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Domain-wall and domain-structure dynamics in weak ferromagnets
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Domain-wall drift motion in two-sublattice weak ferromagnets of rare-earth type induced by an external
oscillating magnetic field is studied. The dependences of the drift velocity on the amplitude, frequency, and
polarization of the field are obtained for two possible types of 180-degree domain walls. The possibility of the
drift of stripe domain structures is consider¢80163-182@09)08509-4

[. INTRODUCTION in FM. One should therefore expect the DW drift velocity in
an oscillating field to be also substantially higher than in an

There is a steady interest in investigations of the dynamid&M.
properties of domain wall§DW) in magnetically ordered As an example, we consider a WFM of the type of rare-
crystals. Principal attention is paid, in both theoretical ancearth orthoferrites, the DW dynamics of which has been
experimenta| StudieS, to two main types of DW mouoﬁg studied in detail both theoretica”y and eXperiment&ﬁ?e,
translational DW motion in a constant external magnetic€.g-, the review in Ref. 14 and the literature cited there
field and(2) vibrational DW motion in an oscillating external
field. The theoretical dependences of the DW velocity on the || GENERAL EQUATIONS AND DOMAIN WALLS
external field, the maximum steady velocities of DW, and the ) )
nonlinear regime of wall oscillations have been found for all We consider a model of a two-sublattice weak ferromag-
principal magnet typegferro-, antiferro-, weak ferro-, and Net whose state is determined by two sublattice-
ferrimagnets magnetization vectors!; andM,; My=|M = const. For

Experiment? has revealed one more type of DW rare-earth orthoferrites, characterized by a symmefrg,2
motion—wall drift, i.e., the onset of a constant DW velocity (the Cartesian axes y, andz are oriented along the, b, and
component, in an oscillating external magnetic field. A simi-C axes of the crystal, respectivghan energy of the magnet
lar effect was observed in Refs. 3 and 4 for another topologican be written in the form:
cal soliton form, viz., a Bloch line.

Domain-wall drift in a ferromagnetFM) was predicted
from energy considerations in Refs. 5 and 6. A more consis-
tent analysis of DW drift in FM, based on the solution of the
equations of motion averaged over the field oscillation pe- n &L2+ &LZ—MH
riod, was carried out in Ref. 7; an analogous method was 272 27y
used in Ref. 8 to analyze the drift of Bloch lines in DW.

However, the results of Refs. 7 and 8 are valid only forwhereM=M,;+M,, L=M;—M, are the vectors of weak
frequenciesw substantially higher than the ferromagnetic- ferromagnetism and of antiferromagnetism, respectivély;
resonance frequency. >0 is the constant of homogeneous exchange between sub-

The most adequate approach for this class of problemdattices,« is the inhomogeneous exchange constgatand
based on a specific perturbation theory for solitons, has bee8, are the anisotropy constants, is the external magnetic
proposed in Ref. 9 when analyzing the drift of Bloch lines infield, d=de, ,g, is the unit vector along thg axis, d is the
the simplest model of one-sublattice FM. A similar approachexchange-relativistic Dzyaloshinskii constant. In enettly
was used in Refs. 10 and 11 to study DW drift in FM andwe omit the small terms associated with nonantisymmetric
antiferromagnets under the influence of external magneti®zyaloshinskii interaction, which are of importance only for
fields of different polarizations. The drift motion of kinks in relaxation processes in WF#,and the anisotropy terms of
the framework of the well-known &* model” has been the fourth order, which should be taken into account only in
studied in Ref. 12 the vicinity of the spin reorientation regidfi.

The present paper is devoted to a study of DW drift in  The WFM spin dynamics can be described by means of
another type of magnet—two-sublattice weak ferromagnetthe equations of motion for the sublattice magnetization vec-
(WFM). Dynamic properties of WFM differ substantially tors M, (Landau-Lifshitz equationsor of the respective
from those in a one-sublattice FN14In particular, the ve- equations for vector! andL. The latter can be consider-
locity limit of steady DW motion, which is determined only ably simplified using the fact that the homogeneous ex-
by exchange interactions, and the DW mobility in an exterchange interaction is much greater than other interactions
nal magnetic field, greatly exceed the corresponding valuemvolved in the energyl). In the main approximation with

o o
sz dr[§M2+§(VL)2+d[M,L]
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respect to the small parametér <1, the magnetization

a . . .
vectorM can be expressed via vector® aV[sir? 6(Ve)]- z2(@ sir® 6) — By sirf f'sine cose
1 2 . 2d . 4 |sin26 .
M=~ 2[I[HI]]+§[II]+M0[dI] 2 +gsm9(thOSso+hzsmso)+m ——(hxcose

where I=L/|L| is the antiferromagnetism unit vectol? +h;sing) —hy sin’ §—20 sir® 6(hy cose+h; sing)

=1; g is the gyromagnetic ratio, a superior dot marks a )
derivative with respect to time. As shown in Refs. 13 and 17, —h,6sin26|+
it enables one to describe the nonlinear macroscopic dynam-

ics of a two-sublattice WFM on the basis of the closed equa- N
tion for the vectoid, which is the variational equation for the  +h,sin#sing)(h, sing—h,cose)= ——¢sirf 6, (7)
Lagrange functiori{l}, gMo

whereh=H/M,.

1 9~ o If B;,B>>0, the vectorl in the absence of an external
o §<Bllz+'32ly) field is collinear with thex axis (a axis of the crystalin the
homogeneous ground state. It can be easily seen in this case
4 . 2 2 the equations of motion have two particular classes of non-
2[H[II]]— —2(|H)2+ m(|sz—|tz) , trivial solutions describing two types of 180-degree DW can
6gMg Mg 0 exist then in the magnet under consideration: the vektor
3) rotates in th€XZ) plane in one of thenthis type of DW will
be referred as DWland in the(XY) plane in the other
wherec=gMg(a8)*42 is the characteristic velocitfit co- ~ (DW2). _
incides with the minimal spin-wave phase velotitgndﬁz A stability analysis of these two types of DVRefs. 13

= B,+d?/ 5. The dynamic stopping of the DW, due to dis- and 16 showed that in the case,> B, the stable DW is

sipative processes, will be taken into account by using th&he one with rotation ofin the (X2) plane(DW1). This DW
dissipative functiorQ, corresponds tod=6,=m/2, and the angle variablep,

= @o(Yy) satisfies the equation

Si
5 (hysiné cose+hy coso

L=M3

all.
=02 2
5 CZI (VD

+

AMo.

2 ago— B1SiNgg COSEy=0 (8
29 1 (4)

(we shall assume that the magnetization distribution in the
DW is nonuniform along the axis; a prime denotes differ-
entiation with respect to this coordinaté static 180-degree
DW1 in which the functiongpy(y) satisfy the boundary con-
ditions

Q

where\ is the relaxation constant.

Since the components of the vectare connected by the
relationl?=1, it is convenient to rewrite the Lagrange func-
tion (3) in term of two independent angle variablésnd ¢
which parametrize the unit vectdr 0o(—%)=0, @o(+®)=m, @H(+o)=0 9)

I +il ,=sinfexplie), |,=cosh. (5) is described by the relations

1 1

The equation of motion for the variablésand ¢, allowing eo=—-sin (pOZ—SGCVE l), COS@pp= —tanl‘(l),

for the relaxation terms, takes the form Yo Yo Yo 0 (10)
1 wherey,=(a/B;)*? is the wall thickness.

a(Ag_ Z 0| +sin6cose According to Eq.(2), the magnetization vectdvl in a
c? static DW1 also rotates in th&X2) plane,|M| being constant:

@, 2, =~ . dMg .
X 2 —a(Ve)*+ B~ Bysir @ M:_5 (e singg—€,cospy).

In the caseB;>p,, the stable DW is the one with rota-
tion of | in the (XY) plane(DW2). In this DW2 ¢= ¢y=0,
and

2d 4
+ F(hx sing—h,cosg)cosfd— E(hx sin# cose+h, cosé

+h;siné#sing)(h, cosd cose—hy sin#+h, cosd sing)

1 1 y . y
f,==—cosfy==-sech=—|, sinfy=—tan o) (11

+ SaM [h, sing—h,cose+2¢ sin? 8(h, cose+h, sine) Yo Yo Yo 0
0
whereyo= (a/B,)*?is the thickness of DW2. In opposite to
+h,psin20]= —— 0 (6) DWI, the magnetization vectdd in a static DW2 does not
Y gMo rotate but changes its value:
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dM, . 2d _
M=———g,sin6, (L+T)¢p1=——=[hycosey(§) +h,singg(§)]
5 510
ahy (Uit o Vy)si
l1l. INDUCED MOTION OF DOMAIN WALLS: gMoB.6 y0,81c2( 1+ 0rV1)Singo(£)

LINEAR APPROXIMATION (14)

Let us consider now the solutions of the equations of mo- 4
tion in an external magnetic field. For definiteness, we shall L+ T+ o) 9= h. sin —h. cos
consider first a forced motion of a DW1. The behavior of ( ) 5169 Mo[ xSiN@o(£) —h, CoSeo(£)],
DW?2 can be studied similarly, and the results for DW2 will (15
be discussed in Sec. V. , . wherewg=cly,=gMy(B8)¥?%2 is the activation frequency

Under the influence of a constant external field of def|n|te0f the lower spin-wave modey, =\ 8gM,/4 is the charac-
orientation(in our case along the axis), a DW moves with '
a fixed velocity determined by the balance of the magneti
pressure acting on the DW and the dynamic stopping fbtce.

éeristic relaxation frequencyr=(B,— B1)/81>0,

2
In an oscillating field, the wall oscillates at the field T= i d_ bt E
frequency® and we shall show below that its center drifts wg dt? w3 dt
with a certain velocity. In addition, the presence of the field N ) )
distorts the shape of the DW. The operatot. takes the form of a Schrodinger operator with

Assuming the external field amplitude to be small enough@ Nonreflecting potential:
we determine the drift velocity of the DW and the distortion
of its form, following®° by one of the perturbation-theory
versions for solitons. To this end we introduce a collective
variable Y(t), which has the meaning of the coordinate of .
the DW center at the instantand seek a solution of Eq) ~ The spectrum and the wave functions of the operat¢t6)
and(7) in the form are well known. It has one discrete level with eigenvalue

Mo=0 corresponding to a localized wave function

. , d? 2
L=—y5—+1

- 16
dé&? costt(&lyo) (18

o

L (17)
(2y0)*2cosh &lyo)
and also to a continuous spectrwg=1-+ kaS correspond-

whereé=y—Y(t). The functiongy(£) describes the motion ing to the eigenfunctions

of an undistorted DW1the structure ofpy(£) is the same as
that of ¢g(y) in the static solutio(10)]. The wall drift ve- 1
quty is defined as the msta'\nta.neous.DW velocityt) fk(f)zm[tanﬁf/yo)—ik)/o]e'kf, (18)
=Y(t) averaged over the oscillation periody=V(t) (the k

bar denotes averaging over the external-field oscillation p

riod). : .
. - The functions{f,,f,} form a complete orthonormalized
We represent the function(¢,t) andy(&,1), describing — go4 anq it is natural to seek the first-approximation solutions

the distortion of the DW shape, as well as the wall velocityof Eqs.(14) and(15) in the form of an expansion in this set.

V(t), by series in powers of the field amplitude, recognizingFOr a monochromatic external field of frequenaywe put
that we are interested only in stimulated DW motion:

Swhereb, = (1+k?y3)? andL is the crystal length.

13‘1(5,t)=Re[ EK Cifi(€) +cofo(€) ei"“}, (19

'B(git):ﬂl(gat)—‘rﬁZ(g’t)—’— ey

g difi(€)+dofo(€)

P(ED=P(ED) (D) + .., lﬁl(f,t)=Re{ ei‘”‘]- (20

One important remark is in order here. The first-
approximation Eqgs(14)—(15) describes excitation of linear
spin waves against a DW1 background. The last term in
where the subscripts=1,2, ... denote the order of small- the expansion of the functiogy(£,t) corresponds to the
ness of the quantity to the field amplitude, ,3,,,V,~h". Goldstone mode, i.e., to DW motion as a whole. The corre-
We substitute the expansiofiE3) in Egs.(6)—(7) and sepa- sponding degree of freedom of the system, however, has al-
rate terms of different orders of smallness. Obviously, in theeady been taken into account by introducing the collective
zeroth approximation we obtain E), which describes a coordinateY(t) into the definition of the variable€. The
DW1 at rest. Goldstone mode should therefore be left out of the expansion

The first-order perturbation-theory equation can be writ-(20), i.e., one must putl,=0 (for a detailed discussion of
ten in the form this question see Rajaraman’s b&k This condition leads
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to the requirement that the right-hand side of Ety@) be IV. SECOND APPROXIMATION: DW DRIFT
orthogonal to the functioriy(€), which determines in turn
the equation for the DW velocity,(t) in the approximation
linear in the external field:

Let us go to an analysis of the second approximation in
the external magnetic field amplitude. We shall not write
down the pertinent equations in general form, since they are
2dcy, 272y, . extremely cumbersome, but only an equation, averaged over

Vit+wV,=— — h,+ PERTY h, . (21)  the period of the oscillations, which follows from E@):

The solution of Eq(21) describes the DW oscillations in an Ld,(¢)= ché(&)VZJr N(& 1), (25)
oscillating external field and, as can easily seen, does not gMo
lead to a DW drift, i.e.V,(t)=0.

If hy=0, Eq.(21) agrees, apart from the notatidim the
limit of low velocities V<c¢) with the equation obtained for
the DW velocity in Ref. 18 by a somewhat different method w
in the framework of the adiabatic approximation. The pres- N(&,t)= —2(\'/1+ o V1) — V1‘Pé 2a0,t 9]
ence in the right-hand side of E(L8) of a second term not c
connected with the Dzyaloshinskii interaction attests to the 2d
possibility of exciting stimulated DW oscillations in a + B2 sin 200 — — (hy singg—h, coSeg)
“pure” antiferromagnet in whichd=0. This effect was first
noted in Ref. 20. 4

The coefficientgy, cg, anddy in the expansion&l9) and — —[(hi— hf()sin ©0 COS@y+ hyh, cos 2p,]
(20) can be found in standard fashion multiplying the right- g
hand sides of Eq914) and (15) by f; (£) and f§(£) and
integrating with respect to the variabée For a monochro-
matic external field of frequency, with all three compo-
nents different from zero and with arbitrary phase shifts,

where ®,(&) = i,(&,t), and the functiorN(&,t) is defined

4
59M [(h COS(p0+h singg) 94

+2(h, cosgy+h, singg) 94 . (26)
Hxy=HoxCoswt, Hy=Hgycogwt+x1), The second equation of the system, which follows from Eq.
(6) and defines the functiof},(&,t), has a similar structure,
H,=Hg,cof wt+ x) (22)  but contains no second-order term in the expansion of the

) DW velocity (V5) and will therefore be of no interest.
we obtain from Eqs(14)—(15) Just as in the first-approximation equatidm), we must
. stipulate that the expansion of the functidn(¢) in terms of
U1(&,1)=2 Rda,(t)sin +a,(t)cos , . . ~ .
(&) dan(t)sineo(£) +ax(t)cose( )} the eigenfunction of the operatbr contains no shear mode,

_ i.e., it is necessary that the right-hand side of Ezp) be
Ya(£,)=2 Reas()coseo(¢) +a,(G(H)}. (23 orthogonal tof(£) (17). This yields an expression for the

We have introduced here the notation DW drift velocity Vg, =V,:
2iw hoxe' " oyo f
a(t)= —, Vyr= dEN(Et 2
() B10gMy (0—0qytiqy) dr EN(ED) )¢o(£). (27
2iw hoge' (X Substituting the functiong(&,t) and 94(¢,t) (23)—(24)
a-(t)=— - , . . . . . _
2(t) B169Mg (1+0—0y+id,) calculated in the preceding section in Eg6), and integrat

ing over the oscillation period and integrating in E2[7), we
obtain for the drift velocityVy, :

(t) hOXeiwt
ag(t)=———"7"7,
T Bd (1-atiay) Var= vl @, ) HoHoz + (@, X)) HoHoy,  (28)
wherev,(w;x) andv,(w;x;) are the certain functions of
a,(t)=— hgye'(“t*x1), the frequency and of the phase shifts, which we shall call
B159Mo nonlinear mobilities of the domain waltheir structure will
) be given below
G(E)= EJ”dk[ta”r@/W)s'”kf_ Kyo cosk{] It follows from Eq. (28) that the DW1 drift occurs only if
—=  bE(\¢—qq+igp)sinh(kye/2) at least two components of the magnetic field differ from

(24) zero—eitherH,#0 andH,#0 or H,#0 andH,#0. This
fact can be interpreted in the following manner: ther y
whereq; = (w/wg)?, q2=(wwr/w§). component of the field, as follows from E®1), cause DW1
It follows from Egs.(23) and (24) that the external-field oscillations, while thex component ensures different values
componentsH, and H, excite bulk oscillations only with of the wall's linear mobility as it moves in the positive and
k=0, whereas the presence of the field compoitgntmakes  negativey direction. If, however, the field is oriented in the
possible excitation of bulk spin waves wiki# 0. (Y2 plane, there is no DW1 drift.
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We consider next DW drift in a field polarized separately 0~2; Yo~10"% cm; g~1.76x10" sloe};
in the (X2) or (XY) plane.
wo=Clyy~2X10? s; d?/B,6~1.

A. Field in (XZ) plane
. . . . . The relaxation frequency, can be calculated from the ex-
Th? nonllne_ar mOb”.'ty”XZ Wh'f:h determines th(_a d.”ﬁ ve- perimentally known linear mobilityx of a DW in a static
locity in an oscillating field polarize@in general, elliptically field:13

in the (X2) plane[see Eq/(22) for H,=0] is of the form

2
Vi, X)= o D(@,) + A, x)], (29 oy =0
where K
5 whereH, is the Dzyaloshinskii field. For YFeQwe have*
Vo= 79 Yo , Hg=1.4x10° Oe u~6.2X 10° cm/s Oe, whence w,=0.7
4oy x 1051 (this value of relaxation frequency corresponds to
5 . a dimensionless relaxation constant 10~ 2). This yields an
D(w.x)= (d” [(a1—1)cosy+q,siny] estimate of the characteristic nonlinear mobility:
T B (q-1)%+d)
vo=—F _35%10°2 cm/s 08 31)
gz cosy +[(d;—o)(dy— o —1) +q3lsiny O aH, T '
Qim0 T QzllQi— e 9z It follows from Eq. (31) that the characteristic DW drift

) (3_0? velocity Vy~ vOHS is much lower than the DW stationary
We see from Eqs(29) and (30) that the nonlinear mobility velocity in a static field of the same strendtly an approxi-
vxz is determined by two terms of different type. The first mate factorH,/Hy). For an oscillating field of amplitude
one,D(w,x), is connected with the presence Dzyaloshinskii 10 Oe we obtairV,~3.5cm/s. The DW drift velocity
interaction in the WFM, while the second terA(w,x),  increases substantially at resonance frequencies. Consider,
differs from zero even in a “pure” antiferromagnet. for example, the drift in a linear polarized fielgy£0).

To compare the contributions of both terms at differentgrom Eq.(30) we have fory=0:

values of the frequency and phase shifand to obtain a

numerical estimate of the drift velocity we use the values of d2 (0 wi-1)
the parameters indicative of the typical and well-investigated D(w,0)= 55 Y > P (32
WFM—yttrium orthoferrite YFeQ (see, e.g., Ref. 24 B19 [(0?lwg—1)*+ (0w | w5)?]

Aw.0) w? (a)a)r/cu(z))2 33

w,V))=— .
0 [(0% 02— o)+ (0w, | 0d)2[(02 0i—o—1)2+ (0w, [02)?]
|

Numerical estimates of the frequencieg and w, yield for In the frequency region neas, (activation frequency of

all frequencies of the external field, up to optical, a valuethe lower mode of the bulk spin waves behavior of the
qzz(wwr/w§)~10*15w< 1, so that the contribution of the function D(w,0) is of the “resonance-antiresonance” type.
term A(w,0)~q§ to Eq. (29) is small at practically all fre- The maximum(in absolute valuedrift velocity is realized at
guencies, and the principle role is assured by the ternw=wy*w,/2 and reaches a value of the order of

D(w;0) connected with the Dzyaloshinskii interaction. (wo/w,)Vo~3X10?V,. Therefore even in relatively weak
In the limiting case of low frequenciesu< wg) the drift  (~10 Og fields the drift velocity at resonance is of the order
velocity is equal to of 10 m/s.

The second term\(w,0) has the two usual resonances at
the frequenciesw;=wyo? and w,=(1+ 0)*?w,, which
coincide respectively with the activation frequencies of the
localized(on the DW and upper bulk spin-wave modes. At

(a negativeV,, means that the DW1 moves in the negativethe resonances we ha¥gw; ,0)~1, which is comparable

direction of they axis). At high frequencies > w,) the  With D(w;20). The dependence of the drift velocity on the
drift velocity is positive and decreases @s?: frequency aty=0 (normalized to the characteristic value of

V,) is shown schematically in Fig.(8).
) At phase shiftsy that differ from zero (6<xy<<w/2) but
@Wo -2 are not too close tar/2 the frequency dependence bfre-
~w “. (35 . . .
) mains approximately the same as fgre=0. The function

Var=~—Vo= —vgHoHo, (34)

d2
Vdr(w)“Vo(m)(
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Vi (0)/ V. (0) much less than the amplitude of the functibfwq,x) at
w~wy. These values, however are comparable with and
may even exceed the vallly w4, x), which decreases with
increase ofy: D(w1,x)=D(w4,0)cosy. At sufficiently large

/o, x the contribution of the antiferromagnetic terA(w,x)

A T o (1+0)" can therefore make the DW drift velocity negative in a

narrow frequency interval, of ordes nearw= w, . The simi-

lar picture takes place also at frequencies close to

w,=wo(1+ o) A typical dependence of the drift velocity

on the frequency for elliptic polarization of the magnetic

field in the (X2) plane aty= /3 is shown in Fig. (b).

If the phase shift is equal te/2 the behavior of the func-

tion D(w,/2) becomes purely resonafthe negative peak

vanishey the amplitude at the maximum being double the

corresponding value fox=0. The functionA(w,7/2) ex-
al/a, hibits a symmetric resonance-antiresonance behavior with

i 2 amplitudes of order 1. Outside the resonance regions, the two
-1 (1+ c) terms in Eq.(29) are of the same order and are small:
b) D(w,m/2)~A(w,7/2)~q,<1. The functionVy(w,w/2) is

shown in Fig. 1c).

@O B. Field in (XY)-plane
The nonlinear mobilityv,,(w, x) in the case of an oscil-
lating field (22) (at H,=0) is given by the expression
L T d2 1/2 ®
/o, ny(win):_VOZ(_) w_o

1)
(1 +°_)1/2 B1

Ve (©)/ Vg (0)

-1 +P,

1-q;+igy
where the functiorP,=P,(w), n=1,2, are defined by the
FIG. 1. Frequency dependence of the drift velocity of DW1 atintegrals

different values of the phase shift (schematically: x=0 (a), x
=7/3 (b), x= /2 (c). f x2n

2

D(w,x) has as before a resonance-antiresonance behavior (1+X )(1+x2=q1+igy)sint?(mx/2)
nearw= wg, but it becomes asymmetric: the negative reso- (37)
nance amphtude—(a)o/Zwr)(l—Sln)() decreases with in- Using the approximation
creases ofy, whereas the positive resonance amplitude
(wol2w,) (1+siny) ir_mreases. _ 7n

If x#0 the functionA(w,x) at w=w; , changes its be- Palw)~——>—,

. oL 1-q;tiqgz
havior from resonant to resonant-antiresonant one. The am-
plitude values of the functioM(w, ) at frequencies close where 7, are certain constants of the order of unity, we
t0 w;=weo? are equal too(cosy*+1)/2~1, which is obtain from Eq.(36):

X Im{ elx1

+P, J, (36)

c)

b, x1) = — v (dz) (1= m1)gzcosyy+[(1+ 71)(1— Q1)+772]S|n)(1 (38)
xy\ @5 X1 01 8,6 wo (G )+q2

It should be noted that the drift of DW1 in the field po- and vanishes as—0; second, at high frequencies we have
larized in the(XY) plane is completely due to the presence Ofvxyfvafl in place ofv,,~ 2. The resonant properties of
the Dzyaloshinskii interaction and is absent in “pure” anti- »,(w,x,) are similar to the corresponding properties of the
ferromagnets. It also follows from Eq38) that the fre- function A(w,x) (30). In the casey;=0, we have at the
quency dependence of the nonlinear mobility(w) differs  frequencyw= w, the usual resonance with amplitude of the
somewhat fromw,(w) [Egs.(29) and (30)]. First, v,y~w  order of vo(wo/w) at the maximum. In the case+0 the
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function v, (w,x;) has an asymmetric resonance- _ Vo(gMo)? o
antiresonance behavior, which becomes symmetricy at Vit oVi=— dh,+ ——h,]|. (39
= 77/2. The maximum amplitude of the drift velocity in fields gMo

of the order of 10 Oe is-10 m/s, just as for the field in the | should be noted that, in opposite to DW1, these oscilla-

(XZ) plane. tions are excited only bg component of the external mag-
netic field.
V. DYNAMICS OF DW2 The DW2 drift occurs only iH,#0 andH,#0,
Let us consider dynamic properties of DW of the second o~
type (DW2), in which the vectot rotates in theXY) plane. Var=Txy( o, x1)HoxHoy (40)
This type of DW is stable aB,<3;; the static magnetiza- where the nonlinear mobility,,(w, x1), similarly to the
tion distribution in DW?2 is described by EqL1). nonlinear mobilityv,, in Eq. (29), can be presented as a sum

The analysis of the dynamic behavior of DW2 is similar of weak ferromagnet term, which is connected to the
to that of DW1, therefore below we write down only the Dzyaloshinskii interaction, and “pure antiferromagnet”
main results. In the linear approximation with respect to theerms:
external magnetic field, DW2 oscillates with the field fre- 5 5
guency, and its velocity/,(t) is described by the equation Vyy(@,x1) =vo[D(w, x1) +A(w, x1)],

Slox ):_z< @ ) 1’2~1,2[{[<al—“c‘r>2+a2]<7;1—1>+2<a1—?r>}a sy
T 20 | [@-e2w@-T-02+ad
([(@~ )2+ TN~ (@1~ F— 1) 71+ 7] + [~ )2~ -5 — 1)}
+ 2 =21~ 2, =2 SINXa( »
[(Q1—0)°+TG5][(G,—o—1)+T5
~ Tao coSx1+[(1—7) (1 —F— 1) +T3]sinx,
A(w,x1) =T (41)
X ) (@ -5 12
[
where ;= (w/®0)?, TG,=ww, /@2, =(B1—B2)/B>>0, l(+x2)=FR, I,(y=0)=p. (42

Wo=ClYo=2gMo(B,8)Y% %, and 7, are the constants of

t~he order 1. Th? structure of the functloﬁ}s(w,xl_) and above, satisfying the boundary conditiof® and having a
A(w,x1) are similar to that oD(w,x) andA(w,x) in Ea. magnetization distributiof.0), correspond t&R=p=+1. In
(29). It should be only noted that the tefw, x1), in con-  the general case we have in lieu of Eg0)

trast toD(w, ), is proportional to the field frequency and

tends to 0 atw— 0.

The domain walls of the first typéDW1) considered

, 1 ) 1 y y
eo=—Rsingg=—Rp sech—|, cospy=—Rtanh —].
Yo Yo Yo Yo
VI. DRIFT OF A STRIPE DOMAIN STRUCTURE (43)

We consider now the possibility of a drift in an external aAnalysis shows that in the general case the drift velocity of
alternating magnetic field with a stripe domain structurepyw1 with the given values of the parametd®sand p is
(SDS consisting of domains with,=1 andl,=—1 sepa- determined by an equation similar to E89):
rated by 180-degree DW'’s. Let us first discuss the case
B2>B1, in which DW of the first typeg DW1) is stable. Var=Rp vy, x)HoxHo,+ Ruyy(@, x1)HoxHoy . (44)

It must be borne in mind here that neighboring DW in the
SDS have opposite topological charges determined by thehere the nonlinear mobilities,, and v, are described as
boundary conditiong9) of Eqg. (8). In addition, the rotation before by Eqs(29) and(36).
of the vectorl in various DW can be about either a positive ~ We see thus in Eq44) that SDS drift in a field polarized
or a negative direction of th& axis. These two factors de- in the (XY) plane is altogether impossible, since the topologi-
termine the DW drift direction in a field of fixed frequenay  cal chargesR of neighboring DW are different. In a field
and a phase shift (or ;). An SDS drift is possible, natu- polarized in the(X2) plane, SDS drift is possible, but pro-
rally, only when neighboring DW move in one and the samevided that neighboring DW have different values of the pa-
direction. rameterp and of the topological chard® i.e., the rotation of

We define the topological charge=*+1 of the DW and the vectol in neighboring DW must be in the same direction
the parametep = + 1 that describes the rotation of the vector (e.g., clockwisg¢ and orientations of in the centers of the
| in a DW as follows: neighboring DW's are opposite to each other.
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Vay(@,x1)=vo[RD(w,x1) + RpA(w,x1)],  (46)

DW?2 are stable, can be considered similarly. In this case DW

can be charactered by the topological chaRgel and the
parametejp==*1,

Ix(£*)=%R, 1(y=0)=p. (45)
An analysis shows the drift velocity of DW2 with differ-

ent values of the parametdRsandp can be described by Eq.

(40) in which with the nonlinear mobility,,(w, x;) has the

form

where the function®(w, ;) andA(w,x;) are defined in
Eqg. (41). We see that two terms in E¢46) differently de-
pend on the topological chargésandp. As the first one
(weak-ferromagnet terjris dominant and proportional only
to R, SDS with DW2 cannot drift as a whole. Only in the
case of a “pure” antiferromagnet, in whidb =0, a dfrift of
SDS with DW2 is possible under the influence of the exter-
nal magnetic field polarized in th&Y) plane.
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