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The mass currenjf in the weakly inhomogeneous superfliddphase of helium-3 is calculated near zero
temperature by means of an exact solution of the Dyson-Gorkov equation with linearized order parameter. Two
general representations fprare obtained in the form of a series and an integral. The standard representation
i, for the mass current is known up to the first order in gradients of the order parameter. Moreover, there are
indications that highefquadrati¢ corrections tofo are possible. We consider three static orientations of the
orbital angular momenturh with respect to its curl. For the resulting representations, we obtain asymptotic
expansions in the gradients bfn the London limit(i.e., when the coherence length is smaller than the length
in the-vector texturg The correcting terms tﬁo are obtained up to the third order. We numerically estimate
the coefficients at the quadratic terms and show that these terms cannot be ignored. Moreover, new cubic
contributions that include the logarithm of the London parameter are presgBb3-182809)12705-X

I. INTRODUCTION of the generalized gauge-transformation approximation used

Presently, the superfluidity of helium-3 is a focus of in- in Ref. 13. The existence of the quadratic terms

tensive theoretical and experimental studiédthough con- c
siderable attention has been given recently to such problems gO|TxrotT| A(T~JS) T+ —=(roti —(T-rot1) 1)
as quantized vorticity and interfacEs: the weakly inhomo- m
geneousA-phase of helium-3 {He-A) still calls for theoret-

ical investigation. This phase arises due to phwave spin

triplet BCS pairing® and possesses highly unusual
properties. A peculiarity of this phase can be seen, e.g.,

from the structure of the mass currefmtwhich, as generally
accepted, is of the first order in gradients,

was established in Ref. 2Z( is the zero-temperature coher-
ence lengthA andC are constanjs With the aim to obtain a

new verification of the presence pf, in Eq. (1), Combescot
and Dombre developed a microscopic calculatidbmhich
allowed them to conclude that, @t=0, the quadratic correc-

tion | T xrotl |(rotl), exists in the current perpendicularito
and the terms

> - 1 T he
JOZPUs+ert(PI)+]an (T=0), 1)

| Txrotl |(vs— (Lamyrotl), | Txrotl [(ay1 5+ d,l4)
exist in the current parallel td. Clearly, the corrections
found in Ref. 22 are covered by those from Ref. 10. How-
ever, the corresponding numerical coefficients have not been
worked out successfully either in Ref. 10 or in Ref. 22. As is
noted in Ref. 10, these quadratic corrections would cause
difficulties of the superfluid hydrodynamics dHe-A at T

h . des in th h eurf ¢ h=0. As indicated in Ref. 22, unravelling the problem of
there exist two nodes In the gap on the Fermi surface for thgiqper corrections to Eq1) turns out to be of importance in

real *He-A.*" In Eq. (1), p is the liquid densitym is the 1 jerstanding subtleties of the physics3fe-A.

atom massy is the superfluid velocity) is the weakly It is curious that two years afté?, Combescot and Dom-
inhomogeneous orbital angular momentum vectbere  pre declared in Ref. 23 that all the integrals found in Ref. 10
“hat” is used to denote a unit vectprand G~p. Equation  as the coefficients at the non-analyticities are, mainly, zero.
(1) was obtained by many authors in different ways, e.g., byin spite of the fact that Ref. 10 was devoted to the chse

- 1 .. ,\
Jan:_ﬁCOI (I - rotl).

Here the first two terms are standard for a nodes{ireave
superfluid, while the famous anomaloys, testifies that

solving the GOI"(O?/_:L0 or matrix kineti&l equations, or di- =0, and the Gorkov equation was solved exawﬁer lin-
rectly, with the use of the ground state wave functisee  earization of the order parametemn intermediate high-
Ref. 12. temperature approximation was not avoid to obtain a man-

Although Eq.(1) and the corresponding physical picture ageable formula for thé-integrated Green’s function. The
have been broadly discussed and accepted,indications  gifference between the approximate and exact formulas was
can be found that higher corrections to E&). might occur.  regarded as a reason of the presence of the second order
Thus, Volovik and Mineev considered the free energy ofcorrections to Eq(1). However, the strategy of Ref. 10 did
®He-A and obtained one of these corrections in the formnot permit one to benefit from the exact solution, and, thus,
XorbDTa5Ta, where D= (?t+53- 3.5 Later, a quasiclassical to state definitely that the coefficients are finite, nonzero, and
approacf was developed in order to check the applicability not negligible. To a certain extent, this was the reason of the
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appearance of the refutation in Ref. 23. As to the highegeneral form, three typical choices of the static order param-
contributions aff =0 (e.g., the logarithmic terms deduced in eter enable us to clarify the situation by means of specific
the present papgrthe regular expansion procedure was notcalculations. In Sec. VI, we compare the results of the
formulated clearly in Ref. 10. present paper with those of Ref. 23 to understand the reason
To obtain an unambiguous procedure of asymptotic exof the negative statement in Ref. 23. The discussion in Sec.
pansion forj is an important technical problem. The solution V!l concludes the paper. Hopefully, the present investigation
of this problem would lead to a more deep understanding ofVill P& useful for any systematic microscopic approach to
3He-A, and a cure for mathematical difficulties arising in COrrect observables iAHe-A.
Ref. 10 was suggested in Refs. 24 and 25. Namely, a differ-

ent method of solving the Dyson-Gorkov equation was used. Il. OUTLINE OF THE PROBLEM
This method immediately produced new representations for R
the fermionic Green’s function and, thus, for It is well Since our objective is to calculate the mass curjehy

known in mathematical physics that the Green’s function ofneans of the normal Green's function, we start with the
a Sturm-Liouville operator can be written either as an inte-Dyson-Gorkov standard matrix equation
gral or as a series in the eigenfunctions. The approach under

consideration uses the second possibility. After the paper in . . -

Ref. 26, it became clear that this way looks suitable because 079(k,k’)—f d*k"H(k,k") g(k",k")

the new representations fﬁradmitT—>0 accurately and can 343) , ,

rigorously be studied by the Laplace meth@ieepest de- =(2m)28¥(k—k') 8(r—1). (2

scenj provided the characteristic length in the texture is

much longer than the coherence lengghthe London limij. ~ Here 7 is the “imaginary” time of thermal approach,
As the result, it becomes possible to deduce the correctiong(k,k’) is the 2<2 matrix of normal and anomalous two-
to Eq.(1) in the form of an asymptotic series in the gradientspoint Green's functions, anti(k,k”) has the conventional
of I. It is crucial that the coefficients in question acquire aBCS form,

manageable form.

The present paper provides support for the results of Refs.
10 and 13; it also contains, as special cases, the results of
these paper@s well as of Ref. 2Rabout the terms quadratic
in gradients, and enables us to calculate the corresponding
numerical coefficients. Moreover, new third order logarith-
mic contributions are found at the same footing as the quawhere &= (k’~k?)/2m, k_ is the Fermi momentum, and
dratic ones. To catch higher terms, one should go beyond thg (g k") is the order parameter GHe-A. We shall calculate
linearization of the order parameter. With the exception ofihe current by the formula
Ref. 25, only in the paper of Ref. 23 an attempt was made to
estimate the numerical coefficients at the quadratic correc-
tions to Eq.(1). Since the present investigation has the same i=g7> (277)‘3f d*k Kgy,. 3
starting point as that in Ref. 10 while the technical procedure ®
is different(it also differs from the iterative approach of Ref.
22), it becomes possible to choose between the Refs. 10 and | js convenient to pass in Eq&2) and (3) to the mixed
23 in favor of the first one. _ coordinate-momentum representatfofl ?®as follows:

The present paper completes the series of p&fet®.
Some technical details omitted here can be found in Ref. 26.
The paper is organized as follows. Section Il contains the H(IZ,F)z(ZTr)*?'f d3q H(k+q/2,k—qg/2) giar
outline of the problem and, actually, it is the same as in Ref.
10. Basic approximations and notation are almost unaffected
here, and the reader is referred to Ref. 10 for details. Section . e -
Il is concerned with the solution of the ordinary nonhomo- gﬁ(r)Z(Zﬂ)fsJ' d®qg(k+q,k)e' ",
geneous differential equation related to the Dyson-Gorkov
equation and with the calculation of the mass current in the S Tr .
form of a series. Section IV deals with the integral represenWNerer =2 (r1#r») is the center of mass coordinate and the
tations for that series as well as with various limits for them.momentumk is conjugate ta';—r,. Using the Fourier ex-

The supplementary term §g (1) in the form of an integral is  Pansion in7, we obtain from Eq(2) the equation
found in Sec. V aff=0, and three special mutual orienta-

tions of rotl andi are considered to expand it up to the third

order. Apart from the quadratic terms predicted in Ref. 10,
new cubic contributions are found. These terms contain the
logarithm of the London parameter. The numerical coeffi-
cients at the second order terms are estimated. The content
Sec. V is the main achievement of the present paper. Since ~
is difficult to study the problem of higher corrections in the —i c. k-9, we obtain to the lowest order in gradients:

EndP(k—K")  (2m) 3A(K,K")

H(k,k"): (277)_3A*(|Z",|Z) _gk”5(3)(k_k/l) )

iwga(F)—[H(l?—i5r—|§5y,>7) gﬁ(r*)} - =1

y=r

Wperel is the unit matrix andv is the Matsubara fermionic
ﬁequency. Assuming thaJtIZ|~kF and, thus,&k-igp =~ é«
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é—ic k.5 A(IZ ) where 7 is the ¢-integrated Green’s function,

iwg— x /0> i~ L. 3197 4 . _
A*(kr) —&+ick-d J(x)= J dee ) G y(x), (10

whereg=g,(r), {~c_(k—k_), andc_is the Fermi veAIocity. and G(x) is determined from Eq(7). We takep=0 in the
The order parameteA(k,r) has the form S[k-A.(r)  final formulas, i.e.x=X,, wherex,= R%(R,pIO)/w/aCF.
+ik-A,(r)], whereé is the gap amplitude is unit recip-

rocal vector and the orbital momentum vector is given by Il SOLUTION OF THE NONHOMOGENEOUS

A XAx=1. _ _ _ EQUATION IN THE SERIES FORM
The resulting approximate equatidd) can nicely be

treated as one-dimensional since the spatial differentiations To solve Eq.(7), we represenG(x) as the product of the

are performed along the directions indicatedkbyn Ref. 28, ~ Mmatrices

the gradient expansion method is presented to study the dy-

namics of spatially inhomogeneous systems provided the in- hy hy 1(1 1
homogeneities are slow in comparison with the relevant G=\2u f, f,)r US—7li =i (11)
length scales. As a result, the three-dimensional problem V2

splits into one-dimensional subsystems. The proofs required
to justify Eq.(4) can be found in Ref. 28. whereh; ,=h; ,(x) andf; ,=f; ,(x) are now to be deter-

- 1
Since we are interested jnat arbitrary point, say), we umrmz? ;g?rifgné%g?htéorlgauﬁlmuatgéeéczgng?ér%bé)t?g
define the spherical coordinatpsd, ¢ centered at this point y

and linearize the slowly varying order parameter, Hem,
A(KF) =~ A(k,p=0)+ap= a(po+p)+iA, (5 A iJac a
~ A~ U_l Hu=Hgem, Hem=| _: + ,
where A = ImA(k,p=0) and ap, denotes Ra&(k,p=0). em em iyac.a —A
As the physical result is assumed to be independent of the (12)

choice ofQ, it can be calculated at arfywith r—Q©in final

formulas. Therefore, we solve E@) atr = pk, wherek-gis ~ Where a~=x=d/dx. The operator Hey, resembles the
simply d/dp and substituteo=0 in the result® Moreover, ~Hamiltonian of a spinning electron in a constant homoge-
we consider our problem for the coherence lenggh Neous magnetic field, and its eigenvalugs, +E, and

=c_/6 much smaller than the length of the variation of the eigenfunctionsly, ¥ (n=>1) can be found in Appendix B.
We use Eq(12) to pass from Eq(7) to the equation

h
=8(x—x") e"‘g(“%’m<

(the London limi). The parametet in Eq. (5) depends on \yith the Diracs-function in the RHS. Now the unknowris
the angle variables, on the components of the superfluid ves, ¢ depend orx andx’ and the required entry @ is given
locity vs, and on the first derivatives dftaken at® (Ap- by

pendix A). It can be seen from Eq6) that the condition

ap < & ensuring the linearizatio(®) implies p/ &, < x?, and

orb|tal vectorl ,

—=gliel| <1 (6) (lo+Hem)

) . (13

NI= NI

holds the better the largar. G11(X)=f dx’ (h(x,x")+f(x,x")). (14
Changing the Val‘iab|E=(a/CF)1/2(p+p0) and eliminat-
ing ¢ from the LHS of Eq.(4), we obtain It is natural to solve Eq(13) by expanding J() in the or-
_ 1 thogonal¥,, ¥+ (n=1) and obtain7 from Egs.(10) and
(io+H) G=e*acr) 77, 7 @4,
where I
(Wo,¥o) V)

(15

HZi\/aCFag%— \/aCFo'lx-i-AO'z (8) ]
where( ) stands for the Hermitian scalar product. Represen-
?atlon(15) for the é-integrated Green'’s function is alternative
to that found in Ref. 10 as a quadratic combination of the
the form parabolic cylinder functions.
Now the summation ovew is straightforward® and we
—Kk3(8n3¢ )—1f do R(ﬁ—lz j), (9) obf[ain from Eqs(9) and(15) the required general represen-
F F ® tation for the mass current near zero temperature,

is the Hamiltonian expressed in terms of the Pauli matrice
and ac_ is a positive real number. In this case, EB). takes
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. L R in Sec. V, we consider certain specific limits to gain a certain
j=K3(87c )~ JdQ kyac, confidence to the representations obtained.
y n(Eo)ngJr 52 (1,0% - ﬁ)tanh(,BEn/Z) ’ B. Limiting cases
En It follows from Eq. (Al) that the square of the absolute

(16) value of the gap parametér,= A(k p=0) has the follow-

ing simple form:
wheren(E,) is the Fermi weight. Due to the explicit depen-

dence org, Eq.(16) admitsT—0, namely, one must replace |Aol? = |A]2=A%+ achS= 5%sirt 6. (21)
n(Eg) by the Heavyside functiod(Ey) and tanhBE,/2) b
1_( o) by Y (Eo) RE/2 DY Dle to lim _ 95(0,i7) = 7~¥? (Ref. 30 in Eq. (19), the
current can be written &=0 as follows:
IV. INTEGRAL REPRESENTATIONS AND THEIR LIMITS
A. Integral representations j==3p (877'%)71 f dQ kA
Practically, it is more convenient to deal not with Ef6) = [tant)2
itself, but with another equivalent representation which uses X J dt| —— e—xztan“-@z/acgt, (22)
J in the form of an integral. This representation was pre- 0 t

sented in Ref. 25 at zero temperature. Here we shall obtain \% 3/q 2 . I .
i L here p=k>/3 two spin projections are taken into ac-
at T#0.2° First, it is necessary to rearrange H45) and p=kcf3m ( pin proj

extract the part that is “even” i (f is not sensitive to the ?8“?2\'3;—]0 V(_\:]/gtrtehp?alccgv ;sr:hgg;c:l(iannthp?zrgf imatipsee Eqs.

“odd” one?>?9. We have

T A S f=—3p(8wcF)*lf dQ RAL dt e (1AlFac )t

- \/Ed kA2 A
k-o=
dx’ k.A, xyJac_

(18) and x=x,. Equation(23) results in Eqg.(1) with ]:Al

Je==%

17) =3p(8m) ! | dQk
where|\|*=(w?+A%)(2ac ) " f

By Appendix C, ser|e$17) can formally be expressed as Where
the integral

m |12 112 SN
= — - —X tan
Je A(QCF) f dt (tantt)

A 1- ~ .
and we proceed further with the frequency summation, ~ XAz and ©g)i=- A1 9iA,,1%?%%2and, therefore, Eq1) is
12 the lowest London approximation to E@2). This estimate
12 o= —A( ) J' dt (tanht)Y2(T 9(0,i 7)) fails WhenA2/a0F<1, i.e., practically, near the nodes @t
=0,7. However, it can be verified that these regions are

irrelevant since we are interested only in the second order
corrections to Eq(1) and also in the third order corrections

o . : , . that contain the logarithm of the London parameter. How-
30
where the elliptic theta functioi#,™ is defined by the series ever, the resulting equatiof23) converges on the entire

252 _aM12’=9,0,ir), r=(-1lm)loga, and a sphere.
=exp(-47°T’t/ac). Changing the integration variable ' |n the opposite way, one should replace tathby «t in
t—kt, KZCYCF(ﬂ/Z)z, one can rewrite Eq(19) in a more  Eq. (20) since the steepest descent is possiblg\a 0 for

% e—x2tanh—(A2/acF) t (19)

convenient form to study the special limit below, large B:
Y2 re (tanh t)\ Y2_ ~ ac_ A 2,
B3 Je=—A—| dt rt( )) B(t) B Jo=— B f dt®(t) e (41F271 (29)
® 0 @
Xefxztanr(Kt)—(Aﬁ/z)zt, (20) '~I'he RHS of Eqg.(24), which is the Laplace transform of
O(t), can be expressed in terms of the so-called Yosida

~ . : .31

where © (t) = (7t)Y29,(0,i mt). function Y:
To obtain the general integral representationsﬁmear . . q

zero temperature, we must substitute H3$) and(20) into azf dtd(t) e*aztzl—j y =1-Y(a).
Eqg. (9). These representations are very convenient in calcu- 0 0 cosit\y?+a?

lating higher corrections to E@l). Before proceeding to this (25
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The proof of(25) can be found in Ref. 26. B{25), we have f= fo+fcorr,

i=—3p(8 koaA 1—v[1Al8 (26) - 1 A

B p(8) |2 2 ’ Jeorr= — 3p(87TCF) f dﬂkaq)(x , Q), (30
Equation(26), found by Cross in Ref. 8, gives the leadifjg ~ With

“dressed” by thermal corrections. At zero temperature, we

have Y(°)=0, and we recove(23). D (x?, Q)= f e Q! ( \ /tanh e 2(t—tanh)> ,dt
t 1

V. EXPLICIT CALCULATIONS )
A
This section is devoted to the main calculations of the Q= u (31
present paper, i.e., itis concerned with the asymptotic expan- aCy

sion ij (22) to deduce the London limit corrections to EqQ. Tpe angle integration ”]'corr (30) is extended on the entire
(1). At fixed k, the overall phase of the order parametersphere owing to the convention that we are interested in the
A(k, r) can always be changed to ma‘kep a real positive. two types of corrections, and thus it is just responsible for

Thus, Eq.(5) can be regarded as the correcting contribution. Onag is found so thatr is real
positive with M (29), we get the following formulas for the
exp(—iy) A(k, 1) =Ag+ap, (27)  parameters:
where sin 2 A 1 co 1
. ey, ct{2 2
a=sMexp(i(ml2— 1)), Ag=38sindexp(i(d— 1)) xitarfo Q xi @and 52
(28
. 2 2
(see Appendix A We requireac_ to be positive in order to 1 _[(1sind n 1 cosp i 1 (32)
assign a meaning to Eq$7), (8) as well as to all other Q% | x5 tand xatand  y2tartg)

resulting formulas. As noted above, a weakly varying texture
of the order parameter is considered, and all the informatiot/hile Jcorr has the form:
about it(i.e., about the order parameter gradi¢igenclosed

in the functionM (A2). Here it is appropriate to put several Jeon=3p (8&g) 1 f dQ k cow
explanatory remarks aboutt. Without loss of generality,
A,(O) can be chosen alonig<roti so thatdsl,, d4l 3 be- 1 1 cosp ,
come zero and, thus, div=d,1,+ d,1,. Besides, it is useful (X_g - _i g | P %o Q)- (33

to recall thatl - roti is simply d;1,— d,1; once the third axis

is chosen along(O). Moreover,d,l4,d,l, can be excluded  The rest of this section is to extract frofp,, (33) two
from the ConSIderatIOP‘lO Therefore apart from the VeIOC|ty f|rst asympto“c Contnbu“ons next to qu) Vary|ng the
componentsy; and v, only three gradient combinations parameters; , x, in Eq. (33) we shall specialize three cases,
a0+ d,0 1, 2mug—(1/2)1-rotl, anddgi,=roti X1 are rel-  examplesl, 2, and 3, respectively. Fixipg(or x;) >1 and
evant in M. Besides, no technical difference is expected iftending y; (or x») to infinity we shall get example for
M is regarded as dependent either @i, + 3,1, or 2mv, ~ example 2 Taking x;=x,=x>1 we shall arrive to ex-
—(1/2)1-rotl separately. ample 3._ Prgctlcally, we shall be co_ncerne;d with qua_dratlc

The approach of Ref. 10 uses positivity @fbut does not ~ 2nd 409?'(: (times 6'°9f“'th”)' terms, 1.e., with those like
specify the auxiliary phasg. It is crucial that we determine (§0x”) ~ and €ox”) ~“log(1/x%). Clearly, the casé corre-
the phasey in (28) by explicit calculation. To make the SPonds to rok parallel tol and the cas€ — to rotl per-
calculation manageable, it is convenient to put a part of grapendicular tol. Therefore, the casg implies all the three
dients inM equal to zero, and so to consider the dependenceontributions in Eq.(1), while the second one corresponds
of | on the remaining ones. Clearly, it is not necessary tPnly to the pure orbital content of E1). Notice the nota-
enumerate all the possibilities, but it is sufficient to point outtions 7 and Q to be used instead @b andQ to express that
only characteristic combinations. To this end, we tAkein ~ appropriate specializations have been done.
the following reduced form: R R

A. Example 1: rotl is parallel to |

— H 1
M= = d5l5c0S 6+ (2mu —d113) sind cosp ¢ Let only 2mv — a,1, # 0 in M (29). As far as we deduce
1 1 . from Eq. (32) that Q= x?|tand| andx,=0 (label 2 iny is
5C0S 6+ —— sind cosp e'?, (299  omitted, Eq. (33) reads only the third component, sayto
Sox1 SoXx2 be nonzero:

wherev=v4 and 2nv —a,1, > 0. 30 1 [ udu
A convenience is apparent after Refs. 26,27 to integrate j= _p_f FxPU) —————, (34)
by parts in Eq(22) so that 2 gox?lo (U2+1)%2
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where

!

tanht

t

FxPw) = f g Xut
0

andu=|tand|. As to the function7, it is suffice to know that
Fis a constant as—0, and

]:( ZU)ZL_,_L_F...
X *w?  (x2w?*

as y?u>1, wherea= —1/3.

(39

HIGHER CORRECTIONS TO THE MASS CURRENTI. . .

7069

where

1
3uFu)+ ——

u+1 du,

| 25—4+J°°
0og —§ o

and fo is restored. All the quadratic corrections predicted in
Ref. 10 are zero in the present texture, and the lowest one
turns out to be cubic with the logarithm of the London pa-
rameter.

B. Example 2: rotl is perpendicular tol

To do the asymptotic estimation let us break the integral In this case Egs.(32 imply Q=jx’tar’¢ and x§

overu into two parts:

Ff( 2u) u du =U,;+U (36)
o TN T e
where
® udu a [~ du
U =f FlxPu —:—f u?+1) 52—,
2= |, (x )(u2+1)5/2 X4 l( ) u

becausey?u>1 is valid. As toU;, let us write it asX

+Y, where
1 )(2 —5/2
X=—4J F(u) —1/uduy,
X 0

1 (42
Y= —4f FHu)udu
X J0

u?
1+

Xt
37

Since the integraY is divergent logarithmically ag?— o, it
can be represented approximately:

u+1

a 1 (>
Y:—4Iog)(2+—4j (u]—'(u du.
X /0

X
Let us turn toX (37). Equation(35) tells us that the integral

X is divergent afy—o0, but can be regularized with the help
of the whole asymptotic65). Expanding the inner brackets

in X into power series and using E@5) it is not difficult to
understand that the total contribution of the orger* ap-
pears as that counter-term which results fri&mvhere F is
replaced bya/u?. Therefore, we combine

a 4
U, +Xz? —§+I092 )

and, usinga= — 1/3, obtain

3u Fu)

1
+ U+_1 dLH—'OgZ—XZ).

(38)

PRV L

Finally, the use of Egs(34), (36) and (38) enables the
third component of to be completely written as follows:

p 1
2 50)(2

jz= (39

NN
_Og— s
xt X

= x*tart 6 sirfg, where €x2) 1= dsl, > 0. The second

and third components gf.,, are zero after Eq(33), while
the first one acquires the form:

3p 1 (=~
R ] PG
4 gox?Jo

udu
(U2+ 1)5/2’

where

o tanh
f(x2u2)=J0 e‘XZUZ‘( —

1
—: 2; ¥°u?(t—tankt)

X qFq 5

fa
u=|tand| and the angle integration over=sing is ex-
pressed in terms of the Kummer functigfr; (Ref. 30 as
follows:

1 T 1
f dv \/l—vze”2p= ZlFl(?; 2; p),
0

p=x?u?(t—tanht ) = 0. (40)

The relevant analytical properties of the auxiliary functibn
are the following:#(0) is constant and

FlxPu?)= (41

(w*  (xyu)®

as y2u?®>1, wherea=1/6.
Again, let us represent the integral oweas the sum of
U, andU,, where

udu a

* du
-~ u2+1 *5/2_'
(U2+ 1)5/2 X4 J'l ( ) 3

Uy= f F(x*u?)
1 u
Now two subtractions are needed to estimidte The first
one is related to the finite counterterm which is responsible
for the nontrivial quadratic contribution. The next one im-
plies the logarithmically divergent integral analogous to that
in the previous section. The corresponding calculation can be
found in Appendix D. Eventually,

i 1+A+5 1| 5 (42
j1=— 5 —| 1+ =+ 5 —log— |,
4 &ox? X2 8 xt X

where
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% First, let us consider the contribution to E¢4) which is
A:3f Fu®)udu~—2x101 (43)  due toue[1[. Here the functionF can be expanded by
0 steepest descent becausgu)>Q>1. This expansion will
begin with the third order term cons(£,x®) ~* which is not
of interest for us. So, in what follows we shall take=Q

du.
6(u+1) <1linj.
In this case there are two corrections, and the lowest one is Now let us consider the domain<Qu<1/x, where we
replace approximately tu? by 1:
of the type (rol)l| I xrotl |, i.e., of the type found in Ref.
10 for the current perpendicular tdEqgs.(53), (54) in Ref. 3p 1,)(

31
log 4B= —¢ - 12f ( udFH(u?) —

10). The coefficientA4 (43) was estimated numerically in 2—— J ﬂ (u=—v)F_+(u+v)FL).
Ref. 25. The next term is the new cubic one, and it includes2™ €ox” 0 (1-v)

the logarithm of the London parameter. In this caseAZ/acF ~ ()2 (U T )2 X2~ (u)3(1—0?)

and the use of Eq47) implies that, basically, the estimate is
due to the region WherAZ/acF andx? are not close to zero
or 1, but strictly less than 1. Thus, we obtain

C. Example 3

In this case, we take into account the wh(#6) to obtain
the quadratic correction of the typellxroti|(v
— (L/4myrotl )| [or, of the type| I xroti |(_(?le+ &271)., see g XU (1—v?)
Eq. (A2)]. Therefore, we consider the third componggt, 3 = E

which is alongl However, we put herg,= x, for simplic-
ity, and, thus, the answer expected will get a more formaRnd the total contribution below=1/y is
appearance since it will be expressed in terms gf 1We

obtain from Eq.(33): p 1 2 3) 49
2 A\ Yo 2/
- J,J dudo Eox \/;
1= % Eox?) Ju(uP+1)%(1-0v?) Eventually, let us consider the rectandi@,v): 1/y<u
<1,ve[0,1]}. Here 7, can safely be expanded by the
X((u=v)F+(utv)Fy), (44) Laplace method. As taF_, the integral diverges when
AZ/aCF is calculated inside the striju—v|<1/y along the
Fo= f exp(—t (yu)2 Q)( R /tanh diagonalu=uv but the resulting singt_JIarity i§ integrable. One
can check that here there are no interesting terms as far as

, x2=1 and the strip’s width is 2/. Outside the strip, the use
_ 201 _ .2\ A3 of (46) allows to obtain the logarithmic third order term. The
Xexpl(t —tanf) (y ux(1-v5) Q )) dt, (49 experience of the numerical calculations befin@gee also
the next sectionshows us that the coefficient afgy?) ~* is,
mainly, due to Gsu<1/y, and therefore its order of magni-
tude is given by(48). So, we take into account botf, and
F_, and obtain from(44)—(46),

where Q ~? stands for
07%=1+u?>F 2uv=1- v+ (uF v)?

the domainll is given by{(u,v): ue[0[,v €[0,1]}, and

u=tand, v=cosp. p 1 (1 du 1
The function(29) is still rather complicated and so the - ;& 1/)(?(11?1)5’2

present consideration becomes less elegant than the two pre-

vious. The estimations we are interested in will be obtained 1 do

without providing the integral formulas for the coefficients. f

Let us proceed estimating (31) in general situation. By

steepest descent we get

———— (U2+8v2 - 5).
0 (1_U2)1/2( v )

Calculating the integral and using E@8), we obtain the

2 final formula:
cp(XZQ)z_ii+2X_ (46)
32 @ o1 A, 71 B 9
= —_— — —_— —_—— o ,
atQ=1,i.e., eithed? ac_or x> must be= 1 (provided that 172 ox® X Ax g;

AZ/aCF<1 does not occur In the opposite cas®@<1, we

. _ ~ _ 1
adopt where A is of the order of 27w —3/2~ —3.7x 10 L.

o
- _ 12,2 F
® (%% Q) 1+a ( A2 (47) In this section, we discuss the contradicting statements
from Refs. 10 and 23 about the validity of the higliqua-

as the leading approximation. dratic) corrections to the mass currgid). The starting point

c ) 12 VI. COMPARISON OF THE TWO APPROACHES
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of the present investigation coincides with that of Ref. 10 but - ac A
the mathematical procedure is different. Therefore, our in-j j “’f dQk| 7 - F
vestigation will allow one to choose between Refs. 10 and " 4mC "2 (w2+|A|2)3/2
23, and, thus, explain the above-mentioned contradiction. (59
The necessity of including the present section arose after

Ref. 23 has been found and the main part of the preserwhere J; is given by (50), (51). The second term iit54)
paper has already been completed. This explains why thgppears because the leadingis added and subtracted from

content of this section is to some extent independent of thghe totalj to expresg..,. The main idea in Refs. 10 and 23

content of the other sections of the paper. is that the dominant contribution tpCorr comes from the
As noted in Sec. lll, there are two equivalent representa- ’
regionx3+2|\|?<1, i.e., it is due tow/ 8, |ky|, |ky|=<1ly.

tions for the real part of thé-integrated Green’s function

J.=Refd&g. , which are given by Eq(18) and by Therefore, in Ref. 23, the angle integratigii(}, is replaced
- by the plane integration, f2lk,;dk, . In the present paper, we
J use the variables=|tand|,v = sin¢ to integrate over the unit
Je=—%" ——[F(IN2+1,%0v2) = F(IN |2, xov2)1, sphere. Now, to simplify the comparison with Ref. 23, we
\/_ consider another change of variables. Namely, we introduce

(50 u,v by the formulasn/u2+v2 =sing and u/v =tang so that
JdQ—2/dud(1- u?—v?) "2 andu,v are now inside
the unit discD.

For definiteness, we focus our attention on the quadratic
correction, example 2, which is one of the two nonanalytici-
ties discussed in Ref. 23. Our choice in example 2 implies
e V=i, and, thusAo=i5sinde?, ac_=(8/x)’cos6 (near

l I 1 = — T i
IN2— = _XO\/—) (51) the poles it correlates withw 8dsl, (14) in Ref. 23.

whereF denotes the product of the gamma function and tw
parabolic cylinder function®

1
F(INIZ x0v2) = T(A[?) U( M= 5 xov2

Moreover, it should been noted that, in our calculatian,
. ) and A, include the additional multiplier. This should not
Xo= R%O/\/aCF (in Refs. 10 and 23, differs by the mul-  \5iher us since we have a freedomyin and so

tiple \2), and|\|? is defined in Eq(17). The representation

(50) was obtained in Ref. 10. In Ref. 23, the same equation A v
(50) was used to claim that the corrections found in Ref. 10 =y —
vanish, and so quadratic correctionsfgnare absent. vac, Vi—u“—v

The equivalence of Eq418) and (50) follows from the
fact that the Green function obtained either in the integrain the new variables. Using the nanandv in Eq (54), we
form or in the series form is unique. The representati®  replace, in the leading approximation;-Li?—v? by 1 and
is especially convenient in practice. For instance, the integra-stretch” the integration domain as follows:
tion over frequencies is Gaussian and can be performed first
to significantly simplify the rest:

=&

w
U:X, 3

ol

X X
[a=-5 garecion, 2 v &
—Te= X2
o m"° Q 0
whereCD(xS,Q) andQ are given by Eq(31). From(52) it is
seen howj is split into the sum off, and | in our ap- 3(2\* p i en
proach. The integration by parts oudiails whenQ tends to ~ corr,1= T £ dgf dXdyx“H (€74 X%,)),
zero, though we can ugé2) on the entire unit sphere pro- ox* (55)
vided that the pure polynomial corrections next to the qua-
dratic ones are irrelevant for us. ) > an ) 5 5 )
If Q=|A|2/achl (this corresponds taz+2|\|?=1 in H(ET+A%Y) = F(E7+ X+ 1,-2)) — F(E7+ 4%, -2))
Refs. 10 and 28 we can expand by the Laplace method N 1
so that(52) becomes + ,
2\/5 (52+X2+y2)3/2

Then

(56)

Al A1 x3 5
) 6+ i A—piee, (53)  whereD is the disc of radiug/+/25>1. Up to the sign ap,
Q Q Eq. (55) is just the correction, Eq16), in Ref. 23(with D
The same result can be obtained if we use the Darwirieplaced by the planeGenerally speaking, in Ref. 23, two
expansioff for the parabolic cylinder functions it60) and  contributions are consideregl,; and j o 3. Both contri-
(51) with subsequent integration over. butions contain the integrdl”..d)YH, which is claimed to
In Refs. 10 and 23, the total correcting contribution isbe, mainly, zero and, therefore, “to leading order the trans-
presented, e.g., EQLO) in Ref. 23. In our notation, it has the verse and longitudinal nonanalytic contributions to the cur-
form rent vani ... "%
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Since the origin of Eq(55) is understood, we now regard

the quadratic correction, example 2, using E§.and (18)

C. MALYSHEV
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Recall that, in Ref. 23, the fact that the integfal.d) H
vanishes generally was deduced from the equation

but with the new choice of the parametery. We obtain

X
J dY (F(IA?+1,—2)) — F(]\ 2, —2))
X

) 3p x dudy v? J’ f
=—5—— = d dt (tanh)/?
Jl 27TC \/_ D 1 u _U w ( )

1-u?—vp?

We neglectu?, v? to 1, then “stretch” the variablegw
=X, yu=Y (thus repeating) and integrate ovew. We
have

X

INONE 1 1
=- ( |)U(|)\|2—§,2ﬁ)}>U(|)\|2+E,—2y)
-X

2

(57) Namely, asy—, the RHS of Eq(61) is estimated as

1/2 1/2
—(;) A 2= —(%) (€2+2%)71,

and so the integral in question vanishes. Although Ref. 23
does not explain this exhaustively, it seems that B8) is
obtained with the help of the Darwin expansibrfor
U(|N|2£1/2,2)). Itis important to observe that the latter is
valid when the combinatiop?+ |\ |? is large and, thugy?
and/or|\|? is large. In Ref. 23, thé-integration has not been
performed, whereas the approach of the present work allows
us to integrate over frequencies easily. Therefore, discussing
the estimate, we forget abodt in )2+ |\|2. If so, then the
statement that the integral is governed by lapge+ |\ |?

2

w
utanh +| v2+ —
52

(62

3[) 1/2

477§X

tanht
t

dXdsz[ f dt

Jeorr ™ —

Xe*yztanhf)fzt _ (y2+ X2)11|, (58)

where the counterterm is included sir]?z)eis added and sub-

tracted from Eq(57). Up to the multipley2 in Y andX, EG.  implies that the domaim>1 (which is responsible for the

(58) is nothing but an equivalent form of E¢p5). negligible contribution to the coefficienin integral Eq.(59)
Further, following the strategy of the present paper, Wes considered as the most important.

pass in Eq(58) to the polar coordinates in th&-)-plane as Strictly speaking, Eq(61) does not suggest that it is natu-

follows: ral to estimate its RHS in terms of the combinatipif
+|\|? as|)|=x—0=. For instance, the same Ref. 32 sug-
3p 1 =  {tant)|Y? gests another way in the case whef@/|2is large and|\|?
jeor1=— T ; X4f drrd fo dt — +1/2| is moderate. Let us recall the origin &fand )
0

A XU
1 I -7
.. _ = y|tand|cosp= =X,
xlFl( =2; r2(t—tanh)) e "' ——| (59 /aCF JI—u2—p2
where the hypergeometric functigir; (40) accounts for the — _ ltandlsindg = — Xxu _
angle integration. It is not difficult to see that the radial vari- Xo=— x|tand|sing= 1202 =V

abler is simply the renormalized anglg i.e.,x 6. The inner

integral is estimated at=1 by the Laplace method, Therefore, we do not see any reasonsﬁfcﬁt;/acF andx, be

large simultaneously a#=1/y. More likely the situation is
such that thep-symmetry should be incorporated separately,
so that the relevanf#-dependence remains to be discussed.
Moreover, if we accept, for a moment, the viewpoint of Ref.
23, then the coefficient in question is governed by the bound-

(60)

and y=c can be taken as the upper bound in E9) (i.e.,
D can be replaced by the plan&ventually, ther-integral,
Eq. (59), demonstratesA/3 (43). Evaluating the bracket in
Eq. (59 numerically, we find that4 is not zero, and the
dominant contribution to it is due to<Or=<1 (i.e., 0<@
=<1/x), where the serie$60) is not valid. Notice that the
coefficient at €ox*) "1 is of order 142, if we restrict the
integration only with the asymptotic regios y>1, and can

be made arbitrarily small. The latter would correlate with thenote that there are no considerable simplifications if we re-

ary of D, where the main assumptiaQ—dk,;dk, is not
valid. On the contrary, Eqs59) and (60) show that the
region 0<#=<1/y is crucial in demonstrating that the
r-integral is nonzero. To conclude, E@1) should not be

approximated but requires the subsequent integrations before

letting y—co.

We restrict ourselves by the demonstration of how the

arguments of Ref. 23 aboyt,,, are spoiled. Let us only

statement in Ref. 23 that, to leading order, the coefficient i€onsider our example 3 by means of the newly chasen

zero. On the other hand, it is seen from E@9) and (60)

clusion of Ref. 23.

though the estimates get confirmation. The present paper it-
that the region &cr <1 comes to play thus spoiling the con- self should convince that the results presented stem from the
procedure reliable enough. For instance, the results of Refs.
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10, 13, and 22 about the quadratic corrections are indeper-he quadratic term if49) must be compared with the last
dently confirmed and the objectithis removed. expression af# 0, B=0. It is clear from(A2) that the result
obtained here is also applicable to establish the contribution
atA=0,B#0.

In agreement with the statements by previous investiga-

The present paper Comp|etes the pa%fé?g concerned tOI‘S, the diSCS of radius ﬂ/near the tOpOlOgically stable
with the following two main problems: calculation of the nodes of the order parameter @0, are responsible for
mass currenf in slightly inhomogeneougHe-A by means the integrals at the quadratic corrections. Moreover, our situ-
of the thermal Green’s functions and determination of its&tion is more rich than in Ref. 10 since the logarithmic terms
asymptotic expansions &t=0 in the London limit. Here the are demonstrated. In this respect, we recall the correction
following two basic assumptions are of importance: the statifound in Ref. 13. As is seen frorfA2), the components of
order parameter can be linearized since its spatial variation ige superfluid velocity &hv and the gradients df enter the
slow, and only the first order differentiations that arise due tq,arametera on equal terms. Thereforeye (v ) 14914,

the kinetic energy are kept in the mixed representation. Sincﬁ/herexorb is logarithmically largé, should be regarded as

the texture of the orbital vector is weak, three initial dimen-,q logarithmic third order term that constitutes a part of the
sions are reduced to the one-dimensional situation so that thﬁird order contribution ir(49).

Dyson-Gorkov governing equation can be solved exactly by the expansion procedure suggested here differs from that
means of the eigenfunctions of_ the Lan_dau problem. Thus, & Ref. 22, though the use of the large London parameter
collection of exact formulas arises, which allows us 10 SyS=giretch” the ¢-variable resembles the scaling theory in Ref.
tematically derive the higher corrections to the domingnt 22 and also the special rescaling of variables in Ref. 10. The
(1). Our approach provides a correct procedure for determiprocedure presented here provides much more exhausting
nation of the order of magnitude for the corrections in quesunravelling of the situation in Ref. 10 since it enables us to
tion. The given approach is manifestly advantageous becauggplain the negative result of Ref. 23. It should be noted that
the Laplace method is appropriate in the London limit. to claim the both correctionghe quadratic and the cubic one
We are concerned with the normal Green's function,with the logarithm, we need the following. First, the func-
which s, first, £&-integrated and, thenw-summated, and tions F(u) (which enter thew- and &integrated Green's
which results in two representations fir in the series and  function) are constant ai=0 whereas their first asymptotic
integral forms. The integral form seems to be more attractivéerm at largeu is known. Secondly, their argument itself is
because it can satisfactory be studied by steepest descenat restricted from below. The latter is due to the properties
Particular limits (the zero temperature limit following the of the gap function of thé\-phase, i.e., due to its nodes on
limit of the lowest order in gradients, anite versaconfirm  the Fermi surface.
the choice of our strategy, demonstrating El.as the low- Reference 22 tells us that the gauge transformation
est contribution in gradients of the order parameter. strategy® fails when investigating the nonanalytic terms in
Three orientations of rdt are considered in Sec. V to the mass current. Therefore, only in Ref. 22 and in the
obtain the correcting terms explicitly: rbtis parallel tol present paper, the gradient expansions of nonanalyticities of

} - o the mass currents are given. Although the present paper
(example 1, and perpendicular to (example 2, while in e evident that the coefficients at the quadratic nonana-

example 3 we consider an intermediate orientation of rot Iyticities can numerically be found provided the texture is
with respect td. Corrections are considered up to the thirdchosen, a similar estimate remains to be elaborated in the
order in the gradients df we estimate the numerical coef- framework of Ref. 22. o , _

ficients at the second order terms, and provide new cubic 10 conclude, the our investigation confirms rigorously

corrections that contain the logarithm of the London param&nd connects the corresponding results of Refs. 10, 13 and
eter. 22, and, moreover, allows us to say that in the London limit

. . . e elar -l 3o,
In the first case, there is only the third order logarithmicéo</9r|" ", each component of the mass currentéfe-A
correction. In the second case, both corrections arise: thedn schematically be written t=0 as
guadratic and the cubic one. As is clear from the analysis in
Ref. 10, the quadratic corrections must be proportional to )
R - ) : o q 7 2
| Txrotl|, and this correlates with the absence of the quad = Const<p gr (1+.A &l xrotl|+ € & (gn)*log( B &, gn)).

dratic term in example 1Ref. 22 also explaini xroti | in

quadratic terms In example 2, is orthogonal td. Thus,  Since we do not consider the vector and symmetry structures
the second order term if42) corresponds to that given in of the correcting terms, each gr here denotes an appropriate
Ref. 10 in the form (rot) | I Xrotl |, and the corresponding combination of the gradients of the order parameter. Our
numerical coefficient is4 (43).2° Example 3 also results in results concerning the coefficients (at least the orderand

the corrections of both types. As to the quadratic correctio seem to be reliable enough, while the knowledgeBof
alongl, the answer contained in Ref. 10 is as follows: requires more accuracy with the contributions rejected.
Moreover, the linearization of the order parameter could be-
come insufficient. The general representations obtaineﬁ for
and the procedure itself would serve for further investiga-
tions.

VII. DISCUSSION

- N N N B . -
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Z‘ (n+q)d 2 T'(d) fo ds\/sinf's

In spherical coordinates, the linearized order parameter 1 5
takes the forrf xexpl| =—q|s— y*tanh(s/2)

APPENDIX A

A(k,r)=8(ky+iky) +pi 6 (2muky(ky +ik,)

d>1/2.
—kakp(apT,—i3,01))
=5singe ¢+ p[ S Me (2] el?, (A1) APPENDIX D
where the square brackets contaip the phasey must be Now two first subtractions are needed to estimbite
adjusted, and=v,. The functionM can be written as fol- =X+ Y+Z, where
lows:

1 (x 5 1 (x
Z= —J FAu®)udu, Y=-—— —J F(u?) uddu,
x?Jo 2 x*Jo

-1+ —Judu.
2 )2

o1 P
M=—co§683lz+§smecosee (=1l ,— 3,14

+i(d111— ,1,)) + 2msir?0 e'? (v,cosp+v,SinNe) 2

_L(x bl
X= Xzfo Fu )( 1+

X2

. i ~ 1. «
+sinfcosp €' ¢ 2mv3+§divI—EI-rotI . (A2

. . . . Clearly,Z i tatl d imatel
It is seen from Eq(Al) that ac_is a linear form of gradi- early, 2 IS convergent at largg and approximately

ents,
Z= ! f AW udu- 2
_ 2 (gradient 522 gradients A3 = 2o (u®) udu 2
ac. =572, (gradients = |gradient$’ )
. Further, a single counterterm is required far
By (6), we conS|deroch/52 as a small parameter.
5a logy
APPENDIX B SO 2y — -
Y f(u]—'(u) u+1du 5 X4.
It is easy to obtain the eigenvaluds,, +E, and the
eigenfunctionsifo, ‘i’ﬁ (n=1) for Hem (12),24 Now we consideiX. The total contribution of the ordey*
is given onceF is replaced bya/u* in X. The net result
0 reads
Yo(x) |+ Eo=—A,
PRSI
2 T A==l 25— 51092/,
o 1 [ VEeFSA v niz o2
Vo=—=s| i /F —en sE,,
" J2E, | TISVERTSA ¢n(X) and, therefore, aa=1/6
wheres=*+, E,= /A +2ac.n and ,(x) are the Hermite 1 (o
functions. U+ U, = —f Fu?)udu
x> Jo
APPENDIX C . 1 (31 N 5 I 1
0 _ JR— JRE—
By the Mehler formul&® we have 2,°\36 " 6 09 2x
a" = y2|, lal <1, - er SHU?) — _
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