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Superconducting transitions from the pseudogap state:d-wave symmetry, lattice,
and low-dimensional effects

Qijin Chen, Ioan Kosztin, Boldizsa´r Jankó, and K. Levin
The James Franck Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

~Received 4 May 1998!

We investigate the behavior of the superconducting transition temperature within a previously developed
BCS Bose-Einstein crossover picture. This picture, based on a decoupling scheme of Kadanoff and Martin,
further extended by Patton, can be used to derive a simple form for the superconducting transition temperature
in the presence of a pseudogap. We extend previous work which addressed the case ofs-wave pairing in
jellium, to explore the solutions forTc as a function of variable coupling in more physically relevant situations.
We thereby ascertain the effects of reduced dimensionality, periodic lattices, and ad-wave pairing interaction.
Implications for the cuprate superconductors are discussed.@S0163-1829~99!01110-8#
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I. INTRODUCTION

The concept of a smooth evolution from a BCS descr
tion of superconductivity to that of Bose-Einstein conden
tion ~BEC! dates back to Eagles1 and to Leggett.2 The latter
addressed this problem at zero temperature in the conte
p-wave pairing in He3. Nozières and Schmitt-Rink3 ~NSR!
extended Leggett’s formalism to calculations ofTc and, for
the case of a jellium gas, found a continuous variation fr
the BCS exponential dependence~on coupling constantg) to
the Bose-Einstein asymptote, at largeg. Uemura4 and, inde-
pendently, Randeria5 and Micnas6 and their respective co
workers applied this BCS Bose-Einstein crossover picture
the high-temperature superconductors, which, becaus
their short coherence length, were claimed to correspon
intermediate values of the coupling. It was, subsequen
argued by these and other groups that the pseudogap~nor-
mal! state of the cuprates was naturally associated with
intermediate coupling regime. Since then, a large numbe
papers7–9 have been written on the crossover problem a
the related pseudogap state.

The application of these crossover theories to the cupr
is made complex by a number of important factors wh
involve quasi-two dimensionality, lattice periodicity, and,
nally, the introduction ofd-wave symmetry in the pairing
interaction. It is the goal of the present paper to discuss th
three effects in the context of a many-body-theoretic
proach to the crossover problem, based on earlier work
Kadanoff and Martin,10 and extended by Patton.11 A major
advantage of this scheme is that it reduces to BCS theor
the limit of weak coupling. Our principal contributions12,13to
the larger body of work on the BCS-Bose Einstein crosso
have been based ons-wave pairing in three-dimensional je
lium. In the context of this diagrammatic approach we ha
established that~i! there is a breakdown~for T,T* ) of the
Fermi liquid at intermediateg, which roughly coincides with
the onset of long lived~i.e., resonant! pairs and~ii ! that this
breakdown has characteristic pseudogap features, such
depressed density of states at Fermi energyEF , as well as a
two-peaked spectral function. The pseudogap amplitudeDpg
can, moreover, be quantified.~iii ! We have examined the
superconducting instability associated with this pseudo
state and determined the three self-consistent, coupled e
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tions which must be satisfied for the interrelated quantit
Tc , m, andDpg(Tc). ~iv! In the process we have presented
quantitative phase diagram forTc andT* as a function of the
couplingg.

Various aspects of low dimensionality, lattice effects, a
non-s-wave pairing interactions have been addressed in
literature within a crossover scenario. Schmitt-Rink, Varm
and Ruckenstein14 applied the NSR approach to two
dimensional systems and found a breakdown of the Fe
liquid even for arbitrarily weak couplingg. This was mani-
fested as a negative chemical potentialm, which occurred in
conjunction withTc50. Serene15 suggested that this break
down was an artifact of the NSR scheme, which is n
conserving.16 Yamada and co-workers17 introduced a dia-
grammatic ‘‘mode-mode coupling’’ scheme, following sim
lar work on related magnetic problems, and they found t
m was properly positive at weak coupling, whileTc re-
mained zero, as expected. However, they were unable to
a continuous crossover between the limits of very strong
weak interactions.

Lattice effects were discussed in the original Nozieres a
Schmitt-Rink paper~and later by Belkhir and Randeria18!.
These authors noted that theTc calculations of the jellium
case, could not be readily extended to the lattice, at leas
the strong coupling regime. This difficulty came from a v
riety of issues, among which, it was claimed, was the neg
of interactions between pairs of composite fermions. In
dition there is a reduction in the effective pair hopping m
trix element or kinetic energy. These combined effects c
spire so thatTc is expected to vanish at arbitrarily largeg, in
contrast to the transition in the Bose-Einstein ideal g
Demonstrations of this effect, in the negativeU Hubbard
model, came later, through Monte Carlo studies,19 as well as
from additional analytic work based on the coherent pot
tial approximation.20

The role of non-s-wave pairing symmetry was initially
investigated by Leggett and, subsequently, by other grou21

which addressed jellium models. It was noted2 that in the
strong coupling limit the effects of an anisotropic order p
rameter are absent in the excitation spectrum, so that t
can be no gap nodes in the bosonic regime.d-wave pairing
on a lattice is not yet amenable to Monte Carlo approac
because of the fermion sign problem. There have been,
7083 ©1999 The American Physical Society
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ertheless, some numerical solutions which address electr
spectral functions, based on the ‘‘fluctuation exchange
proximation’’ ~FLEX! for the latticed-wave case.22 Because
these were applied to a strictly two-dimensional~2D! model
there was no discussion of the behavior ofTc in the more
general context of the crossover problem.

The results of the present paper, in whichTc is computed
as a function ofg, can be put into the context of this bac
ground literature. Here we arrive at a crossover sche
which in the strict 2D limit yieldsTc50 and in whichm
smoothly interpolates fromEF to large negative values in th
jellium case, as the coupling varies from weak to stro
Lattice effects yield a vanishing strong coupling limit forTc ,
associated with a reduction in the effective kinetic energy
the bosons or pairs. Thed-wave case on a lattice is found t
be different from thes-wave lattice case in one significan
respect: we find that superconductivity disappears at r
tively smaller values ofg, as a result ofd-wave symmetry;
the pair size cannot be less than a lattice spacing so tha
pairs interact more strongly. As a consequence their mob
is suppressed. Consequently, the bosonic regime is es
tially never reached for thed-wave case.23 The implications
of this observation and other aspects of these calculation
the underdoped cuprates are briefly addressed at the en
this paper.

II. THEORETICAL FRAMEWORK

We consider a generic system of fermions characteri
by an effective, short range pairing interaction with Ham
tonian

H5(
ks

ekcks
† cks

1 (
kk8q

Vk,k8ck1q/2↑
† c2k1q/2↓

† c2k81q/2↓ck81q/2↑ , ~1!

wherecks
† creates a particle in the momentum statek with

spin s, andek is the energy dispersion measured from t
chemical potentialm ~we take\5kB51). For simplicity,
we assume a separable pairing interactionVk,k85gwkwk8 ,
whereg52ugu is the coupling strength; the momentum d
pendence of the functionwk , which reflects the pairing an
isotropy, will be specified below.

In order to establish notation and to make clear our
proximations, in what follows we provide a brief descriptio
of our formalism. This approach is based on the correlat
function ~or Green’s function equation of motion! formula-
tion of the ‘‘pairing approximation’’ originally discussed b
Kadanoff and Martin10 and later extended by Patton.11 The
system can be characterized by the one- and two-par
Green’s functions which, in real space, obey the followi
equations:10

G~1218!5G0~1218!

1E d1d2G0~121!V~122!G2~1 2;1821!,

~2a!
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C2~1 2;1828!52E d1d2G~121!G0~222!

3V~122!G2~1 2;1828!, ~2b!

where the two-particle correlation functionC2 is given by

C2~1 2;1828!5G2~1 2;1828!2G~1218!G0~2228!
~2c!

and, for brevity, we have used a four vector notation
[(r ,t), etc. While Eq.~2a! is exact, Eqs.~2b! and ~2c! are
approximate; these equations were originally proposed
Kadanoff and Martin10,24 @see their Eqs.~2.6! and, most im-
portantly, Eq.~2.29!# as a simple decoupling scheme for th
three-particle Green’s function.

This approach is primarily motivated by the observati
that it yields the results of BCS theory, in the weak coupli
limit. It is convenient to express the correlation functionC2
in terms of aT matrix ~or pair propagator! via the definition

C2~1 2;1828!5E d1d2 d18d28G~121!G0~222!

3t~1 2;1828!G~18218!G0~28228!.

~3!

Taking the Fourier transform of Eqs.~2! and ~3!, and notic-
ing that for our separable interaction theT matrix can be
written ast(K,K8;Q)5t(Q)wkwk8 , after some straightfor-
ward algebra we obtain the following equations11 for the
self-energy:

S~K !5G0
21~K !2G21~K !5(

Q
t~Q! G0~Q2K ! wk2q/2

2 ,

~4a!

and theT matrix

g5@11gx~Q!#t~Q!, ~4b!

where

x~Q!5(
K

G~K !G0~Q2K !wk2q/2
2 ~4c!

is the pair susceptibility. Here,G0(K)51/(iv2ek) is the
bare propagator, andK[(k,iv), (K[T(k,iv , etc., with
V/v denoting the even/odd Matsubara frequencies. Toge
with the particle number equation

n52(
K

G~K !, ~4d!

Eqs.~4! form a complete set which, for a giveng andT, need
to be solved self-consistently forS(K), t(Q), and the
chemical potentialm. Equations~4! represent the basis of th
present theory and can be regarded as a generalized
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theory in which pair correlations are explicitly taken in
account in the normal state (T.Tc) in a self-consistent fash
ion.

This approach has implications for the superconduct
state as well. The presence of~noncritical! pair fluctuations
in the superconducting state (T,Tc) leads to progressively
stronger deviations from BCS theory as the coupling is
creased. However, this standard~BCS! theory is embedded
in Eqs.~4! when theT matrix is given by

tsc~Q!5H 0 for T.Tc ,

2~ uDscu2/T!d~Q! for T,Tc ,
~5!

whereDsc is the superconducting order parameter. Insert
Eq. ~5! into Eqs. ~4! one obtains~i! the usual BCS self-
energySBCS(K)5uDscu2wk

2/( iv1e2k) and ~ii ! gap equation
0511gx(0)511g(KuDscu2wk

2/(v21Ek
2), where Ek

5Aek
21uDscu2wk

2 is the energy dispersion of the quasipar
cles. The delta function intsc(Q) leads to the usua
~Gor’kov! factorization of the correlation function
C2(K,K8)5F(K)F(K8), where the anomalous Green
function F(K)5DscwkG0(2K)G(K).

Under more general circumstances, when pair fluctuati
cannot be neglected, the self-consistentT matrix in Eqs.~4!
can be written as

t~Q!5tsc~Q!1tpg~Q!, ~6a!

tpg~Q!5
g

11gx~Q!
, ~6b!

where tpg(Q) is the ‘‘regular’’ ~or pseudogap! contribution
@cf. Eq. ~4b!#, which should be associated with~noncritical!
pair fluctuations which persist both above and belowTc . At
the high temperatures of the normal state,tpg(Q) is finite at
all Q. As the temperature is loweredtpg(Q) develops a reso
nant structure corresponding to metastable or long li
pairs. Precisely atTc , this quantity becomes divergent fo
Q50, in accord with the Thouless criterion for a superco
ducting pairing instability. Once the temperature is less th
Tc , a nonzero superconducting order parameterDsc is estab-
lished which obeys the~gap! equation 11gx(0;T)50. It is
important to stress that the same critical temperature is
tained either when approached from the normal state~using
the Thouless criterion!

tpg
21~0!5g211x~0;Tc!50 ~7!

or when approached within the superconducting state by
ting Dsc50 within the gap equation.

The calculation ofTc can be substantially simplified b
noting that at this temperature the self-energy is well
proximated by13

S~K !'G0~2K !wk
2(

Q
tpg~Q!. ~8a!

This approximation ishighly nontrivial and establishing its
validity requires detailed numerical calculations which a
presented elsewhere.13 It should be stressed that Eq.~8a!
cannot be written down on analytical grounds alone. It i
consequence of a numerical iterative solution13 of Eqs. ~4!
g

-
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-
n
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t-

-

a

and obtains when theT matrix contains a divergence. In th
pseudogap phase Eq.~8a! is no longer a valid approximation
to Eq. ~4a!. Indeed, one may arrive at some apparent inc
sistencies if this approximation is used aboveTc . It follows
from Eq. ~8a! that atTc , the self-energy has the same sym
metry as in the superconducting state. However, it can
seen from the exact Eq.~4a!, that the pairing symmetry fac
tor wk cannot, in general, be extracted from inside the in
gral. When the integration is properly performed, the anis
ropy at higher temperature will generally be different fro
that atTc . This important consequence, which may be r
evant to experiment,25 would not follow if Eq. ~8a! were
incorrectly extended beyond its regime of validity.

The self-energy can be rewritten as

S~K !'
Dpg

2 wk
2

iv1e2k
, ~8b!

where the pseudogap parameter is defined as

Dpg
2 [2(

Q
tpg~Q!52(

q
E

2`

` dV

p
b~V!Im tq,V ~9a!

in terms of the Bose functionb(V). Here, and in what fol-
lows, we use the notationDpg to represent the amplitude o
the pseudogap atTc , while the momentum dependence
given byDk5Dpgwk . The simple BCS-like form of the self
energy~8b! allows us to express Eqs.~7! and ~4d! as

tpg
21~0!5g211(

k

122 f ~Ek!

2Ek
wk

250 ~9b!

and

n52(
k

Fvk
21

ek

Ek
f ~Ek!G , ~9c!

where vk
25 1

2 (12ek /Ek), uk
25 1

2 (11ek /Ek), and f (E) is
the Fermi function. The complete set of Eqs.~9!, which were
previously established in a slightly different form in Ref. 2
must be solved self-consistently in order to obtainTc , m,
andDpg as a function ofg andn.

The imaginary component of theT matrix which appears
in the pseudogap equation~9a! can be directly calculated by
inserting Eq.~8b! into Eqs.~6b! and ~4c!. However, exten-
sive numerical calculations13,27 show that asTc is ap-
proached from above, one can simplify this procedure c
siderably and, at the same time, obtain considerable phys
insight. For the purposes of calculating quantities such
Dpg

2 ~which involve integrals over theT matrix!, it suffices to
approximate theT matrix nearTc by its values at smallV
and q. We derive the appropriate form by noting that th
inverse of the analytically continued function can be writt
as

Retq,V
21 'a08~V2Vq!,

Im tq,V
21 'a09V,

whereVq can be naturally interpreted as an energy disp
sion of pairs of fermions. Here the parametersa08 anda09 are
essentially constant in the relevant range of momentum
frequency. Moreover,13 independent of the values ofg, suf-
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ficiently close toTc , we find that the ratio«[a09/a08!1.
Hence the imaginary part of theT matrix can be approxi-
mated as

Im tq,V'2 lim
«→0

Im tq,V
21

@Retq,V
21 #21@ Im tq,V

21 #2

52
1

a08 V
lim
«→0

«

~12Vq /V!21«2
52

p

a08
d~V2Vq!.

Finally, it is useful to rewrite the approximatedT matrix
at Tc ~for small momenta and frequencies! in a more com-
pact form as

tq,V'
a08

21

V2Vq1 i eV
. ~10!

This approximatedT matrix takes the natural form of a pa
‘‘Green’s function’’ or propagator, with characteristic dis
persionVq . Using the inversion symmetry of the Hami
tonian we deduce thatVq varies quadratically atTc with the
wave vector, as

Vq'5
q2

2M*
for 3D,

qi
2

2M i*
1

q'
2

2M'
*

for quasi-2D,

~11!

whereM* is the effective mass of the pairs. By quasi-2D w
mean a highly anisotropic 3D system withM'

* /M i* @1. The
effective pair mass is determined by an expansion of the
dispersion, given by

Vq52
1

a08
H(

k
F12 f ~Ek!2 f ~ek2q!

Ek1ek2q
uk

2

2
f ~Ek!2 f ~ek2q!

Ek2ek2q
vk

2Gwk2q/2
2 2

122 f ~Ek!

2Ek
wk

2J ,

~12!

where

a085
1

2Dpg
2 (

k
F @122 f ~ek!#2

ek

Ek
@122 f ~Ek!#G . ~13!

We have verified numerically that the above leading or
~in q) contributions in Eq.~11! dominate in our subsequen
calculations, so that higher order terms in the expansion
be dropped. The relationship between the effective mas
the pairs andTc will be explored in detail in Sec. III A.

The above analysis will be applied to isotropic and ani
tropic jellium with s-wave pairing, as well as to discret
lattices. In the latter case we consider boths- and d-wave
symmetry of the pairing interactionVk,k8 . The distinction
between these various situations enters via the dispersio
lation ek and the symmetry factorwk , which will be charac-
terized below, according to the details of the physical s
ir

r

an
of

-

re-

-

tem. For definiteness, in our quasi-2D calculations it
assumed that the pairing interaction depends only on the
plane momenta.

~i! 3D jellium, s-wave symmetry. We assume a paraboli
dispersion relation ek5k2/2m2m, with wk5(1
1k2/k0

2)21/2. The parameterk0 is the inverse range of the
interaction and represents a soft cutoff in momentum sp
for the interaction. As will be clear later,k0.kF is assumed
in general in order to access the strong coupling limit. It
convenient to introduce a dimensionless scaleg/gc for the
coupling constant. Here, following Ref. 3, we choosegc
524p/mk0 , which corresponds to the critical value of th
coupling above which bound pairs are formed in vacuum

~ii ! 2D jellium, s-wave symmetry. For 2D jellium we
choose the sameek and wk as for case~i!. We find thatTc
50, in agreement with the Mermin-Wagner theorem. To u
derstand this result, note that the assumption thatTc is finite
leads to a contradiction, associated with an unphysical div
gence in the pseudogap amplitude. This unphysical re
derives from an infrared, logarithmic divergence in the pha
space integral on the right-hand side of Eq.~9a!. This diver-
gence can be made obvious by rewriting this equation us
the low frequency, long wavelength expansion of theT ma-
trix so that

Dpg
2 '

1

a08
(

q
b~Vq!. ~14!

Pairing fluctuations, thus, disorder the system for any fin
temperature. Even in 2D, for whichTc50, we obtain a finite
pseudogap, as will be seen in Sec. III B. It should be no
that this result is general and remains valid for boths- and
d-wave pairing on discrete lattices, as well. This is a con
quence of the fact that the lattice energy dispersion is q
dratic at sufficiently small wave vectors, so that the sa
arguments as above can be applied.

~iii ! Quasi-2D jellium, s-wave symmetry. Here we usewk ,
as in the previous two cases, and adopt an anisotropic en
dispersion

ek5
ki

2

2mi
1

k'
2

2m'

2m, ~15!

wherek' is restricted to a finite interval (uk'u<p),28 while
ki is unconstrained.

By tuning the value of the anisotropy ratiom' /mi from
one to infinity, this model can be applied to study effec
associated with continuously varying dimensionality fro
3D to 2D.29 For convenience, we use the parametergc de-
rived for 3D jellium, as a scale factor for the couplin
strength, and call itg0 to avoid confusion.

~iv! Quasi-2D lattice, s- and d-wave symmetry. In the
presence of a lattice we will adopt a simple tight-bindi
model with dispersion

ek52t i~22coskx2cosky!12t'~12cosk'!2m,
~16!

where t i (t') is the hopping integral for the in-plane~out-
of-plane! motion. Here we consider both isotropics-wave
pairing symmetry withwk51, as in the negativeU Hubbard
model, as well asd-wave effects with
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wk5coskx2cosky . ~17!

It should be noted that in the lattice case, because the
mentum integration is restricted to the first Brillouin zone
is not necessary to introduce a cutoff for the interaction
momentum space.

III. NUMERICAL RESULTS

Equations~9!, together with the various models forwk
andek , were solved numerically forDpg, m, andTc . The
numerically obtained solutions satisfy the appropriate eq
tions with an accuracy higher than 1027. The momentum
summations were calculated through numerical integra
over the wholek space for the jellium case, and over th
entire Brillouin zone for the lattice. However, to facilita
our calculations in the case of the quasi-2D lattice with
d-wave pairing interaction, the momentum integral along
out-of-plane direction, in general, was replaced by summ
tion on a lattice withN'516 sites. For completeness w
compared solutions obtained with and without the low f
quency, long wavelength expansions of theT matrix dis-
cussed above, and found extremely good agreement betw
the two different approaches. In general, we chose the ra
m' /mi5100 or t' /t i50.01, although higher values of th
anisotropy were used for illustrative purposes in some ca

A. Overview: Tc and effective mass of the pairs

It was pointed out in Ref. 3 in the context of the attracti
Hubbard calculations, that the appropriate description of
strong coupling limit corresponds tointeractingbosons on a
lattice with effective hopping integralt8'22t2/U. It, there-
fore, will necessarily vanish in the strong coupling limit,
U→`. In addition to this hopping, there is an effectiv
boson-boson repulsion which also varies asV8'22t2/U.

This description of a boson Hamiltonian can be related
the present calculations through Eqs.~10!–~12! which repre-
sent the Green’s function for such a Hamiltonian and
parametrization via the pair massM* . By solving Eqs.~9!
self-consistently and identifyingM* from the effective pair
propagator~or T matrix!, ourM* necessarily incorporates a
renormalizations such as Pauli principle induced pair-p
repulsion, pairing symmetry and density related effec
Note, in contrast to Ref. 3, in the present work we are
restricted to the bosonic limit, nor is it essential to conside
periodic lattice. Thus, much of this language is also relev
to the moderately strong coupling~but still fermionic! re-
gime, and can even be applied to jellium.

The goal of this subsection is to establish a natural fram
work for relatingM* to Tc . The parameters which enter int
M* via Eq. ~12! vary according to the length scales in th
various physical models. In the case of jellium,M* depends
in an important way on the ratiok0 /kF . For the case of
s-wave pairing on a lattice,M* depends on the inverse la
tice constantp/a and densityn. Finally, for the case of
d-wave pairing, there is an additional length scale introdu
as a result of the finite spatial extent of the pair. This ent
as if there were an equivalent reduction ink0 /kF in the
analogous jellium model. The following factors act to i
creaseM* or, alternatively, to reduce the mobility of th
pairs: the presence of a periodic lattice, a spatially exten
o-
t
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pairing symmetry~such asd-wave! or, for jellium, small val-
ues of the ratiok0 /kF&0.4 ~i.e., high density!.

In order to relateTc to M* , we observe that in an idea
Bose-Einstein systemTc is inversely proportional to the
mass. Here, this dependence is maintained, in a much m
complex theory, as a consequence of Eqs.~9a! and~14!. This
is essentially an equation for the number of pairs~bosons!,
with renormalized massM* . Thus, as we increaseg towards
the bosonic regime, it is not surprising thatTc varies in-
versely withM* .

This leads to our main observations, which apply to mo
erate and largeg, although not necessarily in the stric
bosonic regime.~i! For the general lattice case, we find th
Tc vanishes, either asymptotically or abruptly, as the c
pling increases, in the same way that the inverse pair m
approaches zero.30 ~ii ! For the case of jellium or low densi
ties on a lattice, bothTc and M* remain finite and are in-
versely proportional. These observations are consistent w
but go beyond, the physical picture in Ref. 3 thatTc is ex-
pected to be proportional to the pair hopping integralt8. It
should be stressed that in the very weak coupling limit
pair size or correlation length is large. In this case, the m
tion of the pairs becomes highly collective, so that the eff
tive pair mass is very small.

In the presence of a lattice, the dependence on band fil
n is also important forM* , and thereby, forTc . We find that
the bosonic regime is not accessed for largen.nc'0.53.
There are two reasons why superconductivity abruptly dis
pears within the fermionic regime. This occurs primarily~in
the language of Ref. 3! as a consequence of large pair-pa
repulsion, relevant for high electronic densities, which lea
to largeM* . In addition, there are effects associated with t
particle-hole symmetry at half filling.31 Precisely at half fill-
ing ~i.e., the ‘‘filling factor’’ f 51/2, or 2f 5n51), for the
band structure we consider, there is complete particle-h
symmetry andm is pinned atEF . Similarly, in the vicinity of
n51, the chemical potential remains nearEF for very large
coupling constantsg.

By contrast, in the small density~lattice! limit for the
s-wave case (n'0.1), pair-pair repulsion is relatively unim
portant inM* and there is no particle-hole symmetry. In th
way the bosonic regime is readily accessed. Moreover
this limit we see a precise scaling ofTc with 1/g in the same
way as predicted by Ref. 3~via the parametert8
522t2/U). Thus in this low density limit superconductivit
disappears asymptotically, rather than abruptly.

The effects of pairing symmetry should also be stress
Because of the spatial extent of thed-wave function, the pair
mobility is strongly suppressed, and, thus,M* is relatively
larger than for thes-wave case. This lower mobility o
d-wave pairs leads to the important result that supercond
tivity is always abruptly~rather than asymptotically! de-
stroyed with sufficiently large coupling. Near half filling w
find m remains large whenTc vanishes, at largeg. As the
density n is reduced, away from half filling,m decreases
somewhat. It is important to note that the system remain
the fermionic regime~with positivem) for all densities down
to n'0.09.

In all cases discussed thus far,Tc exhibits a nonmono-
tonic dependence on the coupling constant. It grows ex
nentially at smallg and shuts off either asymptotically o
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abruptly at higherg. One can view this effect as derivin
from a competition between pairing energy scales and ef
tive mass or mobility energy scales. This competition is
entirely dissimilar to that found in more conventional Elias
berg theory where the fermionic renormalized mass and
attractive interaction compete in such a way as to lead
saturation inTc at large coupling. However, in the prese
context, for intermediate and strong coupling, we are
from the Fermi liquid regime and the effective mass of t
quasibound or bound pair is a more appropriate variable

With this background, it should not be surprising th
nonmonotonic behavior will arise, even in situations
simple as in jellium models. Indeed, in this case we find t
for sufficiently long range interactions or high densiti
~small k0 /kF) superconductivity disappears abruptly befo
the bosonic regime can be reached.32 Even for the case o
short range interactions (k0 /kF54), there is a depression i
Tc caused by an increase in the pair mass, while still in
fermionic regime.

In Fig. 1 we plot the calculatedTc for the case of an
isotropic, 3D jellium model withs-wave pairing, along with
the inverse pair massm/M* . This figure is presented prima
rily as a base line with which to compare subsequent pl
The parameterk0 /kF54, is reasonably large so that the hig
g asymptote is found to reach the ideal Bose-Einstein li
(Tc50.218EF) with M* 52m. The approach to the highg
asymptote is from below, as is expected.7 This is a result of
the decreasing Pauli principle repulsion associated with
creasingg, and concomitant reduction in pair size. The no
monotonic behavior at intermediateg/gc'1 can be associ
ated with structure in the effective pair mass, and has b
discussed previously from a different perspective.13

In the inset are plotted analogous curves for the cas
long range interactions or high densities (k0 /kF51/3). This
figure illustrates how superconductivity vanishes abrup
before the bosonic regime is reached, as a consequence
diverging pair mass.32

B. Effects of dimensionality

In this subsection we illustrate the effects of anisotropy
dimensionality onTc ~and onDpg andm) within the context
of a jellium dispersion.33 A particularly important check on

FIG. 1. Tc and m/M* as a function ofg/gc in the 3D jellium
model withk0 /kF54 ~main figure! andk0 /kF51/3 ~inset!, corre-
sponding to short range~or low density!, and long range interac
tions ~or high density!, respectively.
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our theoretical interpolation scheme is to ascertain thatTc is
zero in the strict 2D limit and thatm varies continuously
from EF in weak coupling to the large negative values ch
acteristic of the strong coupling bosonic limit. The prese
calculational scheme should be compared with that of Y
mada and co-workers17 who included ‘‘mode coupling’’ or
feedback contributions toTc , but only at the level of the
lowest order ‘‘box’’ diagram discussed in Ref. 12. The
authors were unable to find a smooth interpolation betw
weak and strong coupling, but did successfully repair
problems14,15 associated with the NSR scheme, which led
negativem even in arbitrarily weak coupling.

Figures 2~a! and 2~b! show the effect onTc and onDpg
andm, respectively, of introducing a layering or anisotrop
into jellium with s-wave pairing. The various curves corre
spond to different values of the anisotropy ratiom' /mi . It
can be seen from these two figures thatTc approaches zero
as the dimensionality approaches 2. At the same time
chemical potentialm interpolates smoothly from the Ferm
energy at weak coupling towards zero at aroundg/g051.5 to
large negative values~not shown! at even largerg. The van-
ishing of the superconducting transition in strictly 2D w
discussed in detail in Sec. II.

It should be noted that quasi-two dimensionality will b
an important feature as we begin to incorporate the comp
ity of d-wave pairing. The essential physics introduced
decreasing the dimensionality is the reduction in ene
scales forTc . The chemical potential and pseudogap amp
tude are relatively unaffected by dimensional crosso
effects.34 While Tc rapidly falls off when anisotropy is firs
introduced into a 3D system~such as is plotted in Fig. 1!, the
approach to the strict 2D limit is logarithmic and therefo
slow, as can be seen explicitly in Fig. 2~c!. Thus, in this
regime, to get further significant reductions inTc associated
with a dimensionality reduction requires extremely lar
changes in the mass anisotropy.

C. Effects of a periodic lattice

The first applications of a BCS Bose-Einstein crosso
theory to a periodic lattice were presented in Ref. 3. T
present approach represents an extension of the NSR th
in two important ways: we introduce mode coupling or fu
self-energy effects which are parametrized byDpg, and
which enter via Eq.~9a!. Moreover, the number equatio
@see Eq.~9c!, which is a rewriting of Eq.~4d! in terms of
Dpg] is evaluated by including self-energy effects to all o
ders. This is in contrast to the approximate number equa
used in Ref. 3, which includes only the first order correctio
In this way we are able to capture the effects which w
qualitatively treated by these authors and which are ass
ated with the lattice.

Figure 3~a! plots the behavior ofTc ~solid line! in an
isotropic three-dimensional lattice~with s-wave pairing,wk
51) at a low densityn50.1. The effects of higher electroni
filling are shown in the inset. The lown behavior in the main
portion of the figure can be compared with the jellium c
culations of Fig. 1. For smalln, Tc decreases asymptoticall
to zero at highg. For largern, Tc vanishes abruptly before
the bosonic regime (m,0) is reached@see inset of Fig.
3~b!#. These various effects reflect the analogous reductio
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the effective pair mobility, parametrized by the inverse p
massm/M* . To see the correlation withm/M* in the low
density limit, we plot this quantity in Fig. 3~b!, for the lattice
as well as jellium case~where for the latter,m/M*→1/2 at
largeg). Here the coupling constants are indicated in ter
of g/gc for jellium and2g/6t for the lattice. The inflection
points at2g/6t'2 in bothTc andm/M* curves correspond
to m50, which marks the onset of the bosonic regime.

Also plotted in both Figs. 3~a! and 3~b! ~dashed lines! is
the effective hoppingt8522t2/g for n50.1, rescaled such

FIG. 2. Dimensionality crossover in a quasi-2D jellium mod
~a! Tc as a function ofg is seen to vanish for allg as m' /mi
→`, while ~b! m andDpg change little. A continuous variation o
Tc versusm' /mi at g/g054 is shown in the main portion~semi-
log plot! and the inset~log-log plot! of ~c!. Here k0 /kF54, g0

[24p/mk0.
r

s

that it coincides withTc and m/M* , respectively, at high
coupling (2g/6t530). This figure illustrates clearly the ef
fect first noted by Nozie`res and Schmitt-Rink that in the
entire bosonic regime,Tc varies with high precision ast8 or
equivalently asm/M* .

Finally, in the inset of Fig. 3~b!, we demonstrate the lim
iting value of n, above which the bosonic limit cannot b
accessed. What is plotted here is the value ofTc at whichm
is zero as a function of densityn. This figure indicates tha
the bosonic regime cannot be reached forn.nc'0.53. At
densities higher than this, the pair-pair repulsion increa
M* sufficiently, so thatTc vanishes abruptly, whilem is still
positive.

D. Effects of d-wave symmetry

We now introduce the effects of ad-wave pairing inter-
action. For the purposes of comparison we begin by illust
ing Tc for the case ofs-wave pairing on an anisotropic lat
tice, shown in Fig. 4~a!, for three different values~0.7, 0.85,
and 0.9! of the densityn.35 The inset indicates the behavio
of the pseudogap magnitude and the chemical potential.
plots ofDpg for the three differentn are essentially unresolv
able in the figure. Note, from the inset, that within sm
numerical errorsTc and m vanish simultaneously. A com
parison of the magnitude ofTc ~in the main figure! with the
3D counterpart shown in the inset of Fig. 3~a! illustrates how
Tc is suppressed by quasi-two dimensionality.36

In Fig. 4~b!, similar plots are presented for thed-wave
case. Here we use the same values of the filling factor a

FIG. 3. ~a! Tc and ~b! m/M* ~solid lines! vs g at low filling
(n50.1) on a 3D lattice, andTc at larger filling in the inset of~a!.
A fit to the functional formt8522t2/g is plotted~dashed lines! in
~a! and~b! with adjusted proportionality constants. For compariso
m/M* vs g/gc for 3D jellium ~Fig. 1! is replotted~dotted line! in
~b!. From bottom to top, the inset of~a! showsTc for densitiesn
50.2, 0.5, 0.7, 0.85, and 0.9. The inset of~b! showsTc atm50 as
a function ofn.
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Fig. 4~a!, to which Fig. 4~b! should be compared. The esse
tial difference between the two figures is the largeg behav-
ior. Lattice effects produce the expected cutoff fors-wave
pairing. In thed-wave situation this cutoff is at even small
g, and moreover, corresponds tom'EF . Calculations simi-
lar to those shown in the inset of Fig. 3~b! indicate that
superconductivity disappears whilem remains positive for all
n above the extreme low density limit~i.e., for n.nc
'0.09).23 This behavior is in contrast to that of thes-wave
case wherenc'0.53.

In the d-wave case, the pair size cannot be made a
trarily small, no matter how strong the interaction. As a
sult of the extended size of the pairs, residual repulsive
teractions play a more important role. In this way, the p
mobility is reduced and the pair mass increased. Thus,
consequence of the finite pair size,in the d-wave case the
system essentially never reaches the superconduc
bosonic regime.

E. Phase diagrams

In this section we introduce an additional energy sc
T* , and in this way, arrive at plots of characteristic ‘‘pha
diagrams’’ for the crossover problem. Our focus is on t
pseudogap onset, so that attention is restricted to relati
small and intermediate coupling constantsg; consequently,
the bosonic regime is not addressed. Here, our calculat

FIG. 4. Lattice effects onTc ~main figure! andm andDpg ~inset!
as a function ofg for n50.7 ~dashed lines!, 0.85~dotted lines!, and
0.9 ~solid lines! in quasi-2D for~a! s-wave and~b! d-wave pairing
symmetries. Heret' /t i50.01. In~b!, Tc vanishes at a much smalle
g than does itss-wave counterpart.
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of T* are based on the solution of Eq.~9b!, along with Eq.
~9c!, under the assumption thatDpg50. This approximation
for T* is consistent with more detailed numerical work13 in
which this temperature is associated with the onset of a
resonance in theT matrix.

In Figs. 5~a!–5~c! our results are consolidated into pha
diagrams for the different physical situations. The case of
jellium, with s-wave pairing@Fig. 5~a!# is presented prima-
rily as a point of comparison. Figure 5~b! corresponds to
quasi-2D jellium (m' /mi5104), with s-wave pairing and
Fig. 5~c! to the case ofd-wave pairing in a quasi-2D lattice
case (t' /t i51024).37 The insets indicate the behavior ofm
and Dpg. ComparingT* with Tc represents a convenien
way of determining the onset of the pseudogap state.~For
definiteness, we define the onset to correspond toT*

FIG. 5. Phase diagrams of~a! 3D jellium (k0 /kF54), quasi-2D
jellium (k0 /kF54, m' /mi5104), ~c! a d-wave symmetry on a
quasi-2D lattice (t' /t i51024). Here we taken50.9. The same
energy units are~a!, ~b! EF and ~c! 4t i .
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51.1Tc.) It is clear from the first two figures that this occu
for 3D jellium at g/gc'0.9, and for the quasi-2D case
g/g0'0.4.38 This observation reinforces the notion th
pseudogap effects are easier to come by in low
dimensional systems. Similar behavior is seen in
quasi-2D lattice situation for thed-wave case, although th
energy scales on the horizontal and vertical axes reflect
parametert i ~rather thangc andEF).

IV. IMPLICATIONS FOR THE CUPRATES

There has been much concern in the literature ab
whether generalized BCS Bose-Einstein crossover theo
are relevant to the copper oxide superconductors. Is the
pling g sufficiently ‘‘large’’ in some sense to warrant th
form of departure from conventional BCS theory? In mo
concrete terms, one may ask if the calculated energy sc
for Dpg, m, T* , and Tc are consistent with experiment
Are there other effects which are more important than is
role of smallj? Perhaps among the most intriguing questio
raised is how does one incorporate hole concentration~de-
noted byx) dependences into this picture?

An early motivation for adopting these crossover a
proaches was the observed short coherence lengthj, which
was suggestive of some form of ‘‘real space pairing.’’ It
also clear that these systems are doped Mott insulators39 so
that the metal insulator transition at 1/2 filling (x50) should
be integrated into any theoretical approach. This transitio
generally40,41 parametrized through an ‘‘order paramete
such as the plasma frequencyvp which must necessarily
vanish asx→0. Finally, it should be noted that there are
dramatic effects onj with variablex.42

It is clear that, in any attempt to understand pseudo
phenomena in the cuprates, both the small size ofj and that
of vp should be addressed on an equal footing. Early w
by our group43 investigated the effects of smallvp on the
crossover problem, at the level of the Nozie`res–Schmitt-
Rink approximation, for charged fermions. Coulomb intera
tions were treated in the RPA in parallel with the RPA-li
ladder diagrams of the particle-particle attraction. The
early calculations established that deviations from the B
limit were more pronounced, the smaller the plasma f
quency. Thus, for the same value ofg, proximity to the in-
sulating state is correlated with a tendency towa
‘‘bosonic’’ superconducting transitions. Additional effec
~in the same direction! result from the likely decrease i
dimensionality as the insulator is approached. Both of th
effects, thus, suggest an amplification of pseudogap phen
ena asx→0.

In this section we address two issues which have b
raised as relevant for the cuprates: we examine the size o
various energy scales for the case ofd-wave superconductor
~all of which depend on the hopping matrix elementt i), and
we discuss some aspects of the hole concentration de
dence of the phase diagram, beyond the very general q
tative issues which have been noted above. It should
stressed that the fundamental basis of all crossover the
is mechanism independent. No information is used or
sumed about the details of the pairing mechanism beyond
existence of a pairing coupling constantg. In almost any
microscopically based pairing scenario,g is likely to contain
r-
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some degree ofx dependence. However, since there is
consensus on the pairing mechanism, in the present pap
is inappropriate to obscure our general results by making
detailed assumptions about the nature ofg(x).

Here we focus exclusively on thex dependence of the
underlying metal-insulator transition. We takeg as doping
independent~which is not unreasonable in the absence of a
more detailed information! and incorporate the Mott transi
tion at half-filling, by introducing anx dependence into the
in-plane hopping matrix elementst i of our calculations. In
this way, we can explore the question of the size of
various energy scales and capture some degree of hole
centration dependence, albeit not the entire effect. Our re
malized band structure is based on the limit of extrem
strong on-site Coulomb repulsion, as seems appropriate
representing the Mott transition. It follows from very ear
work on the Hubbard model39 that the hopping matrix
element is renormalized ast i(x)'t0(12n)5t0x, where
t0('0.5 eV) is the matrix element in the absence of Co
lomb effects. Equivalently, the effective particle mass var
as 1/x. This change of energy scale is consistent with
requirement that the plasma frequency vanish atx50.44

In Fig. 6 we replot thed-wave phase diagram of Fig. 4~b!
for the case of fixed2g/4t050.045 ~and t' /t i50.01),
which is chosen to fit the measured size of the pseudoga
Tc for extremely underdoped cuprates.45 Shown in the figure
are T* , Dpg, andTc . Agreement with experiment may o
may not be fortuitous since the coupling constant was
sumed to be independent ofx. Nevertheless, the energ
scales appear to be consistent with those meas
experimentally46–50 and the x dependent trends are no
inconsistent.51

It should be stressed that the results shown in the fig
are robust consequences of our crossover theory. As a r
of d-wave symmetry,Tc vanishes at moderately strong co
pling. Moreover, this maximal coupling is a fairly univers
number ~i.e., independent ofn) for a given t i , over the
physical range of hole concentrations (x,0.3) @see, e.g., Fig.
4~b!#. Once a linearx dependence is enforced int i , near half
filling, Tc decreases naturally asx decreases, and vanishe
for extremely low doping concentration. This feature is i
sensitive to the detailed parametrizations of the model.

FIG. 6. Doping dependence ofTc , T* , andDpg8 @[2Dpg, the
magnitude of the pseudogap at (p,0)]. Here t' /t i50.01, t0

50.5 eV, and g is assumed constant, while the symmetry
d-wave.
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V. CONCLUSIONS

In this paper we have applied a previously discussed12,13

BCS Bose-Einstein crossover theory to complex situati
which are more physically relevant than are our earlier st
ies of 3D s-wave jellium. In this way, we have determine
the effects of quasi-two dimensionality, of periodic discre
lattices, and of ad-wave pairing interaction. This crossove
theory yields results which appear consistent with kno
physical constraints and plausibility arguments. Thus, in p
ticular, our strict 2D calculations yield a sensible interpo
tion scheme~for m) with Tc strictly zero. The effects of the
lattice are consistent with earlier Monte Carlo and other
proaches, yielding a vanishing strong coupling limit forTc
associated with an increase~with g) of the effective mass
M* of the fermion pairs. Finally ourd-wave studies revea
that, for this symmetry, the superconducting bosonic reg
is essentially never reached.Tc is suppressed to zero at mo
erate coupling constants, presumably because of the low
pair mobility due to the constraints imposed byd-wave sym-
metry: the pair size cannot be reduced beyond the scale
lattice spacing. These features should be appended to o
observations in the literature2 which note that in the strong
coupling limit ad-wave superconductor will not exhibit ga
nodes. Indeed, it is sometimes argued that this provide
J.
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‘‘proof’’ that the cuprates~which exhibit explicit d-wave
symmetry! cannot be in the bosonic regime. Our results a
pear to make this case even more strongly, since we find
Tc will be zero whenever ad-wave system is in the pre
formed pair limit.

Our paper includes a brief discussion of the relevance
the copper oxide superconductors, wherein we impose
simplest possible ingredients of a Mott transition to arrive
some indications of hole concentration dependence and c
acteristic energy scale parameters, such asTc , T* , and the
pseudogap amplitudeDpg. The numbers which emerge see
to be reasonably consistent with experiment, although
have made no assumptions about the origin or hole con
tration dependence of the pairing interaction. In this w
one may argue that these crossover scenarios provide u
insights into the pseudogap state of the cuprates.
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