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We investigate the behavior of the superconducting transition temperature within a previously developed
BCS Bose-Einstein crossover picture. This picture, based on a decoupling scheme of Kadanoff and Martin,
further extended by Patton, can be used to derive a simple form for the superconducting transition temperature
in the presence of a pseudogap. We extend previous work which addressed the sagavefpairing in
jellium, to explore the solutions fdF; as a function of variable coupling in more physically relevant situations.

We thereby ascertain the effects of reduced dimensionality, periodic lattices,cawd\ze pairing interaction.
Implications for the cuprate superconductors are discu$S€4.63-1829)01110-9

[. INTRODUCTION tions which must be satisfied for the interrelated quantities
Te, m, andAy(Te). (iv) In the process we have presented a
The concept of a smooth evolution from a BCS descrip-quantitative phase diagram fég andT* as a function of the
tion of superconductivity to that of Bose-Einstein condensacouplingg.
tion (BEC) dates back to Eagltsind to Leggetf. The latter Various aspects of low dimensionality, lattice effects, and
addressed this problem at zero temperature in the context eons-wave pairing interactions have been addressed in the
p-wave pairing in H&. Noziges and Schmitt-Rink(NSR) literature within a crossover scenario. Schmitt-Rink, Varma,
extended Leggett’s formalism to calculationsTof and, for and Ruckensteif applied the NSR approach to two-
the case of a jellium gas, found a continuous variation frondimensional systems and found a breakdown of the Fermi
the BCS exponential dependeriom coupling constarg) to  liquid even for arbitrarily weak coupling. This was mani-
the Bose-Einstein asymptote, at largeUemurd and, inde-  fested as a negative chemical potengialwhich occurred in
pendently, Randerfaand Micna$ and their respective co- conjunction withT,=0. Seren® suggested that this break-
workers applied this BCS Bose-Einstein crossover picture talown was an artifact of the NSR scheme, which is not
the high-temperature superconductors, which, because @bnserving®® Yamada and co-worketSintroduced a dia-
their short coherence length, were claimed to correspond tgrammatic “mode-mode coupling” scheme, following simi-
intermediate values of the coupling. It was, subsequentlylar work on related magnetic problems, and they found that
argued by these and other groups that the pseudtgmp u was properly positive at weak coupling, whilE. re-
mal) state of the cuprates was naturally associated with thisnained zero, as expected. However, they were unable to find
intermediate coupling regime. Since then, a large number od continuous crossover between the limits of very strong and
paper$° have been written on the crossover problem andwveak interactions.
the related pseudogap state. Lattice effects were discussed in the original Nozieres and
The application of these crossover theories to the cuprateSchmitt-Rink paperand later by Belkhir and Randetfa
is made complex by a number of important factors whichThese authors noted that tfe calculations of the jellium
involve quasi-two dimensionality, lattice periodicity, and, fi- case, could not be readily extended to the lattice, at least in
nally, the introduction ofd-wave symmetry in the pairing the strong coupling regime. This difficulty came from a va-
interaction. It is the goal of the present paper to discuss thesgety of issues, among which, it was claimed, was the neglect
three effects in the context of a many-body-theoretic ap-of interactions between pairs of composite fermions. In ad-
proach to the crossover problem, based on earlier work byition there is a reduction in the effective pair hopping ma-
Kadanoff and Martif? and extended by Pattdh.A major  trix element or kinetic energy. These combined effects con-
advantage of this scheme is that it reduces to BCS theory ispire so thaf . is expected to vanish at arbitrarily largein
the limit of weak coupling. Our principal contributiolisto  contrast to the transition in the Bose-Einstein ideal gas.
the larger body of work on the BCS-Bose Einstein crossoveDemonstrations of this effect, in the negatile Hubbard
have been based @wave pairing in three-dimensional jel- model, came later, through Monte Carlo studieas well as
lium. In the context of this diagrammatic approach we havefrom additional analytic work based on the coherent poten-
established thati) there is a breakdowffor T<T*) of the tial approximatiorf’
Fermi liquid at intermediatg, which roughly coincides with The role of nons-wave pairing symmetry was initially
the onset of long livedi.e., resonantpairs and(ii) that this  investigated by Leggett and, subsequently, by other gfdups
breakdown has characteristic pseudogap features, such awhich addressed jellium models. It was ndtehat in the
depressed density of states at Fermi endtgy as well as a strong coupling limit the effects of an anisotropic order pa-
two-peaked spectral function. The pseudogap amplituge rameter are absent in the excitation spectrum, so that there
can, moreover, be quantifiediii) We have examined the can be no gap nodes in the bosonic regich@ave pairing
superconducting instability associated with this pseudogapn a lattice is not yet amenable to Monte Carlo approaches
state and determined the three self-consistent, coupled equaecause of the fermion sign problem. There have been, nev-
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ertheless, some numerical solutions which address electronic _ _ — —
spectral functions, based on the “fluctuation exchange ap- Cy(1 2J1’2’):—f d1d2G(1-1)Go(2-2)
proximation” (FLEX) for the latticed-wave casé? Because -

these were applied to a strictly two-dimensiof@D) model XV(1-2)G,(1 2;1'2"), (2b)
there was no discussion of the behaviorTgfin the more

general context of the crossover problem. where the two-particle correlation functi®y, is given by

The results of the present paper, in whithis computed
as a fun(_:tlon ofg, can be put into the context of this back- Co(12:1'2")=Gy(12:1'2' )~ G(1—1")Go(2—2")
ground literature. Here we arrive at a crossover scheme (20
which in the strict 2D limit yieldsT.=0 and in whichu

jellium case, as the coupling varies from weak to strong—r 7), etc. While Eq.(2a) is exact, Eqs(2b) and (20) are
Lattice effects yield a vanishing strong coupling limit fi,  approximate; these equations were originally proposed by
associated with a reduction in the effective kinetic energy ofkadanoff and Martit®?*[see their Eqs(2.6) and, most im-

the b_osons or pairs. Thetwave case on allattice is_fOL_ujd 10 portantly, Eq.(2.29] as a simple decoupling scheme for the
be different from thes-wave lattice case in one significant tyree-particle Green’s function.

respect: we find that superconductivity disappears at rela- Thijs approach is primarily motivated by the observation
tively smaller values of), as a result ofl-wave symmetry;  that it yields the results of BCS theory, in the weak coupling
the pair size cannot be less than a lattice spacing so that thgyit. It is convenient to express the correlation functiop

pairs interact more strongly. As a consequence their mobility, terms of aT matrix (or pair propagato) via the definition
is suppressed. Consequently, the bosonic regime is essen-

tially never reached for thd-wave casé? The implications
of this observation and other aspects of these calculations for c,(12;1'2")= f d1d2d1'd2'G(1-1)Gy(2—2)
the underdoped cuprates are briefly addressed at the end of

this paper. xt(I E;I@)G(I,_l,)GO(E,_ZI)_

IIl. THEORETICAL FRAMEWORK )

We consider a generic system of fermions characterizedaking the Fourier transform of Eq&2) and(3), and notic-
by an effective, short range pairing interaction with Hamil-ing that for our separable interaction tfiematrix can be

tonian written ast(K,K';Q)=t(Q) ¢x¢y:, after some straightfor-
ward algebra we obtain the following equatibh$or the
self-energy:

— T
H= kz 6kck(rck0'
o

E(K):G(;l(K)—G_l(K)=% t(Q) Go(Q—K) ¢i_gz,

t t
+ 2 VikrCrt qi21 C -kt g2, C—k’ + /21 Ckr +qr2r s (1) (42
kk'q

wherec/  creates a particle in the momentum stateith ~ @nd theT matrix
spin o, and e is the energy dispersion measured from the
chemical potentialw (we takeri=kg=1). For simplicity, g=[1+gx(Q)Jt(Q), (4b)
we assume a separable pairing interactiry: =gk
whereg= —|g| is the coupling strength; the momentum de- where
pendence of the functiog,, which reflects the pairing an-
isotropy, will be specified below.
In order to establish notation and to make clear our ap- X(Q)=E G(K)G(,(Q—K)c,oﬁ_q,2 (40
proximations, in what follows we provide a brief description K
of our formalism. This approach is based on the correlation ) o . )
function (or Green’s function equation of motipformula- 1S the pair susceptibility. HereGo(K)=1/(io—¢) is the
tion of the “pairing approximation” originally discussed by bare propagator, and=(k,iw), Z«=TZy;,, etc., with
Kadanoff and Martit® and later extended by PattéhThe {2/ denoting the even/odd Matsubara frequencies. Together
system can be characterized by the one- and two-particl¢ith the particle number equation
Green’s functions which, in real space, obey the following
equations?
n:2§K) G(K), (4d)
G(1-1")=Gy(1-1")
o . Egs.(4) form a complete set which, for a givgrandT, need
+f d1d2Gy(1-1)V(1-2)G,(1 2;1'2"), to be solved self-consistently fok(K), t(Q), and the
chemical potential. Equationg4) represent the basis of the
(29 present theory and can be regarded as a generalized BCS
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theory in which pair correlations are explicitly taken into and obtains when th& matrix contains a divergence. In the
account in the normal statd &T,) in a self-consistent fash- pseudogap phase E@a) is no longer a valid approximation
ion. to Eq. (4a). Indeed, one may arrive at some apparent incon-
This approach has implications for the superconductingsistencies if this approximation is used abdye It follows

state as well. The presence @oncritica) pair fluctuations from Eq.(8a) that atT., the self-energy has the same sym-
in the superconducting statd € T.) leads to progressively metry as in the superconducting state. However, it can be
stronger deviations from BCS theory as the coupling is in-seen from the exact E¢4a), that the pairing symmetry fac-
creased. However, this standdiBICS) theory is embedded tor ¢, cannot, in general, be extracted from inside the inte-

in Egs.(4) when theT matrix is given by gral. When the integration is properly performed, the anisot-
ropy at higher temperature will generally be different from
0 for T>T, that atT.. This important consequence, which may be rel-

tsdQ)= —(|AJ¥T)8(Q) for T<T,, ®)  evant to experimerft, would not follow if Eq. (88 were

_ _ ~incorrectly extended beyond its regime of validity.
whereA. is the superconducting order parameter. Inserting The self-energy can be rewritten as

Eq. (5) into Egs. (4) one obtains(i) the usual BCS self-
energySsc(K)=|A¢d%02/(iw+e_) and(ii) gap equation Agggoﬁ
0=1+gx(0)=1+0g3|Ad’¢¥/ (0’ +ED), where E, O~ r ey (8h)
= \/62k+|ASO|2g02k is the energy dispersion of the quasiparti-
cles. The delta function int,{Q) leads to the usual
(Gor'kov) factorization of the correlation function < dQ)
C,(K,K")=F(K)F(K'), where the anomalous Green's A==t Q=2 f —b(Q)Imt, o (99)
function F(K) = A ¢k Go(— K)G(K). Q q Joe T

Under more general circumstances, when pair fluctuationg terms of the Bose functioh({). Here, and in what fol-
cannot be neglected, the self-consisténhatrix in Eqs.(4)  lows, we use the notation 4 to represent the amplitude of

where the pseudogap parameter is defined as

can be written as the pseudogap at., while the momentum dependence is
given byA,=A,q¢, . The simple BCS-like form of the self-
H(Q) =1t Q) +1p4(Q), (63 energy(8b) allows us to express Eqé7) and (4d) as
__ 9 ~1/4) — y—1 1-2f(Ey) 2_
tpg(Q)_ 1+9X(Q) ’ (Gb) tpg (0)—9 +; Z—Ek@k—o (9b)

wheret((Q) is the “regular” (or pseudogapcontribution  and

[cf. Eq. (4b)], which should be associated withoncritica)

pair fluctuations which persist both above and belqw At n=22
the high temperatures of the normal stdfg(Q) is finite at n
all Q. As the temperature is lowereg,(Q) develops a reso- s 4 5 1 ]
nant structure corresponding to metastable or long livedvhere vi=3(1—eJ/Ey), ug=3z(1+€/Ey), and f(E) is
pairs. Precisely al., this quantity becomes divergent for the Fermi function. The complete set of E¢8), which were
Q=0, in accord with the Thouless criterion for a supercon-Previously established in a slightly different form in Ref. 26,
ducting pairing instability. Once the temperature is less thafnust be solved self-consistently in order to obtdin x,
T., a nonzero superconducting order paramatgris estab- andA,g as a function ofy andn. o

lished which obeys thégap equation Hgy(0;T)=0. Itis The imaginary component of tHematrix which appears
important to stress that the same critical temperature is oD the pseudogap equatid@a) can be directly calculated by
tained either when approached from the normal stasing ~ inserting Eq.(8b) into Egs.(6b) and (4c). However, exten-

vE+,§—kkf<Ek>} (90

the Thouless criterion sive numerical calculation¥?’ show that asT. is ap-
proached from above, one can simplify this procedure con-
t,;gl(O):g*1+X(0;TC):O (7)  siderably and, at the same time, obtain considerable physical

o _ insight. For the purposes of calculating quantities such as
or when approached within the superconducting state by sef2 (which involve integrals over th& matrix), it suffices to
ting Asc=0 within the gap equation. _ S approximate thel matrix nearT. by its values at smalf)

The calculation ofT; can be substantially simplified by 54 g. We derive the appropriate form by noting that the

noting that at this temperature the self-energy is well apjnyerse of the analytically continued function can be written
proximated by® as

-1 ’

S(K)=Go(~K)6f S 1 Q). (89 Retg0~20(2 =),
_ N y _— Imtg 6~age2,
This approximation isighly nontrivial and establishing its '
validity requires detailed numerical calculations which arewhere(}, can be naturally interpreted as an energy disper-
presented elsewhet®.lt should be stressed that E¢Ba)  sion of pairs of fermions. Here the parametafsandayg are
cannot be written down on analytical grounds alone. It is aessentially constant in the relevant range of momentum and
consequence of a numerical iterative solutioof Egs.(4)  frequency. Moreovel® independent of the values gf suf-
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ficiently close toT., we find that the ratice=ag/aj<1.
Hence the imaginary part of th€ matrix can be approxi-
mated as

-1
— lim a0
gﬂo[Ret;}Z]%Umt;g]Z

|mtq’Q%

1 €
lim
ag QSHo(l—Qq/Q)Z-I- g?

aa
=~ 5(0-0Qy).
2h)

Finally, it is useful to rewrite the approximat&dmatrix
at T, (for small momenta and frequencjes a more com-
pact form as

tg.0~ (10
This approximated” matrix takes the natural form of a pair
“Green’s function” or propagator, with characteristic dis-
persion{),. Using the inversion symmetry of the Hamil-
tonian we deduce thd, varies quadratically af; with the
wave vector, as

2

a for 3D,
2M*
Q= o @ (1))
S for quasi-2D,
2Mﬁk 2M7¥
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tem. For definiteness, in our quasi-2D calculations it is
assumed that the pairing interaction depends only on the in-
plane momenta.

(i) 3D jellium, swave symmetryWe assume a parabolic
dispersion  relation e=k%2m—u, with ¢@=(1
+k?/k3)"Y2. The parametek, is the inverse range of the
interaction and represents a soft cutoff in momentum space
for the interaction. As will be clear lateky,>kg is assumed
in general in order to access the strong coupling limit. It is
convenient to introduce a dimensionless saglg. for the
coupling constant. Here, following Ref. 3, we choagge
=—47/mky, which corresponds to the critical value of the
coupling above which bound pairs are formed in vacuum.

(i) 2D jellium, swave symmetryFor 2D jellium we
choose the samg, and ¢, as for cas€i). We find thatT,
=0, in agreement with the Mermin-Wagner theorem. To un-
derstand this result, note that the assumption Thas finite
leads to a contradiction, associated with an unphysical diver-
gence in the pseudogap amplitude. This unphysical result
derives from an infrared, logarithmic divergence in the phase
space integral on the right-hand side of E8p). This diver-
gence can be made obvious by rewriting this equation using
the low frequency, long wavelength expansion of Thma-
trix so that

1
AZ~—2> b(Qg). (14)
a; «d
Pairing fluctuations, thus, disorder the system for any finite
temperature. Even in 2D, for which,= 0, we obtain a finite
pseudogap, as will be seen in Sec. Il B. It should be noted

whereM* is the effective mass of the pairs. By quasi-2D We ¢ this result is general and remains valid for bsttand

mean a highly anisotropic 3D system with?/M;*>1. The

d-wave pairing on discrete lattices, as well. This is a conse-

effective pair mass is determined by an expansion of the pajgyence of the fact that the lattice energy dispersion is qua-

dispersion, given by

1
Qq=— 7{ >

[1_f(Ek)— f(fk—q) 2
Uy
Ek+ Ek_q

f(E)—fle-q) 5| 5 1-2f(Ey) ,
_Ek_—fk—qvk ‘Pk—qlz_z—Ek(Pk],
12
where
r_ €k
ao—fsgk [1—2f(6k)]—E—k[1—2f(Ek)]- (13

dratic at sufficiently small wave vectors, so that the same
arguments as above can be applied.

(iii ) Quasi-2D jellium sswave symmetryHere we usepy,
as in the previous two cases, and adopt an anisotropic energy
dispersion

2 2
K
ZmH 2m;

€k — M (15
wherek, is restricted to a finite interval , | <), while
k| is unconstrained.

By tuning the value of the anisotropy ratio, /m; from
one to infinity, this model can be applied to study effects
associated with continuously varying dimensionality from

3D to 2D?° For convenience, we use the parameggrde-

We have verified numerically that the above leading ordefived for 3D jellium, as a scale factor for the coupling

(in ) contributions in Eq(11) dominate in our subsequent

strength, and call ig, to avoid confusion.

calculations, so that higher order terms in the expansion can (V) Quasi-2D lattice s- and dwave symmetryin the
be dropped. The relationship between the effective mass dresence of a lattice we will adopt a simple tight-binding

the pairs andr; will be explored in detail in Sec. Il A.

The above analysis will be applied to isotropic and aniso-

tropic jellium with sswave pairing, as well as to discrete
lattices. In the latter case we consider bsthand d-wave
symmetry of the pairing interactiol ,» . The distinction

model with dispersion

€= 2t)(2—cosk,—cosky) +2t, (1—cosk, ) — u, 16
1

wheret (t,) is the hopping integral for the in-plar(eut-

between these various situations enters via the dispersion ref-plane motion. Here we consider both isotropsewave

lation ¢, and the symmetry factap, , which will be charac-

pairing symmetry withp,=1, as in the negativel Hubbard

terized below, according to the details of the physical sysmodel, as well asl-wave effects with
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1= Cosky— COSK, . (17 pairing symmetrysuch agd-wave or, for jellium, small val-
) , ues of the ratiky/kg=0.4 (i.e., high density.
It should be noted that in the lattice case, because the mo- |, order to re(l)ateEI' to ,\2* wegobserve)f[hat in an ideal
mentum integration is restricted to the first Brillouin zone, it Bose-Einstein systercﬁ' is i;1versely proportional to the
is not necessary to introduce a cutoff for the interaction inmass Here. this deperﬁdence is maintained. in a much more
momentum space. complex theory, as a consequence of Efa) and(14). This
is essentially an equation for the number of pdbvesons,
. NUMERICAL RESULTS with renormalized maskl*. Thus, as we increagptowards

Equations(9), together with the various models far, the bosonic regime, it is not surprising thét varies in-

1 *
and ¢, , were solved numerically foA 4, w«, andT.. The ver_?ﬁlly IWIth ' in ob . hich | d
numerically obtained solutions satisfy the appropriate equa- S '€ads to our main observations, which apply to mod-
tions with an accuracy higher than 10 The momentum erate and largeg, although not necessarily in the strict

summations were calculated through numerical integratiort?oson'(,: reg|mg(|) For the general lattice case, we find that
over the wholek space for the jellium case, and over the Tc vanishes, either asymptotically or abruptly, as the cou-

entire Brillouin zone for the lattice. However, to facilitate pling increases, in the same way that the inverse pair mass

our calculations in the case of the quasi-2D lattice with a2PProaches zerD. (i) For the case of jellium or low densi-

: ; c ST .
d-wave pairing interaction, the momentum integral along the!€S On @ lattice, botiT; and M* remain finite and are in-

out-of-plane direction, in general, was replaced by Summa\_/ersely proportional. These observations are consistent with,

tion on a lattice withN, =16 sites. For completeness we but go beyond, the physical picture in Ref. 3 tffatis ex-

compared solutions obtained with and without the low fre-PECted to be proportional to the pair hopping integrallt
quency, long wavelength expansions of thematrix dis- shpul(_j be stressed_that in the_ very weak c_oupllng limit the
cussed above, and found extremely good agreement betweBA!" Size or correlation length is large. In this case, the mo-
the two different approaches. In general, we chose the ratio" of _the pairs becomes highly collective, so that the effec-
m, /my=100 ort, /t;=0.01, although higher values of the V€ Palr Mass Is very small.

anisotropy were used for illustrative purposes in some cases.. In the presence of alattlce, the dependence on band filling
nis also important foM™*, and thereby, foff ;. We find that

the bosonic regime is not accessed for largen.~0.53.
There are two reasons why superconductivity abruptly disap-
It was pointed out in Ref. 3 in the context of the attractive pears within the fermionic regime. This occurs primafily
Hubbard calculations, that the appropriate description of thé¢he language of Ref.)3as a consequence of large pair-pair
strong coupling limit corresponds toteractingbosons on a repulsion, relevant for high electronic densities, which leads
lattice with effective hopping integral ~ — 2t?/U. It, there-  to largeM*. In addition, there are effects associated with the
fore, will necessarily vanish in the strong coupling limit, as particle-hole symmetry at half filling* Precisely at half fill-
U—o. In addition to this hopping, there is an effective ing (i.e., the “filling factor” f=1/2, or 2f=n=1), for the
boson-boson repulsion which also varies\édss — 2t%/U. band structure we consider, there is complete particle-hole
This description of a boson Hamiltonian can be related tasymmetry and is pinned aEr . Similarly, in the vicinity of
the present calculations through E¢E0)—(12) which repre- n=1, the chemical potential remains ndas for very large
sent the Green’s function for such a Hamiltonian and itscoupling constantsg.
parametrization via the pair ma#4*. By solving Egs.(9) By contrast, in the small densitglattice) limit for the
self-consistently and identifyin/* from the effective pair swave caserf~0.1), pair-pair repulsion is relatively unim-
propagatofor T matrix), our M* necessarily incorporates all portant inM* and there is no particle-hole symmetry. In this
renormalizations such as Pauli principle induced pair-paiwvay the bosonic regime is readily accessed. Moreover, in
repulsion, pairing symmetry and density related effectsthis limit we see a precise scaling 6 with 1/g in the same
Note, in contrast to Ref. 3, in the present work we are notvay as predicted by Ref. 3via the parametert’
restricted to the bosonic limit, nor is it essential to consider a= —2t2/U). Thus in this low density limit superconductivity
periodic lattice. Thus, much of this language is also relevantlisappears asymptotically, rather than abruptly.
to the moderately strong couplingput still fermionig re- The effects of pairing symmetry should also be stressed.
gime, and can even be applied to jellium. Because of the spatial extent of thevave function, the pair
The goal of this subsection is to establish a natural framemobility is strongly suppressed, and, thié* is relatively
work for relatingM™* to T, . The parameters which enter into larger than for thes-wave case. This lower mobility of
M* via Eq. (12) vary according to the length scales in the d-wave pairs leads to the important result that superconduc-
various physical models. In the case of jellium; depends tivity is always abruptly(rather than asymptoticallyde-
in an important way on the rati&,/kr. For the case of stroyed with sufficiently large coupling. Near half filling we
s-wave pairing on a latticeM* depends on the inverse lat- find x remains large wheif; vanishes, at largg. As the
tice constantm/a and densityn. Finally, for the case of densityn is reduced, away from half fillingu decreases
d-wave pairing, there is an additional length scale introducedomewhat. It is important to note that the system remains in
as a result of the finite spatial extent of the pair. This entershe fermionic regiméwith positive 1) for all densities down
as if there were an equivalent reduction kp/kg in the  to n~0.09.
analogous jellium model. The following factors act to in- In all cases discussed thus fdr, exhibits a nonmono-
creaseM* or, alternatively, to reduce the mobility of the tonic dependence on the coupling constant. It grows expo-
pairs: the presence of a periodic lattice, a spatially extendedentially at smallg and shuts off either asymptotically or

A. Overview: T and effective mass of the pairs
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0.6

T - 1.0 our theoretical interpolation scheme is to ascertain Thas
zero in the strict 2D limit and thafe varies continuously
from Eg in weak coupling to the large negative values char-
acteristic of the strong coupling bosonic limit. The present
calculational scheme should be compared with that of Ya-
mada and co-worketswho included “mode coupling” or
- feedback contributions td ., but only at the level of the

BEC | lowest order “box” diagram discussed in Ref. 12. These
) authors were unable to find a smooth interpolation between
Q? weak and strong coupling, but did successfully repair the
0.0 : : : 0.0 problem$**® associated with the NSR scheme, which led to

0 2 4 negativeu even in arbitrarily weak coupling.

979, Figures 2a) and 2b) show the effect o, and onA
and u, respectively, of introducing a layering or anisotropy
into jellium with swave pairing. The various curves corre-
spond to different values of the anisotropy ratp /m;. It
can be seen from these two figures thatapproaches zero
as the dimensionality approaches 2. At the same time the
chemical potentiaj interpolates smoothly from the Fermi

abruptly at higherg. One can view this effect as deriving . .
from a competition between pairing energy scales and effe energy at weak coupling towards zero at arogfgy=1.5 to

. - . L arge negative value@ot shown at even largeg. The van-
tive mass or mobility energy scales. This competition is nOt|shin of the superconducting transition in strictly 2D was
entirely dissimilar to that found in more conventional Eliash- iscugssed in detra)lil in Sec. Il 9 y

berg theory where the fermionic renormalized mass and thg .

attractive interaction compete in such a way as to lead to a It should be noted that quasi-two dimensionality will be

C . . an important feature as we begin to incorporate the complex-
saturation inT; at large coupling. However, in the present . o . C

. ) . ity of d-wave pairing. The essential physics introduced by
context, for intermediate and strong coupling, we are far

o . : decreasing the dimensionality is the reduction in energy
from the Fermi liquid regime and the effective mass of the : : :
: L ; . scales forT,. The chemical potential and pseudogap ampli-
quasibound or bound pair is a more appropriate variable.

. . . L tude are relatively unaffected by dimensional crossover
With this background, it should not be surprising thateffects?“ While T, rapidly falls off when anisotropy is first

nonmonotonic behavior will arise, even in situations as. . . A
simple as in jellium models. Indeed, in this case we find tha{mmd'JCed into a 3D systexsuch as is plotted in Fig)lthe

for sufficiently long range interactions or high densitiesappro"leh to the strict 2D Iir_ni_t is_logarithmic and _there_fore
(small ko /kg) superconductivity disappears abruptly beforeSIOW’ as can be seen 'exp_llcnly N F|g_(c2 Thus, |n.th|s
the bosonic regime can be reachédEven for the case of regime, to get f_urthe_r S'gn'f""”?”‘ reducpons'll’@ associated
short range interactiongg/ke=4), there is a depression in with a dimensionality reduction requires extremely large

T, caused by an increase in the pair mass, while still in theCharlges In the mass anisotropy.
fermionic regime.
In Fig. 1 we plot the calculated, for the case of an C. Effects of a periodic lattice

isotropic, 3D jellium model withs-wave pairing, along with ' C . .
. ; * I ; — The first applications of a BCS Bose-Einstein crossover
the inverse pair mass/M* . This figure is presented prima theory to a periodic lattice were presented in Ref. 3. The

rily as a base line with which to compare subsequent plots. .
Tr):e parameteky /ke = 4, is reasonablyrl)arge o thgt the r?igh present approach represents an extension of the NSR theory

g asymptote is found to reach the ideal Bose-Einstein limif" two important ways: we introduce mode coupling or full
(T.=0.21&,) with M* =2m. The approach to the hig self-energy effects which are parametrized Ay, anq
asymptote is from below, as is expectetihis is a result of which enter via Eq(9a. Moreover, the number equation

the decreasing Pauli principle repulsion associated with ianee Eq.(90), which is a rewriting of Eq(4d) in terms of

creasingg, and concomitant reduction in pair size. The non-ﬁg?]s '?I_Ei\;"’lil:?gego%;;]fltzdtﬁg aseIf;ggier}]:g}c/eerfl];e;tSetroeat:tzt-)n
monotonic behavior at intermediatgg.~1 can be associ- : PP q

ated with structure in the effective pair mass, and has bee sed_ln Ref. 3, which includes only the first order correction.
discussed previously from a different perspective. n th|s way we are able to capture the effect_s which were
In the inset are plotted analogous curves for the case 0quahtatlvely treated by these authors and which are associ-

: . . " : ated with the lattice.
long range interactions or high densitidg, (k= 1/3). This . . L
figure illustrates how superconductivity vanishes abruptly. Figure 3a) plots the behavior off; (solid lin) in an

before the bosonic regime is reached, as a consequence ofSgUropic three-d|men5|onal latticgvith Swave pairng,ey
diverging pair mas® =1) at a low densityn=0.1. The effects of higher electronic

filling are shown in the inset. The lowbehavior in the main

portion of the figure can be compared with the jellium cal-

culations of Fig. 1. For smaii, T.decreases asymptotically
In this subsection we illustrate the effects of anisotropy orto zero at highg. For largemn, T. vanishes abruptly before

dimensionality onT; (and onA,q and x) within the context the bosonic regime <0) is reachedsee inset of Fig.

of a jellium dispersiori® A particularly important check on 3(b)]. These various effects reflect the analogous reduction in

T./E
Y
\
]
|
|
|
|
|
|
]
|
|
|
!
o
(8]
m/M*

0.2

FIG. 1. T, andm/M* as a function ofg/g. in the 3D jellium
model withkq/ke=4 (main figurg andkq/ke=1/3 (insey, corre-
sponding to short rangéor low density, and long range interac-
tions (or high density, respectively.

B. Effects of dimensionality
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(a)

m ¢/m“=1 0’

0.0
10°

m, /m,

FIG. 2. Dimensionality crossover in a quasi-2D jellium model.
(@ T¢ as a function ofg is seen to vanish for aly asm, /m;
—o0, while (b) « andA,4 change little. A continuous variation of
T, versusm, /m; at g/go=4 is shown in the main portiofsemi-
log plot) and the inset(log-log ploY of (c). Here ky/ke=4, g,
=—4aimly.
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008

Jellium 1/2 ]

Lattice

5
-g/6t (9/9,)

FIG. 3. (@ T, and (b) m/M* (solid lines vs g at low filling
(n=0.1) on a 3D lattice, and at larger filling in the inset ofa).
A fit to the functional formt’ = — 2t?/g is plotted(dashed lingsin
(a) and(b) with adjusted proportionality constants. For comparison,
m/M* vs g/g. for 3D jellium (Fig. 1) is replotted(dotted ling in
(b). From bottom to top, the inset ¢&) showsT, for densitiesn
=0.2, 0.5, 0.7, 0.85, and 0.9. The inse{bf showsT. at =0 as
a function ofn.

0.0
10

that it coincides withT. and m/M*, respectively, at high
coupling (—g/6t=30). This figure illustrates clearly the ef-
fect first noted by Nozies and Schmitt-Rink that in the
entire bosonic regimel . varies with high precision as or
equivalently asn/M*.

Finally, in the inset of Fig. @), we demonstrate the lim-
iting value of n, above which the bosonic limit cannot be
accessed. What is plotted here is the valud@ oat which u
is zero as a function of density. This figure indicates that
the bosonic regime cannot be reached riorn,~0.53. At
densities higher than this, the pair-pair repulsion increases
M* sufficiently, so thafl; vanishes abruptly, whilg is still
positive.

D. Effects of d-wave symmetry

We now introduce the effects of &wave pairing inter-
action. For the purposes of comparison we begin by illustrat-
ing T, for the case ok-wave pairing on an anisotropic lat-
tice, shown in Fig. &a), for three different valuef).7, 0.85,

the effective pair mobility, parametrized by the inverse pairand 0.9 of the densityn.®® The inset indicates the behavior

massm/M*. To see the correlation witm/M* in the low
density limit, we plot this quantity in Fig.(8), for the lattice
as well as jellium caséwhere for the latterm/M* — 1/2 at

of the pseudogap magnitude and the chemical potential. The
plots of A, for the three different are essentially unresolv-
able in the figure. Note, from the inset, that within small

largeg). Here the coupling constants are indicated in termswumerical errorsT. and p vanish simultaneously. A com-

of g/g. for jellium and —g/6t for the lattice. The inflection
points at—g/6t~2 in bothT, andm/M* curves correspond
to u=0, which marks the onset of the bosonic regime.
Also plotted in both Figs. @) and 3b) (dashed linesis
the effective hopping’ = — 2t?/g for n=0.1, rescaled such

parison of the magnitude df; (in the main figurg with the
3D counterpart shown in the inset of FigaBillustrates how
T, is suppressed by quasi-two dimensionaifty.
In Fig. 4(b), similar plots are presented for tliewave
case. Here we use the same values of the filling factor as in
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Superconductor

0.0 ' ‘
0.5 0.7 0.9 1.1 1.3
9/9,
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) T/ (®) ]
E /
g /// Pseudogap
Q. / 1
o /
& Normal ,// Tc
7/
7
=z Superconductor
3 00 | | |
0.00 ‘ ' : SL 0.2 0.4 0.6 0.8 1.0
0.0 0.5 1.0 1.5 2.0 25 g/go
-g/4,
01 0 T T T T 14
FIG. 4. Lattice effects oif; (main figurg andu andA  (insed 1 7= L —— d (C)
as a function ofy for n=0.7 (dashed lines 0.85(dotted liney, and o = ¢ 1 T* i |
0.9 (solid lineg in quasi-2D for(a) sswave and(b) d-wave pairing 5 &£ A, .’
symmetries. Herg, /tj=0.01. In(b), T vanishes at a much smaller ' 0 — /
g than does its-wave counterpart. so005 | ° ! 2, Pseudogap
o ’
: _— = ’
Fig. 4(a), to which Fig. 4b) should be compared. The essen- lg | Normal //’ Tc
tial difference between the two figures is the lagybehav- L’
ior. Lattice effects produce the expected cutoff fewave Z Superconductor
pairing. In thed-wave situation this cutoff is at even smaller 0.00 ‘ : :
0.0 0.2 0.4 0.6

g, and moreover, corresponds go~Eg . Calculations simi-
lar to those shown in the inset of Fig(b} indicate that
superconductivity disappears whieremains positive for all
n above the extreme low density limiti.e., for n>n,

—g/4tII

FIG. 5. Phase diagrams @) 3D jellium (ko /ke=4), quasi-2D
~0.09) 23 This behavior is in contrast to that of tisavave  jelium (ko/ke=4, m, /m=10%), (c) a d-wave symmetry on a
case wheren,~0.53. quasi-2D I_attice (L/tH=1O’4). Here we taken=0.9. The same

In the d-wave case, the pair size cannot be made arbi€nergy units aréa), (b) Er and(c) 4t;.
trarily small, no matter how strong the interaction. As a re-
sult of the extended size of the pairs, residual repulsive inof T* are based on the solution of E@b), along with Eq.
teractions play a more important role. In this way, the pair(9c), under the assumption that,;=0. This approximation
mobility is reduced and the pair mass increased. Thus, asfar T* is consistent with more detailed numerical wbrkn
consequence of the finite pair side, the d-wave case the which this temperature is associated with the onset of a pair
system essentially never reaches the superconductingsonance in th& matrix.
bosonic regime In Figs. 5a)—5(c) our results are consolidated into phase
diagrams for the different physical situations. The case of 3D
jellium, with sswave pairing[Fig. 5@)] is presented prima-
rily as a point of comparison. Figure(t§ corresponds to

In this section we introduce an additional energy scalegquasi-2D jellium (nL/m”:lO“), with s-wave pairing and
T*, and in this way, arrive at plots of characteristic “phaseFig. 5c) to the case ofl-wave pairing in a quasi-2D lattice
diagrams” for the crossover problem. Our focus is on thecase {, /tH=10*4).37 The insets indicate the behavior af
pseudogap onset, so that attention is restricted to relativelgnd A,y. ComparingT* with T represents a convenient
small and intermediate coupling constagtsconsequently, way of determining the onset of the pseudogap stder
the bosonic regime is not addressed. Here, our calculatiorgefiniteness, we define the onset to correspondTto

E. Phase diagrams
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=1.1T..) ltis clear from the first two figures that this occurs 60 ~—

for 3D jellium at g/g.~0.9, and for the quasi-2D case at AN "

0/go~0.438 This observation reinforces the notion that < [ N T T

pseudogap effects are easier to come by in lower- g 40 | N E— TC |

dimensional systems. Similar behavior is seen in the < \ ———— A

quasi-2D lattice situation for thé-wave case, although the 2 I AN kg

energy scales on the horizontal and vertical axes reflect the < ) AN

parametet; (rather thang, andEg). ko 20 e N 1
I o

IV. IMPLICATIONS FOR THE CUPRATES | ‘\ - )
There has been much concern in the literature about 0.0 0.1 0.2 0.3 04
whether generalized BCS Bose-Einstein crossover theories X

are relevant to the copper oxide superconductors. Is the cou-

pling g sufficiently “large” in some sense to warrant this ~ FIG. 6. Doping dependence @, T*, andAg, [=24,, the
form of departure from conventional BCS theory? In moreMagnitude of the pseudogap atr,0)]. Here t /tj=0.01,t,
concrete terms, one may ask if the calculated energy scalés?-> €V, andg is assumed constant, while the symmetry is
for Apg, w, T*, and T, are consistent with experiment? d-wave.

Are there other effects which are more important than is the

role of smallé? Perhaps among the most intriguing questionssome degree ok dependence. However, since there is no

raised is how does one incorporate hole concentraiiga ~ consensus on the pairing mechanism, in the present paper it

noted byx) dependences into this picture? is inappropriate to obscure our general results by making any
An early motivation for adopting these crossover ap-detailed assumptions about the naturey(f).
proaches was the observed short coherence lehgtrhich Here we focus exclusively on the dependence of the

was suggestive of some form of “real space pairing.” It is underlying metal-insulator transition. We takeas doping
also clear that these systems are doped Mott insufdtecs  independentwhich is not unreasonable in the absence of any
that the metal insulator transition at 1/2 filling<€0) should more detailed informatignand incorporate the Mott transi-
be integrated into any theoretical approach. This transition igon at half-filling, by introducing arx dependence into the
generally®*! parametrized through an “order parameter” in-plane hopping matrix elements of our calculations. In
such as the plasma frequeney, which must necessarily this way, we can explore the question of the size of the
vanish asx— 0. Finally, it should be noted that there are novarious energy scales and capture some degree of hole con-
dramatic effects o with variablex.*? centration dependence, albeit not the entire effect. Our renor-
It is clear that, in any attempt to understand pseudogaphalized band structure is based on the limit of extremely
phenomena in the cuprates, both the small siz¢ afid that ~ strong on-site Coulomb repulsion, as seems appropriate for
of w, should be addressed on an equal footing. Early workepresenting the Mott transition. It follows from very early
by our grouf® investigated the effects of small, on the ~work on the Hubbard mod& that the hopping matrix
crossover problem, at the level of the Namie-Schmitt- element is renormalized ag(x)~to(1—n)=tex, where
Rink approximation, for charged fermions. Coulomb interac-to(=~0.5 €V) is the matrix element in the absence of Cou-
tions were treated in the RPA in parallel with the RPA-like lomb effects. Equivalently, the effective particle mass varies
ladder diagrams of the particle-particle attraction. Thesés 1k. This change of energy scale is consistent with the
early calculations established that deviations from the BC$equirement that the plasma frequency vanisk=a0.*!
limit were more pronounced, the smaller the plasma fre- In Fig. 6 we replot thel-wave phase diagram of Fig(i®)
quency. Thus, for the same value @fproximity to the in-  for the case of fixed—g/4t,=0.045 (and t, /tj=0.01),
sulating state is correlated with a tendency towardsvhich is chosen to fit the measured size of the pseudogap at
“bosonic” superconducting transitions. Additional effects T for extremely underdoped cuprat€sShown in the figure
(in the same directionresult from the likely decrease in are T*, A, andT.. Agreement with experiment may or
dimensionality as the insulator is approached. Both of thesgiay not be fortuitous since the coupling constant was as-
effects, thus, suggest an amplification of pseudogap phenonsumed to be independent of Nevertheless, the energy
ena ax—0. scales appear to be consistent with those measured
In this section we address two issues which have beeaxperimentallf®=>° and the x dependent trends are not
raised as relevant for the cuprates: we examine the size of trigconsistent!
various energy scales for the casedafave superconductors It should be stressed that the results shown in the figure
(all of which depend on the hopping matrix eleméf)t and ~ are robust consequences of our crossover theory. As a result
we discuss some aspects of the hole concentration depeof d-wave symmetryT. vanishes at moderately strong cou-
dence of the phase diagram, beyond the very general qualping. Moreover, this maximal coupling is a fairly universal
tative issues which have been noted above. It should bsumber (i.e., independent of) for a givent, over the
stressed that the fundamental basis of all crossover theorigdysical range of hole concentrations<{0.3) [see, e.g., Fig.
is mechanism independent. No information is used or as4(b)]. Once a lineax dependence is enforcedtin near half
sumed about the details of the pairing mechanism beyond tHdling, T. decreases naturally asdecreases, and vanishes
existence of a pairing coupling constamt In almost any for extremely low doping concentration. This feature is in-
microscopically based pairing scenaripis likely to contain  sensitive to the detailed parametrizations of the model.
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V. CONCLUSIONS “proof” that the cuprates(which exhibit explicit d-wave

symmetry cannot be in the bosonic regime. Our results ap-
BCS Bose-Einstein crossover theory to complex situation ear to make this case even more strongly, since we find that

: ; . ¢ Will be zero whenever a-wave system is in the pre-
which are more physically relevant than are our earlier StUdformed pair limit
les of 3D swave Je_lllum. I_n this way, we have_ de_terr_nlned Our paper includes a brief discussion of the relevance to
the effects of quasi-two dimensionality, of periodic discrete . . .

. A . . the copper oxide superconductors, wherein we impose the
lattices, and of al-wave pairing interaction. This crossover

theory yields results which appear consistent with knownS'mpIeSt possible ingredients of a Mott transition to arrive at

physical constraints and plausibility arguments. Thus, in par_some indications of hole concentration dependence and char-

. : . . S acteristic energy scale parameters, suci @as T*, and the
ticular, our strict 2D calculations yield a sensible interpola- : i
. . . pseudogap amplitud&,,. The numbers which emerge seem
tion schemgfor w) with T, strictly zero. The effects of the P9 . .

. : . ; to be reasonably consistent with experiment, although we
lattice are consistent with earlier Monte Carlo and other ap; ; .

S o o have made no assumptions about the origin or hole concen-

proaches, yielding a vanishing strong coupling limit s

associated with an increagaith g) of the effective mass tration dependence of the pairing interaction. In this way,
. ) : . 9 : one may argue that these crossover scenarios provide useful
M* of the fermion pairs. Finally oud-wave studies reveal

that, for this symmetry, the superconducting bosonic regim('anS'ghtS into the pseudogap state of the cuprates.

is essentially never reachet, is suppressed to zero at mod-
erate coupling constants, presumably because of the lowered
pair mobility due to the constraints imposed dyyvave sym-
metry: the pair size cannot be reduced beyond the scale of a We would like to thank M. Norman and B. Gyorffy for
lattice spacing. These features should be appended to otheseful discussions. This research was supported in part by
observations in the literatufavhich note that in the strong the Science and Technology Center for Superconductivity
coupling limit ad-wave superconductor will not exhibit gap funded by the National Science Foundation under Award No.
nodes. Indeed, it is sometimes argued that this provides BMR 91-20000.

In this paper we have applied a previously discusstd
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