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Standard Maxwell boundary conditions do not always apply at the surface of an anisotropic magnetic
medium in a vacuum, even when tBeandH fields that describe the properties of the medium are taken in
covariant form. It is shown that discontinuities may arise in these fields due to bound surface current and
electric-dipole moment, and the leading multipole forms of these discontinuities are identified. Reflection
matrices for normal incidence are derived for all uniaxial and cubic antiferromagnetic crystals. These matrices
satisfy reciprocity(time-reversal symmetjyonly when the extended boundary conditions are used. Various
magnetic point groups are identified that exhibit nonreciprocal effects in reflection, but not in transmission. It
is also shown that when nonreciprocal birefringence exists in transmission, nonreciprocal effects are absent in
reflection at normal incidence. The magnetic point-group symmetry assigned @uRdis questioned on the
basis of the theory.S0163-18289)00106-X]

I. INTRODUCTION electric quadrupole and magnetic dipole for all nonmagnetic
crystals of the uniaxidland cubié systems, using the stan-
Theories of reflection that satisfy the requirements ofdard Maxwell boundary conditions, the concern of this paper
space-time symmetty have recently been derived for vari- is to demonstrate the need to extend these boundary condi-
ous anisotropic nonmagnetic metifawith the aid of stan- tions when reflection from magnetic crystals is described. To
dard Maxwell boundary conditioRsand covariant constitu- this end only the magnetic contributions of electric-
tive relations to the order of electric quadrupole andduadrupole—magnetic-dipole order are included in the theory
magnetic dipolé. A similar procedure applied to a uniaxial of refI.ectlon from antiferromagnetic crystals that is devel-
magnetic crystal, namely, antiferromagnetic chromium oxide?P€d in Sec. II. _ _ o _
(Cr,05),” has also been successful in producing a theory of In Sec. IV the_ th_eory is applied to uniaxial antlferr_omag-
reflection for normal incidence with the correct symmetrynetS for normal incidence on a plane face perpendicular to

properties which, in addition, agrees well with experinfent. the optic axis. Various point groups are identified for which
the nonreciprocal properties in reflection turn out to be the

In this paper the theory is extended to all antiferromagnetic i —

crystals of the uniaxial and cubic systems. An interestingsa”;]e as those _d'Splﬁyid by_20§_d(sym|rnetryl37m),Ina_lmzlylz h

point that arises in this treatment is that, even for norma change in azimuth of an Incident linearly polarized light
eam and circular dichroishf (These effects are termed

incidence, there are magnetic media to which the standal ) o
g . . nonreciprocal because they have opposite signs for the two
boundary conditions do not apply in the electric-quadrupole—

magnetic-dipole approximation. Examples of such media arstates of a crystal th.at' are related to each other b'y time re-
: . " ) . eersal) Another prediction, somewhat unexpected, is the ab-
cubic crysEtIs with the magnetic p_om_t—group SymmEtrIessence in reflection of nonreciprocal effects for classes of te-
m3m, m3, 43m, 432, and 23 and uniaxial crystals belong- tragonal magnetoelectrics that have been shown to exhibit
ing to the magnetic point groups listed in IlI-VI in Table I. nonreciprocal linear birefringence for propagation along
A characteristic feature of these point groups is the existencgeijr optic axist’~*2 Magnetic cubic crystals are considered
of a third-rank time-odd polar tensor that is totally symmetricin sec. v where reflection matrices are derived for normal

in its three subscripts. As shown in Sec. II, this tensor ispcigence on a cube face. Concluding remarks follow in Sec.
associated with discontinuities due to bound surface curreny.

and electric dipole moment that may occur in the light-wave

fields at an interface. The validity of boundary conditions II. COVARIANT CONSTITUTIVE RELATIONS
that do not include such a tensor has previously and pre- AND BOUNDARY CONDITIONS
sciently been questionéd. _

In this paper we make use of covariant multipole forms [N any theory of reflection two aspects of the problem
for the D and H fields and work to the order of induced '€quire careful consideration, namely, the choice that is
electric quadrupoles and magnetic dipoles. The boundarfpade for theD andH fields that describe the response prop-
conditions on thed andH fields at the surface of a source- erties of the medium to the fields of the light wave, and the
free, anisotropic, magnetic medium in a vacuum are detefooundary conditions that apply to these fields at an interface.
mined in Sec. Il to this multipole order. These conditions are
shown to reduce to the standard Maxwell forrfer all non-
magnetic media and also for certain magnetic media. The importance of using covariant forms forandH to

Since reflection matrices have been derived to the order aénsure the spatial and temporal invariance of the equations of

A. Covariant constitutive relations

0163-1829/99/5@.0)/70586)/$15.00 PRB 59 7058 ©1999 The American Physical Society



PRB 59 EXTENSIONS TO THE MAXWELL BOUNDARY . .. 7059

TABLE I. Components ofv,;, A,zy, tag, andS,g, relative to Cartesian crystallographic axes 1,2,3 for uniaxial antiferromagnets of
the magnetic point groups shown, when the 3 &ajgtic axig is parallel to thez axis of a laboratory reference framexgy,z) lying along
the normal to the reflecting surface in which the 1 and 2 axes are at an @atglidhe x andy axes, respectively. The noncentrosymmetric
point groups are shown in parentheses. The remaining point groups possess a geometric center of symmetry. kog=«ly;
Acxz=Ayyz bty ty=—tyx, Sxe=Syy:; For Voand VIb an=ayy, A= —Ayyz, o™ty b=ty Sue= Sz
A1=3(G33~G1i— 30al), Ay=2G1t+ wajys, Ag=waiy, A=Grto(ajg—ayy), As=30(2aj1atayy), As=—2G1+waly,
A;=G11— sw(a)ps—ahyy), Ag=3w(2a)y5+ak,), S=sin2§, C=cos.

Magnetic point group Ayyx  dzz Axxz Axyz Azzz tex txy Sixz S(yz

I 6/mmm,6/m(6m2,6mm,622,6) @1 @33
I 6/mmm,§ﬂ,4/mmm

(6m2,622,3242m, 422) ay g A
Il “6/mmm3m,4mmm
(6m2,6mm,3m,42m,4mm) @11 @3 Az As Aq As
v - 6/m,§,4/m,(7§,Z) ay; agg Ay Az —A; Ay As
V. 4/mmm,(42m4mm422)  au as; SA CA CA; ~SA, CAs ~SA
Vi ﬂ/m,(i) ayp azz SAGtCA, CAs—SA CA;+SA, CA,—SA, CA;+SA; CAg—SA

continuity at an interface has been discussed in a number of 1

articles®131*Also reported in these articles are the appropri- t,s=Gop— 5 ©€py58ysa- 9
ate forms forD andH in the electric-quadrupole—magnetic-
dipole approximation for a magnetic, anisotropic, chiral me-
dium exposed to a light wave with time dependencet
exp{—iwt}. Although the expressions f@ andH were pre-

Egs.(8) and(9), 8,4 is the Kronecker delta and,, is
he Levi-Civita tensor. The remaining tensors on the right-

; . . . hand sides of Eqg6)—(9) are macroscopic property tensors
viously displayed in the format adopted by PBS is de- of the medium to which symmetry considerations may be

_sirable_when discussing boundary condi@ions to rewrite the"ﬂ)roperly applied® These tensors describe the induction of
n mqupoIe.form. To the order of eIectng quadrupoles andmultipole moments in a macroscopic volume element of the
2}21%2?“0 dipoles the multipole expansions @rand H material by the light-wave fields and their space and time
derivativest* Certain of these tensors exhibit permutation

1 symmetry in their subscriptéas shown below:
D,=e€E,+ PQ—EVBQaﬁer, (1)
aaB:aﬁal a;B: _a,z%a' (10)

Ha:MalBa_Ma+"'! (2)

gy =8aygr Bug,=al.5- (11
whereP,, Q,z, andM, are, in Cartesian tensor notation, py= Tarp Py vk

macroscopic densities of electric-.dipple moment, electricy; 5150 follows from the second equality in EQLD) thatS, s,
quadrupole moment, and magnetic-dipole moment, respe¢y gq. (7) is symmetric in the permutation of all three sub-
tively. We then find by inspection from the covariant ConSt"scriptSa B, andy. It has previously been shown that the
tutive relations in Refs. 6, 13, and 14 the following tensorSaaﬁ,G’ anda are time even and;ﬁ, Gup,

i izati ities i . ap’ apy
expressions for the polarization densities in E4s.and(2): anda/,, time 0dd®? so that from Eq(7) S.p, is time odd.

1 (Time-even property tensors may exist for both nonmagnetic
Po=FosEp— =iSup,V,Ept(top—it,p)Bgt -, (3) and magnetic media, while time-odd ones belong only to
6 magnetic material&)

1
QaﬁzgisaﬁyEy"' el (4) B. Boundary conditions

In order to determine the matching condition on tHe
MaZ(tﬁa+it'Ba)Eﬁ+ . (5) fields_ at an interface between a medium and a vacuum, we
consider the total bound current density at a macroscopic
where volume element of the material. It follows from a multipole
expansion of the vector potentidlthat in the electric-
Fap=aup—iag, (6) quadrupole—magnetic-dipole approximation there are two
contributions: a volume density of bound currdgtas well

Al ’ ! i
Supy=angy T 8hyaT Aug, (7) as a surface density of bound curréq where

1 1 . 1.
taﬁ:Gaﬁ_gaaﬁG}’)’_ gweﬁygawga, (8) ‘]bu: Pa_ EV,BQQB+ eaﬁ"yVBMyv (12)
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1. . with the 3 axis that of highest symmet¥,which in a
Kp, = (EQaﬁ_ €ap,M y) Ng; (13 uniaxial crystal is also the optic axis. The crystal is oriented
with respect to a laboratory system of Cartesian axgsz
an overdot denotes partial differentiation with respect tosuch that §z and the 1 and 2 crystallographic axes are at an

time, andn is the outward unit normal to the surface. arbitrary angled to thex andy axes, respectively, which lie
For time-dependent light-wave fields and B in matter, in the reflecting surface. Tensor components in the labora-
Ampere’s law takes the forf{ tory frame 0§,y,z) can be expressed in terms of those in the
crystallographic system(0,2,3 by means of the transforma-
VX B= po(E+J), (14)  tion for a rotation
wherelJ is the total current density, both free and bound, in Xag . =Xij ...aiaajB L (19)

the medium. Application of standard proceddresthe inte-
gral form of Eq.(14) yields the following condition on the where a* is the direction cosine between the axis in
tangential components & at a vacuum-dielectric interface: 0(x,y,z) and thei axis in 01,2,3.
. For antiferromagnetsr,, in Eq. (6) is zero'* Also, as
nXx(Bz—By) = uoK, (15 explained in Sec. I, the time-even tens@§, anda,, in

where medium 1 is the dielectric, medium 2 is the vacunm, Ea. (9) are npt mclud_ed h_ere. Thus the appropriate forms of
the constitutive relations in Eq$l) and (2) are from Egs.

is here the unit normal at the interface that points from the(3)_(6)
first to the second medium, amdis the total surface current
density. In the absence of free current the only contribution

to K is that in Eq.(13). Substitution of Eq(13) into Eq.(15) Do=| €08ap+ aaB—EiS V,|Egtt.sBs, (20

followed by rearrangement, in which use is made of &4, 3 by
yields the following boundary condition on th fields: 1
1 Ha:_tBaEB+MO B, (21)
€apNp(Hz,—Hy,) =§'Qaﬁﬁﬁ. (16)  whereS,, andt, are defined, respectively, in Eq3) and
(8).

Although not used here the matching condition on the We then find from Eqgs(20) and (21) and the two inho-

fields is included for completeness. To the order of electrionogeneous Maxwell equations that, for a plane monochro-

quadrupoles and magnetic dipoles it is matic light wave of angular frequency with an electric
field of the form

- 1 ,\
na(DZH_Dla)z_EVBQaBna (CY?&B) (17) E:E(O)exphw(no-rlc_t)}’ (22)

The above equation is obtained when the multipole expresthe propagation equation'fs
sion for the surface density of electric-dipole moment

namely?° [N%(040 5= 8up) + Sapt €5 " upt n;LOCUyAaBy]E‘(BO)Z(ZOé)
Pg=— EQaBﬁa! (18 wheren is the refractive index for the polarization state de-

scribed by the amplitud&€® when propagation is in the
is substituted into the S.I. version of Langreth’s result for thedirection of the unit wave-normab, Eglaaﬁ is the electric
discontinuity in the normal component bf.?* susceptibility, and
WhenQ,z=0 in Egs.(16) and (17), the standard Max-
well boundary conditions on thB andH fields are recov- 1
ered. It follows from Eq(4) that these conditions apply to all  Aapy= ~ €aysCps~ €pysCast 50(apy T 8pay) =Apgay-
nonmagnetic media because for them the time-odd tensor (24)
S,z IN EQ. (7) does not exist® Certain magnetic media also
haveQ,;=0 because, s, vanishes for symmetry reasons, Nontrivial solutions for the componeni? in Eq. (23) may
as Table | shows. be found by setting the determinant of the coefficients equal
We find for normal incidence that there are no disconti-to zero. The roots of the determinantal equation are the re-
nuities at the interface in the normal componenBoér, as  fractive indices of the propagating waves which, when sub-
shown by LangretR! in the tangential components Bf stituted into Eq{(23), yield the corresponding eigenpolariza-
tions in terms of the components Bf?.
1Il. REFLECTION FROM ANTIFERROMAGNETIC It follows from EQS(Zl) and(22) and the Maxwell equa-

CRYSTALS tion

In this paper we consider antiferromagnets of the uniaxial VXE=-B, (25)
and cubic systems and present details of reflection only for
normal incidence. that the associated fields are given by

The properties of a crystal are traditionally specified rela-
tive to its crystallographic Cartesian axes, here denoted 1,2,3 H,= (Moc)‘lneaﬁyaﬁEV—tﬁaEﬁ. (26)
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At the interface £=0) the tangential components of the tinguish them from the remaining classes that possess a geo-

electric field are continuol&,i.e., metric center of symmetry.
Also shown in Table | are the nonvanishing components
€az/(E2,—E1,)=0, (27)  of the polarizability tensorr,z and of the time-odd tensors

while from Egs.(16), (4), and (22) the condition on theH Aapy: tag, and Sy, [defined, res',pectively, in Eqs24),
fields is (8), and(7)] for the selected experimental arrangement. The

various entries were obtained with the aid of Etp) and the
1 tabulations of tensor components for different crystal sym-
€azy(H2y—H1,))= § ©@SarE1y- (28)  metries by Birs$? It is interesting that, with the exception of
the point groups listed in V and VI in Table I, the crystal
The boundary conditions in Eq$27) and (28) yield four  properties are independent of the relative orientatiaf the
independent relationships that can be rewritten in the torm crystallographic and laboratory axes in thg plane.
on _ 0) In the electric-quadrupole—magnetic-dipole approxima-
(B =Ri(Ei )k, (29 tion, crystals with a geometric center of symmetry do not
whereR,, is the 2x 2 reflection matrix that relates the Car- POSS€SS properties other than those shown in Table | for the

tesian components of the reflected electric-field amplitudé*perimental arrangement under consideration. On the other
E© to those of the incident electric-field amplitugé® . hand, additional contributions due to the time-even tensors

Equations(19)—(29) are applied to uniaxial antiferromag- Ges @Nda,s, May exist for the noncentrosymmetric classes

nets in Sec. IV and to cubic antiferromagnets in Sec. V. in parentheses in Table I. These contributions have previ-
ously been determined for the relevant nonmagnetic uniaxial

IV. UNIAXIAL ANTIFERROMAGNETS _classeé,and also apply to the associated magnetic supgrqups
in each case. However, we have excluded such contributions
In this section we consider reflection at normal incidencefrom the theory in Sec. Ill, and hence the results that follow
from uniaxial antiferromagnets when the light path is parallelapply strictly only to centrosymmetric antiferromagnets, the
to the optic axis. The magnetic point groups to which thispoint groups of which do not appear in parentheses in Table
class of crystal belongs have been identified from Birss'd.
tables® and are listed in Table I. Here, the noncentrosym- For normal incidencer=(0,0,1), and then the propaga-
metric crystal classes have been placed in parentheses to di®n equation(23) may be written as

0
— N2+ puoCPe+ NoCAG: NoCAky 2 0 EY
NoCALy 2 —N?+ poC%e+NuoCAyy, O EY | =0, (30)
0 0 /-LOCZGZ+ NioAz, E(ZO)

wheree,=€p+ ayk, €= €y, and use has been made of the Becausen,=n, there is no birefringence for propagation
symmetry property in Eq24). along the optic axis. However, as shown previodélg, re-
Because the off-diagonal componentsAgf;, in EQ.(30)  versal of the light path changes the signAy, in Eq. (32)
vanish for the magnetic point groups in I-IV of Table I, but and hence crystals belonging to the magnetic point groups
not for those in V and VI, it is necessary to treat these twdisted in Il and IV of Table | may exhibit directional bire-
groups of crystal separately. The results that follow fromfringence, i.e., a difference in the refractive indices for for-

Table | and Eqs(26)—(30) are presented below. ward and reverse propagation along the same path.
From Egs.(26)—(28), (31), and the entries in Table | we
A. Magnetic point groups listed in I-1V in Table | find the following expressions for the elements of the reflec-

Reference to Table | shows that,,=0 for the point tion matrix R in Eg. (29)

groups in 1-1V, whileA,,,= A, exists only for the classes Rex=Ryy=(1—=N)/(1+N), (33
in Il and IV. It therefore follows from Eq.(30) that the
characteristic waves are polarized parallel toxttamdy axes Rey= — Ryx= — 20Cte/(1+ N)2. (34)

with corresponding refractive indices ) )
Since time reversal leavéé unchanged, as Eq32) shows,

1 but reverses the sign df,, in Eq. (34), the reciprocity
Ny=nNy=5 oCAut N, (31)  conditiont
where Rjk(t) = Rkj( —t) (35
is clearly satisfied by Eq$33) and (34).

)2 32) It follows from Eq. (34) that the off-diagonal elements of

1
N= = c(udAZ, +4 . , .
ZC(’“O xxz T TH0Ex the reflection matrix vanish whety,=0, and hence, from
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Table I, that nonreciprocal effects in reflection may not existwhere, once again, the noncentrosymmetric classes are
for the magnetic point groups listed in | and Il when the shown in parentheses.

light path is parallel to the optic axis. When propagation is along the normal to a cube face in
crystals belonging to the point groups listed in E4R), we
B. Magnetic point groups listed in V and VI in Table | find from tabl'eé8 and Eq.(19) that the independent compo-
_ ] _ _ nents ofS,g, in Eq. (7) are
For the magnetic point groups in V and VI in Table I, Eq. o
(30) yields the following eigenpolarizations and associated Sixz= ~ Syyz= 135N 20, (44)

refractive indices: ,
o) , , Syyz=a13€0S 20, (45
— 1/2
(BEy TEXT) = =[ % (Aot Akyd ™" Acxel Axyzs - (36) whered is the angle between a crystallographic axis and the
corresponding laboratory axis in the reflecting surface. It also
follows from the table¥ and Eqgs.(19), (23), and (24) that

=

=+ 2 2 \1/2
" iZMOC(AXXZ+AxyZ) v 37 the propagation equation has the form in E2D) with
where =€y, (46)
- 2 A= —Ayy,= wa],3Sin 20, 4
V= P C[Mg(A>2<XZ+ A)2<yz) +4mpe]2. (38 XXZ yyz 123 47
Axyz= ©813€0S 20, (48

When Egs(36) and(37) are used in Eq$26)—(28), together
with the relevant entries in Table I, the elements of the re- A,,~0. (49

flection matrixR; in Eq. (29) are found to be Then, from Eqs(30) and (46)—(49), the eigenpolarizations

Rex=Ryy=(1=V)/(1+V) (399  and associated refractive indices of the waves in the crystal
are
and
(ELVEY) . =(+1—cos 20)/sin 26 (50)
Ry =Ryx=0, 40
Xy yX ( ) and
where 1
1 n,= iz,uonaiZg#- W, (51
V=5l ug(AZ+AG +4uoe ] (42)
where
for V and
1 ’ 2 1/2
1 W= EC[(Mowalzs) +Apoe] " (52
V= —c[ ulA2+4u4e,]4? (42)

2 Lafe T Arocy] Subsequent use of E¢26), in which tz,=0, and also of
for VI. These results clearly satisfy the reciprocity condition EAS:(27), (28), (44), (49), (50), and (51) yields for the ele-
in Eqg. (35). ments ofR;, in Eq. (29),

It is evident from Eqs(39), (41)., and(42) that despite the Ru=Ryy= (1= W)/(1+W), (53
angular dependence of the entries £y, , t,5, andS,g,
in Table I, effects in reflection at normal incidence are inde- Ryy=Ryx=0, (54)

pende_nt of the orl_entatlon of the crystallographp 1 and 2Where the expression féW is given in Eq.(52). It is evident
axes in the reflecting plane. Furthermore, nonreciprocal ef; ; : .

X . . from Egs.(52)—(54) that here also the reciprocity condition
fects are absent in reflection because there are no contribu-

. : . , in Eq. (35 is satisfied. In addition, because there are no
tions to E.qs.(39)—(42.) that are Imea;‘éch‘w ar.1d aaﬁ?,' contributions linear ima;j,; to Egs.(52)—(54), nonreciprocal
However it has previously been noted,” and is readily  effects may not occur in reflection at normal incidence from
seen from Eq(3'7), that nonreciprocal birefringence may ex- crystals with the point-group symmetries in Ed3), even
Ist In transmission. though these crystals may exhibit linear birefringence in

transmission that is proportional taj,s;,** as Eq. (51)
V. CUBIC ANTIFERROMAGNETS shows.

The constitutive relations in Eq&0) and(21) have sim-
pler forms for all magnetic point groups of the cubic system
because,;=1t4,=0, as Birss’s tablé§ show. Thus mag- The theory described in this paper is based on a consistent
netic effects in transmission and reflection are describeghultipole treatment, to the order of electric quadrupoles and
solely by the symmetric tens@,, in Eq. (7). In this sec- magnetic dipoles, of both the covariddtandH fields for an
tion we consider reflection from cubic crystals for which anisotropic, magnetic medium, and also of the discontinuities
S., May exist. Reference to tabfshows that the relevant in these fields at a vacuum-medium interface. Several inter-
magnetic point-group symmetries are esting results emerge from this treatment.

. In the first instance it is shown that the bound surface
m3m, m3, (43m, 432, 23, (43 densities of electric-dipole moment and current, which give

VI. CONCLUSION
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rise, respectively, to the discontinuities in theandH fields ~ gence would exist only for a crystal with magnetic point
in a source-free medium, are both related to a third-rankgroup symmetry 4hmm. The remaining two point groups
time-odd, polar tensaB, s, with full permutation symmetry may be distinguished by means of a path reversal since, as

in its subscripts. Because this tensor does not exist for nor%pszndm'gusti%t I}}{)ﬁhrﬂ'rz]enﬁt'onal birefringence may exist

mggnetic m_edia and al_so_ vanishes due to s_ymmetry for cef= The application of the theory in Sec. IV B to crystals be-
tain magnetic crystals, it is pos_s_lble to explain why the Stanlonging to the point-group symmetries listed in V and VI in
dard Maxwell boundary conditions should apply to suchTgpje | reveals the somewhat surprising result that nonrecip-
media in the electric-quadrupole—magnetic-dipole approXirocal effects are absent in reflection at normal incidence from
mation. Furthermore, whe8,, exists, it is readily shown a face perpendicular to the optic axis, despite the existence in
that, even for normal incidence, its omission from the boundihese crystals of nonreciprocal linear birefringence along
ary conditions on th® andH fields leads to reflection ma- their optic axis*®™*
trices that do not satisfy the reciprocity condition in E8g). It follows from an earlier theory,in which we consider

In Sec. IV A the theory is applied to crystals belonging to "eflection from nonmagnetic uniaxial crystals, that contribu-
the magnetic point groups listed in IV in Table I. Although tions to the off-diagonal elements of the reflection matrix,

these crystals do not exhibit birefringence for propagatiorflu€ t0 the time-even tensofs,; and a,4,, would exist
along the optic axis, those in groups Il and IV nevertheles?nly for those rnagnetlc_subgﬁ)ups associated _W'th the.non-
display nonreciprocal effects in reflection. These are a rotac€ntrosymmetric classesahd £m. Thus reflection matri-
tion A ¢ of an incident linearly polarized beam and circular ces for the remaining noncentrosymmetric magnetic point

) S 78 . . roups, listed in 1-VI in Table I, have the same general
dichroism!° Reflection measurements at normal incidenc orms as those derived in Secs. IVA and IV B for the corre-

have been performed on two antiferromagnetic_crystals bes'ponding centrosymmetric classes.
longing to group I namely, C5O; (symmetry3m) and In Sec. V we consider cubic antiferromagnets belonging
Nd,CuQ, which has been assigned the magnetic point-grougg the magnetic point groupa3m, m3, 43m, 432, and 23.
symmetry 4mmm, in the temperature range 70-245"K. \Whereas these classes may exhibit nonreciprocal linear bire-
Whereas a rotation ¢~ 10"* was measured in @03,% as  fringence for propagation along the normal to a cube face,
confirmed by our present and earlier theofiewyll results  we find from Eqgs.(52—(54) that nonreciprocal effects are
were obtained for NgCuQ,, even though the sensitivity of once again absent in reflection. It has previously been
the apparatus was 107 6.8 In view of this uncharacteristic showr? that even for chiral cubic crystals the matrix ele-
behavior of a crystal with symmetry mmm, the question ments have the general forms in E¢53) and (54) (i.e.,
arises whether the appropriate magnetic point group is ndR,,=R,,, R,,=R,,=0), which are also those for an iso-
perhaps 4hmm or even 4mmm, for both of which the tropic, optically inactive dielectrié* Thus, to the order of
theory in this paper predicts a null effect in reflection atelectric quadrupoles and magnetic dipoles, all cubic crystals,
normal incidence, as shown in Sec. IV. Inasmuch as thérespective of their magnetic or chiral properties, exhibit the
properties of different materials provide a basis for determinsame response in reflection at normal incidence from a cube
ing their relevant point-group symmetries, birefringenceface as an achiral, nonmagnetic, cubic crystal. To distinguish
measurements would distinguish between the three grougsetween the different crystal properties it is therefore neces-
4/mmm, 4/immm and 4mmm. For propagation along the sary to make use of transmission measurements or to work at
optic axis, it follows from Eqs(31) and (37) that birefrin-  oblique incidence in reflection.

1A. L. Shelankov and G. E. Pikus, Phys. Rev4B 3326(1992. “R. E. Raab and E. B. Graham, Ferroelectri2®4, 157

2G. S. Canright and A. G. Rojo, Phys. Rev4B, 14 078(1992. (1997.
%E. B. Graham and R. E. Raab, J. Opt. Soc. Am13, 1239  15g J. PostFormal Structure of Electromagneti¢slorth-Holland,
(1996. Amsterdam, 196 p. 132.
“E. B. Graham and R. E. Raab, Mol. Ph@8, 1011(1996. 18, Rosenfeld,Theory of ElectrongNorth-Holland, Amsterdam,
5J. D. JacksonClassical ElectrodynamicgWiley, New York, 1951, Ch. 2.
1975, pp. 17-20. e, B. Graham, J. Pierrus, and R. E. Raab, J. Phy&5B4673
SE. B. Graham and R. E. Raab, J. Opt. Soc. Anl4131(1997). (1992.

"E. B. Graham and R. E. Raab, J. Phys.: Condens. Matt&863 18R, R. Birss, Rep. Prog. Phyg6, 307 (1963.

o (1997)', | , g Grid 19D, M. Cook, The Theory of the Electromagnetic FiglErentice-
B. B. Krichevtsov, V. V. Pavlov, R. V. Pisarev, and V. N. Grid- Hall, Englewood Cliffs, NJ, 1975 p. 327.

9 Mne;‘ \;.iI\F/’:r)/rrs];nC?]nc(JI)ezrlts. S'\g?tfrnﬁzzséé%?é 86 20E. B. Graham, Ph.D. thesis, University of Natal, 1985.
- » o DPL 50C. AM. : 21p_ C. Langreth, Phys. Rev. B9, 10 020(1989.

%0.F. Bonfim and G. A. Gehring, Adv. PI38.731 .
o(lzsge Alcantara Bonfim an shiing, Adv. P38 #’R. M. A. Azzam and N. M. Bashar&|llipsometry and Polarized

113, Ferfeand G. A. Gehring, Rep. Prog. PhytZ, 513 (1984). . ignt (North-Holland, Amsterdam, 1979p. 353.

12E B, Graham and R. E. Raab, Philos. Mag6@ 269 (1992. V. A Bllnqu, I. M. Vitebskii, O. D. K(;)Ioltu, NHI\ZI Lavrlnenkg,

13g. B. Graham and R. E. Raab, Advances in Complex Electro- V- P- Seminozhenko, and V. L. Sobolev, Zfksp. Teor. Fiz.
magnetic Materialsedited by A. Priou, A. Sihvola, S. Tretya- 98, 2098(1990 [ Sov. Phys. JETHL.1179(1990]- .
kov, and A. VinogradowKluwer Academic, Dordrecht, 1997 R. M. A. Azzam and N. M. Bashar&llipsometry and Polarized
p. 55. Light (Ref. 22, p. 355.



