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Higher corrections to the mass current in weakly inhomogeneous superfluid3He-A
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The mass currentjW in the weakly inhomogeneous superfluidA phase of helium-3 is calculated near zero
temperature by means of an exact solution of the Dyson-Gorkov equation with linearized order parameter. Two

general representations forjW are obtained in the form of a series and an integral. The standard representation

jW0 for the mass current is known up to the first order in gradients of the order parameter. Moreover, there are

indications that higher~quadratic! corrections tojW0 are possible. We consider three static orientations of the

orbital angular momentuml̂ with respect to its curl. For the resulting representations, we obtain asymptotic

expansions in the gradients ofl̂ in the London limit~i.e., when the coherence length is smaller than the length

in the l̂ -vector texture!. The correcting terms tojW0 are obtained up to the third order. We numerically estimate
the coefficients at the quadratic terms and show that these terms cannot be ignored. Moreover, new cubic
contributions that include the logarithm of the London parameter are presented.@S0163-1829~99!12705-X#
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I. INTRODUCTION

Presently, the superfluidity of helium-3 is a focus of i
tensive theoretical and experimental studies.1 Although con-
siderable attention has been given recently to such probl
as quantized vorticity and interfaces,1–4 the weakly inhomo-
geneousA-phase of helium-3 (3He-A) still calls for theoret-
ical investigation. This phase arises due to thep-wave spin
triplet BCS pairing5,6 and possesses highly unusu
properties.7 A peculiarity of this phase can be seen, e.
from the structure of the mass currentjW, which, as generally
accepted, is of the first order in gradients,5–7

jW05r vW s1
1

4m
rot ~r l̂ !1 jWan ~T50!, ~1!

jWan52
1

2m
C0 l̂ ~ l̂ • rot l̂ !.

Here the first two terms are standard for a nodes-freep-wave
superfluid, while the famous anomalousjWan testifies that
there exist two nodes in the gap on the Fermi surface for
real 3He-A.2,7 In Eq. ~1!, r is the liquid density,m is the
atom mass,vW s is the superfluid velocity,l̂ is the weakly
inhomogeneous orbital angular momentum vector~here
‘‘hat’’ is used to denote a unit vector!, and C0'r. Equation
~1! was obtained by many authors in different ways, e.g.,
solving the Gorkov8–10 or matrix kinetic11 equations, or di-
rectly, with the use of the ground state wave function~see
Ref. 12!.

Although Eq.~1! and the corresponding physical pictu
have been broadly discussed and accepted,13–21 indications
can be found that higher corrections to Eq.~1! might occur.
Thus, Volovik and Mineev considered the free energy
3He-A and obtained one of these corrections in the fo
xorbDl̂ a]W l̂ a , where D5] t1vW s•]W .13 Later, a quasiclassica
approach22 was developed in order to check the applicabil
PRB 590163-1829/99/59~10!/7064~12!/$15.00
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of the generalized gauge-transformation approximation u
in Ref. 13. The existence of the quadratic terms

r j0u l̂ 3rotl̂ uS A~ l̂ •vW s! l̂ 1
C

m
„rot l̂ 2~ l̂ •rot l̂ ! l̂ …D

was established in Ref. 22 (j0 is the zero-temperature cohe
ence length,A andC are constants!. With the aim to obtain a
new verification of the presence ofjWan in Eq. ~1!, Combescot
and Dombre developed a microscopic calculation,10 which
allowed them to conclude that, atT50, the quadratic correc
tion u l̂ 3rot l̂ u(rot l̂ )' exists in the current perpendicular tol̂
and the terms

u l̂ 3rot l̂ u„vW s2~1/4m!rot l̂ ) uu , u l̂ 3rot l̂ u~]1 l̂ 21]2 l̂ 1!

exist in the current parallel tol̂ . Clearly, the corrections
found in Ref. 22 are covered by those from Ref. 10. Ho
ever, the corresponding numerical coefficients have not b
worked out successfully either in Ref. 10 or in Ref. 22. As
noted in Ref. 10, these quadratic corrections would ca
difficulties of the superfluid hydrodynamics of3He-A at T
50. As indicated in Ref. 22, unravelling the problem
higher corrections to Eq.~1! turns out to be of importance in
understanding subtleties of the physics of3He-A.

It is curious that two years after,10 Combescot and Dom
bre declared in Ref. 23 that all the integrals found in Ref.
as the coefficients at the non-analyticities are, mainly, ze
In spite of the fact that Ref. 10 was devoted to the casT
50, and the Gorkov equation was solved exactly~after lin-
earization of the order parameter!, an intermediate high-
temperature approximation was not avoid to obtain a m
ageable formula for thej-integrated Green’s function. Th
difference between the approximate and exact formulas
regarded as a reason of the presence of the second
corrections to Eq.~1!. However, the strategy of Ref. 10 di
not permit one to benefit from the exact solution, and, th
to state definitely that the coefficients are finite, nonzero,
not negligible. To a certain extent, this was the reason of
7064 ©1999 The American Physical Society
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appearance of the refutation in Ref. 23. As to the hig
contributions atT50 ~e.g., the logarithmic terms deduced
the present paper!, the regular expansion procedure was n
formulated clearly in Ref. 10.

To obtain an unambiguous procedure of asymptotic
pansion forjW is an important technical problem. The solutio
of this problem would lead to a more deep understanding
3He-A, and a cure for mathematical difficulties arising
Ref. 10 was suggested in Refs. 24 and 25. Namely, a dif
ent method of solving the Dyson-Gorkov equation was us
This method immediately produced new representations
the fermionic Green’s function and, thus, forjW. It is well
known in mathematical physics that the Green’s function
a Sturm-Liouville operator can be written either as an in
gral or as a series in the eigenfunctions. The approach u
consideration uses the second possibility. After the pape
Ref. 26, it became clear that this way looks suitable beca
the new representations forjW admitT→0 accurately and can
rigorously be studied by the Laplace method~steepest de-
scent! provided the characteristic length in the texture
much longer than the coherence lengthj0 ~the London limit!.
As the result, it becomes possible to deduce the correct
to Eq.~1! in the form of an asymptotic series in the gradien
of l̂ . It is crucial that the coefficients in question acquire
manageable form.

The present paper provides support for the results of R
10 and 13; it also contains, as special cases, the resul
these papers~as well as of Ref. 22! about the terms quadrati
in gradients, and enables us to calculate the correspon
numerical coefficients. Moreover, new third order logari
mic contributions are found at the same footing as the q
dratic ones. To catch higher terms, one should go beyond
linearization of the order parameter. With the exception
Ref. 25, only in the paper of Ref. 23 an attempt was mad
estimate the numerical coefficients at the quadratic cor
tions to Eq.~1!. Since the present investigation has the sa
starting point as that in Ref. 10 while the technical proced
is different~it also differs from the iterative approach of Re
22!, it becomes possible to choose between the Refs. 10
23 in favor of the first one.

The present paper completes the series of papers.24–26

Some technical details omitted here can be found in Ref.
The paper is organized as follows. Section II contains
outline of the problem and, actually, it is the same as in R
10. Basic approximations and notation are almost unaffec
here, and the reader is referred to Ref. 10 for details. Sec
III is concerned with the solution of the ordinary nonhom
geneous differential equation related to the Dyson-Gor
equation and with the calculation of the mass current in
form of a series. Section IV deals with the integral repres
tations for that series as well as with various limits for the
The supplementary term tojW0 ~1! in the form of an integral is
found in Sec. V atT50, and three special mutual orient
tions of rotl̂ and l̂ are considered to expand it up to the thi
order. Apart from the quadratic terms predicted in Ref.
new cubic contributions are found. These terms contain
logarithm of the London parameter. The numerical coe
cients at the second order terms are estimated. The conte
Sec. V is the main achievement of the present paper. Sin
is difficult to study the problem of higher corrections in th
r
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general form, three typical choices of the static order para
eter enable us to clarify the situation by means of spec
calculations. In Sec. VI, we compare the results of t
present paper with those of Ref. 23 to understand the rea
of the negative statement in Ref. 23. The discussion in S
VII concludes the paper. Hopefully, the present investigat
will be useful for any systematic microscopic approach
correct observables in3He-A.

II. OUTLINE OF THE PROBLEM

Since our objective is to calculate the mass currentjW by
means of the normal Green’s function, we start with t
Dyson-Gorkov standard matrix equation

]t g~kW ,kW8!2E d3k9H~kW ,kW9! g~kW9,kW8!

5~2p!3d~3!~k2k8! d~t2t8!. ~2!

Here t is the ‘‘imaginary’’ time of thermal approach
g(kW ,kW8) is the 232 matrix of normal and anomalous two
point Green’s functions, andH(kW ,kW9) has the conventiona
BCS form,

H~kW ,kW9!5S jk9d
~3!~k2k9! ~2p!23D~kW ,kW9!

~2p!23D* ~kW9,kW ! 2jk9d
~3!~k2k9!D ,

where jk[(k22k
F

2)/2m, k
F

is the Fermi momentum, and

D(kW ,kW9) is the order parameter of3He-A. We shall calculate
the current by the formula

jW5b21(
v

~2p!23E d3k kW g11. ~3!

It is convenient to pass in Eqs.~2! and ~3! to the mixed
coordinate-momentum representation12,27,28as follows:

H~kW ,rW !5~2p!23E d3q H~kW1qW /2,kW2qW /2! ei qW •rW,

gkW~rW !5~2p!23E d3q g~kW1qW ,kW ! ei qW •rW,

whererW5 1
2 (rW11rW2) is the center of mass coordinate and t

momentumkW is conjugate torW12rW2 . Using the Fourier ex-
pansion int, we obtain from Eq.~2! the equation

iv gkW~rW !2FHS kW2 i ]W r2
i

2
]W y , yW D gkW~rW !GU

yW5rW
51,

where1 is the unit matrix andv is the Matsubara fermionic
frequency. Assuming thatukW u'k

F
and, thus,j (k2 i ]) ' jk

2 i c
F

k̂•]W , we obtain to the lowest order in gradients:
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7066 PRB 59C. MALYSHEV
iv g2S j2 ic
F
k̂•]W D~kW ,rW !

D* ~kW ,rW ! 2j1 ic
F
k̂•]W D g51, ~4!

whereg[g
kW
(rW), j'c

F
(k2k

F
), andc

F
is the Fermi velocity.

The order parameterD(kW ,rW) has the form d @ k̂•D̂1(rW)
1 i k̂•D̂2(rW)#, whered is the gap amplitude,k̂ is unit recip-
rocal vector and the orbital momentum vector is given
D̂13D̂25 l̂ .

The resulting approximate equation~4! can nicely be
treated as one-dimensional since the spatial differentiat
are performed along the directions indicated byk̂. In Ref. 28,
the gradient expansion method is presented to study the
namics of spatially inhomogeneous systems provided the
homogeneities are slow in comparison with the relev
length scales. As a result, the three-dimensional prob
splits into one-dimensional subsystems. The proofs requ
to justify Eq. ~4! can be found in Ref. 28.

Since we are interested injW at arbitrary point, say,O, we
define the spherical coordinatesr,u,f centered at this poin
and linearize the slowly varying order parameter,

D~kW ,rW ! ' D~ k̂,r50!1ar [ a~r01r!1 iD, ~5!

where D [ Im D( k̂,r50) and ar0 denotes ReD( k̂,r50).
As the physical result is assumed to be independent of
choice ofO, it can be calculated at anyrW with rW→O in final
formulas. Therefore, we solve Eq.~4! at rW5r k̂, wherek̂•]W is
simply ]/]r and substituter50 in the result.10 Moreover,
we consider our problem for the coherence lengthj0
5c

F
/d much smaller than the length of the variation of t

orbital vectorl̂ ,

1

x2
[ j0u]W ^ l̂ u ! 1 ~6!

~the London limit!. The parametera in Eq. ~5! depends on
the angle variables, on the components of the superfluid
locity vW s , and on the first derivatives ofl̂ taken atO ~Ap-
pendix A!. It can be seen from Eq.~6! that the condition
ar &d ensuring the linearization~5! impliesr/j0 & x2, and
holds the better the largerx2.

Changing the variablex5(a/c
F
)1/2(r1r0) and eliminat-

ing j from the LHS of Eq.~4!, we obtain

~ iv1H! G5eixj~acF!21/2
1, ~7!

where

H5 iAac
F
s3

d

dx
2 Aac

F
s1x1Ds2 ~8!

is the Hamiltonian expressed in terms of the Pauli matri
andac

F
is a positive real number. In this case, Eq.~3! takes

the form

jW5k
F

3~8p3c
F
!21E dV k̂S b21(

v
JD , ~9!
y

ns

y-
n-
t

m
d

e

e-

s

whereJ is thej-integrated Green’s function,

J ~x!5E dj e2 ixj~ac
F
!21/2

G11~x!, ~10!

andG(x) is determined from Eq.~7!. We taker50 in the
final formulas, i.e.,x5x0 , wherex0[ReD( k̂,r50)/Aac

F
.

III. SOLUTION OF THE NONHOMOGENEOUS
EQUATION IN THE SERIES FORM

To solve Eq.~7!, we representG(x) as the product of the
matrices

G5A2 uS h1 h2

f 1 f 2D , u[
1

A2
S 1 1

i 2 i D , ~11!

whereh1, 2[h1, 2(x) and f 1, 2[ f 1, 2(x) are now to be deter-
mined. The conjugationu21s1u5s2 ~cycl.perm.! by the
unitary matrixu on the Pauli matrices transformsH ~8! to
Hem,

u21H u5Hem, Hem5S D iAac
F
a2

2 iAac
F
a1 2D D ,

~12!

where a65x7d/dx. The operatorHem resembles the
Hamiltonian of a spinning electron in a constant homog
neous magnetic field, and its eigenvaluesE0 , 6En and
eigenfunctionsĈ0 , Ĉn

6 (n>1) can be found in Appendix B
We use Eq.~12! to pass from Eq.~7! to the equation

~ iv1Hem!S h

f D 5d~x2x8! eixj~ac
F
!21/2S 1

2

1
2
D , ~13!

with the Diracd-function in the RHS. Now the unknownsh
andf depend onx andx8 and the required entry ofG is given
by

G11~x!5E dx8„h~x,x8!1 f ~x,x8!…. ~14!

It is natural to solve Eq.~13! by expanding (h
f ) in the or-

thogonalĈ0 , Ĉn
6 (n>1) and obtainJ from Eqs.~10! and

~14!,

J5pAac
FF ^Ĉ0 ,Ĉ0&

iv1E0
1 (

s56
(
n51

`
^Ĉn

~s! ,Ĉn
~s!&

iv1sEn
G , ~15!

where^ & stands for the Hermitian scalar product. Repres
tation~15! for thej-integrated Green’s function is alternativ
to that found in Ref. 10 as a quadratic combination of t
parabolic cylinder functions.

Now the summation overv is straightforward,29 and we
obtain from Eqs.~9! and~15! the required general represe
tation for the mass current near zero temperature,25



n-
e

se
re
in

s

s

e

lc

ain

te

-

re
der
s
w-

f
ida

PRB 59 7067HIGHER CORRECTIONS TO THE MASS CURRENT IN . . .
jW5k
F

3~8p2c
F
!21E dV k̂Aac

F

3Fn~E0!c0
21

D

2 (
n51

`

~cn21
2 2cn

2!
tanh~bEn/2!

En
G ,

~16!

wheren(E0) is the Fermi weight. Due to the explicit depe
dence onb, Eq.~16! admitsT→0, namely, one must replac
n(E0) by the Heavyside functionu(E0) and tanh(bEn/2) by
1.

IV. INTEGRAL REPRESENTATIONS AND THEIR LIMITS

A. Integral representations

Practically, it is more convenient to deal not with Eq.~16!
itself, but with another equivalent representation which u
J in the form of an integral. This representation was p
sented in Ref. 25 at zero temperature. Here we shall obta
at TÞ0.26 First, it is necessary to rearrange Eq.~15! and
extract the part that is ‘‘even’’ inv ( jW is not sensitive to the
‘‘odd’’ one25,26!. We have

Je5
p

2

D

Aac
F

(
n50

`

cn
2 @~ ulu21n11!212~ ulu21n!21#,

~17!

whereulu2[(v21D2)(2ac
F
)21.

By Appendix C, series~17! can formally be expressed a
the integral

Je52DS p

ac
F
D 1/2E

0

`

dt ~ tanht !1/2e2x2 tanht22ulu2 t,

~18!

and we proceed further with the frequency summation,

b21(
v
Je52DS p

ac
F
D 1/2E

0

`

dt ~ tanht !1/2
„T q2~0, i t!…

3e2x2tanht2~D2/ac
F
! t, ~19!

where the elliptic theta functionq2
30 is defined by the serie

2(m50
` a(m11/2)25q2(0, i t), t5(21/p)loga, and a

5exp(24p2T2t /ac
F
). Changing the integration variabl

t°k t, k5ac
F
(b/2)2, one can rewrite Eq.~19! in a more

convenient form to study the special limit below,

b21(
v
Je52D

k1/2

2 E
0

`

dtS tanh~kt !

t D 1/2

Q̃~ t !

3e2x2tanh~kt !2~Db/2!2 t, ~20!

where Q̃(t) 5(pt)1/2q2(0, ipt).
To obtain the general integral representations forjW near

zero temperature, we must substitute Eqs.~19! and~20! into
Eq. ~9!. These representations are very convenient in ca
lating higher corrections to Eq.~1!. Before proceeding to this
s
-
it

u-

in Sec. V, we consider certain specific limits to gain a cert
confidence to the representations obtained.

B. Limiting cases

It follows from Eq. ~A1! that the square of the absolu
value of the gap parameterD0[D( k̂,r50) has the follow-
ing simple form:

uD0u2 [ uDu25D21ac
F
x0

25d2sin2u. ~21!

Due to lim
t→0

q2(0, i t) 5 t21/2 ~Ref. 30! in Eq. ~19!, the

current can be written atT50 as follows:

jW52 3r ~8pc
F
!21 E dV k̂ D

3E
0

`

dt S tanht

t D 1/2

e2x2tanht2~D2/ac
F
! t, ~22!

where r5k
F

3/3p2 ~two spin projections are taken into ac
count!. To get the lowest gradient approximation@see Eqs.
~6!, ~A3!#, we replace tanht by t in Eq. ~22!,

jW523r ~8pc
F
!21E dV k̂DE

0

`

dt e2~ uDu2/ac
F
! t

53r ~8p!21E dV k̂ X~ k̂•]W !arctanS k̂•D̂2

k̂•D̂1
D C, ~23!

where

k̂•]W5Aa

c
F

d

dx
,

k̂•D̂2

k̂•D̂1

5
D

xAac
F

and x5x0 . Equation ~23! results in Eq.~1! with l̂ 5D̂1

3D̂2 and (vs) i5
1
2

D̂1•] iD̂2 ,19,20,22and, therefore, Eq.~1! is

the lowest London approximation to Eq.~22!. This estimate
fails whenD2/ac

F
!1, i.e., practically, near the nodes atu

50,p. However, it can be verified that these regions a
irrelevant since we are interested only in the second or
corrections to Eq.~1! and also in the third order correction
that contain the logarithm of the London parameter. Ho
ever, the resulting equation~23! converges on the entire
sphere.

In the opposite way, one should replace tanh(kt) by kt in
Eq. ~20! since the steepest descent is possible atuDuÞ0 for
largeb:

b21(
v
Je52

ac
F
D

8
b2E

0

`

dt Q̃~ t ! e2~ uDub/2!2 t. ~24!

The RHS of Eq.~24!, which is the Laplace transform o
Q̃(t), can be expressed in terms of the so-called Yos
function Y:31

a2E
0

`

dt Q̃~ t ! e2a2t512E
0

` dy

cosh2Ay21a2
[ 12Y~a!.

~25!
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The proof of~25! can be found in Ref. 26. By~25!, we have

jW523r ~8p!21E dV k̂
aD

uDu2
X12YS uDub

2 D C. ~26!

Equation~26!, found by Cross in Ref. 8, gives the leadingjW0
‘‘dressed’’ by thermal corrections. At zero temperature,
have Y(̀ )50, and we recover~23!.

V. EXPLICIT CALCULATIONS

This section is devoted to the main calculations of
present paper, i.e., it is concerned with the asymptotic exp
sion of jW ~22! to deduce the London limit corrections to E
~1!. At fixed k̂, the overall phase of the order parame
D( k̂, rW) can always be changed to makeac

F
a real positive.

Thus, Eq.~5! can be regarded as

exp~2 ic! D~ k̂, rW ! [ D01a r, ~27!

where

a5dM exp„i ~p/22c!…, D05d sinu exp„i ~f2c!…
~28!

~see Appendix A!. We requireac
F

to be positive in order to
assign a meaning to Eqs.~7!, ~8! as well as to all other
resulting formulas. As noted above, a weakly varying text
of the order parameter is considered, and all the informa
about it~i.e., about the order parameter gradients! is enclosed
in the functionM ~A2!. Here it is appropriate to put sever
explanatory remarks aboutM. Without loss of generality,
D̂2(O) can be chosen alongl̂ 3rot l̂ so that]3 l̂ 1 , ]3 l̂ 3 be-
come zero and, thus, divl̂ 5]1 l̂ 11]2 l̂ 2 . Besides, it is usefu
to recall thatl̂ •rot l̂ is simply ]1 l̂ 22]2 l̂ 1 once the third axis
is chosen alongl̂ (O). Moreover,]1 l̂ 1 ,]2 l̂ 2 can be excluded
from the consideration.10 Therefore, apart from the velocit
componentsv1 and v2 , only three gradient combination
]1 l̂ 21]2 l̂ 1 , 2mv32(1/2) l̂ •rot l̂ , and]3 l̂ 25rot l̂ 3 l̂ are rel-
evant inM. Besides, no technical difference is expected
M is regarded as dependent either on]1 l̂ 21]2 l̂ 1 or 2mv3

2(1/2) l̂ •rot l̂ separately.
The approach of Ref. 10 uses positivity ofa but does not

specify the auxiliary phasec. It is crucial that we determine
the phasec in ~28! by explicit calculation. To make the
calculation manageable, it is convenient to put a part of g
dients inM equal to zero, and so to consider the depende
of jW on the remaining ones. Clearly, it is not necessary
enumerate all the possibilities, but it is sufficient to point o
only characteristic combinations. To this end, we takeM in
the following reduced form:

M52 ]3 l̂ 2 cos2u1~2mv2]1 l̂ 2! sinu cosu eif

[ 2
1

j0x1
2

cos2u1
1

j0x2
2

sinu cosu eif, ~29!

wherev[v3 and 2mv2]1 l̂ 2 . 0.
A convenience is apparent after Refs. 26,27 to integ

by parts in Eq.~22! so that
e
n-

r

e
n

f

-
ce
o
t

te

jW5 jW01 jWcorr,

jWcorr52 3r ~8pc
F
!21 E dV k̂

D

Q
F ~x2, Q!, ~30!

with

F~x2, Q!5E
0

`

e2 Q t SAtanht

t
ex2~ t2tanht !D 8

dt,

Q5
uDu2

ac
F

. ~31!

The angle integration injWcorr ~30! is extended on the entire
sphere owing to the convention that we are interested in
two types of corrections, and thus it is just responsible
the correcting contribution. Oncec is found so thata is real
positive withM ~29!, we get the following formulas for the
parameters:

x0
25S sinf

x1
2 tan2u

D 2

Q3, d21
D

Q
5cosu S 1

x1
2

cosf

tanu
2

1

x2
2D ,

1

Q2
5S 1

x2
2

sinf

tanu D 2

1S 1

x2
2

cosf

tanu
2

1

x1
2

1

tan2u
D 2

, ~32!

while jWcorr has the form:

jWcorr53r ~8pj0!21 E dV k̂ cosu

3S 1

x2
2

2
1

x1
2

cosf

tanu D F ~x0
2, Q!. ~33!

The rest of this section is to extract fromjWcorr ~33! two
first asymptotic contributions next to Eq.~1!. Varying the
parametersx1 , x2 in Eq. ~33! we shall specialize three case
examples1, 2, and 3, respectively. Fixingx2 ~or x1) @1 and
tending x1 ~or x2) to infinity we shall get example 1~or
example 2!. Taking x15x25x@1 we shall arrive to ex-
ample 3. Practically, we shall be concerned with quadra
and cubic ~times logarithm! terms, i.e., with those like
(j0x4)21 and (j0x6)21log(1/x2). Clearly, the case1 corre-
sponds to rotl̂ parallel to l̂ and the case2 — to rot l̂ per-
pendicular tol̂ . Therefore, the case1 implies all the three
contributions in Eq.~1!, while the second one correspond
only to the pure orbital content of Eq.~1!. Notice the nota-
tionsF andQ to be used instead ofF andQ to express that
appropriate specializations have been done.

A. Example 1: rot l̂ is parallel to l̂

Let only 2mv2]1 l̂ 2 Þ 0 inM ~29!. As far as we deduce
from Eq. ~32! thatQ5x2 utanuu and x050 ~label 2 in x is
omitted!, Eq. ~33! reads only the third component, say,j to
be nonzero:

j 5
3r

2

1

j0x2E0

`

F~x2u!
u du

~u211!5/2
, ~34!
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where

F~x2u!5E
0

`

e2x2ut SAtanht

t D 8
dt,

andu5utanuu. As to the functionF, it is suffice to know that
F is a constant ass→0, and

F~x2u!5
a

~x2u!2
1

b

~x2u!4
1¯ ~35!

asx2u@1, wherea521/3.
To do the asymptotic estimation let us break the integ

over u into two parts:

E
0

`

F~x2u!
u du

~u211!5/2
5U11U2 , ~36!

where

U25E
1

`

F~x2u!
u du

~u211!5/2
.

a

x4 E1

`

~u211!25/2
du

u
,

becausex2u@1 is valid. As to U1 , let us write it asX
1Y, where

X5
1

x4E0

x2

F~u!XS 11
u2

x4D 25/2

21C u du,

Y5
1

x4E0

x2

F~u! u du. ~37!

Since the integralY is divergent logarithmically atx2→`, it
can be represented approximately:

Y .
a

x4
logx21

1

x4E0

`S uF~u!2
a

u11Ddu.

Let us turn toX ~37!. Equation~35! tells us that the integra
X is divergent atx→`, but can be regularized with the he
of the whole asymptotics~35!. Expanding the inner bracket
in X into power series and using Eq.~35! it is not difficult to
understand that the total contribution of the orderx24 ap-
pears as that counter-term which results fromX whereF is
replaced bya/u2. Therefore, we combine

U2 1X.
a

x4 S 2
4

3
1 log 2D ,

and, usinga521/3, obtain

U11U2 .
1

3x4
X4
3

1E
0

`S 3uF~u!1
1

u11Ddu1 log
1

2x2
C.

~38!

Finally, the use of Eqs.~34!, ~36! and ~38! enables the
third component ofjW to be completely written as follows:

j 35
r

2

1

j0x2 S 11
1

x4
log
B
x2D , ~39!
l

where

log2B5
4

3
1E

0

`S 3uF~u!1
1

u11Ddu,

and jW0 is restored. All the quadratic corrections predicted
Ref. 10 are zero in the present texture, and the lowest
turns out to be cubic with the logarithm of the London p
rameter.

B. Example 2: rot l̂ is perpendicular to l̂

In this case Eqs.~32! imply Q5x2tan2u and x0
2

5x2tan2u sin2f, where (j0x2)21 [ ]3 l̂ 2 . 0. The second
and third components ofjWcorr are zero after Eq.~33!, while
the first one acquires the form:

j 52
3r

4

1

j0x2E0

`

F~x2u2!
u du

~u211!5/2
,

where

F~x2u2!5E
0

`

e2x2u2t XAtanht

t

3 1F1S 1

2
; 2; x2u2~ t2tanht ! D C8dt,

u5utanuu and the angle integration overv5sinf is ex-
pressed in terms of the Kummer function1F1 ~Ref. 30! as
follows:

E
0

1

dv A12v2 ev2p5
p

4 1F1S 1

2
; 2; pD ,

p5x2 u2~ t2tanht ! > 0. ~40!

The relevant analytical properties of the auxiliary functionF
are the following:F(0) is constant and

F~x2u2!5
a

~xu!4
1

b

~xu!8
1¯ ~41!

asx2u2@1, wherea51/6.
Again, let us represent the integral overu as the sum of

U1 andU2 , where

U25E
1

`

F~x2u2!
u du

~u211!5/2
.

a

x4 E1

`

~u211!25/2
du

u3
.

Now two subtractions are needed to estimateU1 . The first
one is related to the finite counterterm which is respons
for the nontrivial quadratic contribution. The next one im
plies the logarithmically divergent integral analogous to th
in the previous section. The corresponding calculation can
found in Appendix D. Eventually,

j 152
r

4

1

j0x2 S 11
A
x2

1
5

8

1

x4
log
B

x2D , ~42!

where
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A53 E
0

`

F~u2! u du ' 2 231021, ~43!

log 4B5
31

15
2 12E

0

`S u3F~u2! 2
1

6~u11! Ddu.

In this case there are two corrections, and the lowest on
of the type (rotl̂ )'u l̂ 3rot l̂ u, i.e., of the type found in Ref
10 for the current perpendicular tol̂ @Eqs.~53!, ~54! in Ref.
10!. The coefficientA ~43! was estimated numerically in
Ref. 25. The next term is the new cubic one, and it includ
the logarithm of the London parameter.

C. Example 3

In this case, we take into account the whole~29! to obtain
the quadratic correction of the typeu l̂ 3rot l̂ u(vW

2(1/4m)rotl̂ ) uu @or, of the typeu l̂ 3rot l̂ u(]1 l̂ 21]2 l̂ 1), see
Eq. ~A2!#. Therefore, we consider the third componentj corr,3

which is alongl̂ . However, we put herex15x2 for simplic-
ity, and, thus, the answer expected will get a more form
appearance since it will be expressed in terms of 1/x2. We
obtain from Eq.~33!:

j 5
3r

2p

1

j0x2E E)

dudv

A~u211!5 ~12v2!

3„~u 2 v !F21~u1v !F1…, ~44!

F75E
0

`

exp„2t ~xu!2Q…SA tanht

t

3exp„~ t 2 tanht !~x u!2~12v2!Q 3
…D 8

dt, ~45!

whereQ22 stands for

Q7
22511u2 7 2 u v51 2 v21~u7 v !2,

the domain) is given by$(u,v): uP@0,̀ @ ,vP@0,1#%, and
u5tanu, v5cosf.

The function~29! is still rather complicated and so th
present consideration becomes less elegant than the two
vious. The estimations we are interested in will be obtain
without providing the integral formulas for the coefficient
Let us proceed estimatingF ~31! in general situation. By
steepest descent we get

F ~x2,Q! . 2
1

3

1

Q2
12

x2

Q3
, ~46!

at Q*1, i.e., eitherD2/ac
F

or x2 must be*1 ~provided that

D2/ac
F
!1 does not occur!. In the opposite caseQ,1, we

adopt

F ~x2, Q! . 2 11p1/2x2 S ac
F

D2 D 1/2

, ~47!

as the leading approximation.
is

s

l

re-
d

First, let us consider the contribution to Eq.~44! which is
due touP@1,̀ @ . Here the functionF can be expanded by
steepest descent because (xu)2Q@1. This expansion will
begin with the third order term const3(j0x6)21 which is not
of interest for us. So, in what follows we shall take 0<u
<1 in j .

Now let us consider the domain 0<u<1/x, where we
replace approximately 11u2 by 1:

3r

2p

1

j0x2E0

1/x

duE
0

1 dv

~12v2!1/2
„~u 2 v !F21~u1v !F1….

In this caseD2/ac
F

' (xu)2 (u 7 v)2, x2'(xu)2(12v2)
and the use of Eq.~47! implies that, basically, the estimate
due to the region whereD2/ac

F
andx2 are not close to zero

or 1, but strictly less than 1. Thus, we obtain

F7 . 2 11p1/2
xu ~12v2!

uu7vu
,

and the total contribution belowu51/x is

r

2

1

j0x4 S 2

Ap
2

3

2 D . ~48!

Eventually, let us consider the rectangle$(u,v): 1/x<u
<1,vP@0,1#%. Here F1 can safely be expanded by th
Laplace method. As toF2 , the integral diverges when
D2/ac

F
is calculated inside the stripuu2vu<1/x along the

diagonalu5v but the resulting singularity is integrable. On
can check that here there are no interesting terms as fa
x2*1 and the strip’s width is 2/x. Outside the strip, the us
of ~46! allows to obtain the logarithmic third order term. Th
experience of the numerical calculations behind25 ~see also
the next section! shows us that the coefficient at (j0x4)21 is,
mainly, due to 0<u<1/x, and therefore its order of magn
tude is given by~48!. So, we take into account bothF1 and
F2 , and obtain from~44!–~46!,

2
r

p

1

j0x6E1/x

1 du

u3

1

~u211!5/2

3E
0

1 dv

~12v2!1/2
~u218 v2 2 5!.

Calculating the integral and using Eq.~48!, we obtain the
final formula:

j 35
r

2

1

j0x2 S 11
A
x2

1
7

4

1

x4
log
B

x2D , ~49!

whereA is of the order of 2/Ap23/2' 23.731021.

VI. COMPARISON OF THE TWO APPROACHES

In this section, we discuss the contradicting stateme
from Refs. 10 and 23 about the validity of the higher~qua-
dratic! corrections to the mass current~1!. The starting point



bu
in
n

io
ft
e
t
th

ta

w

tio
1

ra

gr
fi

-
ua

w

is
e

3

e
t

e
uce

atic
ci-
lies

o

ns-
ur-

PRB 59 7071HIGHER CORRECTIONS TO THE MASS CURRENT IN . . .
of the present investigation coincides with that of Ref. 10
the mathematical procedure is different. Therefore, our
vestigation will allow one to choose between Refs. 10 a
23, and, thus, explain the above-mentioned contradict
The necessity of including the present section arose a
Ref. 23 has been found and the main part of the pres
paper has already been completed. This explains why
content of this section is to some extent independent of
content of the other sections of the paper.

As noted in Sec. III, there are two equivalent represen
tions for the real part of thej-integrated Green’s function
Je[Re*djg

11
, which are given by Eq.~18! and by

Je5
Ap

2

D

Aac
F

@F~ ulu211,x0A2 ! 2 F~ ulu2, x0A2 !#,

~50!

whereF denotes the product of the gamma function and t
parabolic cylinder functions,32

F~ ulu2, x0A2! [ G~ ulu2! US ulu22
1

2
,x0A2D

3US ulu22
1

2
,2x0A2D , ~51!

x05ReD0 /Aac
F

~in Refs. 10 and 23,x0 differs by the mul-

tiple A2), andulu2 is defined in Eq.~17!. The representation
~50! was obtained in Ref. 10. In Ref. 23, the same equa
~50! was used to claim that the corrections found in Ref.
vanish, and so quadratic corrections tojW0 are absent.

The equivalence of Eqs.~18! and ~50! follows from the
fact that the Green function obtained either in the integ
form or in the series form is unique. The representation~18!
is especially convenient in practice. For instance, the inte
tion over frequencies is Gaussian and can be performed
to significantly simplify the rest:

E
0

`dv

p
Je52

D

2

1

Q
„11F~x0

2 ,Q!…, ~52!

whereF(x0
2 ,Q) andQ are given by Eq.~31!. From~52! it is

seen howjW is split into the sum ofjW0 and jWcorr in our ap-
proach. The integration by parts overt fails whenQ tends to
zero, though we can use~52! on the entire unit sphere pro
vided that the pure polynomial corrections next to the q
dratic ones are irrelevant for us.

If Q5uDu2/ac
F
*1 ~this corresponds tox0

212ulu2*1 in

Refs. 10 and 23!, we can expandF by the Laplace method
so that~52! becomes

2
D

2

1

Q
1

D

6

1

Q3
2 D

x0
2

Q4
¯ . ~53!

The same result can be obtained if we use the Dar
expansion32 for the parabolic cylinder functions in~50! and
~51! with subsequent integration overv.

In Refs. 10 and 23, the total correcting contribution
presented, e.g., Eq.~10! in Ref. 23. In our notation, it has th
form
t
-
d
n.
er
nt
he
e

-

o

n
0

l

a-
rst

-

in

jWcorr5
3r

4pc
F

E
0

`dv

p E dV k̂FJe1
p

2

ac
F
D

~v21uDu2!3/2G , T50,

~54!

whereJe is given by ~50!, ~51!. The second term in~54!

appears because the leadingjW0 is added and subtracted from
the total jW to expressjWcorr. The main idea in Refs. 10 and 2
is that the dominant contribution tojWcorr comes from the
region x0

212ulu2&1, i.e., it is due tov/d, uk̂1u, uk̂2u&1/x.
Therefore, in Ref. 23, the angle integration,*dV, is replaced
by the plane integration, 2*dk̂1dk̂2 . In the present paper, w
use the variablesu5utanuu,v5sinf to integrate over the uni
sphere. Now, to simplify the comparison with Ref. 23, w
consider another change of variables. Namely, we introd
u,v by the formulasAu21v2 5sinu andu/v5tanf so that
*dV°2*dudv(12u22v2)21/2, and u,v are now inside
the unit discD.

For definiteness, we focus our attention on the quadr
correction, example 2, which is one of the two nonanalyti
ties discussed in Ref. 23. Our choice in example 2 imp
e2 ic5 i , and, thus,D05 id sinu eif, ac

F
5(d/x)2cos2u ~near

the poles it correlates witha52d]3 l̂ 2 ~14! in Ref. 23.
Moreover, it should been noted that, in our calculation,a
and D0 include the additional multiplieri . This should not
bother us since we have a freedom inc!, and so

D

Aac
F

5x
v

A12u22v2

in the new variables. Using the newu andv in Eq. ~54!, we
replace, in the leading approximation, 12u22v2 by 1 and
‘‘stretch’’ the integration domain as follows:

x

A2
v5X,

x

A2
u5Y,

x

A2

v

d
5E.

Then

j corr,15
3

p S 2

p D 1/2 r

j0x4E0

`

dEE
D̃

dX dYX 2 H ~E 21X 2,Y!,

~55!

H~E 21X 2,Y! [ F~E 21X 211,22Y! 2 F~E 21X 2,22Y!

1
Ap

2A2

1

~E 21X 21Y 2!3/2
, ~56!

whereD̃ is the disc of radiusx/A2@1. Up to the sign atY,
Eq. ~55! is just the correction, Eq.~16!, in Ref. 23~with D̃
replaced by the plane!. Generally speaking, in Ref. 23, tw
contributions are considered,j corr,1 and j corr,3. Both contri-
butions contain the integral*2`

` dYH, which is claimed to
be, mainly, zero and, therefore, ‘‘to leading order the tra
verse and longitudinal nonanalytic contributions to the c
rent vanish . . . .’’23
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Since the origin of Eq.~55! is understood, we now regar
the quadratic correction, example 2, using Eqs.~9! and ~18!
but with the new choice of the parametersu,v. We obtain

j 152
3r

2pc
F

x

Ap
E
D

dudv v2

12u22v2E0

`

dvE
0

`

dt ~ tanht !1/2

3expX2
x2

12u22v2 Fu2tanht1S v21
v2

d2 D tGC.
~57!

We neglectu2, v2 to 1, then ‘‘stretch’’ the variablesxv
5X, xu5Y ~thus repeating23! and integrate overv. We
have

j corr,152
3r

4p

1

j0x4 ED̃ dX dYX 2F E
0

`

dt S tanht

t D 1/2

3e2Y 2tanht2X 2 t 2 ~Y 21X 2!21G , ~58!

where the counterterm is included sincejW0 is added and sub
tracted from Eq.~57!. Up to the multipleA2 in Y andX, Eq.
~58! is nothing but an equivalent form of Eq.~55!.

Further, following the strategy of the present paper,
pass in Eq.~58! to the polar coordinates in theX–Y-plane as
follows:

j corr,152
3r

4

1

j0x4 E0

x

dr r 3F E
0

`

dt S tanht

t D 1/2

31F1S 1

2
; 2; r 2~ t2tanht !D e2r 2t 2

1

r 2G , ~59!

where the hypergeometric function1F1 ~40! accounts for the
angle integration. It is not difficult to see that the radial va
abler is simply the renormalized angleu, i.e.,x u. The inner
integral is estimated atr *1 by the Laplace method,

1

r 2
1

1

6r 6
1¯ , ~60!

andx5` can be taken as the upper bound in Eq.~59! ~i.e.,
D̃ can be replaced by the plane!. Eventually, ther-integral,
Eq. ~59!, demonstratesA/3 ~43!. Evaluating the bracket in
Eq. ~59! numerically, we find thatA is not zero, and the
dominant contribution to it is due to 0,r &1 ~i.e., 0,u
&1/x), where the series~60! is not valid. Notice that the
coefficient at (j0x4)21 is of order 1/x2, if we restrict the
integration only with the asymptotic regionr *x@1, and can
be made arbitrarily small. The latter would correlate with t
statement in Ref. 23 that, to leading order, the coefficien
zero. On the other hand, it is seen from Eqs.~59! and ~60!
that the region 0,r &1 comes to play thus spoiling the con
clusion of Ref. 23.
e

-

is

Recall that, in Ref. 23, the fact that the integral*2`
` dYH

vanishes generally was deduced from the equation

E
2x

x

dY „F~ ulu211,22Y! 2 F~ ulu2,22Y!…

52
G~ ulu2!

2
US ulu22

1

2
,2YD US ulu21

1

2
,22YD U

2x

x

.

~61!

Namely, asx→`, the RHS of Eq.~61! is estimated as

2S p

2 D 1/2

ulu2252S p

2 D 1/2

~E 21X 2!21, ~62!

and so the integral in question vanishes. Although Ref.
does not explain this exhaustively, it seems that Eq.~62! is
obtained with the help of the Darwin expansion32 for
U(ulu261/2, 2Y). It is important to observe that the latter
valid when the combinationY 21ulu2 is large and, thus,Y 2

and/orulu2 is large. In Ref. 23, theE-integration has not been
performed, whereas the approach of the present work all
us to integrate over frequencies easily. Therefore, discus
the estimate, we forget aboutE 2 in Y 21ulu2. If so, then the
statement that the integral is governed by largeY 21ulu2

implies that the domainr @1 ~which is responsible for the
negligible contribution to the coefficient! in integral Eq.~59!
is considered as the most important.

Strictly speaking, Eq.~61! does not suggest that it is natu
ral to estimate its RHS in terms of the combinationY 2

1ulu2 as uYu5x→`. For instance, the same Ref. 32 su
gests another way in the case where 2uYu is large anduulu2

61/2u is moderate. Let us recall the origin ofX andY:

D

Aac
F

5xutanuucosf5
xv

A12u22v2
.X,

x052xutanuusinf52
xu

A12u22v2
.Y.

Therefore, we do not see any reasons forD/Aac
F

andx0 be

large simultaneously atu*1/x. More likely the situation is
such that thef-symmetry should be incorporated separate
so that the relevantu-dependence remains to be discuss
Moreover, if we accept, for a moment, the viewpoint of R
23, then the coefficient in question is governed by the bou
ary of D̃, where the main assumptiondV°dk̂1dk̂2 is not
valid. On the contrary, Eqs.~59! and ~60! show that the
region 0,u&1/x is crucial in demonstrating that th
r-integral is nonzero. To conclude, Eq.~61! should not be
approximated but requires the subsequent integrations be
letting x→`.

We restrict ourselves by the demonstration of how
arguments of Ref. 23 aboutj corr,1 are spoiled. Let us only
note that there are no considerable simplifications if we
consider our example 3 by means of the newly chosenu,v,
though the estimates get confirmation. The present pape
self should convince that the results presented stem from
procedure reliable enough. For instance, the results of R
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10, 13, and 22 about the quadratic corrections are inde
dently confirmed and the objection23 is removed.

VII. DISCUSSION

The present paper completes the papers24–26 concerned
with the following two main problems: calculation of th
mass currentjW in slightly inhomogeneous3He-A by means
of the thermal Green’s functions and determination of
asymptotic expansions atT50 in the London limit. Here the
following two basic assumptions are of importance: the st
order parameter can be linearized since its spatial variatio
slow, and only the first order differentiations that arise due
the kinetic energy are kept in the mixed representation. S
the texture of the orbital vector is weak, three initial dime
sions are reduced to the one-dimensional situation so tha
Dyson-Gorkov governing equation can be solved exactly
means of the eigenfunctions of the Landau problem. Thu
collection of exact formulas arises, which allows us to s
tematically derive the higher corrections to the dominantjW0
~1!. Our approach provides a correct procedure for deter
nation of the order of magnitude for the corrections in qu
tion. The given approach is manifestly advantageous bec
the Laplace method is appropriate in the London limit.

We are concerned with the normal Green’s functio
which is, first, j-integrated and, then,v-summated, and
which results in two representations forjW, in the series and
integral forms. The integral form seems to be more attrac
because it can satisfactory be studied by steepest des
Particular limits ~the zero temperature limit following th
limit of the lowest order in gradients, andvice versa! confirm
the choice of our strategy, demonstrating Eq.~1! as the low-
est contribution in gradients of the order parameter.

Three orientations of rotl̂ are considered in Sec. V t
obtain the correcting terms explicitly: rotl̂ is parallel to l̂

~example 1!, and perpendicular tol̂ ~example 2!, while in
example 3 we consider an intermediate orientation of rl̂

with respect tol̂ . Corrections are considered up to the th
order in the gradients ofl̂ : we estimate the numerical coe
ficients at the second order terms, and provide new cu
corrections that contain the logarithm of the London para
eter.

In the first case, there is only the third order logarithm
correction. In the second case, both corrections arise:
quadratic and the cubic one. As is clear from the analysi
Ref. 10, the quadratic corrections must be proportiona
u l̂ 3rot l̂ u, and this correlates with the absence of the q
dratic term in example 1~Ref. 22 also explainsu l̂ 3rot l̂ u in
quadratic terms!. In example 2,jWcorr is orthogonal tol̂ . Thus,
the second order term in~42! corresponds to that given i
Ref. 10 in the form (rotl̂ )'u l̂ 3rot l̂ u, and the corresponding
numerical coefficient isA ~43!.25 Example 3 also results in
the corrections of both types. As to the quadratic correct
along l̂ , the answer contained in Ref. 10 is as follows:

r j0u l̂ 3rot l̂ uS A ~v3 2 l̂ •rot l̂ /4m!1
B

m
~]1 l̂ 21]2 l̂ 1! D .
n-

s

ic
is
o
ce
-
he
y
a
-

i-
-
se

,

e
nt.

ic
-

he
in
o
-

n

The quadratic term in~49! must be compared with the las
expression atAÞ0, B50. It is clear from~A2! that the result
obtained here is also applicable to establish the contribu
at A50, BÞ0.

In agreement with the statements by previous investi
tors, the discs of radius 1/x near the topologically stable
nodes of the order parameter atu50,p are responsible for
the integrals at the quadratic corrections. Moreover, our s
ation is more rich than in Ref. 10 since the logarithmic ter
are demonstrated. In this respect, we recall the correc
found in Ref. 13. As is seen from~A2!, the components of

the superfluid velocity 2mvW and the gradients ofl̂ enter the

parametera on equal terms. Therefore,xorb(vW s•]W ) l̂ a]W l̂ a ,
wherexorb is logarithmically large,9 should be regarded a
the logarithmic third order term that constitutes a part of
third order contribution in~49!.

The expansion procedure suggested here differs from
in Ref. 22, though the use of the large London parameterx to
‘‘stretch’’ the u-variable resembles the scaling theory in R
22 and also the special rescaling of variables in Ref. 10.
procedure presented here provides much more exhau
unravelling of the situation in Ref. 10 since it enables us
explain the negative result of Ref. 23. It should be noted t
to claim the both corrections~the quadratic and the cubic on
with the logarithm!, we need the following. First, the func
tions F(u) ~which enter thev- and j-integrated Green’s
function! are constant atu50 whereas their first asymptoti
term at largeu is known. Secondly, their argument itself
not restricted from below. The latter is due to the propert
of the gap function of theA-phase, i.e., due to its nodes o
the Fermi surface.

Reference 22 tells us that the gauge transforma
strategy13 fails when investigating the nonanalytic terms
the mass current. Therefore, only in Ref. 22 and in
present paper, the gradient expansions of nonanalyticitie
the mass currents are given. Although the present pa
makes evident that the coefficients at the quadratic nona
lyticities can numerically be found provided the texture
chosen, a similar estimate remains to be elaborated in
framework of Ref. 22.

To conclude, the our investigation confirms rigorous
and connects the corresponding results of Refs. 10, 13
22, and, moreover, allows us to say that in the London lim
j0!ugru21, each component of the mass current of3He-A
can schematically be written atT50 as

j 5const3r gr „11A j0u l̂ 3rot l̂ u1 C j0
2 ~gr!2 log~ B j0 gr!….

Since we do not consider the vector and symmetry structu
of the correcting terms, each gr here denotes an approp
combination of the gradients of the order parameter. O
results concerning the coefficientsA ~at least the order! and
C seem to be reliable enough, while the knowledge ofB
requires more accuracy with the contributions reject
Moreover, the linearization of the order parameter could
come insufficient. The general representations obtained fjW
and the procedure itself would serve for further investig
tions.
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APPENDIX A

In spherical coordinates, the linearized order param
takes the form10

D~ k̂,rW !5d~ k̂11 i k̂2!1r id „2mvpk̂p~ k̂11 i k̂2!

2 k̂3k̂p~]pl̂ 22 i ]pl̂ 1!…

[d sinu eif1r@dM ei ~p/22c!# eic, ~A1!

where the square brackets containa, the phasec must be
adjusted, andvW [vW s . The functionM can be written as fol-
lows:

M52cos2u ]3 l̂ 21
1

2
sinucosu e2 if

„2]1 l̂ 22]2 l̂ 1

1 i ~]1 l̂ 12]2 l̂ 2!…1 2m sin2u eif ~v1cosf1v2sinf!

1sinucosu eif S 2mv31
i

2
div l̂ 2

1

2
l̂ •rot l̂ D . ~A2!

It is seen from Eq.~A1! that ac
F

is a linear form of gradi-
ents,

ac
F
5d2j0( ~gradients! 5

d2

x2(
gradients

ugradientsu
. ~A3!

By ~6!, we considerac
F

/d2 as a small parameter.

APPENDIX B

It is easy to obtain the eigenvaluesE0 , 6En and the
eigenfunctionsĈ0 , Ĉn

6 (n>1) for Hem ~12!,24

Ĉ05S 0

c0~x!D , E052D,

Ĉn
~s!5

1

A2En
S AEn1sD cn21~x!

2 isAEn2sD cn~x! D , sEn ,

wheres56, En5AD212ac
F
n andcn(x) are the Hermite

functions.

APPENDIX C

By the Mehler formula,30 we have

(
n50

`

ancn
2~y!5

1

Ap~12a2!
expS 2

12a

11a
y2D , uau , 1,
.
-

by
cts

er

wherecn(y) are the Chebyshev-Hermite functions. Using

G~d!5~n1q!dE
0

`

ds sd21 e2s~n1q!, n > 0, d,q . 0,

we obtain

(
n50

` cn
2~y!

~n1q!d
5

1

A2p

1

G~d!
E

0

`

ds
sd21

Asinhs

3expXS 1

2
2qD s 2 y2tanh~s/2!C,

d.1/2.

APPENDIX D

Now two first subtractions are needed to estimateU1
5X1Y1Z, where

Z5
1

x2E0

x

F~u2! udu, Y52
5

2

1

x4E0

x

F~u2! u3du,

X5
1

x2E0

x

F~u2!XS 11
u2

x2D 25/2

2 11
5

2

u2

x2
Cu du.

Clearly,Z is convergent at largex and approximately

Z .
1

x2E0

`

F~u2! u du2
a

2 x4
.

Further, a single counterterm is required forY:

Y . 2
5

2

1

x4 E0

`S u3F~u2! 2
a

u11Ddu 2
5 a

2

logx

x4
.

Now we considerX. The total contribution of the orderx24

is given onceF is replaced bya/u4 in X. The net result
reads

U2 1X.
a

x4 S 37

12
2

5

2
log2D ,

and, therefore, ata51/6

U11U2 .
1

x2 E0

`

F~u2! u du

1
1

2x4
X 31

36
1

5

6
log

1

2x

2 5 E
0

`S u3F~u2! 2
1

6~u11! DduC.
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