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Quantum dynamics of two-dimensional vortex pairs with arbitrary total vorticity
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Quantum dynamics of a vortex pair is investigated by considering the pair Hamiltonian within various,
unequivalent algebraic frameworks. First the vortex pair spectrum is constructed in the standard contest of the
e(2)-like dynamical symmetry and its degeneracy is thoroughly examined. Then Berry's phase phenomenon is
studied through an su(1,1) realization of the pair Hamiltonian when its parameters are assumed to be time
dependent, whereas the Feynman-Onsager quantization conditions are recovered by means of symmetry argu-
ments within a third approach based on a magneticlike description of the vortex pair. Finally, it is shown how
recasting the dynamical algebra in terms of two-particle realizations of both su(2) and su(1,1) provides the
correct approach for the quantization of the model Hamiltonian accounting for the pair scattering from a
disklike obstacle[S0163-1829)09109-3

[. INTRODUCTION densed survey represents more or less the whole work de-
voted to the 2D VQD in the past 15 years, despite the huge
An attempt to investigate the quantum dynan(i@®) of ~ quantity of theoretical work concentrated, during the same
superfluid vortices was performed by Fetter in Ref. 1. HePeriod, on the 2D vortex topic in relation to type-l super-
considered a three-dimensioraD) vortex model where the cr?nduclzgfnlg pgyilcé_, the K'osterlgz—Thﬁullzess transition
vorticity field is nonzero on an array of parallel strings and{€0rY: “and the investigations through Feynman's varia-

assumed that the vortex interactions were dominated b(gonal approacHi on vortex emergence from the native su-

transversal string oscillations. The crucial feature is that th erfluid background.

air of coordinates involved by the local description of each A renewed interest for 2D vortex dynamics has been
pal . yu ; P prompted by the recent experimental developments in the
point of a vortex line are canonically conjugate allowed to

e th o th "l q context of both superfluidity and superconductivityThe
quantize the system via the canonical procedure. great improvements concerning the measurement techniques

_ The complexity of the problems inherent in the quantiza-3nq the observations of microscopic processes should render
tion of the vortex field theory together with their extreme guantum aspects of vortex dynamics viable to experimental
formal charactér have certainly contributed to discourage, detection.
for a long time, the investigation of the quantum aspects of There are at least four experimental situations that are
vortex dynamics in the context of condensed-matter physicsnteresting in respect to VQD. For example, devices where
The only exception to this statem&ig represented by the  thin films of superfluid*He are adsorbed on porous materials
special case of 2D pointlike massless vortices, which arguch as vycor glasses. The porous structure endtie
derived from the standard field theory of 2D ideal fluids asfilms with the multiply connected geometry of a Riemann
the extreme case where the vorticity field is restricted to a seturface thus confining the vortex gas of superfluid films on a
of isolated points. network of 2D cylinderlike connected domaifthe surface
Before discussing the motivations that prompt further in-handle$ with very small sizes® The fact that the special
vestigations of VQD it is interesting to review the work de- geometry makes vortices interacting at the mesoscopic scales
voted to 2D vortex dynamics during the past two decadesof the vycor structure is expected to emphasize the effect of
The attention raised by its quantum version is principally duejuantizing vortex interactions. This, in fact, as entailed by
to the vexed question whether pointlike vortices might ex-the standard form of the vortex Hamiltonian, depends on the
hibit, when dynamically quantized, statistics with a fractionaldiStance between vortex positions which is the quantity that

character. A thorough account of this problem can be foundnUSt be quantized. The depicted scenery is further compli-
in Refs. 4—7 whereas in Ref. 8 an effective theory of opcated by the effect of the curvature that, as in the case when

quantum vortices on a Josephson junctions array is Workeﬁjoundanes confine the ﬂwq, introduces nonlllne.ar terms in
e energy that represent virtual vortex contributidns.

out f_rom_ the quantum-_phase_: m_odel Ham|lton!an. Further The second situation where vortex structures are impor-

contributions aimed at investigating 2D dynamically quan-i. -+ is the superconductor physics. Point vorti¢esrtex

9 g g | ElleClyjneg) arising in 2D(3D) superconductors strongly influence

on VQD,  the ordering problem arising from the quantization .4y ctance measurements of the current. The presence in

process? the possibility that the vortex pair inherits anyon- the medium of pinning centers makes them undergo quantum

like statistics when its dynamics is issued from that of twogynneling phenomena that strongly affect vortex movements

charges in a transverse magnetic fiidnd the emergence through the mediun® The ensuing liquidlike behavior of

of pointlike vortices with quantized dynamical degrees ofthe vortex system affects the supercurrent decay by inducing

freedom from a second quantizg#t|*-field theory*? voltage variation€? but it depends, in turn, on interactions
Surprisingly, apart from recent developments, such a conamong vortices as well as on interactions of vortices both
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with the medium impurities and with the medium bound- namics is as complex as the VV dynamics when any elemen-
aries. Similar effects are observed in superfluid currents in #ary effect(e.g., the boundary effegtsoupling vortices with
ring, while vortex creation phenomena, possibly due to theéhe environment is taken into accodft® This is further
guantum tunneling effect, occur when superflows cross a mieonfirmed, at the classical level, when the substrate effects
croscopic orificé! on vortex dynamics are inserted either via an effective
Finally, vortex dynamics is largely studied in the potential®® or by the explicit introduction of rigid obstacles
Josephson-junction arrafswhere experiments reveal a rich in the fluid?® A possible, unexpected effect is that of provid-
scenery of phenomena such as high-energetic vortices exhibyg the customary continuum spectrum of the VA pair, with
iting ballistic motion, vortex-driven voltage turbulence, and a discrete charactér.
vortex lattice melting. The purpose of this paper is to provide a complete treat-
A characteristic feature of the literature on VQD is the ment of the vortex pair QD both for the VV case and for the
fact that the attention has been mainly concentrated on théA case(the AA case and the VV case are easily shown to
pairs of identical vortices, namely vortex-vortéxV) pairs  be equivalent and of attracting the attention on the rich
as well as antivortex-antivortef®A) pairs. Their deep quan- structure characterizing their quantization from the group-
tum nature ensuing from the fact that both VV and AA in- theoretic viewpoint in relation to possible applications.
teractions involve quantized intervortex distaridess origi- VQD is studied by means of the spectrum generating al-
nated the idea of characterizing a pair of identical vorticeggebra methotf which consists essentially in identifying first
(and, more in general, a gas of identical vortjcby frac- a complete set of dynamical degrees of freedom forming a
tional statistics. Concerning this point VA pairs were consid-Lie algebra(the dynamical algebjaand in constructing then
ered uninteresting since no exotic statistics is expected frorthe Hilbert space of the system by exploiting the unitary
distinguishable objects such as vortices and antivortices. Iireducible representations of the related Lie group. In this
addition to this, VA pairs arising in physical systems exhibitsense the vortex system is quite interesting due to the rich
a vortex charge which is equal and opposite to the antivortexariety of ways in which the vortex coordinates can be struc-
charge. This fact implies that the VA distance is nottured so as to form a dynamical algebra. Remarkably, the
quantized thus making their dynamics apparently trivial.  possibility of working within different algebraic schemes
VA pairs are instead basic for understanding the statisticatloes not reduce to the mere freedom of choosing among
properties of excited superfluids. These are achieved vidifferent formal approaches trivially equivalent to each
mean-field techniques that seem to entail an intrinsicallyother. Each algebraic scheme, in fact, sheds light on some
classic scenery. The standard renormalization procedure fgrarticular feature of the system.
obtaining scaling laws is illustrative of this when the habitual ~ Classical dynamics dil pointlike vortices is reviewed in
assumption is made to consider each VA pair of the vortexsec. Il together with the symmetries characterizing their mo-
gas as immersed in a dielectric background of VA pairs withtion described by the habitu&(2)-like symmetry group.
smaller sizé?® This implies that both VV and AA interac- The procedure adopted for quantizing tRevortex gas and
tions (the very quantum ongsre embodied, and thus aver- hence the vortex pair is the standard canonical scHethe,
aged, in the dielectric constant. Since the VA pair Hamil-concerning the pairs of canonically conjugate coordinates as-
tonian possesses a sort of natural, semiclassical structure igned to the points where the vorticity field is nonzero.
that it does not contains any noncommuting quantities, theMoreover, the vortex pair dynamics is pictured through a
guantum effects appear to be a higher-order refinement.  significant geometric form suitable for interpreting the quan-
As to the emergence of vortex pairs we wish to recall thetum spectra.
main traits of such a phenomenon within superfluid conden- In Sec. Il the QD of two interacting vortices is examined
sates and superconductors. The neutrality characterizing both the case when the topological charges, namely the vortici-
of them at low temperature favors the occurrence of VAties k; and k, of pointlike vortices are arbitrary. Its inte-
pairs when temperature is raised. These, in fact, violate thgrable character is clearly manifested by the fact that the pair
neutrality just locally and are energetically favored. On theHamiltonian is a function of the Casimir operator of the
contrary individual VV and AA pairs represent disfavored E(2)-like dynamical algebra. After working out explicity
excited states since they entail local accumulation of vorticboth the eigenstates and the eigenvalues of the energy spec-
ity and, for this reason, a higher energy cost. It follows thattrum, the degeneration due to the high symmetry of the vor-
AA and VV interactions concern more frequently interac-tex pair dynamics is analyzed. We show how a complete set
tions of identical vortices of different VA pairs rather than of eigenfunctions can be worked out thanks to the possibility
pairs of identical vortices. Interactions of identical vorticesof observing one among the numerous constants of motion of
become dominating in superconductors when an externdhe system. As in the case of the Landau spectrum for the
magnetic field is switched on. This is able to break the vortexelectrons acted by a transverse magnetic field, a further quan-
charge neutrality and allows for vortex arrays where the vortum number describing the system symmetry must be intro-
tex density is greater than the antivortex one. The decreasirduced in addition to that describing the pair energy.
of the antivortex fraction is compensated by the magnetic In Sec. IV the dynamical algebra is assumed to k& 4u
field that can be viewed as a macroscopic backgroundhis leads to reveal unexpected symmetry properties relating
charge. The same effect is achieved in superfluids when thdynamics of vortex pairs with different topological charges,
condensate undergoes a uniform rotation. and provides the framework for evaluating Berry’s phase
The apparent nonquantum character of VA pairs abovevhenk; and the density are possibly time dependent. Re-
mentioned, disappears as soon as one goes beyond the sioasting instead the pair Hamiltonian in the magneticlike form
plified scenery of the mean-field picture. Indeed the VA dy-of Sec. V allows one to derive the Feynman-Onsager
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condition?”?® on the jth topological chargek;=hn;/m,

where j=1,2, andm is the helium atom mass, from pure J=-
symmetry considerations.

Finally, Sec. VI is devoted to introducing a two-boson
dynamical algebra which, in addition to give a further insight J=p z KXo » (4
on the specific features both of the VA case and of the VV m
case, provides the correct way to approach the pair dynamics
when a disklike obstacle is present in the fluid. Our algebraic
construction reformulates the resulting disk-pair model in Jy=p % KmY m
terms of a generalized angular momentum dynamics, leads to
a clear geometric picture of the pair-obstacle interaction, pro-
vides the Hamiltonian in a form exempt from the habitual J*:BE kikj[(xi_xj)2+(yi_Yj)2]a (5)
ordering problem, and establishes the basis for investigating 2{7]
the quantum processes. The interest for such a case f-slf'll' th i
founded as well on the fact that the pair scattering phenom—u iing the equation
ena can be interpreted as pinning effects on vortices due to
the impurities of superfluid substrate.

A final comment is in order as to considering 9eNerCyhereC = p3 k; is related to the total vorticity, are constants

topological chargek;, despite the standard choice used Nyt motion and satisfy the classical commutatoas=K,y,z)
the literature|n;|=1. The motivations are at least two. First

N

; KX+ Y2,

—pd, =2CJ,+3+32, (6)

of all, employing arbitrary chargek; and k, involves no {3.,3,}=0, {H,J.={H,J,1=0, )

formal complication, whereas it allows one to gain an inter- an 2 *

esting general insight when relating the algebraic structures (3,,3,)=C, {3,,3)=J 13,,3,)=J ®)
X 1vy s z1VYX Yy yivz X

pertaining to the VV case to those of VA case. Second, the

emergence of vortices witn;|>1 can take place in suffi- |t is worth noticing thatl,,J, ,J, exhibit ane(2)-like alge-
ciently excited superfluid media as well as in close proximitypraic  structure—hereafter we shall denote it by
of the medium boundar® Such a situation is certainly in- e, (2)—which is fully reached whe@@ =0, namely when the
teresting since a vortex pair withm,[,|[n,|>1 provides the vortex total charge equals the antivortex total charge.
basic framework in which to investigate the exchange of The canonical quantum descriptionifointlike vortices

quantaof vorticity between the pair members via quantumis obtained by replacing classical commutat@gswith
tunneling processes.

[Xi!pj]zéijiﬁl (9)
IIl. CANONICAL QUANTIZATION OF THE 2D VORTEX . .
GAS DYNAMICS (we have sep;=pk;y; in order to get commutators in the

canonical form that furnishes the quantum version of the
Classical dynamics dfl pointlike vortices in a frictionless  algebra(7)
fluid is described by the Hamiltoni&h
R-R| [Ix.dy]=iRC, [J,,d]=ihdy, [JI;,d,]=iRdy. (10)
| ]

' @ In view of the fact that the constants of motion can be em-
ployed for integrating the dynamical equation provided they
where the parametds represents the vorticity carried by the are in involution, commutator¢9) involve that the many-
jth vortex, p is the fluid planar density, and the vectgy  body wave function for the 2D vortex gas is characterized at
=(Xj,y;) describes th¢th vortex position in the 2D ambient most by three macroscopic quantum numbers two of which
space in terms of planar coordinates y;. The lengtha  are, of courseH andJ, , while the third one can be arbi-
represents the vortex core size that is the minimum distancearily chosen amond,, J,, andJ,.
allowed between a vortexk(>0) and an antivortex k; A meaningful geometric picture of the system dynamics is
<0) before coalescence processes take place. The Hamichieved by means of such constants of motion when the
tonian equations relative to E@L) are standardly derived via vortex pair is considered. To this end it is useful to describe
the Poisson brackefs the vortex pair through the new set of coordinates

p
H(Ry, . .. ,Rn)=—E§j kik; In(

1(dF 9G G 9F X=X—Xp,  Y=Y1—VYa, 11
{F.G}=2 —k(————— : 2 v toe
T pki\ax; dy;  ax; dy;
, o i X=JIC, Y=J,/C, (12
involving, in turn, thepk;-dependent canonical brackets
where J,=p(kiX1+KyX;) and Jy=p(kyy,+Kkpy,) follow

_ 9 3 from Egs. (4), that reduce the Casimir functiofb) to the
{xi.yj}= ok’ @ form
i
Then vortex coordinates can be regarded as a complete set of J, = pkiko(x2+y2). (13)

canonically conjugate variables whosmmentaare defined
asp;=pk;y;. Also, one can easily check that the functions Then, after expressing the coordinaigs y; as
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1 1 J
X1:6(Jx+Pk2X): Y1:E(Jy+Pk2Y), H(RLRZ):_%klkZIn(m)- (18
(14) This feature is specific to the two-body problem and implies
that the set of energy eigenvectors exactly coincides with the
J, spectrum. A remarkable freedom is then permitted in se-
lecting the remaining quantum number which labels the de-
generacy of the energy states. In fact, any operator of the

1 1
X2:E(Jx_Pk1X)' Y2:E(Jy_ pK1y),

by means of Eqs(11) and(12), it is quite easy to recast,

in the two equivalent forms form 1 =aJ,+bJ,+cJ, fulfills the equatior{H,1]=0 estab-
- ) ) lishing the constant of motion status lofAnyway, a deeper
Je _ C (x _ ﬁ n _ﬂ) } (15) inspection reveals that any invariahta,b,c) is obtained
kikop kaé ¢ imel either from J, or from J, via the transformation|
=glog™ %, lo=Jy,J;, Whereg is a unitary transformation
J, c?( J\? Jy 2 obtai?ed by combir}ing appropriately Jthe action Df(«)
Kikop _pzkf(xz c) tlya C) : (16)  =€'*x D (B)=¢€PY, and D,(¢$)=¢€'*= The possibility

to reconstruct the algebra of tig (2) group(the symmetry

which, without solving the equations of motion, identify group ofH) from the elements, andJ,, representative of

completely the classical orbits where the two vortices movéhe algebra disjoint sectors, via the adjoint action map, en-
along. Such orbits—they are easily recognized to pdails two possible pictures of the degeneracy. In this section
circumferences—present as a common center the vorticit/e€ examine the vortex pair spectrum relative to two such

centerR, = (J,/C,J,/C) and have radii ways to structure the energy-level degeneracy.
To begin with we assume that the topological charges

Ik, 3, fulfill the inequalitiesk,;>0, 0<|k,|<k; and notice how
Rl:lk K |Vk o (170  the ranges allowed are capable of describing any possible
1772 1R2pP pair. Also, let us introduce the compact notatib=R;

—R,, and express it by means of the set of canonical conju-

Ky Js gate variablegsee Eqs(11), (12)]
Ra™ i il Vikop!
t 1P X=3,/C, X=X;—Xy,
for the vortex with charg&; andk,, respectivelyR, , Rq, (19
and R, are manifestly time-independent quantities in that P—J p= kikap y
they just depend on the constants of motignd, ,J, . ye ki+ky,”’

Fork,,k;>0 vortices rotate in such a way that a common .
straight line always join them tR, . The latter, in particu- whose momenizp and P satisly the commutaiorsX,p]

lar, coincides with the rotation center which is situated be__b[IX’P]t;OI and.Er)](,p]—[X,P];!ﬁ. BYI utsmg dSL.'Cth \t/r?n-HO
tween the two vortices. Whek,— Kk, the circumferences %rr?f, € loganthm argument 1S €asily tured into the
merge in one whose center is YR . On the other hand, for

k,— 0 the radiusR, vanishes so that the vortex with finite 1

vorticity k, fall in R, thus losing any dynamical role. In this D?=y2+x%= —(p?+w?x?), (20)
case the weak vortex—that wity=0—ends up by running w

along on a limiting circle with radiu®k,— const. Wherk,  where the frequency readsw=Kk,k,p/(k,+k,). This im-
—0 from negative values the dynamical situation is almosplicates that the wave functions

the same except for the fact that now the vortices stay along

a rotating half-line whose extreme is attachedRyp. The _ 2212

emergence of the full VA regime is announced when, for Wa(x:|wl)= ¢ Hn(x/1), (21
k,— —kq, the centelR, moves away from the vortices and 2%mnl|

gets a larger and larger distance from them. In the limitingyhere I2=#/|w|, that satisfies the secular equatiop?(
case of the pair witk,=—k; the two vortices run along +w2x?)¥ =7%|w|(2n+1)¥,, represent the eigenfunctions
parallel straight linegi.e., circles with infinitely large radii  of D? with eigenvalues given by

and keep a constant relative distance. One easily checks that

Ri,Ry—0. Sa(w)=(#/|w|)(2n+1). (22

A complete set of eigenfunctiond ,«(x,X) is finally ob-
ll. DEGENERACY OF THE PAIR ENERGY SPECTRUM tained when the further observalife=J, is considered to-

. 2 .
Quantizing the two-vortex system seems no more Comgether withD®. The second quantum numbierin

plex than quantizing a simple harmonic oscillatétO)**° -

even when the topological chargles, k, of the interacting VX X) =W a0 P(X), @3
vortices are arbitrary. In this case, in fact, Hamiltonidh  where the plane wavé,(X)=e'**/\27 fulfills the equa-
reduces to a single logarithmic term whose argument ision P®(X)=%K®d(X), establishes the position=P/C
|IR;— R/, while Eq.(5), wherebyJ, takes the formJ, = of the center of vorticity along thg axis in the ambient
|IR;—R,|%/pkik,, entailsH written as space.
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As an alternative, a complete set of eigenstates can bimey can be regarded either m®mentaor as position vari-
constructed by resorting to the quantum number related tables. When further interactions are excluded freinthe
the conserved quantity,. This is easily achieved by exploit- simplest choice is that wher& and ) are looked upon as
ing Eq. (6) in that, after turning it to the fornd,= —(pJ, coordinates which implies that the energy eigenfunctions
+J%+J7)12C, it is evident that the HO-like wave function have the form

1 1
V(X |C == e X H(XIL),  (29) Dy (X)) =5 €Tt VO, (28)

V2™ m!L
Here Ky and 2Ky are the eigenvalues @f=—i%d, and
whereL = J/[C], diagonalizesJ{+Jj=P?+C?X? Hence nz—iﬁ;y, respe)(}:tively. Info?mation on’(cgandy agr(e, of
the eigenvalues associated withhave the form course, completely missing, that is, the pair cannot localize
anywhere in the ambient space.
Am(mw)=—A[sgw)n+m+1], (25 Some applications can be now illustrated. The quantum-
where sg@)=w/|w| and we have exploited the fact that mechanical problem just solved provides the formal tools
pJ, IC=h(2n+1)w/|w| andC=p(k,+k,)>0, due to our requested for investigating the scattering processes of the VV
initial assumptions. pair (as well as of the AA pajrand VA pair dynamics in the
The descriptions of the energy spectrum degeneracy jugtresence of 2D potential wells simulating the confining ac-
examined, involve a significant geometric-quantum picturefion of the defects placed on the superfluid medium
Using the quantum numbers ) implies that the two vor- ~ substraté’ The effective model Hamiltonian
tices are confined along the two circumferen¢Es), (16)— .
the angular coordinates cannot be specified due to the uncer- _2 2 2
tainty principle—whose radii [ tx) "+ (yaty2) T+ H,

|kyko| where g represents the strength of the phenomenological
Rj= VSh (26)  confining action, fork;=+k,=k and k;=—k,=k yields

|k IC] the Hamiltonian

wherej=1,2, are now labeled by the integerdue to Eq. 3,

(22). The center of such circumferences, which coincides H=——(J +J, /4k)——k2 In| (29)

with the vorticity center, hay=#K/C while X is, as ex- kp

pected, undetermined. and

On the other hand, when the pair,(n) is employed the
locusallowed for the vorticity center changes from noncom- p E+49?
pact to compact. The latter, in fact, is now confined on the H=g(X?+Y%)+ Ekzln[(pTa)z : (30

circle of radius
respectively. In view of the spectral problems solved above,
X2+Y2=[f(2m+1)/|C|]*? one finds that Hamiltoniari29) has a spectrum which is
readily obtained from Eqs22) and (25), whereas Hamil-
onian (30) is clearly related to a 2D Coulomb problem
here two particles with opposite charges are studied within
the center-of-mass reference frame and are endowed with a
reduced masg.= p?k?/2g. Notice how it is now natural to
exchange the roles of, Y, and¢, #» assigned above. The
treatment of such a Coulomb system will be reconsidered in
Sec. VI where a more adequate algebraic scheme will be
'lntroduced.

More in general, Hamiltonians of the forfd="f(1)+H,
where f(I) is a generic function of the operatb(a,b,c)
defined above, are easily diagonalized by redutieigher to
pJ or to J,, depending on the values taken &y b, andc.

For example the situations wheté exhibits a terml pro-
portional either tal,, ortoJ, (Jy) can be interpreted as the
n=—pkx, &=pky, way to picture the_effect of a macroscopic velocity fi_elq re-
27 sponsible for a uniform rotation around the plane origin, in
1 the first case, and inducing the vortex dragging along the
=5(1tya), A= 5 (X X), y (x) axis, in the second case.

A final comment is in order as to the two limiting cases
wherek,= —k;= —k, which turns out to be completely dis- k;— 0 with finite k, (the vortex withk, recover the classical
joint from those employed in the case whies#t —k;, and  status sincé¢x,,y;] is vanishing, andk,—0 with finite k;
obeys the standard relationgX,é]=[),n]=i%. Here (the vortex with k, gets an ultraguantum status since
X, Y, & andz do not play prefixed roles so that, depend-[x,,y,]—»). At the classical level such limits make tke
ing on the interactions involved by the dynamical problem,vortex tend to stiliness, while the, vortex goes on to rotate

labeled bym, instead of a straight line labeled i, Once
again the uncertainty principle prevents one from getting an
further information both on the position of the vorticity cen-
ter and on the vortex position along the circles of ra@ii
andR,.

In the extreme case whe@=k,+k;—0 the canonical
scheme based on Eq&l9) breaks down due to the diver-
gence of the factor 1K;+k,). In particular, the singular
behavior of the pure VA case is distinguished by the fact tha
Jx andJ, end up by coinciding withx andy, respectively,
which now commute sincepky[X,y]=[Jy,Jy]=iAC=0.
Such circumstances impose the introduction of a more a
propriate set of canonically conjugate variables. We thus de
fine



7132 VITTORIO PENNA PRB 59

with a frequency proportional tev— pk,. In particular a V2 y\atliz

greater and greater period occurs when-0. While the fV(X;|)=(—)SD|s<|—) (I_) e X PTLI(x?N12),
realism of a situation where,=0 is hard to maintain, since
there is no experimental evidence of fractional quanta of vorwherel is the same dimensional parameter employed in Eq.
ticity, the case wheik, is large can be easily interpreted as (21), D;s=[s!/T'(s—21)]*? is the normalization factor and
the situation where a small cluster of vortices interacts with_g are the Laguerre polynomials, whereasind the nonne-
solitary vortices. Moreover, while the first case implies di- gative integers are related td and v by a=— (21 +1) and
verging spectrum gagfs, ; ; — S, due to Eq(22), the second ,=s—|, respectively. By exploiting the general formtia

one leads t&,=#%(2n+1)/pk,. In particulark;— is re-

lated to the dynamics of a solitary vortex moving around a (=)Hn(w)(2)

disklike obstruction with radiu®R contained inside the 2D Ls(2%)= Snlalg) 7o T 12

ambient space. Hamiltoniad of Appendix A embodying '

the effects of the disk is illustrative of the manner in which\wheren(a)=2s+ a+ 1/2, relating Laguerre polynomials to
this is realized when the vortex complex coordinateis  Hermite polynomialsH ) when a=*+1/2, one finds that

such thafz;|=R. f,(x;1)=W,(x;|w|) namely the functiong21). The repre-
sentations corresponding te= —3/4 andl=—1/4 are thus
IV. THE su(1,1) APPROACH associated with symmetric and antisymmetric eigenfunc-

. o _tions, respectively, in thaW  (—x;|w|)=(—=)"¥,(x;|w|)
A different approach to the quantization of the vortex pairgng
is provided by thexp realization of the algebra &141) which

allows one to regar®?=|R;—R,|? as the compact genera- fos 120X — 14 =W, (x;|W|),
tor of SL(]l.,l). After recalling that the algebra generators are
given by For X~ 304) = W, 16 W)).
w2x?—p? pPX+Xp w2x?+ p? This establishes when the pair has either a fermionic charac-
Jl:—4h|w| v V2T T T JeT AT t_er or a bosonic character With respect to the _transforma—
tion (R;,R,)—(R,,R4) changingx, y (namelyp) in —Xx,
and satisfy the commutation relations —vy. No conclusion, however, is permitted until the second

quantum number requested for the complete description of
[J1,3,]=—1J3, [J,,33]=id;, [J3,9:]=id5, (3D the pair, is considered. To this end consider the statg,
=W, (X;|w]) ¥ ,(X;|C|) obtained from formulag24), (21).
the equationD?=4#%J,/|w| ensuing from Eq.20) shows When the vortex exchange is equivalently enacted via the
that the spectrum af; is that involved by the vortex dynam- substitution k;,k,)—(k,,k;), this implicates, in particular,
ics. It shows as well hovD? no longer plays the role of the thatX—X’=X+x(k,—k;)/C. Hence, while the charge ex-
Casimir operator now being nontrivially acted both By  change does not affed ,(x;|w|) for any value ofk;, ks,
and byJ,. In spite of this the present algebraic frameworkthus exhibiting an unexpected type of symmetry involving
inherits bothX andP=CY (and hence any function depend- nonidentical charges, the usual situation is re-established by
ing on them as dynamical constants of motion from the the presence o¥ ,,(X;|C|) which is trivially symmetric only
e, (2) algebra of Sec. Ill. As for Hamiltonian@9), (30), whenX'=X, i.e.,k;=k,.
again one can take advantage of this fact for constructing A further aspect that makes interesting to adopt the
vortex models with Hamiltonian of the forri{=F(X,Y) su1,1) scheme is connected to the effect of the unitary ac-
+H accounting for the background medium influence. Fortion of D y=exp(#J,) on the canonical variables, p. In
example, describing the drag action on the pair vorticity cenpassing we point out how this is the distinctive trait of ¥y
ter due to the flow stream lines in the presence of a saddldescription which, as opposite to teg(2) scheme, does not
point simply requires(X,Y)=y(X2—Y?), y being some involve for D the role of a constant, structureless object. The

suitable dimensional parameter. D, action is given by’
The suf1,1) scheme is useful to discuss the statistics of the
pair system. In Ref. 6 the same algebra was constructed step D 4x DLz e ¥, Dyp D;: e?’p

by step starting from the Weyl-Heisenberg algefir, p},

in order to relate the VV pair statistics to the unitary irreduc-and implies thatD W, (x;r)="¥(x;re”?) for any wave
ible representation@JIR) of thexp realization. A direct way function (21). Equipped with such formulas, one easily
to obtain them is that of calculating the eigenvalues of theshowsD , to succeed in connecting the dynamics character-

su(1,1)-Casimir operator ized by (;,k,) and w=k;k,p/(k;+k,), with any other
having different vorticities K;,K,) and W=KK,p/(K;
C=J32-3.2-32=I1(1+ 1), +K;). Notice that whenever two cases are related then they

both must stay either in the VV sector, or in the VA sector.
where | is the identity operator. One easily finds that the To exploit theD ,-action effects, we first define the modi-
allowed values fot arel = —1/4 andl = —3/4 which select fied Schrdinger problemif,® ,=H(W)® ., with time 7,
two UIR’s in the set of the SU,1) supplementary series. where the pair HamiltoniaH (W)= (— pKK/4) In[ (x?
The solutions of the secular equatidgf,(x;1)=vf,(x;1)  +p?W?)/a?] [see Eqs(13), (18), and(20)] depends on the
(see Ref. 3Pread vorticities K; . Then, exploiting the fact that
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W2x2+ p2=e‘¢’D¢(w2x2+ pZ)DT , (32 Feynman-Onsager quantization condition on the chakges
4 _ 0(r) ) in an alternative way. The momenta just introduced, whose
where W=we"?, and setting®,=e'""D ¥, with t  range of validity covers both the cakg>0, k,>0 and the

=t(7), we recast the Schdinger problem in the form casek;>0, k,<0, lead to rewriteD? as
i% 'd0+DTaD +9,)| ¥
1A -+Dgd Dyt dr) | Wy D2= S(PZ+PY), (35
[kikalp

KK .
—p¢K1K2/47T+1—2H(W)}‘I’t, (33 where P,, P, obey the commutatofP,,P,]=+(—)iAC

kikz whenk,>0 (k,<0), and allows one to identify the total
where 6 is obtained by imposingidd/dr=p¢K K, /4. vorticity C as the parameter playing the role of the magnetic
This, in turn, reproduces the initial problem with the chargedfield. Likewise, since[P,,Jy]=[Py,Jx]=0, and [Jy,Jy]
i =iC, itis quite natural to regard, andJ, as the generators
of magnetic translations pertaining to the present contest.
iidWi=HWw)¥,, (34  They, in fact, generates the Euclidean transformations of the
yortex coordinates

whose solutions can be derived by means of wave function

(21), when both the conditiod¢/dt=0 and the time rescal- Nt —y

ing 7= (kqk,/K,K,)t are assumed. Therefore, replacing Dy(u)XiDy (A =X+ s

with W, which represents a generic charge-K;, is com-

pensated by substituting with its transformed versioW.
The analysis developed shows how evaluating the Berryesponsible for the displacements of the vortex pair, where

phasé® when a vortex with constant charge interacts with aDy(\y) =exp(\J,/h), andD,(\,) =expNyJi/f).

vortex cluster situated at a distangauch largey from the After that one can proceed along two independent lines.

cluster size. The vortex with slowly varying vorticity can be First, one can look upor; andy, as position variables thus

regarded as the pointlike approximation of the cluster exhibdefiningP,=pk;y;, P,=—pkyX, as their canonically con-

: (39
Dx()\y)yli()\y) =YitAy,

iting vortex creation-annihilation processes. jugate momenta. On the other hand, the opposite choice,
As to this case, suppose that the problem relative ¢d/) wherex, andy; are position variables and,= pk,y,, P;
hasWwith K, depending on the time. Then, in the spiritof = —pk;x; the respective momenta, is equally natural. The

the adiabatic approximation approathye go back to Eq. same twofold choice characterizes the case of a planar
(33) and solve it, with the ket notation, by setting the follow- charge acted by a transverse magnetic field. In fact, the mo-

ing two equations: mentum space picture is always allowed as an alternative
i way to describe the system in the coordinate space. The in-
([ia—H(wW)]|¥)=0, terchangeable role of the vortex variables makes vanishing
such a distinction for the vortex pair system where the am-
ﬁ%E—M%IJzI\PO d_¢+ LKle(T)qS( 7, pient space contains both the momentum space and the con-
dr dr 4= figuration space.

Assuming now to operate within the first of the above
schemes, we implement the diagonalizatio®éfin the Lan-
dau gaugé? To this end Eq(35) must be recast in the more
adequate version depending ®p, y,, P, andP,

where the fact thatp is a function of the time-dependent
charge K, provides the nonvanishing ternD;aTDd,
=iJ,(d¢/d7). The first equation is obtained by absorbing
the dependence on the timein the timet via the equation
dt/dr=[K,K,(7)/k.k;] where bothK,; andk; are indepen- 1 1

Qent of7. Itinvolves the usual time—independent pair dynam- D2:?p§+ ?pg, (37)
ics whose exact solutions are given by E2{l). On the other p°ki pks

hand, the second equation, expressing the standard approxi- . _
mation of the adiabatic scheme, explicitly provid#s) via V\{helredpl— Pl_pklyzf’ |f'(|::n?1 Pa= Z?.erkle‘] hfve l:f]een
integration which, as expected, plays the role of geometri(,Slng ed out so as to fulfill the conditions; ,Jy]=[7P;,J;]

o X : =0, and [P;,P,]=—iC. Then, by acting on Eq(37)
tribut toB h Ltis f d that 1,72
contribution to Berry's phase. 1L 1S foun a through the gauge transformation edgb(x,y»/h) which

| Dy ) =ellHT) =B/l gl 62| turns it into the standard harmonic-oscillator form, the Lan-
) , dau gauge eigenvectors are found to be
where E,= — (p/47)k,ksoIn[ S,(w)/a“] [see Eq.(22)], ¢ is
determined by¢= —In(w/W), and |¥,) is given by Eq. q)n’q(xl,yz):ei/ﬁ(pklxlfﬁqwzq;n(xl_ﬁq/c;g)'

(21). Effects due to a possible time dependence of both the ) ) )
densityp and the core siza can be treated along the same WhereW,(x;€) is obtained from wave functiot21) when

lines (see Ref. & |w| is substituted witi) =|Ck, /k,|, whereas the associated
eigenvalues reproduce the spectr@y(w) defined by Eq.
V. MAGNETIC EORM OF TWO-VORTEX DYNAMICS (22). It is easily shown as well thal, is diagonalized by

@, 4(x1,Y2) and exhibitsiiq as eigenvalues.
Hamiltonian(18) can be easily turned into a magneticlike  Now, the invariance ofH under the action of both
form® by introducing the moment®, = p|k;k,|*>x andP,  D,(\,), andD,(\,), Ay, A eR, can be displayed in the
=p|kiko|Y?y. Such a picture allows one to recover the Hilbert space through the formulas
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D,(\)®, q(leyz)zeiqAV‘Dnq(leyz), the 1D domains of the ambient space where the vorticity
' ' center is allowed to stay. Moreover, assuming that the eigen-
Dy(M )P o(X1,Y2) =P g-alX1,Y2), valuesfq/C of X=J,/C take values insidg0\,] entails
where\,=a/C, andD, appears to act as a raisifigwer- 0<g=CAA,/h=N,,

ing) operator on the quantum numberif <0 (a>0).

HenceD, is able to explore the range of the energy spectrunso thatN, turns out to be the parameter measuring the de-
degeneracy related to timth Landau-like level. generacy as in the magnetic case. In the case when two equal
The final step of the magnetic procedure consists in statvortices occupy an area,\, having a macroscopic size,
ing the flux quantization as a consequence of imposing thehen the degenerady, = 2N, is macroscopically large since

expression Ny is the number of atoms contained inside that area.
As expected, in view of the analysis of the VA case de-
(39) veloped in Sec. lll, whel€=k;+k,—0 no magnetic scen-
ery can be realized this reflecting the fact thag,J,|=0
and the impossibility to relate finite areas of the plane with

—it represents the displacement of the charge along a reCfe free particle character of the VA dynamics quantum
angular loop on the plang{x;,y,)}—to reduce to theden-  giiag

tity operatorl. The right-hand side of Eq38) is carried out

by means of the Baker-Campbell-Hausdorff fornffile? "
—1/2[a,b]gagb and becomes if VI. VORTEX PAIR INTERACTION

N N Ny
Dx(Ay)Dy(M)Dy(Ay)Dy(Ny) =1 ex 7 C

=e
WITH DISK LIKE OBSTRUCTION
P"X)‘y(le(Z)E M—tm(kl+k2):N* (39) Another way to quantize the vortex pair dynamics is that
h h based on expressing®=|R;—R,|? by the two-particle op-

erator realizations either of the algebra®u or of algebra
su1,1). This requires that vortices are considered as indi-
vidual objects and involves the use of commutat@jor x;
andp;=pk;y;. The purpose of this section is to show how
such an approach is particularly suitable to deal with the case
when the vortex dynamics takes place in the presence of
Ki+ko=(N, /INy)— (40) circular obstacles with reflecting walls.

My To begin with we consider the VV dynamics, where

on the pair total vorticity. Such a result can be readily ex-K1,K>>0, and show its version in terms of _two-part|ple gen-
tended to a many-vortex system in that the translation symerators of s(). These, when expressed via canonical vari-
metry holds independently from the number of interacting?P!€sx;, p;, have the form
vortices considered, as follows frofthe quantum version ) )
of) Egs. (4) and (7). Since circulation operato{38) only Ve —| r 02— rp2et_ %2 (41
depends on the algebraic properties of symmetry generators, 37 27| M1P17T2P2 ry ry)’ )
the extension is simply performed by replacikgtk, with
2ik; in the previous formula. 1 XX
. . . 172

A first interpretation oﬂ\l*' follows from Eq:(40) Whgn ' Vi=—| Vrirpipo+ ——|, (42)
the Feynman-Onsager condition on the vorticity quantization 2h \rqr,
is taken into accourft’?®In fact, assumings; = hn; /my with

n;eZ successfully solves Eq40) and implies thatN, 1 r r

=NaZjn;. On the other hand, Eq40) naturally contem- VZ:E( \F X1Po— \F xzpl), (43
plates the Feynamn-Onsager condition as a possible solution 1 2

which, in conclusion, appears to emerge as a pure Cons9\7herer-zllpk-, and fulfill the standard commutation rela-
quence of the symmetries characterizing the vortex system; o OfJ su2) )

Further information concerning the meaninghf is ob-
tained when considering the system in a rectangular box. A
standard requirement consists in enforcing the cylinderlike
geometry in the ambient space via the further conditionyhereas their Casimir operator is given MbiV%JrVg
Dx«(\y) =1 on they-translation symmetry, wheng, has been +V2=\2—1/4. with
identified with one of the two macroscopic dimensions char- 1 * '
acterizing a 2D superfluid sample of areg\, . In the Hil- 1 2 x
bert space, this amounts to stating the quantization condition V4:—( ripi+ f2p§+_l + 22
q=2ws/\, with se Z, involving the periodicity condition afi
Dx()\y)q)n,q(xlayz)Z(Dn,q(xlvyZ)-

We have thus recovered for the vortex pair dynamics th
description in terms of Landau levels and of their degen-
eracy:s enumerates the straight lingsarallel to they axis)
characterized by the fact that=J,/C=const representing

with N, e Z. The quantityM, is the superfluid mass en-
closed in the box of areg\, . Upon introducing the helium
atomic massny=M;/N,, one derives from Eq39) the
constraint

[V1.Vo]=iV3, [V, V3]=iVy, [V3,Vi]=iV,, (44)

(45

g hen, the fact thab? can be expressed as

ri+ro

2_
D°=4#i|—,

r,—nr
V4= > V3— \/rlrzvl}y (46)
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makes it possible to reformulate the VV dynamics within the M+r 5,
su2) scheme where the dynamical variables are now repre- a7 (rap1+x1/ry),
zﬁgged by the angular momentum componevitgust de- L(ry+ro)(VaxVg) = . (51)
: 1 2.2
The choice of the algebra €yl) instead characterizes the 4%, (rapa+x3/13),

VA case[(k;>0, k,<<0)] and accounts for the change of
sign ofk,. Its generator#\;, A,, andA; fulfill the standard
commutators of si1,1)

where the first and the second expressions correspond to the
case with (+) and (—), respectively, then the eigenfunc-
tions exhibit the two independent versions

[A1Ax]= 1Az, [Az,As]=iAL,  [As,All=iA,, (47) \I’,fq(xl,xz)=Rﬂlfn(xl;rl)‘lfq(xz;rz), (52

and the equation for the Casimir operafigy=A3—A3—A? W (X1, %) = R_W o (Xa: 1 2) Wy (Xq5T ), (53)
EAi— 1/4. In particular, the explicit form oA, and Aj is
achieved by the substitutian— —r, in V5 andV,, respec-
tively, while A; and A, are derived by replacing, with .
—pzy in Vv, and V2,2 respectively. ¥I’hep opeg%[ors thus _“LXJZ/rJ')‘PP:ﬁ(Zp’Ll)‘PP' The effect of the action oR..
obtained—notice that such substitutions can be recast it Es.(52), (53) and hence the explicit form oF ;o(x;,xz)
terms of a process of analytic continuation connectin@)su are calculated explicitly in Appendix B. Their relation with

to su1,1)—allows one to expres®? as the classical single vortex picture based on H4$), (16)
can be established by noticing that the circle coordinates

identify with the coordinates exhibited by the final explicit

Az—r 1r2Al}, (48  form of Egs.(52), (53). o
While ¥ (x1,%2) appear to have a form differing from

where the wave function¥ (x;,r;), with p=n,q, diago-
nalize the (harmonic oscillator secular equation r(pj2

ry+ro
2

r{—r
DZ=4h[ At

, that of the eigenstates found within different procedures, the
wherer;=1/p|k;|. The linear character of both Eqg6) and eigenvalues oD? andV, given by

(48) allows one to readily obtain the diagonal formDt by
means of unitary transformations. Evidence of this is ex- 1
pressed by means of the formulas Si=h(ry+ra)(2n+l), Agn)=z(n+qg+1), (54

respectively, whera e N andqg e N, are consistent with Egs.
R}, (49 (22) and(observe thav,= —J,/2%) (25), respectively.
One should observe how the form of both E¢s2) and
o ] (53) ensues from the choice of employing the eigenvalues of
whereR. =e'(#*™2V2, with tgB=(r,—r;)/\4r,r,, and V3+V, (V,—Vs) for describing the degeneracy of théh
level, when the diagonal form dd? is V,— V3 (V4+V3).
N Actually a full arbitrariness affects the previous choice since
Ry (50) any function F(X,,ps) [F(X1,p1)] commutes with Vy
+V, (V4—V3). This is consistent with the scenarios en-

whereR,=e'72 and th= 4rr,/(r;+r,), whose basic countered in Secs. Il and IV.
feature i’é that of depen?iing onllyzc)(ml Vz) andA,, As. Coming now to the VA case, its distinctive feature is that

As a consequence of the fact thjat,,V;]=0 and[A,,A] of _providing, Whenr2—>r1, a Iimiti_ng situation where the
—0 since (the eigenvalues dfV, and A, are ¢ numbers umtar_y transformation of Eq(50) |_s.not ab_le_ tp takeA;
labeling the representations of the respective groups, then thie”1 INt0 Az, such operators pertaining to disjoint sectors of
spectral problem is reduced to the standard one of diagonaf41,D- This consistently matches the fact that, whilg is
izing A and V. endowed with a discrete spectrudy;— A, exhibits instead

The form of the vortex dynamics suggested by formulagh€ continuous ~spectrum — characterizing noncompact
(46) and (48) is that of two interacting oscillators. In particu- generators! The dramatic change of the spectrum occurring
lar, the terms/s, V, andAs, A, describe two independent whgn ko— —kq is the consequence of the transition from t_he
harmonic oscillators on their elliptic trajectories in the phasg®9ime of confinemenidescribed at the classical level in
space; in view of the double nature of vortex coordinates>eC: !l by circumferenced), (16)] to a situation where the

pointed out in Sec. V, such trajectories also represent circulaf P&Ir freely drifts through the ambient plane.
solitary motions of vortices around the ambient plane origin. 1 he standard, compact sector of the VA spectrum can be

Due to the presence of, and A; which introduce vortex readily Worzkedzout from the diagonal core of EGO) Ag
interactions, a more structured dynamics takes place which A4= (2P +X5/r2)/2%. It is found that the eigenvalues
involves the bounded states classically described in Sec. 118nd the eigenvectors & are given by
In spite of the similarity of their diagonalization process a _ B
crucial difference, however, distinguishes the VA case from Si=fi(ry—ry)(2n+1),
Wg(X1,X2) =R, W (X2 12) Wg(Xq5r1),

rot+r r{t+r
1 24i1 2
2 2

D?=4AR. Vs

2

2

) P
A+

r
Az

r
2 1
D —4hR,7[

the VV case. The latter, in fact, presents two diagonal forms
of D?, for any value ok, andk,, related to the signt) of

Eq. (49), whereas the VA case always exhibits a unique di-respectively, while eigenvalu¢25) once more are matched
agonal form ofD2. Since by the A, spectrum involved by stateB,q(x1,X5).
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For r,=r,, the eigenstates oA;—A; might be easily factoriz) commutatorg44) and (47). Also, the integrable
expressed by means of the plane-wave eigenstate of Sec. tharacter of the dynamics with the disk-pair interaction turns
which, however, fails in diagonalizing the constant of motionout to be accounted by a constant of motiok, (or V,,

A,. To fulfill such a requirement one must consider func-depending on the case studiechich is geometrically mean-

tions of variableg27) depending, in particular, oA’ and ). ingful. A second,a priori less evident, effect comes out

Then D? can be viewed as a 2D Laplacian opera®t  within the quantization process, where a desirable result is

= (1/kp)?(&2+ n?) = — (hlkp)2(o+ ai) whose eigenvec- that of producing operators unaffected by ordering problems.

tors, in the s(l,1) setup, are given by the Lindblad-Nagel Indeed this is the case when, based on the angular momen-

stated’31 tum description and in view of the logarithm property.h
=—1In A%, the logarithm argument of E¢57) is reduced

V. (R,0) =€) (R\8elrh), (55 to

whereR?=X2+)2, tgf=)I X, and the parameter=0 is P 2

the continuous eigenvalue of the secular equation 1= + 58
A As—Ar (Az—v)*— Ay’ 59

(A3_ Al)\l’es(Rv 0) =e¥ eS(Rv 0)1 (56)

where A;—A,=(r/4h)(&2+ 5?) (see Appendix € Con-
cerning the indexs, formulas of Appendix C, besides show- 12 12
ing the form of operatorg,; in terms of variable$27), allow A= 22 2oV V2
one to recognize's’ as the factor of¥’ (R, #) responsible v 3 v v(V1i=Va) = V3
for associating the eigenvalug= _5/22 with A. AlSO, ac-  \\here y=R2/2%r andv=V,— ». On this account formulas
cording to the Casimir formulé,=A; —-1/4=J(J+1), the  (5g) (59) provide the most convenient way to construct the
index J labeling the SWL,1) turns out to have the formd  operator version ofi,, . A similar situation already occurred
=—(|s|+1)/2 involving negative integer or half-integer in Ref. 9 where the Hamiltonian of a pair interacting with a
values” whens takes integer values. rectilinear boundary turned out to possess at least one ver-
The geometric meaning of the eigenvalig deserves sjon able to avoid ordering problems after the quantization
some comment. When external interactions do not affect thgrgcess. This fact strongly suggests that some nontrivial, hid-
VA dynamics the pair proceeds along a rectilinear trajectorfjen character pertains to the system presently considered as
which is orthogonal to the vectd joining its two vortices.  \yell as to the one discussed in Ref. 9. As to this point the
Then the quantity #iA,=B-D=DBcos3, where the vector main indication is certainly that relative to the surviving of a
B=1(R;+R,) represents the position of the pair on the constant of motion, despite the analytic complexity induced
plane, allows one to evaluate the deviati@\D|/D=[B2 by the presence of the boundary.
— (4#irA,/D)?]Y? of the pair trajectory from the plane ori- The extension of the work involved by the diagonalization
gin. Whenever the two vortices have the same distance frorarocess of4 ~* requires a separate treatment that we shall
the plane origin therA,=0 since =+ =/2, and the pair develop elsewhere. Nevertheless, based on the spectral
trajectory crosses the plane origin. analysis of the free vortex pair performed above, it is pos-
The algebraic approach based on the two-particle represible to evaluate perturbatively the spectrum of the pair dy-
sentation just discussed is involved by the model Hamil-namics when the vortex separation is much smaller than the
tonianH, describing the vortex pair dynamics in the pres-distance from the disk, namely the conditibA<|z| holds
ence of a circular boundary with radi& The general form  for true. At the classical level, this implies the§,V,—V;
of H, where vortices have arbitrary chardes ks is given <V§, entailing quantically the conditioB,<A4(n) on ei-
in Appendix A, whereas the two extreme cadgs —k, genvalueg54). Then one easily finds that
=k andk,;=k,=k are described by

and

(59

_ Aen+) | +<v§>—y(n+1/2)

p ! , (60)
Hi(21,25)= Ekz In A, (57 A [Aq(n)+ 14 [Aq(n)+v]?
where the vortex position vectoRy have been replaced with where the expectation value notation is referred to the state
the complex variableg;=x;+iy;, and.4 reads W, in the ket notatiorn,q).
On the other hand, in the VA case, one hag-A;,A3
|z,— 2, <Aj3 so that the second term of EG8) can be treated as a

—p2u—4 2 2 2 2
A=R*¥ |z~ R)(|z] _R)|zl?2—R2|2” perturbation. When this is rewritten a€ '=[(A;—v

—Ay) = (A= v+A,) (2A,) with C=(Az—v)?—AZ,

with u=1 andu=—1 in the case VA and VV, respectively. thanks to the fact th4tA,,A;]=0, and the further condition

Indeed the dynamics relative kb, can be profitably rep- x?+y?<R?<x?+)? is assumed, then it is possible to work
resented within the angular momentum picture introducedut (see the formulas of Appendix)@he zero-order approxi-
above, when in the VAVV) case the logarithm argument is mation
expressed as a functiaA({A;})[A({V;})] of a 3D vector
A (V) (see Appendix A The first consequence is that of 1 &r
simplifying the description of the system whose dynamical — = —
equations are now obtained via the clagsig to the standard C Ag

1 1
R2-u2 R2-u?|
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whereR 2= X2+ )2, andu?=R?*2#4rA,. By using states In Sec. VID has been rewritten by means of two-particle
(55) its expectation value can be expressed as realizations of s(2) and si1,1) expressed in terms of ca-
nonical coordinates;, p; for the VV case and the VA case,
1 erﬁJg(R,uE)RdR respectively. In this contest the energy degeneracy is ac-
I(E,S)E<5> = &~ fo 5(u§—722) ' counted for by the operatoss, andV, labeling the algebra

representation. Such a scheme appears to be really suitable
where u?=8¢/(r#), and the termA, in u, has been re- for the purpose of treating the dynamics of vortex pairs in the
placed by its eigenvalue;= —s/2, namely the second quan- presence of a disklike obstruction in that it allows one to

tum number of state5). It results that express the pair Hamiltonian within an angular momentum
picture, which is both quite compact and capable of avoiding
2 T the ordering problems despite the analytic complexity intro-

14
“1y o ‘ ;
(A™5)=5 +2rﬁ52t 5 Sdh(usNs(kels), (81 gyced by the vortex-obstruction interaction. The dynamics of
such a case—here the energy spectrum has been evaluated
whereJs andNg are Bessel functions of the first and secondjust perturbatively—deserves further investigations since it

type, respectively® provides a honphenomenological approach to study pinning
effects due to the impurities of the medium.
VIl. CONCLUSIONS More in general, the possibility of using various algebraic

approaches to treat QVD fully displays its importance when
In the present paper we have considered various algebraignsidering, as the natural development of the results
schemes as independent frameworks where is possible fghieved here, the constructions of models coupling vortices
treat the quantum dynamics of the vortex pair both for thewith the environment, namely external systems such as the
VV case and for the VA case. From the physical viewpoint,syperfluid background, the walls confining the superfluid, de-
their equivalence has been checked by showing how, fofects responsible for vortex scattering, thermal excitations,
each approach, the diagonalization process leads to the sa®gd so on.
energy spectrum. The aspect concerning the spectrum degen-|n passing, we notice once more how the quantum number
eracy(scarcely mentioned in the literature and, to our knOW|-describing the degeneracy could p|ay a relevant role as the
edge, never studied thoroughlitas been particularly deep- dynamical variable to be activated by the interactions with
ened. the environment. In this sense it is quite natural to expect
The introduction of a second quantum number enumerathat such a number is involved in the energy spectrum of the
ing the degenerate states has been discussed in Sec. WBbupled system thus eliminating the energy spectrum degen-
where the vortex distand®=|R;~R,|* [i.e., the logarithm  eracy.
argument of Hamiltoniait18)] is identified with the Casimir Several ways to realize the coupling with the environment
operator of the symmetry algebre,(2). Any element can be established depending on the algebraic framework
I(a,b,c) of e, (2) can be used for describing the degeneracywhere the vortex dynamics is accounted. The resulting
since[l,H]=0, although theunitarily) independent choices coupled dynamics should be sensitively conditioned by the
are just two, namely=J, andI=J,. The Hilbert space choice performed. In particular, some scheme might appear,
basis relative to botl, andJ, have been provided explicitly due to its intrisic features, more appropriate than another one
and the geometric structure in the ambient space of the cogtepending on the physical contest where it is empldyieis
responding spectra has been discussed in detail. These agthe case, e.g., of theg (2) scheme which clearly turns out
pear to mimic the stripe structure of the Landau gauge angb be not adequate for describing the interaction with the
the Corbino disk structure of the symmetric gauge, respedcdisklike obstructiom
tively, for a charge acted by a transversal magnetic field. A similar situation was discussed in Ref. 39 for a charge
The parallel with the magnetically acted charge has beegcted by a transversal magnetic field and interacting with the
completely developed in Sec. V. The Feynman-Onsagepackground phonons. Indeed in that case the choice of a
quantization of the vortex charges is in fact reconstructegertain particular dynamical algebra for the charge Hamil-
first by making explicit the magnetic form & in terms of  tonian was able to endow the coupled model with the chaotic
generalized moment®; and P, (the magnetic field is rep- character requested by the experimental observations.
resented by the total vorticit§), then by using the standard A further reason for the interest in considering indepen-
symmetry arguments leading to the magnetic flux quantizadent algebraic descriptions of vortex dynamics is related to a
tion. possible implementation of the time-dependent variational
The reduction ofD to the harmonic-oscillator Hamil- principle procedure for many-vortex systems within a quan-
tonian with the canonical variablesandp has inspired in-  tum picture based on a coherent states picififthe combi-
stead the use of the @1) scheme of Sec. IV, wher® no  nation of such methods has been successfully employed to
longer plays the role of the Casimir operator. Acti@?) of  investigate the quantum dynamics of many-body syst®ms.
the noncompact generatds on D, which identifies with the  The main ingredient of such a variational procedure is rep-
compact s(l,1) generatod;, allows one to recognize a con- resented by a macroscopic wave function for the ensemble
tinuous symmetry relating Hamiltonian with different vortic- particles whose construction is profitably realized in terms of
ity pairs (k1,k»). In view of such a symmetry it is possible generalized coherent states. The usefulness of the analysis
to calculate both the wave function and the geometric cordeveloped here becomes evident by recalling that the defini-
rection of the Berry phase when the Hamiltonian has timetion of such states is basically founded on identifying a suit-
dependent parameters. able algebraic frameworkhe dynamical algebra defined in
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the Introduction containing the dynamical degrees of free- (ZrﬁAs_R2)2_4ﬁ2r2A[21,
dom of the ensemble. (14>~ R?)(|z,)*~R?) = 202 p3202\/2
Indeed we believe that the analysis performed in the (2raV, =R = 4A%T"Vs,

present work can be fruitfully employed for constructing involving explicitly the algebra generators, clearly exhibit
models for the vortex-environment interaction as well as fotthe absence of any ordering problem. The expressions con-

treating the quantum dynamics of a gas of vortices. stituting the denominators ol ~* are in fact linear combi-
nations of powers of the generators of the algebra involved
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The action ofR.. on the canonical variables;, p; can

APPENDIX A be derived from the formulas
‘The standard way to account for the presence of bound- X, X, COSY+ XoeHsing,
aries confining the medium where vortices move is based on e
the virtual charge methatf:*?°Such a method makes it pos- U | X2 |2 ] o xae Tsing,
sible to work out the vortex pair Hamiltonian incorporating Nopy| p1 COSp+ pre “siny,

the effects of a circular boundary, which reads .
y P2 p2 cOs/— pietsing,

H ) P k] R?|z,—2,|? whereU ,= exp(—i2yV,). To this aim, it is important to con-
21,25)=— 5— n——= - -
1:42 2 1R2 12,25~ R?|? sider the two transformations
Ty— T )=
o [lzl?~R? p, (1z2-R2 Ui(p)xUj(p)=ex;,  U(p)piU;(p)=e “p;,
+Eklln R2 +ﬂk2ln R2 where U, () = exdiu(xp;+p;x)/(27)], involving the two

decompositions
When one of the two vortices touches the disk boundiaey, ol ot + oL
|z/—R) then the first term is going to zero, whereas U,=Ua(m)e 2"Uy(n), U,=Ui(p)e” 2" U (p),
In[(|zj|>—R?)/R?] becomes infinitely negative, as is ex- i La=(xyPo—X,py)/h. Such decompositions and the
pected whenever a vortex annihilates a vortex with an oppog, that U (w) W (X :F) =W (x; ;e 2%) (see, e.g., Ref
. . . . j n\ Al n\Aj T v Eedn '
site charge. The latter, in the present case, is the virtual VOI39) " allows one to obtain the explicit form of eigenfunctions

tex accounting for the boundary effect. Then, after N :
performing a suitable energy rescaling, the remaining Iogagsz) and(53). When assuming ra/rz one finds

rithm represents the interaction of an isolated vortex with the W (X Xo) =W (@ Xil o) W (Xl anir ),
circular reflecting wall. nd d
In the extreme casek;=k, and k,=—k; the Hamil- Who(Xa X2) = Vo arX;F )W (— X/ g1 ),

tonian reduces to the forrb7). Since A is constituted by

several factors where the canonical variables appear to b@spectively, wherey;=\C/pk;, and coordinategll), (12)
mixed in a very complex way, a dramatic ordering problemhave been used.

should affect the quantum version df It is almost surpris-

ing instead to discover that ~* is exempt from such a prob- APPENDIX C

lem. One finds, in fact, the expressions . . : : .
I ! xP ! Replacingr, with —r, in V3, V, andp, with —p, in

R2 R4 Vi, V, [see formulas(41)—(43) and (45)] provides the
A l= - +(|21|2_ YRRy ﬁtéllf,g)mc])peratorsm, As; andA,, A,, respectively. The fi-
R R* r 4
PR e R A €T
in the VA case and the VV case, respectively, that, after 4
considering the further formulas AF% r_z(X2+y2)_(§2+ 7)1,
,_[ AT (Ag=Ay),
2= _[4hr(v4—vl),

1 1
Ay=— ﬁ(f?@r 7)), A4:E(§y— nX),

Ah2r3(AZ— A2+ R*—4HrR?A,, _ _ _ _
is achieved when the special coordinat@3) of the case

|21?2_R2|2:[ 2,2/\/2_\/2 4 2
AR To(V3—V3) + R —4ArR°Vy, k,=k, are employed.
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