
PHYSICAL REVIEW B 1 MARCH 1999-IIVOLUME 59, NUMBER 10
Neutron elastic scattering in magnetic media: Refracted-wave scattering approach
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The use of the refracted-wave scattering approach allowed encompassing some aspects of neutron scattering
in magnetic media that are not described in the standard approach to scattering. The corresponding mathemati-
cal formalism has been introduced. The Born approximation and the Larmor precession approximation have
been modified to take into account the refractive properties of magnetic media.@S0163-1829~99!10009-2#
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I. INTRODUCTION

The interaction of a neutron with magnetic field is d
scribed by the Schroedinger equation, the exact solution
which, quite often, cannot be found. Therefore, such st
dard approaches as the Born approximation~BA! and the
Larmor precession approximation~LA ! are used~e.g., Ref.
1!. The neutron interaction is treated in the majority of wor
in the frame of these approaches.

In both approaches the refraction effect of magnetic m
dium is ignored. Indeed, two velocities should be attribu
to a neutron in magnetic field,v1 andv2 , respectively, for
the neutron states with the spins ‘‘up’’ (1) and ‘‘down’’
(2) the field. This difference in velocities is lost in LA, as
means transition to the coordinate system moving with
neutron on assumption thatv15v2 . It is lost also in BA, as
the neutron state, which is a superposition of the states
the spin projections11/2 (↑) and 21/2 (↓) onto a quanti-
zation axis, is described at infinity by an asymptotic based
a linear combination of the wave functions with one and
same wave vectork:

C↑5exp~ ikr !S 1

0D , C↓5exp~ ikr !S 0

1D .

However, as the beam is divergent and the scattering re
is finite, another asymptotic behavior at infinity should
generally used~see Sec. III for more details!.

In some polarized neutron experiments, such as neu
spin echo spectroscopy,2 it is essential to follow exactly the
details of the neutron interaction with magnetic fields. T
same is true for neutron depolarization and SANS techniq
when neutron scattering at large-scale inhomogeneities,
with extremely low energy transfers, is essential. In additi
even the minutest details of neutron magnetic interac
may be essential for ultracold neutrons. We also mention
latest observations3–6 in polarized neutron reflectometry i
which subtle neutron optical effects of magnetic fields
play significant roles. Therefore, the detailed analysis of e
tic neutron scattering in magnetic media seems to be of p
tical interest.

The use of the refracted-wave scattering appro
~RWSA!, outlined earlier,7 allowed encompassing some a
pects of neutron scattering in magnetic media that are
described in the standard approach to scattering~SA!. LA
and BA have been modified to take into account the refr
PRB 590163-1829/99/59~10!/7020~9!/$15.00
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tive properties of magnetic media. It may also be said t
the present work develops the qualitative considerati8

~‘‘minimal theory’’ ! by introduction of a mathematical for
malism, which is a modification of SA.

It follows from RWSA that, in contrast to SA where a
representations are equivalent, only the representations
the quantization axisZ collinear to the mean field̂B& can be
used to calculate magnetic scattering cross sections for
tain spin states, in full compliance with the intrinsic aniso
ropy introduced by the mean field. Consequently, the N
and SF scattering probabilities, strictly speaking, are defi
only for Zi^B&.

II. SCHEME OF NEUTRON ELASTIC
MAGNETIC SCATTERING

When the refraction properties of a magnetic medium
taken into account, the wave vectors for the neutron sta
with the spin ‘‘up’’ (1) and ‘‘down’’ (2) the field turn out
to be different in length and, generally, in direction. Ther
fore, the neutron scattering scheme for the interaction reg
with a mean magnetic field̂B&Þ0 ~an external field and/or
that induced by magnetization of the sample! should include
two incident wave vectors,ka

1 for neutrons with the spin
‘‘up’’ the field ^B& and ka

2 for neutrons with the opposite
spin ~in general, the directions of these vectors may dep
on the neutron path and configuration of magnetic fields
fore the interaction region!. They produce two Ewald sphere
of radii ka

1 and ka
2 in the reciprocal space. Transitions b

tween the Ewald spheres are possible owing to spin-flip~SF!
elastic scattering with momentum transfersq12 and q21 ,
whereas non-spin-flip~NSF! elastic scattering leaves the re
sultant wave vectors on a given Ewald sphere, the co
sponding momentum transfers beingq11 andq22 . The in-
cident wave vectors in a general scheme of elastic scatte
give rise to all possible transitions defined by the two Ew
spheres.

For further analysis, introduce an ‘‘elementary’’ elast
scattering scheme with four momentum transfersqsasb

(sa

andsb designate the initial and final neutron spin projectio
onto the quantization axis! defined for transitions fromka

1

andka
2 to kb

1 andkb
2, i.e., to the wave vectors for neutron

scattered, respectively, in the (1) and (2) spin states~Fig.
1!. The lengths of the wave vectors in the interaction reg
7020 ©1999 The American Physical Society
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are (E is the neutron total energy,^Vn& is the mean nuclea
potential!

ka
65kb

65A2mn

\2
@E2~^Vn&6umn^B&u!#. ~1!

For a given scattering angle the effect of refraction in
case of the NSF scattering boils down to a proportio
change of the length of the wave vectors of the incident
scattered neutrons and that of the momentum transfer. Th
fore, the direction of the NSF momentum transfer is n
changed and the relative change of its length is

~Dq/q!NSF5~Dk/k!>5.631027~^Vn&660̂ B&!l2 ~2!

~here Vn @neV#, l @nm# and B @T#!. For the nuclear and
magnetic potentials are small (;100 neV or less!, the refrac-
tion effects should be taken into account only in the case
UCN in sufficiently strong magnetic fields.

Not only a changed length, but also a changed directio
the momentum transfer corresponds to the SF scatterin
magnetic medium for a given scattering angle. It is related
refraction in the mean field~the refractive indices for a neu
tron before and after spin flipping are different!. The corre-
sponding angular deviationsd ~Fig. 2! can be found from the
formula

sin2~a6d!5sin2~a!61.4731024^B&l2, ~3!

FIG. 1. The ‘‘elementary’’ scheme of scattering in a mean m
netic field^B&Þ0. For the sake of simplicity, the wave vectorska

6

andkb
6 are assumed to lie in one plane.

FIG. 2. The angular deviationd due to refraction under (12)
elastic scattering in a mean magnetic field^B&Þ0.
e
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wherea is the angle betweenka
1 (ka

2) and the plane per-
pendicular toq12 (q21) (l @nm# andB @T#!. Whena
!1 andd!a, one obtains from Eq.~3! that

d>
1.4731024^B&l2

2a
. ~4!

Usually the difference betweenka
1 and ka

2 is very small
even for maximum magnetic fields available, so refract
under the SF scattering may be neglected almost in
whole range of momentum transfers. Ifumn^B&u!E, the re-
fraction under magnetic scattering with spin flip is noticea
only at very small scattering angles when the moment
transfer is comparable with

qp5kb
22kb

1>k
umn^B&u

E
5

vL

v
5

qm
2

k
, ~5!

wherevL[2umn^B&u/\ andv are, respectively, the Larmo
precession frequency in the field^B& and the neutron veloc
ity.

A physically unusual situation, when the vectorq12 be-
comes perpendicular toka

1 and the vectorq21 is perpen-
dicular tokb

1 , arises when the momentum transfer is eq
to

qm5A2mn

\2
2umn^B&u5KA^B& ~6!

„with K57.6131022, if qm @nm21# and B @T#, e.g., for
^B&50.001, 0.01, 0.1, 1, 2@T#, one finds, respectively,qm
52.431023,7.631023 2.431022, 7.631022, 1.0831021

@nm21# and the corresponding characteristic sizesam
52p(qm)2152600, 830, 260, 83, 58@nm#…. Then the
(12) scattering originates from the planes parallel to t
velocity of the incident neutrons, whereas the velocity of t
(12) scattered neutrons lie within the scattering~perpendi-
cilar to q21) planes.

It can be easily seen from formulas~1! and ~6! that the
condition umn^B&u!E5\2k2/2mn , coincides withqm /ka

6

>qm /k!1, whereas the characteristic scales under ela
magnetic scattering are related to each other asqp /qm
5qm /k, so the condition of large neutron energies coincid
with the conditionqp /qm!1. The SF scattering within the
cone q,qm , i.e., a,arccos(ka

1/ka
2), possesses unusua

properties.
~a! It is ‘‘piercing’’: the scattered neutrons turn out to b

‘‘behind’’ the planes perpendicilar to the momentum trans
qSF (q12 or q21), but not ‘‘in front’’ of them, as is usually
the case under elastic scattering. Such scattering is pos
owing to the difference in the kinetic energy before and af
scattering that is equal to the Zeeman splitting 2umn^B&u.

~b! On reduction of the length of the momentum trans
qSF, its direction is changed from perpendicular to parallel
the incident neutron velocity. In scattering according to t
conventional scheme~SA!, on the contrary,q in the limit q
→0 becomes perpendicular to the incident neutron veloc

-
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~c! Extremely small changes in the scattering anglea may
correspond to a significant change in the direction of
momentum transfer~the angleb in Fig. 3!. In the approxi-
mationka

1>ka
2>k:

sina/sinb>qSF/k ~q,qm!. ~7!

Thus, a change in the scattering angle by a fraction o
second may correspond to a change in the direction of
momentum transfer by tens of degrees. Approximating
circumferences~Fig. 3! by parabolas, one finds for a give
qSF the relation between an arbitraryb and a smalla:

tanb5
ka

6a

qp6ka
6a2/2

~8!

@the upper and lower signs correspond to the (21) and
(12) scattering modes, respectively#, as well as the magni
tude of the momentum transfer

qSF5
ka

6a

sinb
5~qp6ka

6a2/2!/cosb. ~9!

~d! The momentum transfer under SF scatteringqSF in the
presence of a mean field may not be smaller thanqp . Hence,
it is not correct, say, to go to the limitqSF→0, if the mean
field is not equal to 0.

The fact thatkb
1 andkb

2 are generally different not only in
magnitude but also in direction affects the behavior of po
ization of the scattered neutron beam. Assume that the i
dent neutrons are polarized either up or down the mean
^B&. The ‘‘elementary’’ scattering scheme of Fig. 1 yield
then two wave vectors~for NSF and SF scattering!. Conse-
quently, precession ofPb , the polarization vector of neutron
scattered in this scheme, is due to the differencekb

12kb
2 .

The front of such a precession~i.e., the beam cross section
which the polarization vector is constant in direction! is per-
pendicular tokb

12kb
2 , rather than tokb

6 . Therefore, non-
frontal precession9 is intrinsic to magnetic scattering i
which NSF and SF processes combine. Generally, the
tron spin is inclined tôB&. The incident neutron spin state
then a superposition of the spin components ‘‘up’’ a
‘‘down’’ ^B&, both yielding a nonfrontal precession. The b
havior of the polarization can be described then as a su
position of two nonfrontal precessions about^B&. Moreover,

FIG. 3. The scheme of (12) elastic scattering with a momen
tum transferq,qm in a mean magnetic field̂B&Þ0.
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there will be a superposition of many ‘‘elementary’’ scatte
ing schemes leading to a rather intricate behavior of the
larization. Consequently, if the incident beam is perfec
collimated and polarized, thenPb51 at each point, but av-
eraging in a cross section of the scattered beam will lead
decrease in~or elimination of! the perpendicular-to-^B& com-
ponent ofPb ~reversible depolarization!. Only point-by-point
polarization analysis could restore the scattered beam po
ization pattern. In a real experiment the incident beam
divergent andPb results from averaging over numerous i
dependent scattering events. As a rule, the perpendicula
^B& component ofPb is then averaged to 0 and the SF sc
tering leads just to~irreversible! depolarization.

Such effects as nonfrontal neutron spin precession
angular splitting are usually hidden and lost in the bulk
numerous scattering events. Nevertheless, they may be
portant for understanding details of magnetic scattering
depolarization mechanism and essential in analysis of exp
mental data for very low momentum transfers in strong m
netic fields. Besides, the use of a mirror makes their ob
vations possible in specular or even in diffuse scatteri
Numerous events of scattering~reflection! are then distrib-
uted on the surface of the mirror, i.e., spatially correlated
a definite way, the result for the specular reflection being t
the NSF and SF scattering vectors are parallel to the sur
normal. As a consequence, if the incident neutrons are po
ized either up or down the guide field, the precession fro
inside a layered structure of the mirror and in the specula
reflected and transmitted beams are parallel to the sam
surface, i.e., almost parallel to neutron trajectories in the c
responding beams. Angular splitting under specu
reflection10,11 in a strong magnetic field has been recen
demonstrated.3

Observations of the angular splitting and the nonfron
precession related to that splitting could not be done sim
taneously. Indeed, if the scattered beam is perfectly co
mated, thenkb

1 and kb
2 are strictly parallel and the preces

sion front is perpendicular to the neutron velocities. It a
implies that the precession front of the transmitted bea
into which only neutrons transmitted without scattering
scattered with extremely small momentum transfers cont
ute, remains to be perpendicular to neutron trajectories.

III. NEUTRON ELASTIC MAGNETIC SCATTERING:
REFRACTED WAVE SCATTERING APPROACH

In order to encompass the new features in magnetic s
tering, the refracted wave scattering approach~RWSA! out-
lined earlier7 can be used. The starting point of this approa
is the following asymptotic behavior of the wave functio
operator atr→`:

Ĉ~r !5exp~ i k̂ar !1
exp~ i k̂br !

r
F̂~Vb!, ~10!

where the phase operators are used instead of scalar p
and the quantities defining the amplitude operatorF̂ are as-
sumed to be known from experiment or theory. Thus,
main distinction of the given approach from the conventio
one~e.g., Refs. 12 and 13! is the use of, instead of the wav
vectors, their operator equivalents,k̂a and k̂b , for the inci-



lie
h
th
th
s
s

.
r

in
he
e

ri
s
n

w
la
n

be
n
he
e
ro

ci-

u
pa

f the

e
pin

ac-

re

to

nd

the

neu-
nce
ver-
oss
ag-
e

m

h
own

i-
hat

to
e
is
-
an-

ss
s

PRB 59 7023NEUTRON ELASTIC SCATTERING IN MAGNETIC . . .
dent and scattered waves, respectively. The latter imp
that the potential is an operator, the eigenvalues of whic
infinity are generally nonzero constants. This means in
case of interaction of a neutron with magnetic field that
target ~scatterers! is in a space filled with a homogeneou
field. The physical meaning of such a suggestion is discus
later.

The use of a standard scheme,12,13 dealing with scalar
wave vectors, for the solution of type~10! yields the follow-
ing scattering operator:

Ŝ5112i k̂F̂. ~11!

Note that in the conventionalS operator ~see, e.g., Refs
12,13! a scalar wave numberk is used instead of the operato
k̂. It follows from the flux conservation thatŜŜ†51 and,
consequently (k̂ and F̂ commute!,

F̂2F̂†52i k̂F̂F̂†. ~12!

This relation leads to the optic theorem for elastic scatter
of spin particles in media. The use of the reversibility of t
solutions of the Schro¨dinger equation with respect to tim
yields

K̂21S̃̂K̂5Ŝ ~13!

whereK̂ is the time-reversal operator. Substituting Eq.~11!
into Eq. ~13!, one obtains the equation

K̂21k̂F̃̂K̂5 k̂F̂ ~14!

that can be used to find the relations between the scatte
amplitudes of the direct and reversed scattering scheme
RWSA. Note that the scalar wave number is simply ca
celled out in SA. Just to illustrate the difference between t
approaches, mention without proof that in the case of a
ered structure, in which all magnetic induction vectors a
the external field~the quantization axis is assumed to
along this field! lie in one plane, RWSA yields the relatio
k'

2r 125k'
1r 21 between nondiagonal elements of t

specular reflection matrix (k'
6 are the eigenvalues of th

normal-to-the-surface component of the incident neut
wave vector operator!, whereas SA predictsr 125r 21 .
More detailed analysis of formulas~11!–~14! will be given
elsewhere.

Following the classical schemes12,13 further, one finds for
the solution of type~10! the following relation between the
differential cross section of scattering in the directionVb and
the scattering amplitudes~the quantities definingF̂):

ds

dVb
~Vb!5

^sauF̂†~Vb!k̂bF̂~Vb!usa&s

^sauk̂ausa&s

, ~15!

whereusa& is the spinor specifying the spin state of the in
dent neutron at a point far from the target, the subindexs
indicates that the scalar product is defined in the spin s
space, and the scattering amplitude operator for a spin
ticle of massm is
s
at
e
e

ed

g

ng
in
-
o
y-
d

n

b-
r-

F̂~ k̂a→ k̂b![2
m

2p\2E e2 i k̂brV̂~r !Ĉ~1 !~ k̂a ,r !dr ,

~16!

whereĈ (1)( k̂a ,r ) is the exact solution of the Schro¨dinger
equation with a potentialV̂(r ) for the incident neutron the
state of which is described byk̂a , (k̂a→ k̂b) designates tran-
sitions between the states described by the eigenvalues o
corresponding wave vector operators.

It is worth noting that formula~15! implies that the ‘‘el-
ementary’’ elastic scattering scheme includes four~two NSF
and two SF scattering! transitions from arbitrarily directed
wave vectorska

1 and ka
2 to parallel wave vectorskb

1 and
kb

2 , pointing in the directionVb . As the spatial dependenc
of the phase difference between the upper and lower s
components of the incident neutron spinor is taken into
count in the mathematical formalism introduced (ka

1 andka
2

are different!, the angular deviations owing to refraction a
automatically described by Eqs.~15! and~16! ~see the notion
of the pseudograting in Ref. 11!. In addition, mention that
two terms will arise in the numerator that are proportional
kb

1 and kb
2 . They are results of interference~cross

interference11! between the waves scattered without SF a
with SF into one spin state, respectively, (1) and (2).
Thus, RWSA takes precession of the neutron spin in
mean field during the scattering~in the scattering region! into
account. The result of the cross interference depends on
tron spin precession in the scatering region. The interfere
terms usually vanish for divergent beams, because of a
aging over different scattering events. However, the cr
interference is observable with specular reflection from m
netically noncollinear layers~see the precession term in th
reflectivity11!.

More generally, in terms of the density operatorr̂a for the
incident neutron beam,

ds

dVb
~Vb!5

Tr$r̂aF̂†~Vb!k̂bF̂~Vb!%

Tr$r̂ak̂a%
. ~17!

This expression for the differential cross section differs fro
the conventional one14 by introduction ofk̂a and k̂b , in ac-
cordance with solution~10!. In the conventional approac
these quantities are scalar, and one obtains the well-kn
factor kb /ka which is equal to 1 for the elastic scattering.

It has been concluded9 that Pn , the polarization of neu-
trons in a beam~related to the probability densities!, andPb ,
the neutron beam polarization~related to the current dens
ties!, are generally not equivalent. Another conclusion is t
the intensities of neutrons in states with the spin inclined
the magnetic field~i.e., measured simultaneously with th
probability of the spin projection onto a quantization ax
inclined to the magnetic field! are not defined unambigu
ously. This means that, strictly speaking, the absolute qu
tities in magnetic field are only the total differential cro
section defined in Eq.~17! and the differential cross section
for the scattered neutron states with the spin up (1) and
down (2) the mean field direction
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S ds

dVb
~Vb! D

6

5
Tr$r̂aF̂†k̂b~ ŝ^6B&/^B&!F̂%

Tr $r̂ak̂a%
, ~18!

(ŝ^6B&/^B&, the operator of the spin projection onto

^6B&, commutes with bothk̂b and F̂). Consequently, one
may rigorously define SF and NSF scattering differen
cross sections only when SF and NSF processes are re
to the quantization axis collinear to^B& ~unlike in BA where
all representations are equivalent!. The differential cross sec
tions (ds/dVb)11 , (ds/dVb)12 , (ds/dVb)21 ,
(ds/dVb)22 can be obtained from Eq.~18! for these four
processes.

As the operator of the current density and the operato
the spin projection onto a direction inclined to the magne
field do not commute, no general expression for the neu
beam polarization exists~more details in Ref. 9! and one
may speak only about its projection onto^B&:

Pb^B&/^B&5
~ds/dVb!12~ds/dVb!2

~ds/dVb!11~ds/dVb!2
. ~19!

On the other hand, the polarization of neutrons scattere
the directionVb is the well-defined quantity

Pn~Vb!5
Tr$r̂aF̂†~Vb!ŝF̂~Vb!%

Tr$r̂aF̂†~Vb!F̂~Vb!%
, ~20!

The suggestion introduced above about the whole sp
filled with a homogeneous field is a mathematical abstr
tion. It implies that in each scattering event it is importa
only what happens in the scattering region. Indeed, for
ample, it has been experimentally demonstrated:15 if the co-
herent illumination region is much smaller than the doma
in a demagnetized thin-film mirror, each of the large d
mains reflects as a single mirror with its own neutron opti
potential; on the other hand, if the domains are small,
effective potential is obtained by averaging over numer
domains in the coherent illumination region. The angu
splitting observed under specular reflection3 can also be ex-
plained only with a similar suggestion. Therefore, if t
mean field in the interaction region is not zero, the scatter
should be described in the refracted wave scattering
proach. For a complete solution of the real physical proble
it is necessary, as usually~e.g., Ref. 16!, to take into account
the change of polarization of the incident and scatte
beams in transmission, respectively, from the polarizer to
scattering region and from the scattering region to the a
lyzer. Inside the sample, to speak nothing of the regi
outside the sample, the magnetic fields may differ from^B&.
The problem is solved for each specific configuration
magnetic fields by taking the method of measurement of
projections ofPb into account.

IV. REFRACTED WAVE BORN APPROXIMATION
„RWBA …

The scattering of neutrons in a magnetic sample is
scribed in terms of the spin-dependent scattering amplit
operator of type~e.g., Ref. 14!
l
ted
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F̂5F11ŝF2 . ~21!

In BA ~the first-order Born approximation! F15Fn and
F25Fm , whereFn and ŝFm , are the Fourier transforms o
Vn(r ) and2mnŝB(r ), the nuclear and magnetic potentia
correspondingly@B(r ) is the magnetic induction at a positio
r ]. Particularly, for a given momentum transferq (W is the
region of interaction in a scattering event!:

Fn~q!52
mn

2p\2EW
Vn~r !exp~2 iqr !dr52

mn

2p\2
Ṽn~q!,

Fm~q!5
mnmn

2p\2EW
B~r !exp~2 iqr !dr5

mnmn

2p\2
B̃~q!,

~22!

wheremn and mn are, respectively, neutron mass and ne
tron magnetic moment.

Using expression~16!, introduce the refracted wave Bor
approximation~RWBA! as a generalization of the Born ap
proximation~BA! by the assumption that

F̂~ k̂a→ k̂b!>2
m

2p\2EW
e2 i k̂brV̂~r !ei k̂ardr , ~23!

~the first-order approximation is meant in this paper, thou
higher orders can be also introduced in the RWSA!. The
basic distinction between the RWBA and BA is that the o
erator exponents~exponential operators! F̂a,b5exp(ik̂a,br )
are used, which generally do not commute with the opera
potential V̂(r ) to directly yield a momentum transferq.
Thus, one obtains for a neutron of energyE that

F̂~ k̂a→ k̂b!52
mn

2p\2EW
e2 i k̂br@Vn~r !2mnŝB~r !#ei k̂ardr ,

~24!

where the initial~a! and resultant~b! states are described b
the wave vector operatorsk̂a and k̂b . Their eigenvalues,ka

6

and kb
6 , are the wave vectors for the spin components

(1) and down (2) the mean magnetic induction̂B& ~the
mean nuclear potential^Vn& and ^B& are defined for the in-
teraction regionW).

If the quantization axisZ is parallel to^B&, the represen-
tative matrices of the exponential operators are diagonal

Fa,b5S exp~ ika,b
1 r ! 0

0 exp~ ika,b
2 r !

D . ~25!

One obtains from Eqs.~24! and Eq.~25! in this representa-
tion that
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F̂~ k̂a→ k̂b!52
mn

2p\2S Ṽn~q11!1umnuB̃i^B&~q11! umnuB̃'^B&~q21!exp@2 iw~q21!#

umnuB̃'^B&~q12!exp@ iw~q12!# Ṽn~q22!2umnuB̃i^B&~q22!
D , ~26!
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whereqsasb
5kb

sb2ka
sa are the momentum transfer vecto

corresponding to the four scattering modes (sa andsb des-
ignate the initial and final neutron spin projections onto
quantization axis!, Ṽn , B̃i^B& , and B̃'^B& are the Fourier
transforms of, respectively, the nuclear potential, the m
netic induction components parallel and perpendicular

^B&, w5w(q) is the axial angle of B̃(q)5B̃'^B&(q)
1B̃i^B&(q) in a reference frame (X,Y,Zi^B&). This implies
that the scattering amplitudes in RWBA are calculated a
the standard Born approximation~BA!, but for the momen-
tum transfers corrected for refraction.

The following expressions are obtained in RWBA fro
Eqs. ~15! and ~26! for the differential cross sections of th
four scattering modes (Zi^B&):

ds11

dVb
~q11!5

ds11
BA

dVb
~q11!,

ds21

dVb
~q21!5

kb
1

ka
2

ds21
BA

dVb
~q21!,

ds12

dVb
~q12!5

kb
2

ka
1

ds12
BA

dVb
~q12!,

ds22

dVb
~q22!5

ds22
BA

dVb
~q22!, ~27!

where BA designates the standard Born cross sections.
SF cross sections in Eq.~27! and those obtained from BA
differ by refraction factors related to the flux conservati
law. It is worth noting that (ds21

BA /dVb)(q)
5(ds12

BA /dVb(2q), hence the reciprocity theorem is n
violated both in BA and RWBA.

Unlike in BA where all representations are equivale
only the representations with the quantization axisZ collin-
ear to the mean field̂B& can be used in RWBA to calculat
magnetic scattering cross sections for certain spin states
refraction corrections are defined only in such a represe
tion. On the other hand, any representation can be use
calculate the full differential cross section as defined in E
~15! or Eq. ~17!.

V. NEUTRON TRANSMISSION IN MAGNETIC MEDIA

In accordance with the scheme of Fig. 1, when^B&Þ0,
the SF scattering ‘‘straight forward’’~into zero angle! with
momentum transfersq125q215qp becomes possible. Th
characteristic size of the structural features along the neu
trajectory is equal to the period of precession in the fi
^B&:

D52pqp
21 . ~28!
e

-
o

in

he

,

he
a-
to
.

on
d

For the spin flipping (Zi^B&) the field variationsB1 (B
[^B&1B1) should have a component perpendicular to^B&.
Assuming that on the lengthL5DN (N is the number of
periods! the neutron velocity,̂B& andB1 are mutually per-
pendicular,B1 being constant in magnitude but directed o
positely in two semiperiods, one obtains the magnetic fi
configuration used in the Drabkin wiggler17 ~DW!. The per-
formance of DW is described in the frame of the theory
the r.f. flipper, with transition from spatial to time depe
dence of the magnetic fields. Though such an appro
turned out to be justified, it is not formally correct, because
suggests inelastic interaction under static spin flipping.

The scattering scheme considered in the present p
gives a purely static explanation of the features of the spa
spin resonance. Substitutingqp from Eq. ~5! into Eq. ~28!,
one obtains the known condition on the magnitude of
constant field for the spatial spin resonance. The appear
of the higher orders in DW at larger wavelengths, rather th
at smaller wavelengths as the case is in the ordinary Br
scattering at periodic structures~crystals, multilayers, etc.!,
conforms with formula~5!: the momentum transferqp is
inversely proportional tok, whereas it is proportional tok
under ordinary elastic scattering. When DW is rotated
several degrees, the momentum transfer related to a g
structural feature, rotates by the same angle, but its len
remains almost unchanged@see Fig. 2 and formula~9#. The
latter explains the stability of the work of DW with respect
its rotation by several degrees or the corresponding incre
in the beam divergence. The magnitude ofB1 for which the
Zeeman splitting is equal to the energy uncertaintyDE re-
lated to the uncertainty in momentum,Dk52p/L in a region
of lengthL, yields the second condition for the spatial sp
resonance. Indeed, for the givenDk, one obtainsDE/E
52l/L and, substitutingDE52mnB1 , l5h/(mnv) andE
5mnv2/2, one finds the condition forB1 ,

2mnB1

h
5

v
L

, ~29!

obtained from purely static considerations. The relation
tweenB1 andDE is not too evident, yet it is not likely to be
fortuitous.

If the inhomogeneities significantly exceed the neutr
spatial coherency region and scattering at large angles ca
neglected, one may pass from a three-dimensional~3D! de-
scription of the neutron interaction~scattering of the waves!
to a one-dimensional description in which the interaction p
tential is a function of one coordinate~along the neutron
trajectory!. The solution of the one-dimensional proble
may be found by one of the approaches known in spec
polarized neutron reflectometry. If the energy of neutro
much exceeds their potential energy, they pass the inte
tion region without being reflected and one obtains from
generalized Airy’s fromalism18 the value of the wave func
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7026 PRB 59N. K. PLESHANOV
tion ~spinor! at an arbitrary pointz along the neutron trajec
tory from a known value of the spinor at a pointz0 :

us~z!&5eik̂~z![z2zN21]
•••eik̂~z2![z22z1]eik̂~z1![z12z0] us~z0!&,

~30!

where the magnetic medium between the pointsz0 andz is
represented by a sequence ofN homogeneous layers, th
condition of scattering ‘‘straight forward’’ implying that th
flat boundaries between these layers are infinite and per
dicular to the incident neutron velocity~put in other words,
the neutron traverses the magnetic medium without be
deflected and experiences the field along its trajectory po
by-point, i.e., only the field value at one point of the traje
tory is effective at any instant!. It is to be emphasized tha
the solution obtained is the coherent sum of the ‘‘transm
ted’’ ~NSF! and the ‘‘scattered straight forward’’~SF!
waves. The coincidence of the directions of these waves
to their interference and requires that they should be con
ered as a single beam.

The succession of the exponentials in formula~30! is im-
portant, because they generally do not commute. It is eas
show that each component describes a neutron spin pre
sion about the field in the corresponding layer. Therefore,
change of the spinor along the neutron trajectory is descr
by the equationus(z1dz)&5eik̂(z)dzus(z)&, or

d

dz
us~z!&5 i k̂~z!us~z!&, ~31!

which is a stationary analog of the classical Bloch equat

dPn

dt
5g@Pn3B#, ~32!

describing the motion of the neutron polarization vector in
time-dependent field. Equation~31! cannot be obtained from
Eq. ~32!.

We remind the reader that the Bloch equation~32! is ob-
tained by transition to the neutron rest frame. However, s
a transition is always approximate and, moreover, contra
tory. In the first place, if the neutron velocity is vanishing,
wavelength grows infinite. Consequently, the neutron is
erywhere and the neutron trajectory makes no sense. In
dition, even the minutest interaction would drastica
change the neutron wave function everywhere. In the sec
place, the neutron velocity changes along the trajectory
cording to the change in the potential. Therefore, differ
rest frames should correspond not only to different poi
along the neutron trajectory, but also to different spin co
ponents in a spin-dependent magnetic potential. Never
less, one reference frame is used to describe the neu
behavior and derive the Bloch equation. In such a refere
frame a change in the potential is transformed into the c
responding change in the neutron total energy, rather tha
its kinetic energy~as it should be!. This energy transfer con
tradicts to the static nature of interaction and is not obser
experimentally. Particularly, to explain the spatial spin re
nance on the analogy with the ‘‘rotating field approxim
tion’’ in the theory of the r.f. flipper, one is inevitably led t
introduction of two worlds turning oppositely around the d
n-
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vice ~DW!. Only the use of a purely static consideration,
given in the present paper, provides a more reasonable
planation.

The quantum-mechanical description of behavior of
neutron spin along a neutron trajectory in a static magn
field is often believed to be exactly equivalent with the d
scription of behavior of a classical magnetic dipole subjec
to a magnetic inductionB(t), in the sense that the time de
pendence of the polarization vector of a neutron beam
described by the Bloch equation. Usually the following pro
of this statement is adduced.19 The interaction between a
neutron and a magnetic inductionB is described by the
HamiltonianĤ52mnŝB. By definition, Pn5^ŝ& and sub-
stituting Ĥ into dPn /dt5^]ŝ/]t&1( i /\)^@Ĥ,s#&5

( i /\)^@Ĥ,s#& one obtains Eq.~32!. However, this derivation
of the Bloch equation is not invulnerable. Indeed, the Ham
tonian for a neutron of energyE in static fields is Ĥ

5p̂2/2mn2mnŝB5E. Since the total neutron energyE is a
constant of motion, one obtainŝ@Ĥ,s#&50 and dPn /dt
50. It corresponds to the experimental fact that in sta
fields the polarization vectorPn inclined toB precesses along
a neutron trajectory about the field direction with a Larm
frequency, but remains fixed at any point of the trajecto
~static precession!.

The Bloch equation can be derived from Eq.~31! by ap-
proximating the operator

k̂~z!5A2mn

\2
@E2Vn~z!7m̂nB~z!#

>k$12@Vn~z!6m̂nB~z!#/E%, ~33!

where k5(2mnE/\2)1/2, and by the substitutiondz
5(\k/mn)dt5vdt. This derivation of the Bloch equation
on the basis of the exact solution for magnetic laye
structures18 is rid of the abovementioned contradictions. B
sides, it reveals more details about the approximations u

Equation~31! describes the behavior of the neutron sp
in magnetic media~static magnetic fields! more exactly than
Eq. ~32!. According to the exact QM approach, the origin
the spin precessions is a change in the phase difference
tween the states with opposite spins~in the relative phase!.
This phase difference is related to the difference in the
locities of neutrons in the states with the spin ‘‘up’’ an
‘‘down’’ the field. However, when the Bloch equation i
used, the difference in velocities is transformed into the d
ference in total neutron energiesdE656umnBu of the re-
spective spin states. As the kinetic energy in the refere
frame moving with the neutron is equal to 0, the use of
Bloch equation suggests that the total energiesdE6 change
as a function of the field magnitude~inelastic interaction!. A
difference in the total energies of the neutron in the sta
with the spin ‘‘up’’ (1) and ‘‘down’’ (2) the field is
known to produce not statical, but dynamic precession wit
Larmor frequencyudE12dE2u/\52umnBu/\. In contrast
to the Bloch equation, Eq.~31! takes into account such
subtle phenomenon as deviation of the precession freque
from the Larmor frequency due to nonlinearity of the depe
dence of the neutron wave phase on the magnitude of
potential~see the paper on ‘‘optical precession’’20!.
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The effect of a r.f. flipper may be efficiently described
introduction of the time-dependent phasesE6t/\, different
for the states with the opposite spins, into the respec
eigenvalues of the phase operator (E65E6dE are the total
energies for the corresponding spin states of the neurondE
is the Zeeman splitting in the static field of the r.f. flipper!, as
well as into the respective eigenvalues of the operatork̂ ~cor-
responding toE1ÞE2). Then Eq.~31! may be used to de
scribe not only precession, but also such phenomena~de-
scribed in Ref. 9! as the spin nutation related to th
superposition of the static and dynamic precessions and
spin multiprecession~superposition of numerous spin prece
sions about several mutually noncollinear axes!. The eigen-
values of the wavevector operators may contain the im
nary part, so another advantage of Eq.~31! is that it enables
taking into account the beam attenuation~including the spin-
dependent attenuation related, say, to the accompan
magnetic scattering at large angles! by means of the optica
theorem, i.e., in a most natural way.

As it follows from the consideration given above, the u
of either Eq.~31! or Eq. ~32! implies that the structure is
represented by a sequence of homogeneous layers with
boundaries perpendicular to a given neutron trajectory. It
incides with the assumptions that neutron trajectories in
real structure are straight and only the field value at one p
of the trajectory is effective at any instant. Neither the Blo
equation nor Eq.~31! takes refaction during passage of n
merous boundaries along neutron trajectories into acco
~one-dimensional consideration is no longer valid, if t
angles between the neutron trajectories and the gradien
the nuclear and magnetic potentials in the sample are ta
into account!.

Neither the Bloch equation nor Eq.~31! leads directly to
depolarization. The events for different neutron trajector
are considered to be incohererent, and depolarization re
from averaging over different neutron paths inside
sample. As it follows from the consideration given abov
the classical Larmor approach~LA ! to the depolarization
theory is equivalent to the refracted-wave scattering
proach~RWSA! in the limit when neutron interaction with
the structure may be described by the model that the n
trons experience the field point-by-point along each traj
tory and traverse the magnetic medium without being
flected. RWSA and the conventional scattering approac21

~SA! are identical for zero mean fields. On the other ha
the conclusion22 about the identity of LA and SA for zero
mean field~provided that all neutrons enter the ‘‘analyz
1detector’’!, strictly speaking, can be taken only with rese
vation. Indeed, calculation of depolarization in LA is r
duced to the integration carried out on the (x,y) plane in the
reciprocal space, even though in the real space the scatt
is assumed to be straightforward~the model of a sequence o
homogeneous layers perpendicular to neutron trajector!.
On the other hand, in SA the integration is carried out on
Ewald sphere. Of course, if the main contribution into dep
larization is from scattering at small angles, the regions
integration in the reciprocal space practically coincide, a
LA is equivalent to SA. When the mean field is nonzero,
relation between LA and SA is more complicated. In a c
tain sense the two approaches are complimentary.16,23 Yet,
whenever the result of integration on the (x,y) plane in the
e
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reciprocal space may be expected to coincide with that
integration on the Ewald sphere, one may use LA which
usually more simple and sraightforward for calculations.
usually, the use of LA implies that all neutrons enter t
‘‘analyzer1detector,’’ and the model of the structure is su
posed to be adequate. Of particular interest is the conclu
that both SA and LA stem from one approach, RWSA.
more detailed depolarization theory may be built in the fra
of RWSA; however, it is beyond the scope of the pres
work.

VI. CONCLUSIONS

The use of the refracted-wave scattering appro
~RWSA! allowed us to encompass some aspects of neu
scattering in magnetic media that are not described in
standard approaches. The presence of a nonzero mean
plays a fundamental role under neutron scattering. Even
magnetic dipole scatters neutrons differently in the prese
of an external field. The corresponding SF scattering cr
sections should be corrected for refraction. The NSF and
scattering amplitudes are easily obtained in the refrac
wave Born approximation~RWBA!, because they are calcu
lated as in the standard Born approximation~BA! ~see Ref.
14!, but for the corrected-for-refraction momentum transfe

The latter implies that the selection rule~proved in BA!,
according to which only the magnetic induction variatio
perpendicular to the scattering vector are efficient for m
netic scattering, is valid also in RWBA. However, owing
refraction corrections~for momentum transfers and SF sca
tering cross sections!, the magnetic scattering in RWBA i
sensitive to the component of the mean field^B& parallel to
the scattering vector. We mention also that the angular~ow-
ing to refraction! deviations under SF scattering depend
^B&, i.e., on all components of^B&. Moreover, the selection
rule for magnetic scattering is not valid in that classical se
that the cross section for the elastic scattering of monoch
matic neutrons into a given direction depends only on a m
netization component lying in one plane~perpendicular to
q). Such a plane is absent in the case of RWBA, since fr
the four scattering vectors~Fig. 1! related to the elastic scat
tering into a given direction onlyq11 andq22 are parallel
~for the sake of simplicity, the wave vectorska

1 andka
2 are

assumed to be parallel!. Consequently, the full cross sectio
for the elastic scattering into a given direction is sensitive
all components ofB. Of course, it plays an essential ro
only at ~usually very small! scattering angles for which th
SF momentum transfers are comparable withqp . In this case
the very origin of the NSF and SF scattering into a giv
direction is different: not only the directions but also th
magnitudes of the respective NSF and SF momentum tr
fers essentially differ. This is due to the change of the kine
energy under SF scattering. The kinetic energy is change
a quantity equal to the Zeeman splitting. Such a quantity
transferred to or from the kinetic energy related to the m
mentum component parallel to the respective SF momen
transfer. It is worth emphasizing that the exchange betw
the potential and kinetic energies of the neutron in the fi
^B& does not change its total energy, and the correspond
SF scattering is elastic.

Angular beam splitting and nonfrontal spin precession
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shown to be inherent to combined NSF and SF neutron s
tering in magnetic media. The angular beam splitting in
uniform mean field~it can be an external field! considered in
the present work is not a Stern-Gerlach splitting observe
magnetic field gradients, when no spin flipping is requir
Nor the magnetic field variations solely yield the splittin
~the same field variations witĥB&50 produce no beam
splitting!. The effect is a manifestation of the refraction la
related to the difference in the refractive indices before a
after neutron spin flipping. This is a generalization of t
effect of the angular splitting of a specularly reflect
beam10,11 that was observed in a recent publication.3

The evolution of the initial plane wave states is envisag
in the qualitative ‘‘minimal theory’’8 as splitting-up into a
multitude of waves due to refraction at a sequence of bou
aries between homogeneous regions. The author remains
the realm of the Stern-Gerlach effect.’’8 The refraction here
is due to neutron transmission into an optically different
6

ll

ta
t-
a

in
.

d

d

d-
‘in

-

gion ~see also Ref. 24!. The same is true for numerous ex
periments on polarized neutron reflection from layered ma
netic structures. The combined effect of small ang
~‘‘straight forward’’! spin-flip scattering within a demagne
tized layer and refraction at its boundaries is another sp
tacular observation.25 Therefore, generally,̂B& is not con-
stant in the scattering region. This problem may
considered within RWSA, too. However, it is out of th
scope of the present paper. We mention only that, when
gradient of the mean potential is constant in direction, t
corresponding theory will resemble that of specular and d
fuse scattering at layered structures.
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