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Extensions to the Maxwell boundary conditions: Reflection from uniaxial
and cubic antiferromagnets

E. B. Graham and R. E. Raab
Department of Physics, University of Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa

~Received 30 April 1998!

Standard Maxwell boundary conditions do not always apply at the surface of an anisotropic magnetic
medium in a vacuum, even when theD andH fields that describe the properties of the medium are taken in
covariant form. It is shown that discontinuities may arise in these fields due to bound surface current and
electric-dipole moment, and the leading multipole forms of these discontinuities are identified. Reflection
matrices for normal incidence are derived for all uniaxial and cubic antiferromagnetic crystals. These matrices
satisfy reciprocity~time-reversal symmetry! only when the extended boundary conditions are used. Various
magnetic point groups are identified that exhibit nonreciprocal effects in reflection, but not in transmission. It
is also shown that when nonreciprocal birefringence exists in transmission, nonreciprocal effects are absent in
reflection at normal incidence. The magnetic point-group symmetry assigned to Nd2CuO4 is questioned on the
basis of the theory.@S0163-1829~99!00106-X#
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I. INTRODUCTION

Theories of reflection that satisfy the requirements
space-time symmetry1,2 have recently been derived for var
ous anisotropic nonmagnetic media3,4 with the aid of stan-
dard Maxwell boundary conditions5 and covariant constitu
tive relations to the order of electric quadrupole a
magnetic dipole.6 A similar procedure applied to a uniaxia
magnetic crystal, namely, antiferromagnetic chromium ox
(Cr2O3),7 has also been successful in producing a theory
reflection for normal incidence with the correct symme
properties which, in addition, agrees well with experimen8

In this paper the theory is extended to all antiferromagn
crystals of the uniaxial and cubic systems. An interest
point that arises in this treatment is that, even for norm
incidence, there are magnetic media to which the stand
boundary conditions do not apply in the electric-quadrupo
magnetic-dipole approximation. Examples of such media
cubic crystals with the magnetic point-group symmetr
m3m, m3, 4̄3m, 432, and 23 and uniaxial crystals belon
ing to the magnetic point groups listed in III–VI in Table
A characteristic feature of these point groups is the existe
of a third-rank time-odd polar tensor that is totally symmet
in its three subscripts. As shown in Sec. II, this tensor
associated with discontinuities due to bound surface cur
and electric dipole moment that may occur in the light-wa
fields at an interface. The validity of boundary conditio
that do not include such a tensor has previously and
sciently been questioned.8

In this paper we make use of covariant multipole form
for the D and H fields and work to the order of induce
electric quadrupoles and magnetic dipoles. The bound
conditions on theD andH fields at the surface of a source
free, anisotropic, magnetic medium in a vacuum are de
mined in Sec. II to this multipole order. These conditions
shown to reduce to the standard Maxwell forms5 for all non-
magnetic media and also for certain magnetic media.

Since reflection matrices have been derived to the orde
PRB 590163-1829/99/59~10!/7058~6!/$15.00
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electric quadrupole and magnetic dipole for all nonmagne
crystals of the uniaxial3 and cubic9 systems, using the stan
dard Maxwell boundary conditions, the concern of this pa
is to demonstrate the need to extend these boundary co
tions when reflection from magnetic crystals is described.
this end only the magnetic contributions of electri
quadrupole–magnetic-dipole order are included in the the
of reflection from antiferromagnetic crystals that is dev
oped in Sec. III.

In Sec. IV the theory is applied to uniaxial antiferroma
nets for normal incidence on a plane face perpendicula
the optic axis. Various point groups are identified for whi
the nonreciprocal properties in reflection turn out to be
same as those displayed by Cr2O3 ~symmetry3̄m), namely,
a change in azimuth of an incident linearly polarized lig
beam and circular dichroism.7,8 ~These effects are terme
nonreciprocal because they have opposite signs for the
states of a crystal that are related to each other by time
versal.! Another prediction, somewhat unexpected, is the
sence in reflection of nonreciprocal effects for classes of
tragonal magnetoelectrics that have been shown to exh
nonreciprocal linear birefringence for propagation alo
their optic axis.10–12 Magnetic cubic crystals are considere
in Sec. V where reflection matrices are derived for norm
incidence on a cube face. Concluding remarks follow in S
VI.

II. COVARIANT CONSTITUTIVE RELATIONS
AND BOUNDARY CONDITIONS

In any theory of reflection two aspects of the proble
require careful consideration, namely, the choice that
made for theD andH fields that describe the response pro
erties of the medium to the fields of the light wave, and t
boundary conditions that apply to these fields at an interfa

A. Covariant constitutive relations

The importance of using covariant forms forD andH to
ensure the spatial and temporal invariance of the equation
7058 ©1999 The American Physical Society
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TABLE I. Components ofaab , Aabg , tab , andSabg relative to Cartesian crystallographic axes 1,2,3 for uniaxial antiferromagne
the magnetic point groups shown, when the 3 axis~optic axis! is parallel to thez axis of a laboratory reference frame 0(x,y,z) lying along
the normal to the reflecting surface in which the 1 and 2 axes are at an angleu to thex andy axes, respectively. The noncentrosymmet
point groups are shown in parentheses. The remaining point groups possess a geometric center of symmetry. For I–IV:axx5ayy ,
Axxz5Ayyz, txx5tyy , txy52tyx , Sxxz5Syyz For V and VI: axx5ayy , Axxz52Ayyz, txx52tyy , txy5tyx , Sxxz52Syyz,
A15

1
3 (G332G112

1
2 va1238 ), A252G121va1138 , A35va3338 , A45G121

1
6 v(a1138 2a3118 ), A55

1
3 v(2a1138 1a3118 ), A6522G111va1238 ,

A75G112
1
6 v(a1238 2a3128 ), A85

1
3 v(2a1238 1a3128 ), S5sin 2u, C5cos 2u.

Magnetic point group axx azz Axxz Axyz Azzz txx txy Sxxz Sxyz

I 6/mmm,6/m(6̄m2,6mm,622,6) a11 a33

II 6/mmm,3̄m,4/mmm

(6̄m2,622,32,4̄2m,422) a11 a33 2A1

III 6/mmm,3̄m,4/mmm

(6̄m2,6mm,3m,4̄2m,4mm) a11 a33 A2 A3 A4 A5

IV 6/m,3̄,4/m,(6̄,4̄) a11 a33 A2 A3 2A1 A4 A5

V 4/mmm,(4̄2m,4mm,422) a11 a33 SA6 CA6 CA7 2SA7 CA5 2SA5

VI 4/m,(4) a11 a33 SA61CA2 CA62SA2 CA71SA4 CA42SA7 CA51SA8 CA82SA5
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continuity at an interface has been discussed in a numbe
articles.6,13,14Also reported in these articles are the approp
ate forms forD andH in the electric-quadrupole–magneti
dipole approximation for a magnetic, anisotropic, chiral m
dium exposed to a light wave with time dependen
exp$2ivt%. Although the expressions forD andH were pre-
viously displayed in the format adopted by Post,15 it is de-
sirable when discussing boundary conditions to rewrite th
in multipole form. To the order of electric quadrupoles a
magnetic dipoles the multipole expansions forD and H
are16,17

Da5e0Ea1Pa2
1

2
¹bQab1•••, ~1!

Ha5m0
21Ba2Ma1•••, ~2!

wherePa , Qab , andMa are, in Cartesian tensor notatio
macroscopic densities of electric-dipole moment, elect
quadrupole moment, and magnetic-dipole moment, res
tively. We then find by inspection from the covariant cons
tutive relations in Refs. 6, 13, and 14 the followin
expressions for the polarization densities in Eqs.~1! and~2!:

Pa5FabEb2
1

6
iSabg¹gEb1~ tab2 i t ab8 !Bb1•••, ~3!

Qab5
1

3
iSabgEg1•••, ~4!

Ma5~ tba1 i t ba8 !Eb1•••, ~5!

where

Fab5aab2 iaab8 , ~6!

Sabg5aabg8 1abga8 1agab8 , ~7!

tab5Gab2
1

3
dabGgg2

1

6
vebgd agda8 , ~8!
of
-

-
e

m

-
c-

-

tab8 5Gab8 2
1

2
vebgd agda . ~9!

In Eqs. ~8! and ~9!, dab is the Kronecker delta andeabg is
the Levi-Civita tensor. The remaining tensors on the rig
hand sides of Eqs.~6!–~9! are macroscopic property tenso
of the medium to which symmetry considerations may
properly applied.18 These tensors describe the induction
multipole moments in a macroscopic volume element of
material by the light-wave fields and their space and ti
derivatives.14 Certain of these tensors exhibit permutati
symmetry in their subscripts14 as shown below:

aab5aba , aab8 52aba8 , ~10!

aabg5aagb , aabg8 5aagb8 . ~11!

It also follows from the second equality in Eq.~11! thatSabg
in Eq. ~7! is symmetric in the permutation of all three su
scriptsa, b, andg. It has previously been shown that th
tensorsaab ,Gab8 , andaabg are time even andaab8 , Gab ,
andaabg8 time odd,12 so that from Eq.~7! Sabg is time odd.
~Time-even property tensors may exist for both nonmagn
and magnetic media, while time-odd ones belong only
magnetic materials.18!

B. Boundary conditions

In order to determine the matching condition on theH
fields at an interface between a medium and a vacuum,
consider the total bound current density at a macrosco
volume element of the material. It follows from a multipo
expansion of the vector potential17 that in the electric-
quadrupole–magnetic-dipole approximation there are
contributions: a volume density of bound currentJb as well
as a surface density of bound currentKb where

Jba
5 Ṗa2

1

2
¹bQ̇ab1eabg¹bMg , ~12!
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Kba
5S 1

2
Q̇ab2eabgMgD n̂b ; ~13!

an overdot denotes partial differentiation with respect
time, andn̂ is the outward unit normal to the surface.

For time-dependent light-wave fieldsE and B in matter,
Ampère’s law takes the form19

¹3B5m0~e0Ė1J!, ~14!

whereJ is the total current density, both free and bound,
the medium. Application of standard procedures5 to the inte-
gral form of Eq.~14! yields the following condition on the
tangential components ofB at a vacuum-dielectric interface

n̂3~B22B1!5m0K , ~15!

where medium 1 is the dielectric, medium 2 is the vacuumn̂
is here the unit normal at the interface that points from
first to the second medium, andK is the total surface curren
density. In the absence of free current the only contribut
to K is that in Eq.~13!. Substitution of Eq.~13! into Eq.~15!
followed by rearrangement, in which use is made of Eq.~2!,
yields the following boundary condition on theH fields:

eabgn̂b~H2g2H1g!5
1

2
Q̇abn̂b . ~16!

Although not used here the matching condition on theD
fields is included for completeness. To the order of elec
quadrupoles and magnetic dipoles it is

n̂a~D2a2D1a!52
1

2
¹bQabn̂a ~aÞb!. ~17!

The above equation is obtained when the multipole exp
sion for the surface density of electric-dipole momentp,
namely,20

pb52
1

2
Qabn̂a , ~18!

is substituted into the S.I. version of Langreth’s result for
discontinuity in the normal component ofD.21

When Qab50 in Eqs.~16! and ~17!, the standard Max-
well boundary conditions on theD and H fields are recov-
ered. It follows from Eq.~4! that these conditions apply to a
nonmagnetic media because for them the time-odd te
Sabg in Eq. ~7! does not exist.18 Certain magnetic media als
haveQab50 becauseSabg vanishes for symmetry reason
as Table I shows.

We find for normal incidence that there are no discon
nuities at the interface in the normal component ofB or, as
shown by Langreth,21 in the tangential components ofE.

III. REFLECTION FROM ANTIFERROMAGNETIC
CRYSTALS

In this paper we consider antiferromagnets of the unia
and cubic systems and present details of reflection only
normal incidence.

The properties of a crystal are traditionally specified re
tive to its crystallographic Cartesian axes, here denoted 1
o

e

n

c

s-

e

or

-

l
r

-
,3

with the 3 axis that of highest symmetry,18 which in a
uniaxial crystal is also the optic axis. The crystal is orient
with respect to a laboratory system of Cartesian axesx,y,z
such that 3iz and the 1 and 2 crystallographic axes are at
arbitrary angleu to thex andy axes, respectively, which lie
in the reflecting surface. Tensor components in the labo
tory frame 0(x,y,z) can be expressed in terms of those in t
crystallographic system 0~1,2,3! by means of the transforma
tion for a rotation

Xab . . . 5Xi j . . .ai
aaj

b . . . , ~19!

where ai
a is the direction cosine between thea axis in

0(x,y,z) and thei axis in 0~1,2,3!.
For antiferromagnetsaab8 in Eq. ~6! is zero.12 Also, as

explained in Sec. I, the time-even tensorsGab8 andaabg in
Eq. ~9! are not included here. Thus the appropriate forms
the constitutive relations in Eqs.~1! and ~2! are from Eqs.
~3!–~6!

Da5S e0dab1aab2
1

3
iSabg¹gDEb1tabBb , ~20!

Ha52tbaEb1m0
21Ba , ~21!

whereSabg andtab are defined, respectively, in Eqs.~7! and
~8!.

We then find from Eqs.~20! and ~21! and the two inho-
mogeneous Maxwell equations that, for a plane monoch
matic light wave of angular frequencyv with an electric
field of the form

E5E~0!exp$ iv~ns•r /c2t !%, ~22!

the propagation equation is12

@n2~sasb2dab!1dab1e0
21aab1nm0csg Aabg#Eb

~0!50,
~23!

wheren is the refractive index for the polarization state d
scribed by the amplitudeE(0) when propagation is in the
direction of the unit wave-normals, e0

21aab is the electric
susceptibility, and

Aabg52eagdGbd2ebgdGad1
1

2
v~aabg8 1abag8 !5Abag .

~24!

Nontrivial solutions for the componentsE(0) in Eq. ~23! may
be found by setting the determinant of the coefficients eq
to zero. The roots of the determinantal equation are the
fractive indices of the propagating waves which, when s
stituted into Eq.~23!, yield the corresponding eigenpolariza
tions in terms of the components ofE(0).

It follows from Eqs.~21! and~22! and the Maxwell equa-
tion

¹3E52Ḃ, ~25!

that the associatedH fields are given by

Ha5~m0c!21neabgsbEg2tbaEb . ~26!



e

m

r-
d

-

c
lle
hi
s’
m

geo-

nts
s

he

m-
f
al

a-
ot
the

ther
ors
es
evi-
xial
ups
ions
ow
he
ble

-

PRB 59 7061EXTENSIONS TO THE MAXWELL BOUNDARY . . .
At the interface (z50) the tangential components of th
electric field are continuous,21 i.e.,

eazg~E2g2E1g!50, ~27!

while from Eqs.~16!, ~4!, and ~22! the condition on theH
fields is

eazg~H2g2H1g!5
1

6
vSagzE1g . ~28!

The boundary conditions in Eqs.~27! and ~28! yield four
independent relationships that can be rewritten in the for22

~Er
~0!! j5Rjk~Ei

~0!!k , ~29!

whereRjk is the 232 reflection matrix that relates the Ca
tesian components of the reflected electric-field amplitu
Er

(0) to those of the incident electric-field amplitudeEi
(0) .

Equations~19!–~29! are applied to uniaxial antiferromag
nets in Sec. IV and to cubic antiferromagnets in Sec. V.

IV. UNIAXIAL ANTIFERROMAGNETS

In this section we consider reflection at normal inciden
from uniaxial antiferromagnets when the light path is para
to the optic axis. The magnetic point groups to which t
class of crystal belongs have been identified from Birs
tables18 and are listed in Table I. Here, the noncentrosy
metric crystal classes have been placed in parentheses to
he

ut
w
m

s

e

e
l

s
s
-
dis-

tinguish them from the remaining classes that possess a
metric center of symmetry.

Also shown in Table I are the nonvanishing compone
of the polarizability tensoraab and of the time-odd tensor
Aabg , tab , and Sabg @defined, respectively, in Eqs.~24!,
~8!, and~7!# for the selected experimental arrangement. T
various entries were obtained with the aid of Eq.~19! and the
tabulations of tensor components for different crystal sy
metries by Birss.18 It is interesting that, with the exception o
the point groups listed in V and VI in Table I, the cryst
properties are independent of the relative orientationu of the
crystallographic and laboratory axes in thexy plane.

In the electric-quadrupole–magnetic-dipole approxim
tion, crystals with a geometric center of symmetry do n
possess properties other than those shown in Table I for
experimental arrangement under consideration. On the o
hand, additional contributions due to the time-even tens
Gab8 andaabg may exist for the noncentrosymmetric class
in parentheses in Table I. These contributions have pr
ously been determined for the relevant nonmagnetic unia
classes,3 and also apply to the associated magnetic subgro
in each case. However, we have excluded such contribut
from the theory in Sec. III, and hence the results that foll
apply strictly only to centrosymmetric antiferromagnets, t
point groups of which do not appear in parentheses in Ta
I.

For normal incidences5(0,0,1), and then the propaga
tion equation~23! may be written as
F 2n21m0c2ex1nm0cAxxz nm0cAxyz 0

nm0cAxyz 2n21m0c2ex1nm0cAyyz 0

0 0 m0c2ez1nm0Azzz

GF Ex
~0!

Ey
~0!

Ez
~0!
G50, ~30!
n

ups
-
r-

ec-

f

whereek5e01akk , ex5ey , and use has been made of t
symmetry property in Eq.~24!.

Because the off-diagonal components ofAabg in Eq. ~30!
vanish for the magnetic point groups in I–IV of Table I, b
not for those in V and VI, it is necessary to treat these t
groups of crystal separately. The results that follow fro
Table I and Eqs.~26!–~30! are presented below.

A. Magnetic point groups listed in I–IV in Table I

Reference to Table I shows thatAxyz50 for the point
groups in I–IV, whileAxxz5Ayyz exists only for the classe
in III and IV. It therefore follows from Eq.~30! that the
characteristic waves are polarized parallel to thex andy axes
with corresponding refractive indices

nx5ny5
1

2
m0cAxxz1N, ~31!

where

N5
1

2
c~m0

2Axxz
2 14m0ex!

1/2. ~32!
o

Becausenx5ny there is no birefringence for propagatio
along the optic axis. However, as shown previously,12 a re-
versal of the light path changes the sign ofAxxz in Eq. ~31!
and hence crystals belonging to the magnetic point gro
listed in III and IV of Table I may exhibit directional bire
fringence, i.e., a difference in the refractive indices for fo
ward and reverse propagation along the same path.

From Eqs.~26!–~28!, ~31!, and the entries in Table I we
find the following expressions for the elements of the refl
tion matrix Rjk in Eq. ~29!:

Rxx5Ryy5~12N!/~11N!, ~33!

Rxy52Ryx522m0ctxx /~11N!2. ~34!

Since time reversal leavesN unchanged, as Eq.~32! shows,
but reverses the sign oftxx in Eq. ~34!, the reciprocity
condition1

Rjk~ t !5Rk j~2t ! ~35!

is clearly satisfied by Eqs.~33! and ~34!.
It follows from Eq. ~34! that the off-diagonal elements o

the reflection matrix vanish whentxx50, and hence, from
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Table I, that nonreciprocal effects in reflection may not ex
for the magnetic point groups listed in I and III when th
light path is parallel to the optic axis.

B. Magnetic point groups listed in V and VI in Table I

For the magnetic point groups in V and VI in Table I, E
~30! yields the following eigenpolarizations and associa
refractive indices:

~Ey
~0!/Ex

~0!!65@6~Axxz
2 1Axyz

2 !1/22Axxz#/Axyz, ~36!

n656
1

2
m0c~Axxz

2 1Axyz
2 !1/21V, ~37!

where

V5
1

2
c@m0

2~Axxz
2 1Axyz

2 !14m0ex#
1
2 . ~38!

When Eqs.~36! and~37! are used in Eqs.~26!–~28!, together
with the relevant entries in Table I, the elements of the
flection matrixRjk in Eq. ~29! are found to be

Rxx5Ryy5~12V!/~11V! ~39!

and

Rxy5Ryx50, ~40!

where

V5
1

2
c@m0

2~A2
21A6

2!14m0ex#
1/2 ~41!

for V and

V5
1

2
c@m0

2A6
214m0ex#

1/2 ~42!

for VI. These results clearly satisfy the reciprocity conditi
in Eq. ~35!.

It is evident from Eqs.~39!, ~41!, and~42! that despite the
angular dependence of the entries forAabg , tab , andSabg
in Table I, effects in reflection at normal incidence are ind
pendent of the orientation of the crystallographic 1 and
axes in the reflecting plane. Furthermore, nonreciprocal
fects are absent in reflection because there are no cont
tions to Eqs.~39!–~42! that are linear inGab and aabg8 .
However it has previously been noted,10–12 and is readily
seen from Eq.~37!, that nonreciprocal birefringence may e
ist in transmission.

V. CUBIC ANTIFERROMAGNETS

The constitutive relations in Eqs.~20! and~21! have sim-
pler forms for all magnetic point groups of the cubic syste
becausetab5tba50, as Birss’s tables18 show. Thus mag-
netic effects in transmission and reflection are descri
solely by the symmetric tensorSabg in Eq. ~7!. In this sec-
tion we consider reflection from cubic crystals for whic
Sabg may exist. Reference to tables18 shows that the relevan
magnetic point-group symmetries are

m3m, m3, ~ 4̄3m, 432, 23!, ~43!
t

d

-

-
2
f-
u-

d

where, once again, the noncentrosymmetric classes
shown in parentheses.

When propagation is along the normal to a cube face
crystals belonging to the point groups listed in Eq.~43!, we
find from tables18 and Eq.~19! that the independent compo
nents ofSabg in Eq. ~7! are

Sxxz52Syyz5a1238 sin 2u, ~44!

Sxyz5a1238 cos 2u, ~45!

whereu is the angle between a crystallographic axis and
corresponding laboratory axis in the reflecting surface. It a
follows from the tables18 and Eqs.~19!, ~23!, and ~24! that
the propagation equation has the form in Eq.~30! with

ex5ez , ~46!

Axxz52Ayyz5va1238 sin 2u, ~47!

Axyz5va1238 cos 2u, ~48!

Azzz50. ~49!

Then, from Eqs.~30! and ~46!–~49!, the eigenpolarizations
and associated refractive indices of the waves in the cry
are

~Ey
~0!/Ex

~0!!65~612cos 2u!/sin 2u ~50!

and

n656
1

2
m0cva1238 1W, ~51!

where

W5
1

2
c@~m0va1238 !214m0ex#

1/2. ~52!

Subsequent use of Eq.~26!, in which tba50, and also of
Eqs. ~27!, ~28!, ~44!, ~45!, ~50!, and ~51! yields for the ele-
ments ofRjk in Eq. ~29!,

Rxx5Ryy5~12W!/~11W!, ~53!

Rxy5Ryx50, ~54!

where the expression forW is given in Eq.~52!. It is evident
from Eqs.~52!–~54! that here also the reciprocity conditio
in Eq. ~35! is satisfied. In addition, because there are
contributions linear ina1238 to Eqs.~52!–~54!, nonreciprocal
effects may not occur in reflection at normal incidence fro
crystals with the point-group symmetries in Eq.~43!, even
though these crystals may exhibit linear birefringence
transmission that is proportional toa1238 ,12 as Eq. ~51!
shows.

VI. CONCLUSION

The theory described in this paper is based on a consis
multipole treatment, to the order of electric quadrupoles a
magnetic dipoles, of both the covariantD andH fields for an
anisotropic, magnetic medium, and also of the discontinui
in these fields at a vacuum-medium interface. Several in
esting results emerge from this treatment.

In the first instance it is shown that the bound surfa
densities of electric-dipole moment and current, which g
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rise, respectively, to the discontinuities in theD andH fields
in a source-free medium, are both related to a third-ra
time-odd, polar tensorSabg with full permutation symmetry
in its subscripts. Because this tensor does not exist for n
magnetic media and also vanishes due to symmetry for
tain magnetic crystals, it is possible to explain why the st
dard Maxwell boundary conditions should apply to su
media in the electric-quadrupole–magnetic-dipole appro
mation. Furthermore, whenSabg exists, it is readily shown
that, even for normal incidence, its omission from the bou
ary conditions on theD andH fields leads to reflection ma
trices that do not satisfy the reciprocity condition in Eq.~35!.

In Sec. IV A the theory is applied to crystals belonging
the magnetic point groups listed in I–IV in Table I. Althoug
these crystals do not exhibit birefringence for propagat
along the optic axis, those in groups II and IV neverthel
display nonreciprocal effects in reflection. These are a ro
tion Df of an incident linearly polarized beam and circul
dichroism.7,8 Reflection measurements at normal inciden
have been performed on two antiferromagnetic crystals

longing to group II,8 namely, Cr2O3 ~symmetry 3̄m) and
Nd2CuO4 which has been assigned the magnetic point-gr
symmetry 4/mmm, in the temperature range 70–245 K.23

Whereas a rotationDf;1024 was measured in Cr2O3 ,8 as
confirmed by our present and earlier theories,7 null results
were obtained for Nd2CuO4, even though the sensitivity o
the apparatus was;1026.8 In view of this uncharacteristic
behavior of a crystal with symmetry 4/mmm, the question
arises whether the appropriate magnetic point group is
perhaps 4/mmm, or even 4/mmm, for both of which the
theory in this paper predicts a null effect in reflection
normal incidence, as shown in Sec. IV. Inasmuch as
properties of different materials provide a basis for determ
ing their relevant point-group symmetries, birefringen
measurements would distinguish between the three gro
4/mmm, 4/mmm, and 4/mmm. For propagation along the
optic axis, it follows from Eqs.~31! and ~37! that birefrin-
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gence would exist only for a crystal with magnetic poi
group symmetry 4/mmm. The remaining two point groups
may be distinguished by means of a path reversal since
explained in Sec. IV A, directional birefringence may ex
for 4/mmmbut not for 4/mmm.

The application of the theory in Sec. IV B to crystals b
longing to the point-group symmetries listed in V and VI
Table I reveals the somewhat surprising result that nonre
rocal effects are absent in reflection at normal incidence fr
a face perpendicular to the optic axis, despite the existenc
these crystals of nonreciprocal linear birefringence alo
their optic axis.10–12

It follows from an earlier theory,3 in which we consider
reflection from nonmagnetic uniaxial crystals, that contrib
tions to the off-diagonal elements of the reflection matr
due to the time-even tensorsGab8 and aabg , would exist
only for those magnetic subgroups associated with the n
centrosymmetric classes 4¯ and 4̄2m. Thus reflection matri-
ces for the remaining noncentrosymmetric magnetic po
groups, listed in I–VI in Table I, have the same gene
forms as those derived in Secs. IV A and IV B for the corr
sponding centrosymmetric classes.

In Sec. V we consider cubic antiferromagnets belong
to the magnetic point groupsm3m, m3, 4̄3m, 432, and 23.
Whereas these classes may exhibit nonreciprocal linear b
fringence for propagation along the normal to a cube fac12

we find from Eqs.~52!–~54! that nonreciprocal effects ar
once again absent in reflection. It has previously be
shown9 that even for chiral cubic crystals the matrix el
ments have the general forms in Eqs.~53! and ~54! ~i.e.,
Rxx5Ryy , Rxy5Ryx50), which are also those for an iso
tropic, optically inactive dielectric.24 Thus, to the order of
electric quadrupoles and magnetic dipoles, all cubic cryst
irrespective of their magnetic or chiral properties, exhibit t
same response in reflection at normal incidence from a c
face as an achiral, nonmagnetic, cubic crystal. To distingu
between the different crystal properties it is therefore nec
sary to make use of transmission measurements or to wo
oblique incidence in reflection.
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