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A two-site cluster generalization of the Hubbard model in large dimensions is examined in order to study the
role of short-range spin correlations near the metal-insulator trangiithfi). The model is mapped to a
two-impurity Kondo-Anderson model in a self-consistently determined bath, making it possible to directly
address the competition between the Kondo effect and Ruderman-Kittel-Kasuya-YRKIKY ) interactions
in a lattice context. Our results indicate that the RKKY interactions lead to qualitative modifications of the MIT
scenario even in the absence of long-range antiferromagnetic ordg3i63-182@09)07809-1

[. INTRODUCTION electrons. Formally, the problem is mapptdnto an
Anderson impurity model supplemented by an additional
The competition between the Kondo effect and theself-consistency condition. The Kondo resonance of the im-
Ruderman-Kittel-Kasuya-YosidéRKKY) interactions is a purity model maps to the heavy quasiparticle band, and the
recurring theme in many of the most interesting phenomenott transitiort*~**is driven by the vanishing of the Kondo
associated with the physics of strong electronic correlationgemperaturd y,qo~M/m*. Besides providing an appealing,
When the RKKY interactions predominate, the result is long-physically transparent picture of the correlated state and the
range magnetic ordering, as found in many heavy-fermiormetal-insulator transition, theé=< method provides a quan-
materialst In situations where magnetic ordering is absent(itatively accurate computational approach valid in the entire
the manifestations are more subtle, but often equally fundatlemperature range. As it treats at the same level both the
mental. In particular, it has been suggeétt this compe- coherent, quasiparticle excitations, and the incoherent collec-
tition lies at the core of the proposed “two-fluid” behavior, tive inelastic processes, the method even allows for a de-
and “micromagnetism” found in some nonmagnetic heavyscription of fully incoherent, non-Fermi-liquid metallic
fermion systems. Another interesting class of systems wherstates™
both the Kondo effect and the RKKY correlations are In spite of the successes of tHe= > mean-field approach,
believed to be crucial are exemplified by dopedit remains unable to address several important physical ques-
semiconductorsnear the metal-insulator transitiéhIT). In  tions. Since it is based on a mapping on a single{&ibgu-
these systems, non-Fermi-lig@imetallic behavior is ob- rity) model, it cannot properly account for the competition
served, suggesting the coexistence of local moments argetween the Kondo effect and the spin-spin correlations be-
conduction electrons that seem decoupled from each other tween neighboring sites — the effect that we have argued is
another manifestation of the “two-fluid” behavirThere crucial in a number of physical situations. The locality inher-
are many further examples where these effects are of kegnt in this formulation leads to another feature that is likely
importance. Unfortunately, there are very few theoretical apto be an artifact of mean-field theory: the “pinning” of the
proaches that are able to treat both the Kondo physics andensity of states at the Fermi le&IMore precisely, this
the RKKY correlations on the same footing and provide aeffect can be directly traced to the momentum independence
convincing picture of these interesting phenomena. of the local self-energy, reflecting the lack of spatial corre-
Theoretically, much of our current understanding oflations. In the context of strongly correlated, but weakly dis-
strongly correlated metallic phases relies on a variety obrdered system¥,the pinning condition was shown to result
mean-field descriptions, most of which essentially emphasiz# a discontinuous jump of the dc conductivity B0 —
the Kondo aspect of the problem. Several approaches hatke minimum metallic conductivity. If the pinning is relaxed,
been proposed, but the most elaborate one, combining matrilyis conceivable that a continuous behavior of the conduc-
of the pre-existing ideas in the field, is based on taking thdivity would follow, thus qualitatively modifying our picture
limit of large spatial dimensionalityThis method represents of transport near the metal-insulator transitfon.
a generalizatichof simple, but physically transparent mean-  In order to address the limitations of the existidgr %
field ideas of Bragg and Williantsas applied to interacting theory, a most straightforward approach would be to inves-
electronic systems. In this picture, the electron residing on #igate systematic #l/ corrections resulting from finite dimen-
given site is viewetf as a Kondo spin which is coupled by sionality. Several different methods for performing such ex-
an exchange interaction to a bath consisting of the remainingansions have been proposéd® but each of these
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where U is the Coulomb potential and is the nearest-
neighbor hopping amplituddyy, is the hopping amplitude
between the two lattices.

It should be stressed at this point that this model clearly
breaks translational invariance by singling qatirs of sites
connected by hopping elemertts,. While this feature ap-

approaches result in formidable technical difficulties, makingpegrﬁbsomewhat a_rt|f|IC|atI |_r; ? u(;ufc:rm StyStIFFQ 'ndWh'Ch all
it difficult to address the finite dimensional effects in a'c'9NPOrS are equivaient, it ieads tocantrofied and non-

simple and elegant fashion. In this paper, we take an altefl1vial modification of thed= limit.?° In contrast to the
native route: we propose té extend the éxisting thedries standard single-band Hubbard model in infinite dimensions,
d=o in a wéy that mimics the most important physical ef- in which electrons solely undergemporalfluctuations, our

fects of finite dimensionality. Given the fact that the generalmOOleI also allows fospatial fluctuations. A systematic ex-

large dimensions philosophy is based on the mapping of Qansion in 1d (Refs. 17,20includes exactly these processes

lattice models onto appropriate impurity models, the approf’md the model can therefore be interpreted as including some

priate impurity model displaying the relevant physics is theOf th? effects of finite dimensionality. .

two-impurity Kondo (Anderson model® which is often It is clear that the model by construction enables us to
used as a simplest model for the study of the RKKY-KondoStUdy nearest-neighbor spin correlauons.. In physmal terms,
competition. Using standard methdtae can obtain dat- for t,y, large, the model favors the formation of singlet pairs

tice versionof this model by self-consistently embedding it E)dimi_rs) frpm the “a-b” sitesl. Ir_‘ljtierezting(ljy, this symrr]netry
in an appropriate medium. The resulting model is the “mini- reaking Is not unreasonable thsordered systemsvhere

mum model” that allows us to go beyond the limitations each sitea has another “preferred” neighboring site with
imposed by the conventional=c approach, without per- which dimerization will be favored. This notion is at the
forming uncontrolled or unjustified approximations. heart of the “random singlet” ordering of Bhatt and L&,

In the rest of this paper, we define and examine this‘descrlbmg the singular thermodynamics of doped semicon-
model. and indicate how the ,features inherent to the RKKY-ductors. Notice, however, that a variety of additional inter-
Kondo competition modify the standat= results for the pretatlo_ns is possible. In particular, the model may alterna-
Hubbard modet!~1 Specifically, we investigate the modifi- tVe!Y viewed as a two-band model or as two coupled

22
cations of the Mott transition in a single-band Hubbardlayers' | th bl imolif iderablv in the |
model at half-filling. We conclude that the RKKY interac- As usual, the problem simplifies considerably in the large

tions represent aelevantperturbation, relaxing the pinning ceerdination(large dimensionlimit, where a mapping to an

condition and qualitatively modifying the nature of the appropriate impurity model is obtained. Using standard
metal-insulator transition. method< we proceed by rescaling the hopping amplitade

ast— t/\Jm (m=z—1 is the “branching ratio” of the Bethe
lattice), and taking the limim— . The result is an effective
two-impurity Anderson modelembedded in a self-

We begin our discussion by defining the model that weconsistently determined bath. We introduce spingf$ér)
consider, and derive the corresponding self-consistency cor[a};(7),b}(7)] and the matrix Green function
ditions by performing thed—co limit. While the limit of
infinite dimensions does not impose any restrictions on the —(Taaraar’T) —(Ta,( T)bZ(T’»
lattice structure studietithe equations become particularly G, (7— T’)=< t t
simple and easy to derive in the case of a Bethe latfi¢&!’ —(Too(1)a,(7))  —(Tby(n)by(7"))
The qualitative features of the model will be identical as on
other lattices, and the resulting spectral functions are closev(l ith
to the three-dimensional situation than, for example, on the
d=c hypercubic lattice. The “minimum model” that we
propose is then obtained lpoublingthe Bethe latticdwith Gliwy)=— J"Beiwnr<-|- o T)CT(0)>S _ (3)
hoppingt), and allowing the electrons to hdpetweenthe " 0 7 eff
Bethe lattices with hoppint,,. The geometry of the result-
ing lattice is showr{for coordination numbez=3) in Fig. 1.  Notice that due to spin conservati®,= 6,, G, -

Denoting the creation operators corresponding to the two The effective action can then be written in matrix form as

FIG. 1. Lattice structure of the doubled Bethe lattice and the,
effective two-impurity cluster.

Il. THE MODEL
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While solving this model for general values of the param-
eters represents a highly nontrivial task, we immediately rec- ]
ognize some well-known limiting cases. In the linjt,=0, Metallic Phase
the two Bethe lattices decouple, and the model reduces to th 1.00_
well-known single-band Hubbard model h=o.11"1% At
half filling, this model undergoes a Mott transition it
=Ue,, which is preceded by a formation of a pseudogap and

the coexistendé?3of a metallic and an insulating solution in
the regionU=U, <U<U=U,, . However, the metallic so-

lution is lower in energ§® at T=0 throughout the coexist-

ence region, so thalUZUCz represents a true zero- FIG. 2. Phase diagram in thg —t,, plane. Both the metallic
temperature critical point where the two solutions merge. and the insulating solution are locally stable in the coexistence re-
The other easily analyzable case is the noninteractingion even aff=0, in contrast to the,,=0 situation. The curves
limit U=0. Here, a band-crossing transition takes placedenoted byU.; (dashed ling and U, represent the boundaries
where the density of stat¢®OS) at the Fermi level vanishes (spinodal$ of the insulating and the metallic solution, respectively.
continuously and a gap openstgt=t. The origin of this The two solutionsmergeat the two second-ordgcritical) points
transition is easy to understand: in the atomic litgjg>t the ~ denoted byA andB. A direct, continuous transition from metal to
DOS reduces to the twtbonding and antibondindevels at  insulator is found along the critical lin¢to the right of pointB),
E. = *+t,,. When the hopping increases, these atomic lev- Which is qualitatively similar as fou =0 [see Figs. 3 and]4
els broaden into bands of width2t, so that the gap closes
when the two bands overlap, gf,=t.

B - Second order point

0.00 \ \ \ I \
0.00 0.20 0.40 0.60 0.80 1.00

tively, exact diagonalization approaches also appear hardly
feasible in the case of the two-impurity problem, although
recent developmerfts hold considerable promise for the
IIl. RESULTS near future. Taking these facts into consideration, we pro-

While the limit of infinite dimensions simplifies the origi- POS€ t0 begin the investigation of the problem considered

nal problem considerably, solving the corresponding impuYiSing the IPT approach as a useful first attempt to gain in-
rity model is still a formidable task. In the framework of the SIght into the RKKY-Kondo competition. We note however,

single-band Hubbard model, a number of numerically exac}hat in contrast to the garlier applica’gion _of the IPT approach,
techniqued!~132324 as well as simpler approximate N the present case this approximation is not exact inlthe

method&®1213 have been used. A particularly simple ap- =~ limit, even at half-filling. Still, we do not expect that
proach proposed by Georges and Kofflds based on solv- these limitations will qualitatively modify our conclusions,
ing the Anderson impurity model using second-order pertur€SPecially in view of the absence of a small energy scale at
bation theory, following Yamada and Yosi&2’Due to the the first-order metal-insulator transition that we find. The

additional self-consistency this approach, often called th@ossible instances where the limitations of the IPT approach
“iterated perturbation theory(IPT),  still has nonperturba- could be relevant will be further discussed in Sec. IV, where

tive character. It is exact in both limits &f =0 andU = o we also present a quantitative estimate for the range of its

and displays a Mott metal-insulator transition. Detailed in-Validity. , , _
vestigations based on other numerical approaches In the following, we will concentrate on the behavior at

demonstrated-2the qualitative validity of most IPT predic- half-filling, where the Mott transition takes place tgh=0,
tions for the single-band Hubbard modelds:=%. As com- and investigate the modifications induced by turningtgn
pared to numerically exact solutions, IPT requires consider? O- In order to apply IPT to the present model, we have to

ably less computational effort, and thus represents a valuabPMpute the second-order perturbation theory corrections
guide to the physics ad=c< electrons. around the nonmagnetic Hartree-Fock solution. The second-

In the problem that we consider in this paper, one has t@rder diagonal/off-diagonal self-energies in this case consist
solve a two-impurity Anderson mobe— a task which is ©f only one diagram respectively, and are given as
considerably more difficult than the simpler one-impurity — 11220 0, 0
model. Furthermore, numerical Monte Carlo approathies Zx(7) UGy (1) Gy = 1) Cy(7), ®
the two-impurity Anderson model have proven to be largelywhere x,y=a,b. Since the resulting equations have to be
unsuccessful at the available computational level. Alternasolved self-consistently, the solution is obtained by numeri-
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® ® FIG. 4. (a) Quasiparticle residue=1/(1— d3/Jdw) in the me-

tallic phase as a function of the interactiah for t,,=0.2. (b)
Density of stateg —Im G(0")] of metallic (solid line) and insulat-
ing (dotted ling solutions at,,= 0.2 as a function of the interaction
U.

FIG. 3. Density of states for interactiorta) U=0 and(b) U
=1.5 fort,,=0.0, 0.25, 0.5, 0.75, 1.0.

cal iteration until convergence is found.

We have determined th€=0 phase diagram of the in-
vestigated model at half-filling using the IPT approximation,Kondo temperature [quasiparticle weight z=1/(1
and the results are presented in Fig. 2. At small valugd,of — d%/dw)] on one site as a function &f, for t,,=0.2[Fig.
ast,y, is increased, the behavior is qualitatively the same a¢(a)]. The density of states is also discontinuous at this
at U=0. A continuoustransition takes place, at a critical boundaryFig. 4b)]. We note the pronounced dependence of
value of the hoppindS,(U) that is found to decrease &b the density of states at the Fermi energy on the interaction
increases. This behavior reflects the fact that the gradud! — @ clear violation of the “pinning condition” that is
band broadening due to the Hubbard-Mott splitting tends t®®bserved at,,=0. This behavior is seen even more clearly
close the gap. As an illustration we display the evolution ofty plotting the evolution of the metallic DOS as the bound-
the DOS as the transition is approached in Fig. 3Jat0 ary is approached in Fig. 5. Clearly, in contrast to the situa-
[Fig. 3@] andU =1.5[Fig. 3(b)]. (Throughout the paper, all tion att,,=0, the metallic and insulating solutiori® not
energies are measured in units of the half-bandwibth mergeatU=U, (tap), so this boundary cannot be identified
=2t.) with a critical line.

For larger values ob), a coexistence region of the metal-  Similar behavior is obtained by examining the stability of
lic and insulating solutions is found, similarly as fof, the insulating solution, which is found tdiscontinuously
=0. The metallic solution is found fdﬂ<UCZ(tab); we note  disappear aU=Uc1(tab). As we can see from the phase

the nonmonotonic dependence Ufcz(tab), which is first  diagram, Fig. 2, the boundarie:iscl(tab) and Ucz(tab) are

found to increase, and then to decrease as a functivg,of found to join at the critical point B” which is also the end
Thus, as compared witty,,=0, the addition of the RKKY of the band-crossing transition critical line.

correlation is found to extend the metallic region. More im- We thus find that in the entire coexistence region, the
portantly, we find that the metallic solution disappediss  metallic and the insulating solutions merge only at two
continuously at U=U, (tap), in contrast to thet,,=0  points:A (t;p=0, U=U.) andB. In the rest of the phase

behaviort?3 The solution along this boundary i®t char-  diagram the two solutions amisjoint from each other, and
acterized by a low-energy scale, as seen by plotting théhe transition has &rst-order character. This conclusion can
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FIG. 5. Density of states fot,,=0.2 and interactionsJ FIG. 6. Difference between the energies of metallic and insulat-
=1.0, 1.8, 2.6, 3.4. ing solutions fort,,=0.2 as a function of the interactidn.

be established even more rigorously by examiningldoal  the thermodynamic behavior by affecting the dynamics of
stability of each solution throughout the coexistence regionthe collective spin fluctuations governing the finite-
For this purpose, we have developed an approach that allowf§mperature response. In order to investigate this aspect of
us to determine the stability, as described in detail in thdhe problem, we have computed the specific heat in the me-
Appendix. Using this method, we have established that botfallic and the insulating phases of our model. To illustrate the
the metallic and the insulating soluticare locally stable typical metallic behavior, we present results for the specific
supporting the first-order scenariNote that when the pro- heat atU=2.5, for three different values af,=0, 0.2, 0.4
cedure is applied in thé,,=0 limit, we find that in the in Fig. 7.
coexistence region, the insulating solution is locaihstable At tap=0 we recognize the characteristic linear specific
with respect to the metallic solution, in agreement with wellheat atT<Tygndo~0.05, corresponding to Fermi-liquid be-
established resulfs:?3

To obtain the location of the transition line, we have cal- o5 |-
culated the energies of the solutions, and determined the lin
where they coincide, as shown in Fig. 2. Since the solutions
merge at pointsA and B (see Fig. 2, the energies of the
solutions have to coincide there, and {ffiest-ordey transi-
tion line connects those two points. As an illustration, the
energies of the two solutions are plotted tg=0.2 as a
function of U in Fig. 6. As we can see, in contrast to the
t.p=0 findings, thansulatingsolution is lower in energy for
larger values ofU, consistent with the first-order scenario.
This result is perhaps not surprising, as the RKKY interac-
tions are generally expected to stabilize the insulating solu-” o2
tion.

In line with this first-order scenario, the boundary lines
Ucl(tab) and Ucz(tab) should be recognized aspinodal

lines. An interesting question is why the two solutions merge
att,,=0, i.e., why is there a critical point there instead of a
first-order transition. The existence loifurcations i.e., criti-
cal points, is usually associated with spontaneous breakdow
of some symmetry(e.g., up-down symmetry in the Ising "L \ | |
mode). In the case of the single-band Hubbard modetiin 00 o 02 03
= the relevant symmetry remains yet to be discovered. Temperature

The effects of the RKKY interactions are not limited to  FIG. 7. Specific heat as a function of temperature for the metal-
the modifications of the MIT scenario. They can also modifylic solution, atU=2.5 fort,,=0.0, 0.2, 0.4.

04

0.3

Specific Heat
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When applied to single-impurity Anderson models, the
approach of YY is generally expected to be at least qualita-
- i 1 0.0 tively correct in the entire temperature range. In this case, the

- ta= 0.15 ground state is dlocal) Fermi liquid, so that perturbation
---------- tar 03 theory convergé? and finite order corrections are sufficient.
The situation is more complicated in two-impurity models
~ such as the two-impurity Kond@Anderson model. Here, a
= critical point® is found at half-filling, separating the RKKY
IR and Kondo regimes. The emergence of this critical point has
0.80— a simple physical origin. It reflects the fact that two ground
3 states with different symmetry are possible, corresponding to
the Kondo spins being compensated either by conduction
electrons(Kondo phasgor by each othefRKKY phasg.
This critical point, which reflects a degeneracy due to level
0.40 crossing® signals a breakdown of a Fermi-liquid description.

i 3 As a result, we do not expect perturbative approaches to be
accurate in the critical region. Indeed, if the two-impurity
problem is treated in perturbation theory, the critical point is
washed out into a smooth crossover.
0.00f= —= Without providing a more elaborate treatment of the two-
o!o o|.1 % %5 impurity problem, we can at least make estimates of the re-

Temperature gions in parameter space where IPT could prove insufficient.
Based on the information available from studies of the two-
Smpurity Kondo modéf in a fixed bath, we expect that a
critical point emerges when the RKKY interactialy,, is

havior, a Schottky-like peak &8t~ Tyqnqo reflecting the bind- comparable  to th? “bare” Kondo temperatur&yong,
ing energy of the Kondo singlet, and insulating-like behavior= T konddtap=0). Since nealU., the Kondo temperature
at T~U/2 due to charge fluctuatiorislubbard bands vanishes

Fort,,#0, i.e., as the RKKY interactions are introduced,
a different feature appears in the intermediate energy range: o m,
the specific heat is enhancedTat J,,, reflecting the emer- Kondo™ EM(UCZ_ U), @
gence of additional spin fluctuations with a characteristic en-
ergy corresponding to the RKKY exchange interactipy  but the exchange interaction remains finite
~4t2,/U. Fort,,=0.4 andU=2 we estimatel,,~0.08,
giving a (“Schottky”) peak in the specific heat at~J/2 Jab~tap/U, (8
~0.16, exactly where the observed enhancement occurs. . - .

This interpretation of the observed specific-heat enhancea}nd one can expect that increasidgat finite t,y, drives the

ment finds additional support by examining the correspondg’yStem from a Kondo to a RKKY metallic phase. The critical

. L . . . . line where this could take place can be estimated by equating
ing behavior in the insulating regime. Typical results are
g g reg yp ®ondo @Nd .y, and using Eqs(7), (8), we find

presented in Fig. 8, where the specific heat is plottedor Tkondo
=3.5, andt,,=0, 0.15, and 0.3.

In the abasbence of RKKY interactions,(,=0) the specific URKKY(tab)%UCz_A'tgb/UCz' ©
heat is vanishingly small at low temperatures, reflecting the _ o _ } o
existence of the Mott-Hubbard gap. As in the metallic phase, This expression is valid only in thg,— 0 limit, where to
the addition of RKKY interactionst(,# 0) induces specific- leading order we have ignored the modifications of (-
heat enhancements in a comparable temperature range, @nsistently adaptingelectronic bath. This estimate is plot-
TJ~2t§b/U. We also note that the corresponding enhanceted in Fig. .9,'where it is compgred with the perturbation
ment in the metallic statéFig. 7) is much more spread-out in theory predictions for the metallic phase boundary, and the
temperature, presumably reflecting the scattering of thesication of the first-order metal-insulator transition.

fluctuations by the coupling to the particle-hole excitations. AS We can see, according to IPT, the first-order transition
preemptsthe approach to the RKKY-Kondo critical line,

supporting the validity of IPT-based predictions.

The ITP prediction that the introduction of RKKY inter-

The solution of our model presented in the preceding secactions induces a first-order metal-insulator transition finds
tion was based on an approximate scheme for the impuritpdditional support if we recall that a similar conclusion was
problem — the perturbation theory approach of Yosida andbtained by introducing additional RKKY interactions in the
Yamada® (YY). While this techniques was utilized with im- largeN approaches to correlated electréhddowever, we
pressive success in previods-~ studies'®'*1?it is impor- ~ emphasize that this approach did not have the two-impurity
tant to emphasize the limitations of this approach, and idenKondo physics built in, and, in particular, the possibility that
tify instances where most important problems can bghe RKKY-Kondo competition induces a nontrivial critical
expected. point even on the impurity level.

1.20(—

Specific Heat

e dEpee LT e,

FIG. 8. Specific heat as a function of temperature for insulatin
solution, atU=3.5 fort,,=0.0, 0.15, 0.3.

IV. BEYOND PERTURBATION THEORY
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APPENDIX: STABILITY OF d=o SOLUTIONS

In this appendix, we describe a method that can be used to

Interaction
\

o,
2N
spinodal RN
0,

examine the local stability of th@=« self-consistency
2.00_ equations, Eqs2)—(5). The method is based on the obser-
vation that these equations can be derived using a variational
B second order point approach, i.e., by extremizing a certain functional in analogy
N Metallic phase with standard Landau-Ginzburg formulations of mean-field
theory.
1.00 ] In the present case, this functional takes a form
i 1.1 2
a FIG,(iwg)]=— 5?22 X t[G(wy)]
g mn
0.00 \ \ | | [ + Fimpl Go(iwp)], (A1)
0.00 0.20 0.40 0.60 0.80 1.00

ab whereF; [ G,(iw,)] is the free energy of the two-impurity

FIG. 9. Phase diagram indicating the critical line corresponding™odel as defined by the action of E¢é) and(5)
to the Kondo-RKKY phase transition. Also shown is the first-order

. ) 1 .
line found in our model. Fimpl Goli@p)]=— E In| Dc*Dce SelGolion)]

An interesting question that deserves further study is the (A2)
role of the two-Impurity Kondo madel critical point in the_ Here, we consider Eq#4),(5) as adefinitionof the effective
destruction of the metallic phase. Of course, this question _. : ) . ;

: ) = action, so thaF[ G,(iw,)] is a functional of aarbitrary, yet
would be particularly relevant if additions of small perturba- nspecified functiors, (i w,)
tions, perhaps disorder, could stabilize the metallic phase t6"sP AN

s : In analogy with conventional Landau-Ginzburg formula-
larger values ofJ, so that the relevant critical point becomes tion, we think ofG_(iw,) as an order parametéunctior)
physically accessible. : o\ @n P '

The mean-field equations are then obtained by extremizing
the above functional with respect to variations in the form of

V. CONCLUSIONS G,(iwy). The extremum condition reads

In this paper, we addressed the role of short-ranged mag- SF[G]
netic correlations in determining the behavior of strongly Gliw) O (A3)
correlated electronic systems. To account for these effects, o
which are not properly treated by existing approaches, wejiving
propose a two-site cluster generalization of the Hubbard .
model in infinite dimensions as the simplest model contain- G, (iw,)=GM(iw,). (A4)
ing the relevant physics. The model is mapped onto a two- impy _ ) ] .
impurity Kondo-Anderson model in a self-consistently deter-Here, G, (iwy) is the local Green function of the impurity
mined bath, making it possible to directly address themodel corresponding to dixed “bath” Green function
competition between the Kondo effect and RKKY interac-Go(i®n)
tions in a lattice context. imp, . .

Using a well-known approximation scheme for solving Gy ('wn):<Cg(|wn)Ca('wn)>Seﬁ[G]- (AS)
the self-consistency conditions, we have determined the impy; : . :
phase diagram of our model and discussed the modificationd©t€ thatG,"(iwy) is also afunctionalof G, (i wy).
of the metallic behavior. We find that the addition of RKKY  OPviously, Eq.(A5) is identical to Eq.(3), so that we
interactions induces a first-order metal-insulator transition€c0OVer thed=c the self-consistency conditions Eqg)—
by energetically favoring the insulating phase. Additional 5). ) - )
low-energy spin fluctuations emerge, leading to enhance- Before going further, it is worthwhile to comment on the

ments of the specific heat in the intermediate temperaturBNysical interpretation of the functional of Ec(sAl),(AZ)é
range, both in the metallic and insulating phases. Using the expressions for the free energydefoc models,
one can show that our functional reduces toftiee energy

when evaluated for the value & (i w,) corresponding to
the solutions of the self-consistency conditions, Egs-(5).

We thank S. Barle, G. Kotliar, M. Rozenberg, and Q. SiWe conclude thaF[ G] represents &ree-energy functional
for useful discussions. The work at Rutgers was supportedh the usual Landau-Ginzburg sense.
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When the self-consistency conditions are solved numeri- xi(n=0)=(1—c)x'o+ ng" ] (A13)
cally, one typically makes an initial guess G, (i w,), de-
fining the effectiv ion of the impurity model using Eg. . . -
5). ‘?hte ?mepuer%/ nei] O%C;cis t?] e:1 golvepc:lj b? an?c:re]etlﬁlsodgava?il-_ Th_e solution is locally stable if fo:clsuﬁluently sr_na_ll the
able, and a value d6,(i w,) obtained from Eq(3). In nu- iteration proceo_IL_Jre converges K_):xo. We can 5|m|Ia_rIy
merical analysis, this iterative procedure is known as th&heck the stability of the metallic solution by choosing
“substitution-iteration method,” which is repeated until con- ~ 1. . i )
vergence is reached. In the following, we prove a general [N order to apply these ideas, we first test them in the
theorem that such an iterative procedure converges towards/¥e!l-examined limit corresponding t,,=0. We find that
local (nearest minimumof the free-energy functional. We the metallic squuqn is st'able thrqughout the coexistence re-
note that the set of all possible functios,(iw,) form a  9ion, but that _the_ msulatmg solution becomes unstab_@ as
vector spacémore precisely an infinite dimensional Hilbert —0- These findings are in complete agreement with the

space, and for notational simplicity, denote these vectors byresult® thatUc, is aT=0 critical point at which(upon re-
X ducing U) the insulating solution becomes unstable, and a

" We define thegradientvector fieldg(x) as new metallic solution emerges. We can apply these ideas for
tap# 0, in which caseboth solutions are found to be locally
stable, in agreement with a first-order scenario.

9(x) = dxF[x], (AB) We conclude this discussion by an explicit construction of
) the “Landau-Ginzburg” functional, which represents an il-
so that Eq(A3) can be written as lustration of the above stability considerations. To do this,
we note that in the case of tltk= equations, the gradient
Q(X)|x=x020- (A7) vector takes the form
Here,x, corresponds to the solution of the self-consistency g=G"™[G]-G, (A14)
condition, i.e., is a locally stationary point &f[x]. If we
define further the quantity which can be calculated by any method that solves the
Anderson impurity model, e.g., the YY approactOnce the
foy— gradient is available, it is possible to determine the evolution
=x—0g(x), (A8)

of F[x] along any particular direction in the space. In
particular, we expect the physical solutions to be local
minima, separated by an unstable solutitatal maximum

or a saddle point It is thus useful to consider the direction

we find that at the stationary point

Xo=F(Xo). (A9)  (vectop connecting the two solutions, which can be param-
etrized as
In this language, the substitution-iteration search for the so-
lution can be written as " T-0.033
0.00 |
x(n+1)=f(x(n)), (A10)
. -0.02
and the solution corresponds to
. °_=° -0.04
Xo= lim x(n). (A11) S
N g
[
2 006
. . -3
Note that theincrementof x(n) can be also written as g
Z o8
Ax(n)=x(n+1)—x(n)=—gx(n)). (A12) 5
. . . . . -0.10 — —
As we can see, the iteration takes the vegtor the direction -
opposite to the gradient, i.e., “down the hill,” so that the
iteration converges only in the vicinity oflacal minimum 012 — ., 7=0.008 —
On general grounds, we expect the physical solutions nea 0025 T 00%
first-order transitions to blecally stable We can check this ‘ I ‘ ‘
stability, by making a small modification in the initial con- 0.0 0.2 04 08 0.8 1.0
ditions that produce the respective solutions. More precisely, Admixture of metallic solution

we should first find the convergent metallic and insulating FiG. 10. Landau free energy fag,=0, U=2.6 and tempera-
solutionsxy andx;. We can then examine the stability of, turesT=0.003-0.033 in steps df T=0.006. The inset shows the

for example, the insulating solution by restarting the iterationfree-energy difference between the two minima as a function of
search from a new initial guess temperature.



6854 MOELLER, DOBROSAVLJEV(C, AND RUCKENSTEIN PRB 59

X(/)=(1=/ )+ /XY (A15) Here, we showAF (/) for U=2.6 and for several differ-
ent temperatures. As we can see,T&0 both the metallic
and the insulating solution are locally stable, but the insulat-
ing one becomes unstable @s-0, in agreement with our
. stability considerations. We also note that as the temperature
N A1 erol > is increased, the free energy of the metallic solutioh (
AFR(/)=FIX(/)]=Fx]= fo d7-g(x(7)). (A16) =1) increases, until thepinodalis reached, where the local
minimum becomes an inflection point and becomes even lo-
We can numerically compute this line integral by an appro-cally unstable. Of course, this instability geemptecby a
priate discretization procedure, and typical results inttfge  first-order transition, which in this case happens at finite tem-
=0 limit are plotted in Fig. 10. perature, in agreement with the findings of Refs. 13,14.

Theincrementof F[x(/)] can be expressed as a line integral
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