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Domain-wall and domain-structure dynamics in weak ferromagnets
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Domain-wall drift motion in two-sublattice weak ferromagnets of rare-earth type induced by an external
oscillating magnetic field is studied. The dependences of the drift velocity on the amplitude, frequency, and
polarization of the field are obtained for two possible types of 180-degree domain walls. The possibility of the
drift of stripe domain structures is considered.@S0163-1829~99!08509-4#
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I. INTRODUCTION

There is a steady interest in investigations of the dyna
properties of domain walls~DW! in magnetically ordered
crystals. Principal attention is paid, in both theoretical a
experimental studies, to two main types of DW motions:~1!
translational DW motion in a constant external magne
field and~2! vibrational DW motion in an oscillating externa
field. The theoretical dependences of the DW velocity on
external field, the maximum steady velocities of DW, and
nonlinear regime of wall oscillations have been found for
principal magnet types~ferro-, antiferro-, weak ferro-, and
ferrimagnets!.

Experiment1,2 has revealed one more type of DW
motion—wall drift, i.e., the onset of a constant DW veloci
component, in an oscillating external magnetic field. A sim
lar effect was observed in Refs. 3 and 4 for another topolo
cal soliton form, viz., a Bloch line.

Domain-wall drift in a ferromagnet~FM! was predicted
from energy considerations in Refs. 5 and 6. A more con
tent analysis of DW drift in FM, based on the solution of t
equations of motion averaged over the field oscillation
riod, was carried out in Ref. 7; an analogous method w
used in Ref. 8 to analyze the drift of Bloch lines in DW
However, the results of Refs. 7 and 8 are valid only
frequenciesv substantially higher than the ferromagnet
resonance frequency.

The most adequate approach for this class of proble
based on a specific perturbation theory for solitons, has b
proposed in Ref. 9 when analyzing the drift of Bloch lines
the simplest model of one-sublattice FM. A similar approa
was used in Refs. 10 and 11 to study DW drift in FM a
antiferromagnets under the influence of external magn
fields of different polarizations. The drift motion of kinks i
the framework of the well-known ‘‘w4 model’’ has been
studied in Ref. 12

The present paper is devoted to a study of DW drift
another type of magnet—two-sublattice weak ferromagn
~WFM!. Dynamic properties of WFM differ substantiall
from those in a one-sublattice FM.13,14 In particular, the ve-
locity limit of steady DW motion, which is determined onl
by exchange interactions, and the DW mobility in an ext
nal magnetic field, greatly exceed the corresponding va
PRB 590163-1829/99/59~10!/6966~8!/$15.00
ic

d

c

e
e
ll

-
i-

s-

-
s

r

s,
en

h

ic

ts

-
es

in FM. One should therefore expect the DW drift velocity
an oscillating field to be also substantially higher than in
FM.

As an example, we consider a WFM of the type of ra
earth orthoferrites, the DW dynamics of which has be
studied in detail both theoretically and experimentally~see,
e.g., the review in Ref. 14 and the literature cited there!.

II. GENERAL EQUATIONS AND DOMAIN WALLS

We consider a model of a two-sublattice weak ferroma
net whose state is determined by two sublattic
magnetization vectorsM1 andM2 ; M05uM1,2u5const. For
rare-earth orthoferrites, characterized by a symmetry 2x

22z
2

~the Cartesian axesx, y, andz are oriented along thea, b, and
c axes of the crystal, respectively!, an energy of the magne
can be written in the form:

W5E dr H d

2
M21

a

2
~¹L !21d@M ,L #

1
b1

2
Lz

21
b2

2
Ly

22MH J , ~1!

whereM5M11M2 , L5M12M2 are the vectors of weak
ferromagnetism and of antiferromagnetism, respectivelyd
.0 is the constant of homogeneous exchange between
lattices,a is the inhomogeneous exchange constant,b1 and
b2 are the anisotropy constants,H is the external magnetic
field, d5dey ,ey is the unit vector along they axis, d is the
exchange-relativistic Dzyaloshinskii constant. In energy~1!
we omit the small terms associated with nonantisymme
Dzyaloshinskii interaction, which are of importance only f
relaxation processes in WFM,15 and the anisotropy terms o
the fourth order, which should be taken into account only
the vicinity of the spin reorientation region.16

The WFM spin dynamics can be described by means
the equations of motion for the sublattice magnetization v
tors M1,2 ~Landau-Lifshitz equations! or of the respective
equations for vectorsM and L . The latter can be consider
ably simplified using the fact that the homogeneous
change interaction is much greater than other interacti
involved in the energy~1!. In the main approximation with
6966 ©1999 The American Physical Society
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respect to the small parameterd21!1, the magnetization
vectorM can be expressed via vectorL ,13

M5
1

d H 2@ l@Hl ##1
2

g
@ l̇ l#1M0@dl#J ~2!

where l5L /uL u is the antiferromagnetism unit vector,l2

51; g is the gyromagnetic ratio, a superior dot marks
derivative with respect to time. As shown in Refs. 13 and
it enables one to describe the nonlinear macroscopic dyn
ics of a two-sublattice WFM on the basis of the closed eq
tion for the vectorl, which is the variational equation for th
Lagrange functionL$ l%,

L5M0
2H a

2 F 1

c2
l̇22~¹ l!2G2

1

2
~b1l z

21b̃2l y
2!

1
4

dgM0
2 @H@ l̇ l##2

2

dM0
2 ~ lH !21

2d

dM0
~ l zHx2 l xHz!J ,

~3!

wherec5gM0(ad)1/2/2 is the characteristic velocity~it co-

incides with the minimal spin-wave phase velocity!, andb̃2
5b21d2/d. The dynamic stopping of the DW, due to di
sipative processes, will be taken into account by using
dissipative functionQ,

Q5
lM0

2g
l̇2, ~4!

wherel is the relaxation constant.
Since the components of the vectorl are connected by the

relation l251, it is convenient to rewrite the Lagrange fun
tion ~3! in term of two independent angle variablesu andw
which parametrize the unit vectorl:

l x1 i l z5sinu exp~ iw!, l y5cosu. ~5!

The equation of motion for the variablesu andw, allowing
for the relaxation terms, takes the form

aS Du2
1

c2
ü D 1sinu cosu

3F a

c2
ẇ22a~¹w!21b̃22b1 sin2 wG

1
2d

d
~hx sinw2hz cosw!cosu2

4

d
~hx sinu cosw1hy cosu

1hz sinu sinw!~hx cosu cosw2hy sinu1hz cosu sinw!

1
4

dgM0
@ ḣx sinw2ḣz cosw12ẇ sin2 u~hx cosw1hz sinw!

1hyẇ sin 2u#5
l

gM0
u̇, ~6!
,
m-
-

e

a¹@sin2 u~¹w!#2
a

c2 ~ ẇ sin2 u!
.
2b1 sin2 u sinw cosw

1
2d

d
sinu~hx cosw1hz sinw!1

4

dgM0
Fsin 2u

2
~ ḣx cosw

1ḣz sinw!2ḣy sin2 u22u̇ sin2 u~hx cosw1hz sinw!

2hyu̇ sin 2uG1
4 sinu

d
~hx sinu cosw1hy cosu

1hz sinu sinw!~hx sinw2hz cosw!5
l

gM0

ẇ sin2 u, ~7!

whereh5H/M0 .
If b1 ,b̃2.0, the vectorl in the absence of an externa

field is collinear with thex axis ~a axis of the crystal! in the
homogeneous ground state. It can be easily seen in this
the equations of motion have two particular classes of n
trivial solutions describing two types of 180-degree DW c
exist then in the magnet under consideration: the vectl
rotates in the~XZ! plane in one of them~this type of DW will
be referred as DW1! and in the ~XY! plane in the other
~DW2!.

A stability analysis of these two types of DW~Refs. 13
and 16! showed that in the caseb̃2.b1 , the stable DW is
the one with rotation ofl in the ~XZ! plane~DW1!. This DW
corresponds tou5u05p/2, and the angle variablew0
5w0(y) satisfies the equation

aw092b1 sinw0 cosw050 ~8!

~we shall assume that the magnetization distribution in
DW is nonuniform along they axis; a prime denotes differ
entiation with respect to this coordinate!. A static 180-degree
DW1 in which the functionsw0(y) satisfy the boundary con
ditions

w0~2`!50, w0~1`!5p, w08~6`!50 ~9!

is described by the relations

w085
1

y0
sinw05

1

y0
sechS y

y0
D , cosw052tanhS y

y0
D ,

~10!

wherey05(a/b1)1/2 is the wall thickness.
According to Eq.~2!, the magnetization vectorM in a

static DW1 also rotates in the~XZ! plane,uM u being constant:

M5
dM0

d
~ex sinw02ez cosw0!.

In the caseb1.b̃2 , the stable DW is the one with rota
tion of l in the ~XY! plane~DW2!. In this DW2 w5w050,
and

u085
1

ỹ0
cosu05

1

ỹ0
sechS y

ỹ0
D , sinu052tanhS y

ỹ0
D , ~11!

whereỹ05(a/b̃2)1/2 is the thickness of DW2. In opposite t
DW1, the magnetization vectorM in a static DW2 does no
rotate but changes its value:



o
ha
o
ill

it

et
e.
ld
ts
ld

gh
n

y
iv
o

p

ity
ng

-

th

rit

th

ue

d
ns

t.

t-
r

in

re-
al-

ive

ion
f

6968 PRB 59V. S. GERASIMCHUK AND A. L. SUKSTANSKII
M52
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III. INDUCED MOTION OF DOMAIN WALLS:
LINEAR APPROXIMATION

Let us consider now the solutions of the equations of m
tion in an external magnetic field. For definiteness, we s
consider first a forced motion of a DW1. The behavior
DW2 can be studied similarly, and the results for DW2 w
be discussed in Sec. V.

Under the influence of a constant external field of defin
orientation~in our case along thez axis!, a DW moves with
a fixed velocity determined by the balance of the magn
pressure acting on the DW and the dynamic stopping forc13

In an oscillating field, the wall oscillates at the fie
frequency18 and we shall show below that its center drif
with a certain velocity. In addition, the presence of the fie
distorts the shape of the DW.

Assuming the external field amplitude to be small enou
we determine the drift velocity of the DW and the distortio
of its form, following,9,10 by one of the perturbation-theor
versions for solitons. To this end we introduce a collect
variableY(t), which has the meaning of the coordinate
the DW center at the instantt, and seek a solution of Eqs.~6!
and ~7! in the form

u5
p

2
1q~j,t !, w5w0~j!1c~j,t !, ~12!

wherej5y2Y(t). The functionw0(j) describes the motion
of an undistorted DW1@the structure ofw0(j) is the same as
that of w0(y) in the static solution~10!#. The wall drift ve-
locity is defined as the instantaneous DW velocityV(t)
5Ẏ(t) averaged over the oscillation period,Vdr5V(t) ~the
bar denotes averaging over the external-field oscillation
riod!.

We represent the functionsq(j,t) andc(j,t), describing
the distortion of the DW shape, as well as the wall veloc
V(t), by series in powers of the field amplitude, recognizi
that we are interested only in stimulated DW motion:

q~j,t !5q1~j,t !1q2~j,t !1 . . . ,

c~j,t !5c1~j,t !1c2~j,t !1 . . . ,

V5V11V21 . . . , ~13!

where the subscriptsn51,2, . . . denote the order of small
ness of the quantity to the field amplitudecn ,qn ,Vn;hn.
We substitute the expansions~13! in Eqs.~6!–~7! and sepa-
rate terms of different orders of smallness. Obviously, in
zeroth approximation we obtain Eq.~8!, which describes a
DW1 at rest.

The first-order perturbation-theory equation can be w
ten in the form
-
ll
f

e

ic

,

e
f

e-

e

-

~ L̂1T̂!c15
2d

b1d
@hx cosw0~j!1hz sinw0~j!#

2
4ḣy

gM0b1d
1

a

y0b1c2 ~V̇11v rV1!sinw0~j!

~14!

~ L̂81T̂1s!q15
4

b1dgM0
@ ḣx sinw0~j!2ḣz cosw0~j!#,

~15!

wherev05c/y05gM0(bd)1/2/2 is the activation frequency
of the lower spin-wave mode,v r5ldgM0/4 is the charac-
teristic relaxation frequency,s5(b̃22b1)/b1.0,

T̂5
1

v0
2

d2

dt2
1

v r

v0
2

d

dt
.

The operatorL̂ takes the form of a Schrodinger operator wi
a nonreflecting potential:

L̂52y0
2 d2

dj2
112

2

cosh2~j/y0!
. ~16!

The spectrum and the wave functions of the operatorL̂ ~16!
are well known. It has one discrete level with eigenval
l050 corresponding to a localized wave function

f 0~j!5
1

~2y0!1/2cosh~j/y0!
, ~17!

and also to a continuous spectrumlk511k2y0
2 correspond-

ing to the eigenfunctions

f k~j!5
1

bkL
1/2

@ tanh~j/y0!2 iky0#eikj, ~18!

wherebk5(11k2y0
2)1/2 andL is the crystal length.

The functions$ f 0 , f k% form a complete orthonormalize
set, and it is natural to seek the first-approximation solutio
of Eqs.~14! and~15! in the form of an expansion in this se
For a monochromatic external field of frequencyv we put

q1~j,t !5ReH F(
k

ckf k~j!1c0f 0~j!GeivtJ , ~19!

c1~j,t !5ReH F(
k

dkf k~j!1d0f 0~j!GeivtJ . ~20!

One important remark is in order here. The firs
approximation Eqs.~14!–~15! describes excitation of linea
spin waves against a DW1 background. The last term
the expansion of the functionc1(j,t) corresponds to the
Goldstone mode, i.e., to DW motion as a whole. The cor
sponding degree of freedom of the system, however, has
ready been taken into account by introducing the collect
coordinateY(t) into the definition of the variablej. The
Goldstone mode should therefore be left out of the expans
~20!, i.e., one must putd050 ~for a detailed discussion o
this question see Rajaraman’s book19!. This condition leads
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to the requirement that the right-hand side of Eq.~14! be
orthogonal to the functionf 0(j), which determines in turn
the equation for the DW velocityV1(t) in the approximation
linear in the external field:

V̇11v rV152
2dc2y0

ad
hz1

2pc2y0

adgM0
ḣy . ~21!

The solution of Eq.~21! describes the DW oscillations in a
oscillating external field and, as can easily seen, does
lead to a DW drift, i.e.,V1(t)50.

If hy50, Eq. ~21! agrees, apart from the notation,~in the
limit of low velocities V!c! with the equation obtained fo
the DW velocity in Ref. 18 by a somewhat different meth
in the framework of the adiabatic approximation. The pr
ence in the right-hand side of Eq.~18! of a second term no
connected with the Dzyaloshinskii interaction attests to
possibility of exciting stimulated DW oscillations in
‘‘pure’’ antiferromagnet in whichd50. This effect was first
noted in Ref. 20.

The coefficientsck , c0 , anddk in the expansions~19! and
~20! can be found in standard fashion multiplying the righ
hand sides of Eqs.~14! and ~15! by f k* (j) and f 0* (j) and
integrating with respect to the variablej. For a monochro-
matic external field of frequencyv, with all three compo-
nents different from zero and with arbitrary phase shifts,

Hx5H0x cosvt, Hy5H0y cos~vt1x1!,

Hz5H0z cos~vt1x! ~22!

we obtain from Eqs.~14!–~15!

q1~j,t !52 Re$a1~ t !sinw0~j!1a2~ t !cosw0~j!%,

c1~j,t !52 Re$a3~ t !cosw0~j!1a4~ t !G~j!%. ~23!

We have introduced here the notation

a1~ t !5
2iv

b1dgM0

h0xe
ivt

~s2q11 iq2!
,

a2~ t !52
2iv

b1dgM0

h0ze
i ~vt1x!

~11s2q11 iq2!
,

a3~ t !5
d

b1d

h0xe
ivt

~12q11 iq2!
,

a4~ t !52
2iv

b1dgM0
h0ye

i ~vt1x1!,

G~j!5
y0

2 E
2`

1`

dk
@ tanh~j/y0!sinkj2ky0 coskj#

bk
2~lk2q11 iq2!sinh~pky0/2!

,

~24!

whereq15(v/v0)2, q25(vv r /v0
2).

It follows from Eqs.~23! and ~24! that the external-field
componentsHx and Hz excite bulk oscillations only with
k50, whereas the presence of the field componentHy makes
possible excitation of bulk spin waves withkÞ0.
ot

-

e

IV. SECOND APPROXIMATION: DW DRIFT

Let us go to an analysis of the second approximation
the external magnetic field amplitude. We shall not wr
down the pertinent equations in general form, since they
extremely cumbersome, but only an equation, averaged
the period of the oscillations, which follows from Eq.~7!:

L̂F2~j!5
l

gM0
w08~j!V̄21N~j,t !, ~25!

whereF2(j)5c2(j,t), and the functionN(j,t) is defined
as

N~j,t !5
a

c2
~V̇11v rV1!c182

a

c2
V1

2w0922aw08q1q18

1b1c1
2 sin 2w02

2d

d
~hx sinw02hz cosw0!

2
4

d
@~hy

22hx
2!sinw0 cosw01hxhz cos 2w0#

2
4

dgM0
@~ ḣx cosw01ḣz sinw0!q1

12~hx cosw01hz sinw0!q̇1 . ~26!

The second equation of the system, which follows from E
~6! and defines the functionq2(j,t), has a similar structure
but contains no second-order term in the expansion of
DW velocity (V2) and will therefore be of no interest.

Just as in the first-approximation equation~14!, we must
stipulate that the expansion of the functionF2(j) in terms of
the eigenfunction of the operatorL̂, contains no shear mode
i.e., it is necessary that the right-hand side of Eq.~25! be
orthogonal tof 0(j) ~17!. This yields an expression for th
DW drift velocity Vdr5V̄2 :

Vdr52
gM0y0

2l E
2`

1`

djN~j,t !w08~j!. ~27!

Substituting the functionsc1(j,t) andq1(j,t) ~23!–~24!
calculated in the preceding section in Eq.~26!, and integrat-
ing over the oscillation period and integrating in Eq.~27!, we
obtain for the drift velocityVdr :

Vdr5nxz~v,x!H0xH0z1nxy~v,x1!H0xH0y , ~28!

wherenxz(v;x) andnxy(v;x1) are the certain functions o
the frequency and of the phase shifts, which we shall c
nonlinear mobilities of the domain wall~their structure will
be given below!.

It follows from Eq.~28! that the DW1 drift occurs only if
at least two components of the magnetic field differ fro
zero—eitherHxÞ0 andHzÞ0 or HxÞ0 andHyÞ0. This
fact can be interpreted in the following manner: thez or y
component of the field, as follows from Eq.~21!, cause DW1
oscillations, while thex component ensures different value
of the wall’s linear mobility as it moves in the positive an
negativey direction. If, however, the field is oriented in th
~YZ! plane, there is no DW1 drift.
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We consider next DW drift in a field polarized separate
in the ~XZ! or ~XY! plane.

A. Field in „XZ… plane

The nonlinear mobilitynxz which determines the drift ve
locity in an oscillating field polarized~in general, elliptically!
in the ~XZ! plane@see Eq.~22! for Hy50# is of the form

nxz~v,x!5n0@D~v,x!1A~v,x!#, ~29!

where

n05
pg2y0

4v r
,

D~v,x!5
d2

b1d

@~q121!cosx1q2 sinx#

~q121!21q2
2

,

A~v,x!5q1q2

q2 cosx1@~q12s!~q12s21!1q2
2#sinx

@~q12s!21q2
2#@~q12s21!21q2

2#
.

~30!

We see from Eqs.~29! and ~30! that the nonlinear mobility
nxz is determined by two terms of different type. The fir
one,D(v,x), is connected with the presence Dzyaloshins
interaction in the WFM, while the second term,A(v,x),
differs from zero even in a ‘‘pure’’ antiferromagnet.

To compare the contributions of both terms at differe
values of the frequency and phase shiftx and to obtain a
numerical estimate of the drift velocity we use the values
the parameters indicative of the typical and well-investiga
WFM—yttrium orthoferrite YFeO3 ~see, e.g., Ref. 14!:
lue

r

ve
ii

t

f
d

s'2; y0'1026 cm; g'1.763107 s21 Oe21;

v05c/y0'231012 s; d2/b1d;1.

The relaxation frequencyv r can be calculated from the ex
perimentally known linear mobilitym of a DW in a static
field:13

v r5
g2y0Hd

m

whereHd is the Dzyaloshinskii field. For YFeO3 we have:14

Hd51.43105 Oe,m'6.23103 cm/s Oe, whence v r50.7
31010s21 ~this value of relaxation frequency corresponds
a dimensionless relaxation constantl;1023!. This yields an
estimate of the characteristic nonlinear mobilityn0 :

n05
pm

4Hd
'3.531022 cm/s Oe2. ~31!

It follows from Eq. ~31! that the characteristic DW drif
velocity V0;n0H0

2 is much lower than the DW stationar
velocity in a static field of the same strength~by an approxi-
mate factorH0 /Hd!. For an oscillating field of amplitude
H0;10 Oe we obtainV0;3.5 cm/s. The DW drift velocity
increases substantially at resonance frequencies. Cons
for example, the drift in a linear polarized field (x50).
From Eq.~30! we have forx50:

D~v,0!5
d2

b1d

~v2/v0
221!

@~v2/v0
221!21~vv r /v0

2!2#
, ~32!
A~v,0!5
v2

v0
2

~vv r /v0
2!2

@~v2/v0
22s!21~vv r /v0

2!2#@~v2/v0
22s21!21~vv r /v0

2!2#
. ~33!
e.

of
k
er

at

he
t

e
of
Numerical estimates of the frequenciesv0 andv r yield for
all frequencies of the external field, up to optical, a va
q25(vv r /v0

2);10215v!1, so that the contribution of the
term A(v,0);q2

2 to Eq. ~29! is small at practically all fre-
quencies, and the principle role is assured by the te
D(v;0) connected with the Dzyaloshinskii interaction.

In the limiting case of low frequencies (v!v0) the drift
velocity is equal to

Vdr'2V052n0H0xH0z ~34!

~a negativeVdr means that the DW1 moves in the negati
direction of they axis!. At high frequencies (v@v0) the
drift velocity is positive and decreases asv22:

Vdr~v!'V0S d2

b1d D S v0

v D 2

;v22. ~35!
m

In the frequency region nearv0 ~activation frequency of
the lower mode of the bulk spin waves!-a behavior of the
function D(v,0) is of the ‘‘resonance-antiresonance’’ typ
The maximum~in absolute value! drift velocity is realized at
v5v06v r /2 and reaches a value of the order
(v0 /v r)V0;33102 V0. Therefore even in relatively wea
~;10 Oe! fields the drift velocity at resonance is of the ord
of 10 m/s.

The second termA(v,0) has the two usual resonances
the frequenciesv15v0s1/2 and v25(11s)1/2v0 , which
coincide respectively with the activation frequencies of t
localized~on the DW! and upper bulk spin-wave modes. A
the resonances we haveA(v1,2,0);1, which is comparable
with D(v1,2,0). The dependence of the drift velocity on th
frequency atx50 ~normalized to the characteristic value
V0! is shown schematically in Fig. 1~a!.

At phase shiftsx that differ from zero (0,x,p/2) but
are not too close top/2 the frequency dependence ofV re-
mains approximately the same as forx50. The function
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D(v,x) has as before a resonance-antiresonance beh
nearv5v0 , but it becomes asymmetric: the negative re
nance amplitude2(v0/2v r)(12sinx) decreases with in-
creases ofx, whereas the positive resonance amplitu
(v0/2v r)(11sinx) increases.

If xÞ0 the functionA(v,x) at v5v1,2 changes its be-
havior from resonant to resonant-antiresonant one. The
plitude values of the functionA(v,x) at frequencies close
to v15v0s1/2 are equal tos(cosx61)/2;1, which is

FIG. 1. Frequency dependence of the drift velocity of DW1
different values of the phase shiftx ~schematically!: x50 ~a!, x
5p/3 ~b!, x5p/2 ~c!.
-
o
ti-
ior
-

e

m-

much less than the amplitude of the functionD(v1 ,x) at
v'v0 . These values, however are comparable with a
may even exceed the valueD(v1 ,x), which decreases with
increase ofx: D(v1 ,x)5D(v1,0)cosx. At sufficiently large
x the contribution of the antiferromagnetic termA(v,x)
can therefore make the DW drift velocity negative in
narrow frequency interval, of orderv nearv5v1 . The simi-
lar picture takes place also at frequencies close
v25v0(11s)1/2. A typical dependence of the drift velocit
on the frequency for elliptic polarization of the magne
field in the ~XZ! plane atx5p/3 is shown in Fig. 1~b!.

If the phase shift is equal top/2 the behavior of the func-
tion D(v,p/2) becomes purely resonant~the negative peak
vanishes!, the amplitude at the maximum being double t
corresponding value forx50. The functionA(v,p/2) ex-
hibits a symmetric resonance-antiresonance behavior
amplitudes of order 1. Outside the resonance regions, the
terms in Eq. ~29! are of the same order and are sma
D(v,p/2);A(v,p/2);q2!1. The functionVdr(v,p/2) is
shown in Fig. 1~c!.

B. Field in „XY…-plane

The nonlinear mobilitynxy(v,x) in the case of an oscil-
lating field ~22! ~at Hz50! is given by the expression

nxy~v,x1!52n0

p

4 S d2

b1d D 1/2 v

v0

3ImH eix1F 11P2

12q11 iq2
1P1G J , ~36!

where the functionPn5Pn(v), n51,2, are defined by the
integrals

Pn5
2

p E
0

1`

dx
x2n

~11x2!~11x22q11 iq2!sinh2~px/2!
~37!

Using the approximation

Pn~v!'
hn

12q11 iq2
,

where hn are certain constants of the order of unity, w
obtain from Eq.~36!:

t

nxy~v,x1!52n0

p

4 S d2

b1d D 1/2 v

v0
H ~12h1!q2 cosx11@~11h1!~12q1!1h2#sinx1

~q121!21q2
2 J . ~38!
ve
f
he

e

It should be noted that the drift of DW1 in the field po
larized in the~XY! plane is completely due to the presence
the Dzyaloshinskii interaction and is absent in ‘‘pure’’ an
ferromagnets. It also follows from Eq.~38! that the fre-
quency dependence of the nonlinear mobilitynxy(v) differs
somewhat fromnxz(v) @Eqs. ~29! and ~30!#. First, nxy;v
f
and vanishes asv→0; second, at high frequencies we ha
nxy;v21 in place ofnxz;v22. The resonant properties o
nxy(v,x1) are similar to the corresponding properties of t
function A(v,x) ~30!. In the casex150, we have at the
frequencyv5v0 the usual resonance with amplitude of th
order of n0(v0 /v) at the maximum. In the casexÞ0 the
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function nxy(v,x1) has an asymmetric resonanc
antiresonance behavior, which becomes symmetric ax
5p/2. The maximum amplitude of the drift velocity in field
of the order of 10 Oe is;10 m/s, just as for the field in the
~XZ! plane.

V. DYNAMICS OF DW2

Let us consider dynamic properties of DW of the seco
type ~DW2!, in which the vectorl rotates in the~XY! plane.
This type of DW is stable atb̃2,b1 ; the static magnetiza
tion distribution in DW2 is described by Eq.~11!.

The analysis of the dynamic behavior of DW2 is simil
to that of DW1, therefore below we write down only th
main results. In the linear approximation with respect to
external magnetic field, DW2 oscillates with the field fr
quency, and its velocityV1(t) is described by the equation
f

d

al
re

as

he
th

e
-

-
m

or
d

e

V̇11v rV152
ỹ0~gM0!2

2
S dhz1

p

gM0

ḣzD . ~39!

It should be noted that, in opposite to DW1, these osci
tions are excited only byZ component of the external mag
netic field.

The DW2 drift occurs only ifHxÞ0 andHyÞ0,

Vdr5 ñxy~v,x1!H0xH0y , ~40!

where the nonlinear mobilityñxy(v,x1), similarly to the
nonlinear mobilitynxz in Eq. ~29!, can be presented as a su
of weak ferromagnet term, which is connected to t
Dzyaloshinskii interaction, and ‘‘pure antiferromagne
terms:

ñxy~v,x1!5n0@D̃~v,x1!1Ã~v,x1!#,
D̃~v,x1!52
p

2 S d2

b̃2d
D 1/2

q̃1
1/2H $@~ q̃12s̃ !21q̃2

2#~ h̃121!12~ q̃12s̃ !%

@~ q̃12s̃ !21q̃2
2#@~ q̃12s̃21!21q̃2

2#
q̃2 cosx1

1
$@~ q̃12s̃ !21q̃2

2#@2~ q̃12s̃21!h̃11h̃2#1@~ q̃12s̃ !22q̃2
2#~ q̃12s̃21!%

@~ q̃12s̃ !21q̃2
2#@~ q̃12s̃21!21q̃2

2#
sinx1J ,

Ã~v,x1!5q̃1q̃2

q̃2 cosx11@~ q̃12s̃ !~ q̃12s̃21!1q̃2
2#sinx1

@~ q̃12s̃ !21q̃2
2#@~ q̃12s̃21!21q̃2

2#
, ~41!
of

gi-

-
a-

n

where q̃15(v/ṽ0)2, q̃25vv r /ṽ0
2, s̃5(b12b̃2)/b̃2.0,

ṽ05c/ ỹ05 1
2 gM0(b̃2d)1/2; h̃1 and h̃2 are the constants o

the order 1. The structure of the functionsD̃(v,x1) and
Ã(v,x1) are similar to that ofD(v,x) and A(v,x) in Eq.
~29!. It should be only noted that the termD̃(v,x1), in con-
trast toD(v,x), is proportional to the field frequency an
tends to 0 atv→0.

VI. DRIFT OF A STRIPE DOMAIN STRUCTURE

We consider now the possibility of a drift in an extern
alternating magnetic field with a stripe domain structu
~SDS! consisting of domains withl z51 and l z521 sepa-
rated by 180-degree DW’s. Let us first discuss the c
b̃2.b1 , in which DW of the first type~DW1! is stable.

It must be borne in mind here that neighboring DW in t
SDS have opposite topological charges determined by
boundary conditions~9! of Eq. ~8!. In addition, the rotation
of the vectorl in various DW can be about either a positiv
or a negative direction of theZ axis. These two factors de
termine the DW drift direction in a field of fixed frequencyv
and a phase shiftx ~or x1!. An SDS drift is possible, natu
rally, only when neighboring DW move in one and the sa
direction.

We define the topological chargeR561 of the DW and
the parameterr561 that describes the rotation of the vect
l in a DW as follows:
e

e

e

l x~6`!57R, l z~y50!5r. ~42!

The domain walls of the first type~DW1! considered
above, satisfying the boundary conditions~8! and having a
magnetization distribution~10!, correspond toR5r511. In
the general case we have in lieu of Eq.~10!

w085
1

y0
R sinw05

1

y0
Rr sechS y

y0
D , cosw052R tanhS y

y0
D .

~43!

Analysis shows that in the general case the drift velocity
DW1 with the given values of the parametersR and r is
determined by an equation similar to Eq.~28!:

Vdr5Rrnxz~v,x!H0xH0z1Rnxy~v,x1!H0xH0y , ~44!

where the nonlinear mobilitiesnxz andnxy are described as
before by Eqs.~29! and ~36!.

We see thus in Eq.~44! that SDS drift in a field polarized
in the~XY! plane is altogether impossible, since the topolo
cal chargesR of neighboring DW are different. In a field
polarized in the~XZ! plane, SDS drift is possible, but pro
vided that neighboring DW have different values of the p
rameterr and of the topological chargeR, i.e., the rotation of
the vectorl in neighboring DW must be in the same directio
~e.g., clockwise! and orientations ofl in the centers of the
neighboring DW’s are opposite to each other.
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The drift motion of SDS in the caseb̃2,b1 , in which
DW2 are stable, can be considered similarly. In this case
can be charactered by the topological chargeR61 and the
parameterr̃561,

l x~6`!57R, l y~y50!5 r̃. ~45!

An analysis shows the drift velocity of DW2 with differ
ent values of the parametersR andr̃ can be described by Eq
~40! in which with the nonlinear mobilityñxy(v,x1) has the
form
t.

.

.

us

t.

p

ñxy~v,x1!5n0@RD̃~v,x1!1Rr̃Ã~v,x1!#, ~46!

where the functionsD̃(v,x1) and Ã(v,x1) are defined in
Eq. ~41!. We see that two terms in Eq.~46! differently de-
pend on the topological chargesR and r̃. As the first one
~weak-ferromagnet term! is dominant and proportional only
to R, SDS with DW2 cannot drift as a whole. Only in th
case of a ‘‘pure’’ antiferromagnet, in whichD̃50, a drift of
SDS with DW2 is possible under the influence of the ext
nal magnetic field polarized in the~XY! plane.
nd,

s.

.
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