yj%5
d i j

rkj
. ~3!

Then vortex coordinates can be regarded as a complete s
canonically conjugate variables whosemomentaare defined
aspj5rkjyj . Also, one can easily check that the function
t
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Jz52
r

2 (
m

km~xm
2 1ym

2 !,

Jx5r (
m

kmxm , ~4!

Jy5r (
m

kmym,

J* 5
r

2(iÞ j
kikj@~xi2xj !

21~yi2yj !
2#, ~5!

fulfilling the equation

2rJ* 52CJz1Jx
21Jy

2 , ~6!

whereC5r( j kj is related to the total vorticity, are constan
of motion and satisfy the classical commutators (a5x,y,z)

$Ja ,J* %50, $H,Ja%5$H,J* %50, ~7!

$Jx ,Jy%5C, $Jz ,Jx%5Jy , $Jy ,Jz%5Jx . ~8!

It is worth noticing thatJx ,Jy ,Jz exhibit ane(2)-like alge-
braic structure—hereafter we shall denote it
e* (2)—which is fully reached whenC50, namely when the
vortex total charge equals the antivortex total charge.

The canonical quantum description ofN pointlike vortices
is obtained by replacing classical commutators~3! with

@xi ,pj #5d i j i\, ~9!

~we have setpj5rkjyj in order to get commutators in th
canonical form! that furnishes the quantum version of th
algebra~7!

@Jx ,Jy#5 i\C, @Jz ,Jx#5 i\Jy , @Jz ,Jy#5 i\Jx . ~10!

In view of the fact that the constants of motion can be e
ployed for integrating the dynamical equation provided th
are in involution, commutators~9! involve that the many-
body wave function for the 2D vortex gas is characterized
most by three macroscopic quantum numbers two of wh
are, of course,H and J* , while the third one can be arbi
trarily chosen amongJx , Jy , andJz .

A meaningful geometric picture of the system dynamics
achieved by means of such constants of motion when
vortex pair is considered. To this end it is useful to descr
the vortex pair through the new set of coordinates

x8x12x2 , y8y12y2 , ~11!

X8Jx /C, Y8Jy /C, ~12!

where Jx5r(k1x11k2x2) and Jy5r(k1y11k2y2) follow
from Eqs. ~4!, that reduce the Casimir function~5! to the
form

J* 5rk1k2~x21y2!. ~13!

Then, after expressing the coordinatesxj , yj as
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7130 PRB 59VITTORIO PENNA
x15
1

C
~Jx1rk2x!, y15

1

C
~Jy1rk2y!,

~14!

x25
1

C
~Jx2rk1x!, y25

1

C
~Jy2rk1y!,

by means of Eqs.~11! and ~12!, it is quite easy to recastJ*
in the two equivalent forms

J*
k1k2r

5
C2

r2k2
2F S x12

Jx

C D 2

1S y12
Jy

C D 2G , ~15!

J*
k1k2r

5
C2

r2k1
2F S x22

Jx

C D 2

1S y22
Jy

C D 2G , ~16!

which, without solving the equations of motion, identi
completely the classical orbits where the two vortices mo
along. Such orbits—they are easily recognized to
circumferences—present as a common center the vort
centerR* 5(Jx /C,Jy /C) and have radii

R15
uk2u

uk11k2uA
J*

k1k2r
, ~17!

R25
uk1u

uk11k2uA
J*

k1k2r
,

for the vortex with chargek1 andk2 , respectively.R* , R1 ,
andR2 are manifestly time-independent quantities in th
they just depend on the constants of motionJx ,Jy ,J* .

For k2 ,k1.0 vortices rotate in such a way that a comm
straight line always join them toR* . The latter, in particu-
lar, coincides with the rotation center which is situated b
tween the two vortices. Whenk2→k1 the circumferences
merge in one whose center is yetR* . On the other hand, fo
k2→0 the radiusR1 vanishes so that the vortex with finit
vorticity k1 fall in R* thus losing any dynamical role. In thi
case the weak vortex—that withk2.0—ends up by running
along on a limiting circle with radiusR2→const. Whenk2
→0 from negative values the dynamical situation is alm
the same except for the fact that now the vortices stay al
a rotating half-line whose extreme is attached toR* . The
emergence of the full VA regime is announced when,
k2→2k1 , the centerR* moves away from the vortices an
gets a larger and larger distance from them. In the limit
case of the pair withk2[2k1 the two vortices run along
parallel straight lines~i.e., circles with infinitely large radii!
and keep a constant relative distance. One easily checks
R1 ,R2→`.

III. DEGENERACY OF THE PAIR ENERGY SPECTRUM

Quantizing the two-vortex system seems no more co
plex than quantizing a simple harmonic oscillator~HO!4,10

even when the topological chargesk1 , k2 of the interacting
vortices are arbitrary. In this case, in fact, Hamiltonian~1!
reduces to a single logarithmic term whose argumen
uR12R2u2, while Eq. ~5!, wherebyJ* takes the formJ* 5
uR12R2u2/rk1k2 , entailsH written as
e
e
ty

t

-

t
g

r

g

hat

-

is

H~R1,R2!52
r

4p
k1k2 lnS J*

k1k2ra2D . ~18!

This feature is specific to the two-body problem and impl
that the set of energy eigenvectors exactly coincides with
J* spectrum. A remarkable freedom is then permitted in
lecting the remaining quantum number which labels the
generacy of the energy states. In fact, any operator of
form I 5aJx1bJy1cJz fulfills the equation@H,I #50 estab-
lishing the constant of motion status ofI. Anyway, a deeper
inspection reveals that any invariantI (a,b,c) is obtained
either from Jz or from Jy via the transformationI
5gI0g21, I 05Jy ,Jz , whereg is a unitary transformation
obtained by combining appropriately the action ofDx(a)
5eiaJx, Dy(b)5eibJy, and Dz(f)5eifJz. The possibility
to reconstruct the algebra of theE* (2) group~the symmetry
group ofH) from the elementsJz andJy , representative of
the algebra disjoint sectors, via the adjoint action map,
tails two possible pictures of the degeneracy. In this sec
we examine the vortex pair spectrum relative to two su
ways to structure the energy-level degeneracy.

To begin with we assume that the topological charg
fulfill the inequalitiesk1.0, 0<uk2u<k1 and notice how
the ranges allowed are capable of describing any poss
pair. Also, let us introduce the compact notationD5R1
2R2, and express it by means of the set of canonical con
gate variables@see Eqs.~11!, ~12!#

X5Jx /C, x5x12x2 ,
~19!

P5Jy , p5
k1k2r

k11k2
y,

whose momentap and P satisfy the commutators@X,p#
5@x,P#50 and @x,p#5@X,P#5 i\. By using such vari-
ables, the logarithm argument is easily turned into the H
form

D25y21x25
1

w2 ~p21w2x2!, ~20!

where the frequencyw readsw5k1k2r/(k11k2). This im-
plicates that the wave functions

Cn~x;uwu!5
1

A2npn! l
e2x2/2l 2Hn~x/ l !, ~21!

where l 25\/uwu, that satisfies the secular equation (p2

1w2x2)Cn5\uwu(2n11)Cn , represent the eigenfunction
of D2 with eigenvalues given by

Sn~w!5~\/uwu!~2n11!. ~22!

A complete set of eigenfunctionsCnK(x,X) is finally ob-
tained when the further observableP5Jy is considered to-
gether withD2. The second quantum numberK in

CnK~x,X!8Cn~x!FK~X!, ~23!

where the plane waveFK(X)8eiKX/A2p fulfills the equa-
tion PFK(X)5\KFK(X), establishes the positionY5P/C
of the center of vorticity along they axis in the ambient
space.
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As an alternative, a complete set of eigenstates can
constructed by resorting to the quantum number related
the conserved quantityJz . This is easily achieved by exploit
ing Eq. ~6! in that, after turning it to the formJz52(rJ*
1Jx

21Jy
2)/2C, it is evident that the HO-like wave function

Cm~X;uCu![
1

A2mpm!L
e2X2/2L2

Hm~X/L !, ~24!

whereL5A\/uCu, diagonalizesJx
21Jy

25P21C2X2. Hence
the eigenvalues associated withJz have the form

Lm~n;w!52\@sg~w!n1m11#, ~25!

where sg(w)[w/uwu and we have exploited the fact th
rJ* /C5\(2n11)w/uwu andC5r(k11k2).0, due to our
initial assumptions.

The descriptions of the energy spectrum degeneracy
examined, involve a significant geometric-quantum pictu
Using the quantum numbers (n,K) implies that the two vor-
tices are confined along the two circumferences~15!, ~16!—
the angular coordinates cannot be specified due to the un
tainty principle—whose radii

Rj5
uk1k2u
ukj uuCu

ASn~w!, ~26!

where j 51,2, are now labeled by the integern due to Eq.
~22!. The center of such circumferences, which coincid
with the vorticity center, hasY5\K/C while X is, as ex-
pected, undetermined.

On the other hand, when the pair (n,m) is employed the
locusallowed for the vorticity center changes from nonco
pact to compact. The latter, in fact, is now confined on
circle of radius

X21Y25@\~2m11!/uCu#1/2,

labeled bym, instead of a straight line labeled byK. Once
again the uncertainty principle prevents one from getting
further information both on the position of the vorticity ce
ter and on the vortex position along the circles of radiiR1
andR2 .

In the extreme case whenC5k21k1→0 the canonical
scheme based on Eqs.~19! breaks down due to the diver
gence of the factor 1/(k11k2). In particular, the singular
behavior of the pure VA case is distinguished by the fact t
Jx and Jy end up by coinciding withx and y, respectively,
which now commute sincerk1@x,y#[@Jx ,Jy#5 i\C[0.
Such circumstances impose the introduction of a more
propriate set of canonically conjugate variables. We thus
fine

h52rkx, j5rky,
~27!

Y5
1

2
~y11y2!, X5

1

2
~x11x2!,

wherek252k152k, which turns out to be completely dis
joint from those employed in the case whenk2Þ2k1 , and
obeys the standard relations@X,j#5@Y,h#5 i\. Here
X, Y, j, andh do not play prefixed roles so that, depen
ing on the interactions involved by the dynamical proble
be
to

st
.

er-

s

-
e

y

t

p-
e-

-
,

they can be regarded either asmomentaor as position vari-
ables. When further interactions are excluded fromH, the
simplest choice is that whereX andY are looked upon as
coordinates which implies that the energy eigenfunctio
have the form

FK~X,Y!5
1

2p
ei ~XKX1YKY!. ~28!

Here \KX and \KY are the eigenvalues ofj52 i\]X and
h52 i\]Y , respectively. Information onX and Y are, of
course, completely missing, that is, the pair cannot loca
anywhere in the ambient space.

Some applications can be now illustrated. The quantu
mechanical problem just solved provides the formal to
requested for investigating the scattering processes of the
pair ~as well as of the AA pair! and VA pair dynamics in the
presence of 2D potential wells simulating the confining a
tion of the defects placed on the superfluid mediu
substrate.24 The effective model Hamiltonian

H5
g

4
@~x11x2!21~y11y2!2#1H,

where g represents the strength of the phenomenolog
confining action, fork151k25k and k152k25k yields
the Hamiltonian

H52
g

rk
~Jz1J* /4k!2

r

4p
k2 lnF J*

k2ra2G , ~29!

and

H5g~X 21Y 2!1
r

4p
k2 lnFj21h2

~rka!2G , ~30!

respectively. In view of the spectral problems solved abo
one finds that Hamiltonian~29! has a spectrum which is
readily obtained from Eqs.~22! and ~25!, whereas Hamil-
tonian ~30! is clearly related to a 2D Coulomb problem
where two particles with opposite charges are studied wit
the center-of-mass reference frame and are endowed w
reduced massm5r2k2/2g. Notice how it is now natural to
exchange the roles ofX, Y, andj, h assigned above. The
treatment of such a Coulomb system will be reconsidered
Sec. VI where a more adequate algebraic scheme will
introduced.

More in general, Hamiltonians of the formH5 f (I )1H,
where f (I ) is a generic function of the operatorI (a,b,c)
defined above, are easily diagonalized by reducingI either to
Jz or to Jy , depending on the values taken bya, b, andc.
For example, the situations whereH exhibits a termI pro-
portional either toJz , or toJx (Jy) can be interpreted as th
way to picture the effect of a macroscopic velocity field r
sponsible for a uniform rotation around the plane origin,
the first case, and inducing the vortex dragging along
y (x) axis, in the second case.

A final comment is in order as to the two limiting cas
k1→` with finite k2 ~the vortex withk1 recover the classica
status since@x1 ,y1# is vanishing!, andk2→0 with finite k1
~the vortex with k2 gets an ultraquantum status sin
@x2 ,y2#→`). At the classical level such limits make thek1
vortex tend to stillness, while thek2 vortex goes on to rotate
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with a frequency proportional tow→rk2 . In particular a
greater and greater period occurs whenk2→0. While the
realism of a situation wherek2.0 is hard to maintain, since
there is no experimental evidence of fractional quanta of v
ticity, the case whenk1 is large can be easily interpreted
the situation where a small cluster of vortices interacts w
solitary vortices. Moreover, while the first case implies
verging spectrum gapsSn112Sn due to Eq.~22!, the second
one leads toSn5\(2n11)/rk2 . In particulark1→` is re-
lated to the dynamics of a solitary vortex moving around
disklike obstruction with radiusR contained inside the 2D
ambient space. HamiltonianHD of Appendix A embodying
the effects of the disk is illustrative of the manner in whi
this is realized when the vortex complex coordinatez1 is
such thatuz1u.R.

IV. THE su „1,1… APPROACH

A different approach to the quantization of the vortex p
is provided by thexp realization of the algebra su~1,1! which
allows one to regardD25uR12R2u2 as the compact genera
tor of su~1,1!. After recalling that the algebra generators a
given by31

J15
w2x22p2

4\uwu
, J252

px1xp

4\
, J35

w2x21p2

4\uwu
,

and satisfy the commutation relations

@J1 ,J2#52 iJ3 , @J2 ,J3#5 iJ1, @J3 ,J1#5 iJ2 , ~31!

the equationD2[4\J3 /uwu ensuing from Eq.~20! shows
that the spectrum ofJ3 is that involved by the vortex dynam
ics. It shows as well howD2 no longer plays the role of the
Casimir operator now being nontrivially acted both byJ1
and byJ2 . In spite of this the present algebraic framewo
inherits bothX andP5CY ~and hence any function depen
ing on them! as dynamical constants of motion from th
e* (2) algebra of Sec. III. As for Hamiltonians~29!, ~30!,
again one can take advantage of this fact for construc
vortex models with Hamiltonian of the formH5F(X,Y)
1H accounting for the background medium influence. F
example, describing the drag action on the pair vorticity c
ter due to the flow stream lines in the presence of a sa
point simply requiresF(X,Y)5g(X22Y2), g being some
suitable dimensional parameter.

The su~1,1! scheme is useful to discuss the statistics of
pair system. In Ref. 6 the same algebra was constructed
by step starting from the Weyl-Heisenberg algebra$I ,x,p%,
in order to relate the VV pair statistics to the unitary irredu
ible representations~UIR! of thexp realization. A direct way
to obtain them is that of calculating the eigenvalues of
su~1,1!-Casimir operator

C5J3
22J1

22J2
25 l ~ l 11!I ,

where I is the identity operator. One easily finds that t
allowed values forl are l 521/4 andl 523/4 which select
two UIR’s in the set of the SU~1,1! supplementary series
The solutions of the secular equationJ3f n(x; l )5n f n(x; l )
~see Ref. 32! read
r-

h

a

r

g

r
-
le

e
tep

-

e

f n~x; l !5~2 !sDlsS 2

l D
1/2S x

l D
a11/2

e2x2/2l 2Ls
a~x2/ l 2!,

wherel is the same dimensional parameter employed in
~21!, Dls5@s!/G(s22l )#1/2 is the normalization factor and
Ls

a are the Laguerre polynomials, whereasa and the nonne-
gative integers are related tol andn by a52(2l 11) and
n5s2 l , respectively. By exploiting the general formula33

Ls
a~z2!5

~2 !sHn~a!~z!

2n~a!s!za11/2 ,

wheren(a)52s1a11/2, relating Laguerre polynomials t
Hermite polynomialsHn(a) when a561/2, one finds that
f n(x; l )[Cn(x;uwu) namely the functions~21!. The repre-
sentations corresponding tol 523/4 and l 521/4 are thus
associated with symmetric and antisymmetric eigenfu
tions, respectively, in thatCn(2x;uwu)5(2)nCn(x;uwu)
and

f s11/4~x;21/4!5C2s~x;uwu!,

f s13/4~x;23/4!5C2s11~x;uwu!.

This establishes when the pair has either a fermionic cha
ter or a bosonic character with respect to the transform
tion (R1 ,R2)→(R2 ,R1) changingx, y ~namelyp) in 2x,
2y. No conclusion, however, is permitted until the seco
quantum number requested for the complete description
the pair, is considered. To this end consider the stateCnm
5Cn(x;uwu)Cm(X;uCu) obtained from formulas~24!, ~21!.
When the vortex exchange is equivalently enacted via
substitution (k1 ,k2)→(k2 ,k1), this implicates, in particular,
that X→X8[X1x(k22k1)/C. Hence, while the charge ex
change does not affectCn(x;uwu) for any value ofk1 , k2 ,
thus exhibiting an unexpected type of symmetry involvi
nonidentical charges, the usual situation is re-established
the presence ofCm(X;uCu) which is trivially symmetric only
whenX85X, i.e., k15k2 .

A further aspect that makes interesting to adopt
su~1,1! scheme is connected to the effect of the unitary
tion of Df5exp(ifJ2) on the canonical variablesx, p. In
passing we point out how this is the distinctive trait of thexp
description which, as opposite to thee* (2) scheme, does no
involve for D the role of a constant, structureless object. T
Df action is given by32

DfxDf
† 5e2f/2x, DfpDf

† 5ef/2p

and implies thatDf
† Cn(x;r )5Cn(x;re2f) for any wave

function ~21!. Equipped with such formulas, one easi
showsDf to succeed in connecting the dynamics charac
ized by (k1 ,k2) and w5k1k2r/(k11k2), with any other
having different vorticities (K1 ,K2) and W[K1K2r/(K1
1K2). Notice that whenever two cases are related then t
both must stay either in the VV sector, or in the VA sect

To exploit theDf-action effects, we first define the mod
fied Schro¨dinger problemi\]tFt5H(W)Ft , with time t,
where the pair HamiltonianH(W)5(2rK1K2/4p) ln@(x2

1p2/W2)/a2# @see Eqs.~13!, ~18!, and~20!# depends on the
vorticities K j . Then, exploiting the fact that
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W2x21p25e2fDf~w2x21p2!Df
† , ~32!

where W5we2f, and setting Ft[eiu(t)DfC t , with t
5t(t), we recast the Schro¨dinger problem in the form

i\F i
du

dt
1Df

† ]tDf1]t)GC t

5F2rfK1K2 /4p1
K1K2

k1k2
H~w!GC t , ~33!

where u is obtained by imposing\du/dt[rfK1K2 /4p.
This, in turn, reproduces the initial problem with the charg
kj

i\] tC t5H~w!C t , ~34!

whose solutions can be derived by means of wave funct
~21!, when both the conditiondf/dt[0 and the time rescal
ing t5(k1k2 /K1K2)t are assumed. Therefore, replacingw
with W, which represents a generic changekj→K j , is com-
pensated by substitutingF with its transformed versionC.

The analysis developed shows how evaluating the Be
phase35 when a vortex with constant charge interacts with
vortex cluster situated at a distance~much larger! from the
cluster size. The vortex with slowly varying vorticity can b
regarded as the pointlike approximation of the cluster exh
iting vortex creation-annihilation processes.

As to this case, suppose that the problem relative toH(W)
hasW with K2 depending on the timet. Then, in the spirit of
the adiabatic approximation approach,35 we go back to Eq.
~33! and solve it, with the ket notation, by setting the follow
ing two equations:

^C tu@ i\] t2H~w!#uC t&[0,

\
du

dt
[2\^C tuJ2uC t&

df

dt
1

r

4p
K1K2~t!f~t!,

where the fact thatf is a function of the time-dependen
charge K2 provides the nonvanishing termDf

† ]tDf

5 iJ2(df/dt). The first equation is obtained by absorbin
the dependence on the timet in the timet via the equation
dt/dt5@K1K2(t)/k1k2# where bothK1 andkj are indepen-
dent oft. It involves the usual time-independent pair dyna
ics whose exact solutions are given by Eq.~21!. On the other
hand, the second equation, expressing the standard app
mation of the adiabatic scheme, explicitly providesu(t) via
integration which, as expected, plays the role of geome
contribution to Berry’s phase. It is found that

uF t~t!&.ei [u~t!2tEn /\]eif~t!J2uCn&,

whereEn52(r/4p)k1k2ln@Sn(w)/a2# @see Eq.~22!#, f is
determined byf52 ln(w/W), and uCn& is given by Eq.
~21!. Effects due to a possible time dependence of both
densityr and the core sizea can be treated along the sam
lines ~see Ref. 5!.

V. MAGNETIC FORM OF TWO-VORTEX DYNAMICS

Hamiltonian~18! can be easily turned into a magneticlik
form34 by introducing the momentaPx5ruk1k2u1/2x and Py
5ruk1k2u1/2y. Such a picture allows one to recover th
s

s

ry

-

-

xi-

ic

e

Feynman-Onsager quantization condition on the chargekj
in an alternative way. The momenta just introduced, wh
range of validity covers both the casek1.0, k2.0 and the
casek1.0, k2,0, lead to rewriteD2 as

D25
1

uk1k2ur2
~Px

21Py
2!, ~35!

where Px , Py obey the commutator@Px ,Py#51(2) i\C
when k2.0 (k2,0), and allows one to identify the tota
vorticity C as the parameter playing the role of the magne
field. Likewise, since@Px ,Jy#5@Py ,Jx#50, and @Jx ,Jy#
5 iC, it is quite natural to regardJx andJy as the generators
of magnetic translations pertaining to the present cont
They, in fact, generates the Euclidean transformations of
vortex coordinates

Dy~lx!xiDy
†~lx!5xi1lx ,

~36!
Dx

†~ly!yiDx~ly!5yi1ly ,

responsible for the displacements of the vortex pair, wh
Dy(lx)5exp(ilxJy /\), andDx(ly)5exp(ilyJx /\).

After that one can proceed along two independent lin
First, one can look uponx1 andy2 as position variables thu
definingP1[rk1y1 , P2[2rk2x2 as their canonically con-
jugate momenta. On the other hand, the opposite cho
wherex2 andy1 are position variables andP25rk2y2 , P1
52rk1x1 the respective momenta, is equally natural. T
same twofold choice characterizes the case of a pla
charge acted by a transverse magnetic field. In fact, the
mentum space picture is always allowed as an alterna
way to describe the system in the coordinate space. The
terchangeable role of the vortex variables makes vanish
such a distinction for the vortex pair system where the a
bient space contains both the momentum space and the
figuration space.

Assuming now to operate within the first of the abo
schemes, we implement the diagonalization ofD2 in the Lan-
dau gauge.34 To this end Eq.~35! must be recast in the mor
adequate version depending onx1 , y2 , P1 andP2

D25
1

r2k1
2
P 1

21
1

r2k2
2
P 2

2 , ~37!

where P15P12rk1y2 , and P25P21rk2x1 have been
singled out so as to fulfill the conditions@Pj ,Jy#5@Pj ,Jx#
50, and @P1 ,P2#52 iC. Then, by acting on Eq.~37!
through the gauge transformation exp(irk1x1y2 /\) which
turns it into the standard harmonic-oscillator form, the La
dau gauge eigenvectors are found to be

Fn,q~x1 ,y2!5ei /\~rk1x12\q!y2Cn~x12\q/C;V!,

whereCn(x;V) is obtained from wave function~21! when
uwu is substituted withV5uCk1 /k2u, whereas the associate
eigenvalues reproduce the spectrumSn(w) defined by Eq.
~22!. It is easily shown as well thatJx is diagonalized by
Fn,q(x1 ,y2) and exhibits\q as eigenvalues.

Now, the invariance ofH under the action of both
Dx(ly), andDy(lx), ly , lxPR, can be displayed in the
Hilbert space through the formulas
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Dx~ly!Fn,q~x1 ,y2!5eiqlyFn,q~x1 ,y2!,

Dy~lx!Fn,q~x1 ,y2!5Fn,q2a~x1 ,y2!,

wherelx5a/C, andDy appears to act as a raising~lower-
ing! operator on the quantum numberq if a,0 (a.0).
HenceDy is able to explore the range of the energy spectr
degeneracy related to thenth Landau-like level.

The final step of the magnetic procedure consists in s
ing the flux quantization as a consequence of imposing
expression

Dx~ly!Dy~lx!Dx
†~ly!Dy

†~lx!5I expF ilxly

\
CG ~38!

—it represents the displacement of the charge along a r
angular loop on the plane$(x1 ,y2)%—to reduce to theiden-
tity operatorI . The right-hand side of Eq.~38! is carried out
by means of the Baker-Campbell-Hausdorff formula26 ea1b

5e21/2[a,b]eaeb and becomesI if

rlxly

h
~k11k2![

M tot

h
~k11k2!5N* ~39!

with N* PZ. The quantityM tot is the superfluid mass en
closed in the box of arealxly . Upon introducing the helium
atomic massmH5M tot /NA , one derives from Eq.~39! the
constraint

k11k25~N* /NA!
h

mH
~40!

on the pair total vorticity. Such a result can be readily e
tended to a many-vortex system in that the translation s
metry holds independently from the number of interact
vortices considered, as follows from~the quantum version
of! Eqs. ~4! and ~7!. Since circulation operator~38! only
depends on the algebraic properties of symmetry genera
the extension is simply performed by replacingk11k2 with
( j kj in the previous formula.

A first interpretation ofN* follows from Eq. ~40! when
the Feynman-Onsager condition on the vorticity quantizat
is taken into account.27,28In fact, assumingkj5hnj /mH with
njPZ successfully solves Eq.~40! and implies thatN*
5NA( jnj . On the other hand, Eq.~40! naturally contem-
plates the Feynamn-Onsager condition as a possible solu
which, in conclusion, appears to emerge as a pure co
quence of the symmetries characterizing the vortex syste

Further information concerning the meaning ofN* is ob-
tained when considering the system in a rectangular box
standard requirement consists in enforcing the cylinder
geometry in the ambient space via the further condit
Dx(ly)5I on they-translation symmetry, wherely has been
identified with one of the two macroscopic dimensions ch
acterizing a 2D superfluid sample of arealylx . In the Hil-
bert space, this amounts to stating the quantization cond
q52ps/ly with sPZ, involving the periodicity condition
Dx(ly)Fn,q(x1 ,y2)5Fn,q(x1 ,y2).

We have thus recovered for the vortex pair dynamics
description in terms of Landau levels and of their deg
eracy:s enumerates the straight lines~parallel to they axis!
characterized by the fact thatX5Jx /C5const representing
t-
e

ct-
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rs,

n

on
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the 1D domains of the ambient space where the vortic
center is allowed to stay. Moreover, assuming that the eig
values\q/C of X[Jx /C take values inside@0,lx# entails

0,q<Clxly /h5N* ,

so thatN* turns out to be the parameter measuring the
generacy as in the magnetic case. In the case when two e
vortices occupy an arealxly having a macroscopic size
then the degeneracyN* 52NA is macroscopically large sinc
NA is the number of atoms contained inside that area.

As expected, in view of the analysis of the VA case d
veloped in Sec. III, whenC5k11k2→0 no magnetic scen
ery can be realized this reflecting the fact that@Jx ,Jy#50
and the impossibility to relate finite areas of the plane w
the free-particle character of the VA dynamics quantu
states.

VI. VORTEX PAIR INTERACTION
WITH DISK LIKE OBSTRUCTION

Another way to quantize the vortex pair dynamics is th
based on expressingD25uR12R2u2 by the two-particle op-
erator realizations either of the algebra su~2!, or of algebra
su~1,1!. This requires that vortices are considered as in
vidual objects and involves the use of commutators~9! for xj
and pj5rkjyj . The purpose of this section is to show ho
such an approach is particularly suitable to deal with the c
when the vortex dynamics takes place in the presence
circular obstacles with reflecting walls.

To begin with we consider the VV dynamics, whe
k1 ,k2.0, and show its version in terms of two-particle ge
erators of su~2!. These, when expressed via canonical va
ablesxj , pj , have the form

V35
1

4\S r 1p1
22r 2p2

21
x1

2

r 1
2

x2
2

r 2
D , ~41!

V15
1

2\S Ar 1r 2p1p21
x1x2

Ar 1r 2
D , ~42!

V25
1

2\SAr 2

r 1
x1p22Ar 1

r 2
x2p1D , ~43!

wherer j[1/rkj , and fulfill the standard commutation rela
tions of su~2!

@V1 ,V2#5 iV3 , @V2 ,V3#5 iV1 , @V3 ,V1#5 iV2 , ~44!

whereas their Casimir operator is given byV08V3
21V2

2

1V1
2[V4

221/4, with

V45
1

4\S r 1p1
21r 2p2

21
x1

2

r 1
1

x2
2

r 2
D . ~45!

Then, the fact thatD2 can be expressed as

D254\F r 11r 2

2
V42

r 22r 1

2
V32Ar 1r 2V1G , ~46!
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makes it possible to reformulate the VV dynamics within t
su~2! scheme where the dynamical variables are now re
sented by the angular momentum componentsVj just de-
fined.

The choice of the algebra su~1,1! instead characterizes th
VA case @(k1.0, k2,0)# and accounts for the change
sign ofk2 . Its generatorsA1 , A2 , andA3 fulfill the standard
commutators of su~1,1!

@A1 ,A2#52 iA3 , @A2 ,A3#5 iA1 , @A3 ,A1#5 iA2 , ~47!

and the equation for the Casimir operatorA08A3
22A2

22A1
2

[A4
221/4. In particular, the explicit form ofA4 and A3 is

achieved by the substitutionr 2→2r 2 in V3 andV4 , respec-
tively, while A1 and A2 are derived by replacingp2 with
2p2 in V1 and V2 , respectively. The operators thu
obtained—notice that such substitutions can be recas
terms of a process of analytic continuation connecting su~2!
to su~1,1!—allows one to expressD2 as

D254\F r 12r 2

2
A41

r 11r 2

2
A32Ar 1r 2A1G , ~48!

wherer j[1/rukj u. The linear character of both Eqs.~46! and
~48! allows one to readily obtain the diagonal form ofD2 by
means of unitary transformations. Evidence of this is
pressed by means of the formulas

D254\R6F r 11r 2

2
V46

r 11r 2

2
V3GR6

1 , ~49!

whereR68ei (b6p/2)V2, with tgb5(r 22r 1)/A4r 1r 2, and

D254\RhF r 12r 2

2
A41

r 22r 1

2
A3GRh

1 , ~50!

where Rh8eihA2 and thh5A4r 1r 2/(r 11r 2), whose basic
feature is that of depending only onV4 , V3 , andA4 , A3 .
As a consequence of the fact that@V4 ,Vj #50 and@A4 ,Aj #
50 since ~the eigenvalues of! V4 and A4 are c numbers
labeling the representations of the respective groups, then
spectral problem is reduced to the standard one of diago
izing A3 andV3 .

The form of the vortex dynamics suggested by formu
~46! and~48! is that of two interacting oscillators. In particu
lar, the termsV3 , V4 andA3 , A4 describe two independen
harmonic oscillators on their elliptic trajectories in the pha
space; in view of the double nature of vortex coordina
pointed out in Sec. V, such trajectories also represent circ
solitary motions of vortices around the ambient plane orig
Due to the presence ofV1 and A1 which introduce vortex
interactions, a more structured dynamics takes place w
involves the bounded states classically described in Sec

In spite of the similarity of their diagonalization process
crucial difference, however, distinguishes the VA case fr
the VV case. The latter, in fact, presents two diagonal for
of D2, for any value ofk1 andk2 , related to the sign (6) of
Eq. ~49!, whereas the VA case always exhibits a unique
agonal form ofD2. Since
e-
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1
2 ~r 11r 2!~V46V3!5H r 11r 2

4\
~r 1p1

21x1
2/r 1!,

r 11r 2

4\
~r 2p2

21x2
2/r 2!,

~51!

where the first and the second expressions correspond to
case with (1) and (2), respectively, then the eigenfunc
tions exhibit the two independent versions

Cnq
1 ~x1 ,x2!5R1Cn~x1 ;r 1!Cq~x2 ;r 2!, ~52!

Cnq
2 ~x1 ,x2!5R2Cn~x2 ;r 2!Cq~x1 ;r 1!, ~53!

where the wave functionsCp(xj ,r j ), with p5n,q, diago-
nalize the ~harmonic oscillator! secular equation (r j pj

2

1xj
2/r j )Cp5\(2p11)Cp . The effect of the action ofR6

in Eqs.~52!, ~53! and hence the explicit form ofCnq
6 (x1 ,x2)

are calculated explicitly in Appendix B. Their relation wit
the classical single vortex picture based on Eqs.~15!, ~16!
can be established by noticing that the circle coordina
identify with the coordinates exhibited by the final explic
form of Eqs.~52!, ~53!.

While Cnq
6 (x1 ,x2) appear to have a form differing from

that of the eigenstates found within different procedures,
eigenvalues ofD2 andV4 given by

Sn5\~r 11r 2!~2n11!, Lq~n!5
1

2
~n1q11!, ~54!

respectively, wherenPN andqPN, are consistent with Eqs
~22! and ~observe thatV452Jz/2\) ~25!, respectively.

One should observe how the form of both Eqs.~52! and
~53! ensues from the choice of employing the eigenvalues
V31V4 (V42V3) for describing the degeneracy of thenth
level, when the diagonal form ofD2 is V42V3 (V41V3).
Actually a full arbitrariness affects the previous choice sin
any function F(x2 ,p2) @F(x1 ,p1)# commutes with V3
1V4 (V42V3). This is consistent with the scenarios e
countered in Secs. III and IV.

Coming now to the VA case, its distinctive feature is th
of providing, whenr 2→r 1 , a limiting situation where the
unitary transformation of Eq.~50! is not able to takeA3
2A1 into A3 , such operators pertaining to disjoint sectors
su~1,1!. This consistently matches the fact that, whileA3 is
endowed with a discrete spectrum,A32A1 exhibits instead
the continuous spectrum characterizing noncomp
generators.32 The dramatic change of the spectrum occurri
whenk2→2k1 is the consequence of the transition from t
regime of confinement@described at the classical level i
Sec. II by circumferences~15!, ~16!# to a situation where the
VA pair freely drifts through the ambient plane.

The standard, compact sector of the VA spectrum can
readily worked out from the diagonal core of Eq.~50! A3

2A45(r 2p2
21x2

2/r 2)/2\. It is found that the eigenvalue
and the eigenvectors ofD2 are given by

Sn5\~r 22r 1!~2n11!,

Cnq~x1 ,x2!5RhCn~x2 ;r 2!Cq~x1 ;r 1!,

respectively, while eigenvalues~25! once more are matche
by theA4 spectrum involved by statesCnq(x1 ,x2).
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For r 15r 2 , the eigenstates ofA32A1 might be easily
expressed by means of the plane-wave eigenstate of Se
which, however, fails in diagonalizing the constant of moti
A4 . To fulfill such a requirement one must consider fun
tions of variables~27! depending, in particular, onX andY.
Then D2 can be viewed as a 2D Laplacian operatorD2

5(1/kr)2(j21h2)52(\/kr)2(]X
21]Y

2) whose eigenvec-
tors, in the su~1,1! setup, are given by the Lindblad-Nag
states37,31

Ces~R,u!5eisuJs~RA8e/r\!, ~55!

whereR 25X 21Y 2, tgu5Y/X, and the parametere>0 is
the continuous eigenvalue of the secular equation

~A32A1!Ces~R,u!5eCes~R,u!, ~56!

where A32A1[(r /4\)(j21h2) ~see Appendix C!. Con-
cerning the indexs, formulas of Appendix C, besides show
ing the form of operatorsAj in terms of variables~27!, allow
one to recognizeeisu as the factor ofCes(R,u) responsible
for associating the eigenvaluels52s/2 with A4 . Also, ac-
cording to the Casimir formulaA05A4

221/4[J(J11), the
index J labeling the SU~1,1! turns out to have the formJ
[2(usu11)/2 involving negative integer or half-intege
values37 whens takes integer values.

The geometric meaning of the eigenvaluels deserves
some comment. When external interactions do not affect
VA dynamics the pair proceeds along a rectilinear traject
which is orthogonal to the vectorD joining its two vortices.
Then the quantity 4r\A45B•D5DBcosb, where the vector

B8 1
2 (R11R2) represents the position of the pair on t

plane, allows one to evaluate the deviationuB`Du/D5@B2

2(4\rA4 /D)2#1/2 of the pair trajectory from the plane or
gin. Whenever the two vortices have the same distance f
the plane origin thenA450 sinceb56p/2, and the pair
trajectory crosses the plane origin.

The algebraic approach based on the two-particle re
sentation just discussed is involved by the model Ham
tonian H* describing the vortex pair dynamics in the pre
ence of a circular boundary with radiusR. The general form
of H* where vortices have arbitrary chargesk1 , k2 is given
in Appendix A, whereas the two extreme casesk152k2
5k andk15k25k are described by

H* ~z1 ,z2!5
r

2p
k2 ln A, ~57!

where the vortex position vectorsRj have been replaced wit
the complex variableszj8xj1 iy j , andA reads

A5R2u24~ uz1u22R2!~ uz2u22R2!
uz12z2u2u

uz1z̄22R2u2u

with u51 andu521 in the case VA and VV, respectively
Indeed the dynamics relative toH* can be profitably rep-

resented within the angular momentum picture introdu
above, when in the VA~VV ! case the logarithm argument
expressed as a functionA($Aj%)@A($Vj%)# of a 3D vector
A (V) ~see Appendix A!. The first consequence is that o
simplifying the description of the system whose dynami
equations are now obtained via the classic~up to the standard
III

-

e
y

m

e-
l-
-

d

l

factor i\) commutators~44! and ~47!. Also, the integrable
character of the dynamics with the disk-pair interaction tu
out to be accounted by a constant of motion (A4 or V4 ,
depending on the case studied! which is geometrically mean
ingful. A second,a priori less evident, effect comes ou
within the quantization process, where a desirable resu
that of producing operators unaffected by ordering proble
Indeed this is the case when, based on the angular mom
tum description and in view of the logarithm property lnA
[2 ln A21, the logarithm argument of Eq.~57! is reduced
to

A215
n/2

A32A1
1

n2

~A32n!22A4
2 , ~58!

and

A215
n2

v22V3
2 2

n2

v222n~V12V4!2V3
2 , ~59!

wheren8R2/2\r andv8V42n. On this account formulas
~58!, ~59! provide the most convenient way to construct t
operator version ofH* . A similar situation already occurred
in Ref. 9 where the Hamiltonian of a pair interacting with
rectilinear boundary turned out to possess at least one
sion able to avoid ordering problems after the quantizat
process. This fact strongly suggests that some nontrivial,
den character pertains to the system presently considere
well as to the one discussed in Ref. 9. As to this point
main indication is certainly that relative to the surviving of
constant of motion, despite the analytic complexity induc
by the presence of the boundary.

The extension of the work involved by the diagonalizati
process ofA21 requires a separate treatment that we sh
develop elsewhere. Nevertheless, based on the spe
analysis of the free vortex pair performed above, it is p
sible to evaluate perturbatively the spectrum of the pair
namics when the vortex separation is much smaller than
distance from the disk, namely the conditionD2!uzj u2 holds
for true. At the classical level, this implies thatV3

2 ,V42V1

!V4
2 , entailing quantically the conditionSn!Lq(n) on ei-

genvalues~54!. Then one easily finds that

^A21&.
n3~2n11!

@Lq~n!1n#4F11
^V3

2&2n~n11/2!

@Lq~n!1n#2 G , ~60!

where the expectation value notation is referred to the s
Cnq

6 in the ket notationun,q&.
On the other hand, in the VA case, one hasA32A1 ,A4

2

!A3
2 so that the second term of Eq.~58! can be treated as

perturbation. When this is rewritten asC215@(A32n
2A4)212(A32n1A4)21#/(2A4) with C[(A32n)22A4

2 ,
thanks to the fact that@A4 ,Aj #50, and the further condition
x21y2!R2!X 21Y 2 is assumed, then it is possible to wo
out ~see the formulas of Appendix C! the zero-order approxi-
mation

1

C.
\r

A4
F 1

R 22u1
2

2
1

R 22u2
2 G ,
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whereR 25X 21Y 2, andu6
2 5R262\rA4 . By using states

~55! its expectation value can be expressed as

I~e,s![ K 1

CL .2 (
d56

E
0

`2r\Js
2~Rme!RdR

d~ud
22R 2!

,

where me
2[8e/(r\), and the termA4 in ud has been re-

placed by its eigenvaluels52s/2, namely the second quan
tum number of states~55!. It results that

^A21&.
n2

2e
12r\ (

d56

p

2
sJs~meud!Ns~meud!, ~61!

whereJs andNs are Bessel functions of the first and seco
type, respectively.38

VII. CONCLUSIONS

In the present paper we have considered various algeb
schemes as independent frameworks where is possib
treat the quantum dynamics of the vortex pair both for
VV case and for the VA case. From the physical viewpoi
their equivalence has been checked by showing how,
each approach, the diagonalization process leads to the
energy spectrum. The aspect concerning the spectrum de
eracy~scarcely mentioned in the literature and, to our know
edge, never studied thoroughly! has been particularly deep
ened.

The introduction of a second quantum number enume
ing the degenerate states has been discussed in Sec
where the vortex distanceD5uR12R2u2 @i.e., the logarithm
argument of Hamiltonian~18!# is identified with the Casimir
operator of the symmetry algebrae* (2). Any element
I (a,b,c) of e* (2) can be used for describing the degenera
since@ I ,H#50, although the~unitarily! independent choice
are just two, namelyI 5Jy and I 5Jz . The Hilbert space
basis relative to bothJy andJz have been provided explicitly
and the geometric structure in the ambient space of the
responding spectra has been discussed in detail. Thes
pear to mimic the stripe structure of the Landau gauge
the Corbino disk structure of the symmetric gauge, resp
tively, for a charge acted by a transversal magnetic field

The parallel with the magnetically acted charge has b
completely developed in Sec. V. The Feynman-Onsa
quantization of the vortex charges is in fact reconstruc
first by making explicit the magnetic form ofD in terms of
generalized momentaP1 andP2 ~the magnetic field is rep
resented by the total vorticityC), then by using the standar
symmetry arguments leading to the magnetic flux quant
tion.

The reduction ofD to the harmonic-oscillator Hamil
tonian with the canonical variablesx andp has inspired in-
stead the use of the su~1,1! scheme of Sec. IV, whereD no
longer plays the role of the Casimir operator. Action~32! of
the noncompact generatorJ2 on D, which identifies with the
compact su~1,1! generatorJ3 , allows one to recognize a con
tinuous symmetry relating Hamiltonian with different vorti
ity pairs (k1 ,k2). In view of such a symmetry it is possibl
to calculate both the wave function and the geometric c
rection of the Berry phase when the Hamiltonian has tim
dependent parameters.
ic
to

e
,
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me
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-
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III,
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d
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-
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In Sec. VID has been rewritten by means of two-partic
realizations of su~2! and su~1,1! expressed in terms of ca
nonical coordinatesxj , pj for the VV case and the VA case
respectively. In this contest the energy degeneracy is
counted for by the operatorsA4 andV4 labeling the algebra
representation. Such a scheme appears to be really sui
for the purpose of treating the dynamics of vortex pairs in
presence of a disklike obstruction in that it allows one
express the pair Hamiltonian within an angular moment
picture, which is both quite compact and capable of avoid
the ordering problems despite the analytic complexity int
duced by the vortex-obstruction interaction. The dynamics
such a case—here the energy spectrum has been eval
just perturbatively—deserves further investigations since
provides a nonphenomenological approach to study pinn
effects due to the impurities of the medium.

More in general, the possibility of using various algebra
approaches to treat QVD fully displays its importance wh
considering, as the natural development of the res
achieved here, the constructions of models coupling vorti
with the environment, namely external systems such as
superfluid background, the walls confining the superfluid,
fects responsible for vortex scattering, thermal excitatio
and so on.

In passing, we notice once more how the quantum num
describing the degeneracy could play a relevant role as
dynamical variable to be activated by the interactions w
the environment. In this sense it is quite natural to exp
that such a number is involved in the energy spectrum of
coupled system thus eliminating the energy spectrum deg
eracy.

Several ways to realize the coupling with the environm
can be established depending on the algebraic framew
where the vortex dynamics is accounted. The result
coupled dynamics should be sensitively conditioned by
choice performed. In particular, some scheme might app
due to its intrisic features, more appropriate than another
depending on the physical contest where it is employed@this
is the case, e.g., of thee* (2) scheme which clearly turns ou
to be not adequate for describing the interaction with
disklike obstruction#.

A similar situation was discussed in Ref. 39 for a char
acted by a transversal magnetic field and interacting with
background phonons. Indeed in that case the choice
certain particular dynamical algebra for the charge Ham
tonian was able to endow the coupled model with the cha
character requested by the experimental observations.

A further reason for the interest in considering indepe
dent algebraic descriptions of vortex dynamics is related
possible implementation of the time-dependent variatio
principle procedure for many-vortex systems within a qua
tum picture based on a coherent states picture.26 The combi-
nation of such methods has been successfully employe
investigate the quantum dynamics of many-body system40

The main ingredient of such a variational procedure is r
resented by a macroscopic wave function for the ensem
particles whose construction is profitably realized in terms
generalized coherent states. The usefulness of the ana
developed here becomes evident by recalling that the de
tion of such states is basically founded on identifying a su
able algebraic framework~the dynamical algebra defined i
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the Introduction! containing the dynamical degrees of fre
dom of the ensemble.

Indeed we believe that the analysis performed in
present work can be fruitfully employed for constructin
models for the vortex-environment interaction as well as
treating the quantum dynamics of a gas of vortices.
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APPENDIX A

The standard way to account for the presence of bou
aries confining the medium where vortices move is based
the virtual charge method.36,9,25Such a method makes it pos
sible to work out the vortex pair Hamiltonian incorporatin
the effects of a circular boundary, which reads

H~z1 ,z2!52
r

2p
k1k2 lnFR2uz12z2u2

uz1z̄22R2u2G
1

r

2p
k1

2lnS uz1u22R2

R2 D 1
r

2p
k2

2lnS uz2u22R2

R2 D .

When one of the two vortices touches the disk boundary~i.e.,
uzj u→R) then the first term is going to zero, where
ln@(uzj u22R2)/R2# becomes infinitely negative, as is e
pected whenever a vortex annihilates a vortex with an op
site charge. The latter, in the present case, is the virtual
tex accounting for the boundary effect. Then, af
performing a suitable energy rescaling, the remaining lo
rithm represents the interaction of an isolated vortex with
circular reflecting wall.

In the extreme casesk15k2 and k252k1 the Hamil-
tonian reduces to the form~57!. SinceA is constituted by
several factors where the canonical variables appear to
mixed in a very complex way, a dramatic ordering proble
should affect the quantum version ofA. It is almost surpris-
ing instead to discover thatA21 is exempt from such a prob
lem. One finds, in fact, the expressions

A215
R2

uz12z2u2
1

R4

~ uz1u22R2!~ uz2u22R2!
,

A215
R4

~ uz1u22R2!~ uz2u22R2!
2

R4

uz1z̄22R2u2
,

in the VA case and the VV case, respectively, that, a
considering the further formulas

uz12z2u25H 4\r ~A32A1!,

4\r ~V42V1!,

uz1z̄22R2u25H 4\2r 2~A3
22A4

2!1R424\rR2A1 ,

4\2r 2~V4
22V3

2!1R424\rR2V1 ,
e

r

-
l

y

d-
n

o-
r-
r
-

e

be

r

~ uz1u22R2!~ uz2u22R2!5H ~2r\A32R2!224\2r 2A4
2 ,

~2r\V42R2!224\2r 2V3
2 ,

involving explicitly the algebra generators, clearly exhib
the absence of any ordering problem. The expressions
stituting the denominators ofA21 are in fact linear combi-
nations of powers of the generators of the algebra invol
in the two-particle quantization scheme. The explicit form
the operatorA21 is easily obtained by resorting to th
Laplace integral representation of the functionf (x)51/x
~see Ref. 9!.

APPENDIX B

The action ofR6 on the canonical variablesxj , pj can
be derived from the formulas

UcS x1

x2

p1

p2

D Uc
155

x1 cosc1x2emsinc,

x2 cosc2x1e2msinc,

p1 cosc1p2e2msinc,

p2 cosc2p1emsinc,

whereUc5exp(2i2cV2). To this aim, it is important to con-
sider the two transformations

Uj~m!xjU j
†~m!5emxj , Uj~m!pjU j

†~m!5e2mpj ,

where Uj (m)5exp@im(xjpj1pjxj)/(2\)#, involving the two
decompositions

Uc5U2~m!e2 i2cL3U 2
†~m!, Uc5U 1

†~m!e2 i2cL3U1~m!,

with L35(x1p22x2p1)/\. Such decompositions and th
fact that Uj (m)Cn(xj ;r j )5Cn(xj ;r je

22m) ~see, e.g., Ref.
32!, allows one to obtain the explicit form of eigenfunction
~52! and ~53!. When assumingem5Ar 1 /r 2 one finds

Cnq
1 ~x1 ,x2!5Cq~a2X;r 2!Cn~x/a2 ;r 1!,

Cnq
2 ~x1 ,x2!5Cq~a1X;r 1!Cn~2x/a1 ;r 2!,

respectively, wherea j5AC/rkj , and coordinates~11!, ~12!
have been used.

APPENDIX C

Replacingr 2 with 2r 2 in V3 , V4 and p2 with 2p2 in
V1 , V2 @see formulas~41!–~43! and ~45!# provides the
su~1,1! operatorsA4 , A3 andA1 , A2 , respectively. The fi-
nal form

A35
r

8\F j21h21
4

r 2
~X 21Y 2!G ,

A15
r

8\F 4

r 2
~X 21Y 2!2~j21h2!G ,

A252
1

2\
~jX1hY!, A45

1

2\
~jY2hX!,

is achieved when the special coordinates~27! of the case
k25k1 are employed.



ia

.

m

A

ar-
n
.

,

,

PRB 59 7139QUANTUM DYNAMICS OF TWO-DIMENSIONAL VORTEX . . .
*Corresponding address.
1A. L. Fetter, Phys. Rev.162, 143 ~1967!.
2M. Rasetti and T. Regge, Physica A80, 217 ~1975!; G. A. Gol-

din, R. Menikoff, and D. H. Sharp, Phys. Rev. Lett.67, 3499
~1991!; V. Penna and M. Spera, J. Math. Phys.33, 901 ~1992!;
Y. Wu, ibid. 34, 2342~1993!.

3V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Sigg
Phys. Rev. B21, 1806~1980!.

4R. Y. Chiao, A. Hansen, and A. Moulthrop, Phys. Rev. Lett.55,
2887 ~1985!.

5F. D. M. Haldane and Y.-S. Wu, Phys. Rev. Lett.55, 1431
~1985!.

6J. Leinaas and J. Myrheim, Phys. Rev. B37, 9286~1988!.
7G. A. Goldin, R. Menikoff, and D. H. Sharp, Phys. Rev. Lett.58,

174 ~1987!.
8U. Eckern and A. Schmid, Phys. Rev. B39, 6441~1989!.
9V. Penna, Physica A152, 400 ~1988!.

10V. Penna, Phys. Lett.125A, 385 ~1987!.
11J. M. Leinaas, Ann. Phys.~N.Y.! 198, 24 ~1990!.
12A. M. Thompson and J. M. F. Gunn, Physica C235, 2953~1994!.
13Superfluidity and Superconductivity, 2nd ed., edited by D. R

Tilley and J. Tilley~Hilger, London, 1986!.
14J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!.
15P. Minnhagen, Rev. Mod. Phys.59, 1001~1987!.
16Q. Niu, P. Ao, and D. J. Thouless, Phys. Rev. Lett.72, 1706

~1994!.
17Proceedings of the 20th International Conference on Low Te

perature Physics, edited by R. J. Donnelly@Physica B194-196
~1994!#.

18T. Mingoguchi and Y. Nagaoka, Prog. Theor. Phys.80, 397
~1988!.

19D. J. Thouless, P. Ao, and Q. Niu, Physica A200, 42 ~1993!.
20R. Iengo and G. Jug, Phys. Rev. B54, 13 207~1996!.
21J. C. Davis, J. Steinhauer, K. Schwab, Yu. M. Mukharsky,

Amar, Y. Sasaki, and R. E. Packard, Phys. Rev. Lett.69, 323
~1992!; G. G. Ihas, O. Avenel, R. Aarts, and R. Salmelin,ibid.
69, 327 ~1992!.
,

-

.

22Vortex dynamics and quantum effects in Josephson junction
rays are reviewed in theProceedings of the ICTP Workshop o
Josephson Junction Arrays, edited by H. A. Cerdeira and S. R
Shenoy@Physica B222, 336 ~1996!#.

23R. J. Donnelly,Quantized Vortices in He II~Cambridge Univer-
sity Press, Cambridge, 1991!.

24H. H. Lee and J. M. F. Gunn, Phys. Rev. B46, 8336~1992!.
25R. Lupini and S. Siboni, Nuovo Cimento A106, 957 ~1991!.
26W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys.62,

761 ~1990!.
27L. Onsager, Nuovo Cimento Suppl.6, 249 ~1949!.
28R. P. Feynman, inProgress in Low-Temperature Physics, edited

by C. J. Gorter~North-Holland, Amsterdam, 1955!, Vol. 1, p.
17.

29P. G. Saffman, Vortex Dynamics~Cambridge University Press
Cambridge, 1992!.

30H. Aref, Annu. Rev. Fluid Mech.15, 345 ~1983!.
31V. Barone, V. Penna, and P. Sodano, Ann. Phys.~N.Y.! 225, 212

~1993!.
32V. Penna, Ann. Phys.~N.Y.! 245, 389 ~1995!.
33Handbook of Mathematical Functions, edited by M. Abramowitz

and I. A. Stegun~Dover, New York, 1972!.
34R. E. Prange and S. M. Girvin,The Quantum Hall Effect

~Springer-Verlag, New York, 1987!; A. Hansen, E. H. Haunge
J. Hove, and F. A. Maas, inAnnual Review of Computation
Physics, Vol. 5, edited by D. Stauffer~World Scientific, Sin-
gapore, 1997!.

35A. Shapere and F. Wilczek,Geometric Phase in Physics~World
Scientific, Singapore, 1992!.

36P. M. Morse and M. Feshbach,Methods of Theoretical Physics,
Vol. 2 ~McGraw-Hill, New York, 1970!.

37G. Lindblad and B. Nagel, Ann. Inst. Henri Poincare´, Sect. A13,
27 ~1970!.

38I. S. Gradshteyn and I.M. Ryzhik,Table of Integral, Series, and
Products~Academic, New York, 1980!.

39V. Penna and M. G. Rasetti, Phys. Rev. B50, 11 783~1994!.
40A. Montorsi and V. Penna, Phys. Rev. B55, 8226~1997!.


