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RKKY interactions and the Mott transition
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A two-site cluster generalization of the Hubbard model in large dimensions is examined in order to study the
role of short-range spin correlations near the metal-insulator transition~MIT !. The model is mapped to a
two-impurity Kondo-Anderson model in a self-consistently determined bath, making it possible to directly
address the competition between the Kondo effect and Ruderman-Kittel-Kasuya-Yosida~RKKY ! interactions
in a lattice context. Our results indicate that the RKKY interactions lead to qualitative modifications of the MIT
scenario even in the absence of long-range antiferromagnetic ordering.@S0163-1829~99!07809-1#
he

en
n
g
io
n
d

r,
vy
e
re
ed

a
r

k
ap
a
a

o
o

siz
a
a

th
s
n-

n
y
in

nal
im-
the

o
,
the

-
tire
the

llec-
de-

c

,
ues-

n
be-
d is
r-
ly

e

ce
re-
is-
lt

d,
uc-

es-
-
x-
I. INTRODUCTION

The competition between the Kondo effect and t
Ruderman-Kittel-Kasuya-Yosida~RKKY ! interactions is a
recurring theme in many of the most interesting phenom
associated with the physics of strong electronic correlatio
When the RKKY interactions predominate, the result is lon
range magnetic ordering, as found in many heavy-ferm
materials.1 In situations where magnetic ordering is abse
the manifestations are more subtle, but often equally fun
mental. In particular, it has been suggested2 that this compe-
tition lies at the core of the proposed ‘‘two-fluid’’ behavio
and ‘‘micromagnetism’’ found in some nonmagnetic hea
fermion systems. Another interesting class of systems wh
both the Kondo effect and the RKKY correlations a
believed to be crucial are exemplified by dop
semiconductors3 near the metal-insulator transition~MIT !. In
these systems, non-Fermi-liquid4,5 metallic behavior is ob-
served, suggesting the coexistence of local moments
conduction electrons that seem decoupled from each othe
another manifestation of the ‘‘two-fluid’’ behavior.6 There
are many further examples where these effects are of
importance. Unfortunately, there are very few theoretical
proaches that are able to treat both the Kondo physics
the RKKY correlations on the same footing and provide
convincing picture of these interesting phenomena.

Theoretically, much of our current understanding
strongly correlated metallic phases relies on a variety
mean-field descriptions, most of which essentially empha
the Kondo aspect of the problem. Several approaches h
been proposed, but the most elaborate one, combining m
of the pre-existing ideas in the field, is based on taking
limit of large spatial dimensionality.7 This method represent
a generalization8 of simple, but physically transparent mea
field ideas of Bragg and Williams,9 as applied to interacting
electronic systems. In this picture, the electron residing o
given site is viewed10 as a Kondo spin which is coupled b
an exchange interaction to a bath consisting of the remain
PRB 590163-1829/99/59~10!/6846~9!/$15.00
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electrons. Formally, the problem is mapped10 onto an
Anderson impurity model supplemented by an additio
self-consistency condition. The Kondo resonance of the
purity model maps to the heavy quasiparticle band, and
Mott transition11–14 is driven by the vanishing of the Kond
temperatureTKondo;m/m* . Besides providing an appealing
physically transparent picture of the correlated state and
metal-insulator transition, thed5` method provides a quan
titatively accurate computational approach valid in the en
temperature range. As it treats at the same level both
coherent, quasiparticle excitations, and the incoherent co
tive inelastic processes, the method even allows for a
scription of fully incoherent, non-Fermi-liquid metalli
states.15

In spite of the successes of thed5` mean-field approach
it remains unable to address several important physical q
tions. Since it is based on a mapping on a single-site~impu-
rity! model, it cannot properly account for the competitio
between the Kondo effect and the spin-spin correlations
tween neighboring sites — the effect that we have argue
crucial in a number of physical situations. The locality inhe
ent in this formulation leads to another feature that is like
to be an artifact of mean-field theory: the ‘‘pinning’’ of th
density of states at the Fermi level.16 More precisely, this
effect can be directly traced to the momentum independen7

of the local self-energy, reflecting the lack of spatial cor
lations. In the context of strongly correlated, but weakly d
ordered systems,17 the pinning condition was shown to resu
in a discontinuous jump of the dc conductivity atT50 —
the minimum metallic conductivity. If the pinning is relaxe
it is conceivable that a continuous behavior of the cond
tivity would follow, thus qualitatively modifying our picture
of transport near the metal-insulator transition.3

In order to address the limitations of the existingd5`
theory, a most straightforward approach would be to inv
tigate systematic 1/d corrections resulting from finite dimen
sionality. Several different methods for performing such e
pansions have been proposed,17,18 but each of these
6846 ©1999 The American Physical Society
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approaches result in formidable technical difficulties, mak
it difficult to address the finite dimensional effects in
simple and elegant fashion. In this paper, we take an a
native route: we propose to extend the existing theoriesin
d5` in a way that mimics the most important physical e
fects of finite dimensionality. Given the fact that the gene
large dimensions philosophy is based on the mapping
lattice models onto appropriate impurity models, the app
priate impurity model displaying the relevant physics is t
two-impurity Kondo ~Anderson! model,19 which is often
used as a simplest model for the study of the RKKY-Kon
competition. Using standard methods,8 we can obtain alat-
tice versionof this model by self-consistently embedding
in an appropriate medium. The resulting model is the ‘‘mi
mum model’’ that allows us to go beyond the limitation
imposed by the conventionald5` approach, without per-
forming uncontrolled or unjustified approximations.

In the rest of this paper, we define and examine t
model, and indicate how the features inherent to the RKK
Kondo competition modify the standardd5` results for the
Hubbard model.11–14Specifically, we investigate the modifi
cations of the Mott transition in a single-band Hubba
model at half-filling. We conclude that the RKKY interac
tions represent arelevantperturbation, relaxing the pinning
condition and qualitatively modifying the nature of th
metal-insulator transition.

II. THE MODEL

We begin our discussion by defining the model that
consider, and derive the corresponding self-consistency
ditions by performing thed→` limit. While the limit of
infinite dimensions does not impose any restrictions on
lattice structure studied,8 the equations become particular
simple and easy to derive in the case of a Bethe lattice.12,13,17

The qualitative features of the model will be identical as o
other lattices, and the resulting spectral functions are clo
to the three-dimensional situation than, for example, on
d5` hypercubic lattice. The ‘‘minimum model’’ that we
propose is then obtained bydoubling the Bethe lattice~with
hopping t!, and allowing the electrons to hopbetweenthe
Bethe lattices with hoppingtab . The geometry of the result
ing lattice is shown~for coordination numberz53) in Fig. 1.

Denoting the creation operators corresponding to the

FIG. 1. Lattice structure of the doubled Bethe lattice and
effective two-impurity cluster.
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Bethe lattices withas
† andbs

† , the Hamiltonian can be writ-
ten as

H52t (
^ i , j &,s

~ais
† aj s1bis

† bj s!1tab(
is

~ais
† bis1H.c.!,

1U(
is

~naisnai2s1nbisnbi2s!2m(
is

~nais1nbis!,

~1!

where U is the Coulomb potential andt is the nearest-
neighbor hopping amplitude;tab is the hopping amplitude
between the two lattices.

It should be stressed at this point that this model clea
breaks translational invariance by singling outpairs of sites
connected by hopping elementstab . While this feature ap-
pears somewhat artificial in a uniform system in which
neighbors are equivalent, it leads to acontrolled and non-
trivial modification of thed5` limit.20 In contrast to the
standard single-band Hubbard model in infinite dimensio
in which electrons solely undergotemporalfluctuations, our
model also allows forspatial fluctuations. A systematic ex
pansion in 1/d ~Refs. 17,20! includes exactly these process
and the model can therefore be interpreted as including s
of the effects of finite dimensionality.

It is clear that the model by construction enables us
study nearest-neighbor spin correlations. In physical ter
for tab large, the model favors the formation of singlet pa
~dimers! from the ‘‘a-b’’ sites. Interestingly, this symmetry
breaking is not unreasonable indisordered systems, where
each sitea has another ‘‘preferred’’ neighboring siteb, with
which dimerization will be favored. This notion is at th
heart of the ‘‘random singlet’’ ordering of Bhatt and Lee,21

describing the singular thermodynamics of doped semic
ductors. Notice, however, that a variety of additional inte
pretations is possible. In particular, the model may alter
tively viewed as a two-band model or as two coupl
layers.22

As usual, the problem simplifies considerably in the lar
coordination~large dimension! limit, where a mapping to an
appropriate impurity model is obtained. Using standa
methods,8 we proceed by rescaling the hopping amplitudt
ast→ t/Am (m5z21 is the ‘‘branching ratio’’ of the Bethe
lattice!, and taking the limitm→`. The result is an effective
two-impurity Anderson modelembedded in a self-
consistently determined bath. We introduce spinorscs* (t)
5@as* (t),bs* (t)# and the matrix Green function

Gs~t2t8!5S 2^Tastast8†& 2^Tas~t!bs
†~t8!&

2^Tbs~t!as
†~t8!& 2^Tbs~t!bs

†~t8!&
D
~2!

with

G~ ivn!52E
0

b

eivnt^Ttc~t!c†~0!&Seff
. ~3!

Notice that due to spin conservationGs5dss8Gss8 .
The effective action can then be written in matrix form

e
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Seff@cs,cs* #52(
s

(
ivn

csn* G0
21~ ivn!csn

1UE
0

b

dt~na↑na↓1nb↑nb↓!, ~4!

where the self-consistency condition reads

G0
21~ ivn!5S ivn1m 2tab

2tab ivn1m D 2t2G„ivn). ~5!

While solving this model for general values of the para
eters represents a highly nontrivial task, we immediately r
ognize some well-known limiting cases. In the limittab50,
the two Bethe lattices decouple, and the model reduces to
well-known single-band Hubbard model ind5`.11–14 At
half filling, this model undergoes a Mott transition atU
5Uc2

, which is preceded by a formation of a pseudogap a
the coexistence12,23of a metallic and an insulating solution i
the regionU5Uc1

,U,U5Uc2
. However, the metallic so

lution is lower in energy23 at T50 throughout the coexist
ence region, so thatU5Uc2

represents a true zero
temperature critical point where the two solutions merge

The other easily analyzable case is the noninterac
limit U50. Here, a band-crossing transition takes pla
where the density of states~DOS! at the Fermi level vanishe
continuously and a gap opens attab5t. The origin of this
transition is easy to understand: in the atomic limittab@t the
DOS reduces to the two~bonding and antibonding! levels at
E656tab . When the hoppingt increases, these atomic lev
els broaden into bands of width'2t, so that the gap close
when the two bands overlap, attab5t.

III. RESULTS

While the limit of infinite dimensions simplifies the orig
nal problem considerably, solving the corresponding im
rity model is still a formidable task. In the framework of th
single-band Hubbard model, a number of numerically ex
techniques,11–13,23,24 as well as simpler approximat
methods10,12,13 have been used. A particularly simple a
proach proposed by Georges and Kotliar10 is based on solv-
ing the Anderson impurity model using second-order per
bation theory, following Yamada and Yosida.25–27Due to the
additional self-consistency this approach, often called
‘‘iterated perturbation theory’’~IPT!,14 still has nonperturba-
tive character. It is exact in both limits ofU50 andU5`
and displays a Mott metal-insulator transition. Detailed
vestigations based on other numerical approac
demonstrated24,23 the qualitative validity of most IPT predic
tions for the single-band Hubbard model ind5`. As com-
pared to numerically exact solutions, IPT requires consid
ably less computational effort, and thus represents a valu
guide to the physics ofd5` electrons.

In the problem that we consider in this paper, one has
solve a two-impurity Anderson model — a task which is
considerably more difficult than the simpler one-impur
model. Furthermore, numerical Monte Carlo approaches28 to
the two-impurity Anderson model have proven to be larg
unsuccessful at the available computational level. Alter
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tively, exact diagonalization approaches also appear ha
feasible in the case of the two-impurity problem, althou
recent developments29 hold considerable promise for th
near future. Taking these facts into consideration, we p
pose to begin the investigation of the problem conside
using the IPT approach as a useful first attempt to gain
sight into the RKKY-Kondo competition. We note howeve
that in contrast to the earlier application of the IPT approa
in the present case this approximation is not exact in theU
5` limit, even at half-filling. Still, we do not expect tha
these limitations will qualitatively modify our conclusions
especially in view of the absence of a small energy scal
the first-order metal-insulator transition that we find. T
possible instances where the limitations of the IPT appro
could be relevant will be further discussed in Sec. IV, whe
we also present a quantitative estimate for the range o
validity.

In the following, we will concentrate on the behavior
half-filling, where the Mott transition takes place attab50,
and investigate the modifications induced by turning ontab
Þ0. In order to apply IPT to the present model, we have
compute the second-order perturbation theory correcti
around the nonmagnetic Hartree-Fock solution. The seco
order diagonal/off-diagonal self-energies in this case con
of only one diagram respectively, and are given as

Sxy~t!52U2Gxy
0 ~t!Gxy

0 ~2t!Gxy
0 ~t!, ~6!

where x,y5a,b. Since the resulting equations have to
solved self-consistently, the solution is obtained by nume

FIG. 2. Phase diagram in theU2tab plane. Both the metallic
and the insulating solution are locally stable in the coexistence
gion even atT50, in contrast to thetab50 situation. The curves
denoted byUc1 ~dashed line! and Uc2 represent the boundarie
~spinodals! of the insulating and the metallic solution, respective
The two solutionsmergeat the two second-order~critical! points
denoted byA andB. A direct, continuous transition from metal t
insulator is found along the critical line~to the right of pointB!,
which is qualitatively similar as forU50 @see Figs. 3 and 4#.
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PRB 59 6849RKKY INTERACTIONS AND THE MOTT TRANSITION
cal iteration until convergence is found.
We have determined theT50 phase diagram of the in

vestigated model at half-filling using the IPT approximatio
and the results are presented in Fig. 2. At small values oU,
as tab is increased, the behavior is qualitatively the same
at U50. A continuoustransition takes place, at a critica
value of the hoppingtab

c (U) that is found to decrease asU
increases. This behavior reflects the fact that the grad
band broadening due to the Hubbard-Mott splitting tends
close the gap. As an illustration we display the evolution
the DOS as the transition is approached in Fig. 3 atU50
@Fig. 3~a!# andU51.5 @Fig. 3~b!#. ~Throughout the paper, al
energies are measured in units of the half-bandwidthD
52t.!

For larger values ofU, a coexistence region of the meta
lic and insulating solutions is found, similarly as fortab
50. The metallic solution is found forU,Uc2

(tab); we note

the nonmonotonic dependence ofUc2
(tab), which is first

found to increase, and then to decrease as a function oftab .
Thus, as compared withtab50, the addition of the RKKY
correlation is found to extend the metallic region. More im
portantly, we find that the metallic solution disappearsdis-
continuously at U5Uc2

(tab), in contrast to thetab50
behavior.12,13 The solution along this boundary isnot char-
acterized by a low-energy scale, as seen by plotting

FIG. 3. Density of states for interactions~a! U50 and ~b! U
51.5 for tab50.0, 0.25, 0.5, 0.75, 1.0.
,
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Kondo temperature @quasiparticle weight z51/(1
2 ]S/]v)] on one site as a function ofU, for tab50.2 @Fig.
4~a!#. The density of states is also discontinuous at t
boundary@Fig. 4~b!#. We note the pronounced dependence
the density of states at the Fermi energy on the interac
U — a clear violation of the ‘‘pinning condition’’ that is
observed attab50. This behavior is seen even more clea
by plotting the evolution of the metallic DOS as the boun
ary is approached in Fig. 5. Clearly, in contrast to the sit
tion at tab50, the metallic and insulating solutionsdo not
mergeat U5Uc2

(tab), so this boundary cannot be identifie
with a critical line.

Similar behavior is obtained by examining the stability
the insulating solution, which is found todiscontinuously
disappear atU5Uc1

(tab). As we can see from the phas

diagram, Fig. 2, the boundariesUc1
(tab) and Uc2

(tab) are
found to join at the critical point ‘‘B’’ which is also the end
of the band-crossing transition critical line.

We thus find that in the entire coexistence region,
metallic and the insulating solutions merge only at tw
points: A (tab50, U5Uc2

) and B. In the rest of the phase
diagram the two solutions aredisjoint from each other, and
the transition has afirst-ordercharacter. This conclusion ca

FIG. 4. ~a! Quasiparticle residuez51/(12 ]S/]v) in the me-
tallic phase as a function of the interactionU for tab50.2. ~b!
Density of states@2Im G(01)# of metallic ~solid line! and insulat-
ing ~dotted line! solutions attab50.2 as a function of the interaction
U.
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be established even more rigorously by examining thelocal
stability of each solution throughout the coexistence regi
For this purpose, we have developed an approach that al
us to determine the stability, as described in detail in
Appendix. Using this method, we have established that b
the metallic and the insulating solutionare locally stable,
supporting the first-order scenario.~Note that when the pro
cedure is applied in thetab50 limit, we find that in the
coexistence region, the insulating solution is locallyunstable
with respect to the metallic solution, in agreement with w
established results.13,23!

To obtain the location of the transition line, we have c
culated the energies of the solutions, and determined the
where they coincide, as shown in Fig. 2. Since the soluti
merge at pointsA and B ~see Fig. 2!, the energies of the
solutions have to coincide there, and the~first-order! transi-
tion line connects those two points. As an illustration, t
energies of the two solutions are plotted fortab50.2 as a
function of U in Fig. 6. As we can see, in contrast to th
tab50 findings, theinsulatingsolution is lower in energy for
larger values ofU, consistent with the first-order scenari
This result is perhaps not surprising, as the RKKY inter
tions are generally expected to stabilize the insulating s
tion.

In line with this first-order scenario, the boundary lin
Uc1

(tab) and Uc2
(tab) should be recognized asspinodal

lines. An interesting question is why the two solutions me
at tab50, i.e., why is there a critical point there instead o
first-order transition. The existence ofbifurcations, i.e., criti-
cal points, is usually associated with spontaneous breakd
of some symmetry~e.g., up-down symmetry in the Isin
model!. In the case of the single-band Hubbard model ind
5` the relevant symmetry remains yet to be discovered

The effects of the RKKY interactions are not limited
the modifications of the MIT scenario. They can also mod

FIG. 5. Density of states fortab50.2 and interactionsU
51.0, 1.8, 2.6, 3.4.
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the thermodynamic behavior by affecting the dynamics
the collective spin fluctuations governing the finit
temperature response. In order to investigate this aspec
the problem, we have computed the specific heat in the
tallic and the insulating phases of our model. To illustrate
typical metallic behavior, we present results for the spec
heat atU52.5, for three different values oftab50, 0.2, 0.4
in Fig. 7.

At tab50 we recognize the characteristic linear spec
heat atT!TKondo;0.05, corresponding to Fermi-liquid be

FIG. 6. Difference between the energies of metallic and insu
ing solutions fortab50.2 as a function of the interactionU.

FIG. 7. Specific heat as a function of temperature for the me
lic solution, atU52.5 for tab50.0, 0.2, 0.4.
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PRB 59 6851RKKY INTERACTIONS AND THE MOTT TRANSITION
havior, a Schottky-like peak atT;TKondo reflecting the bind-
ing energy of the Kondo singlet, and insulating-like behav
at T;U/2 due to charge fluctuations~Hubbard bands!.

For tabÞ0, i.e., as the RKKY interactions are introduce
a different feature appears in the intermediate energy ra
the specific heat is enhanced atT;Jab , reflecting the emer-
gence of additional spin fluctuations with a characteristic
ergy corresponding to the RKKY exchange interactionJab

'4tab
2 /U. For tab50.4 andU52 we estimateJab'0.08,

giving a ~‘‘Schottky’’ ! peak in the specific heat atTJ;J/2
'0.16, exactly where the observed enhancement occurs

This interpretation of the observed specific-heat enhan
ment finds additional support by examining the correspo
ing behavior in the insulating regime. Typical results a
presented in Fig. 8, where the specific heat is plotted foU
53.5, andtab50, 0.15, and 0.3.

In the absence of RKKY interactions (tab50) the specific
heat is vanishingly small at low temperatures, reflecting
existence of the Mott-Hubbard gap. As in the metallic pha
the addition of RKKY interactions (tabÞ0) induces specific-
heat enhancements in a comparable temperature rang
TJ'2tab

2 /U. We also note that the corresponding enhan
ment in the metallic state~Fig. 7! is much more spread-out i
temperature, presumably reflecting the scattering of th
fluctuations by the coupling to the particle-hole excitation

IV. BEYOND PERTURBATION THEORY

The solution of our model presented in the preceding s
tion was based on an approximate scheme for the impu
problem — the perturbation theory approach of Yosida a
Yamada25 ~YY !. While this techniques was utilized with im
pressive success in previousd5` studies,10,14,12it is impor-
tant to emphasize the limitations of this approach, and id
tify instances where most important problems can
expected.

FIG. 8. Specific heat as a function of temperature for insulat
solution, atU53.5 for tab50.0, 0.15, 0.3.
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When applied to single-impurity Anderson models, t
approach of YY is generally expected to be at least qual
tively correct in the entire temperature range. In this case,
ground state is a~local! Fermi liquid, so that perturbation
theory converges32 and finite order corrections are sufficien
The situation is more complicated in two-impurity mode
such as the two-impurity Kondo~Anderson! model. Here, a
critical point19 is found at half-filling, separating the RKKY
and Kondo regimes. The emergence of this critical point
a simple physical origin. It reflects the fact that two grou
states with different symmetry are possible, correspondin
the Kondo spins being compensated either by conduc
electrons~Kondo phase! or by each other~RKKY phase!.
This critical point, which reflects a degeneracy due to le
crossing30 signals a breakdown of a Fermi-liquid descriptio
As a result, we do not expect perturbative approaches to
accurate in the critical region. Indeed, if the two-impuri
problem is treated in perturbation theory, the critical point
washed out into a smooth crossover.

Without providing a more elaborate treatment of the tw
impurity problem, we can at least make estimates of the
gions in parameter space where IPT could prove insufficie
Based on the information available from studies of the tw
impurity Kondo model19 in a fixed bath, we expect that
critical point emerges when the RKKY interactionJab is
comparable to the ‘‘bare’’ Kondo temperatureTKondo

o

5TKondo(tab50). Since nearUc2
the Kondo temperature

vanishes

TKondo
o ;

mo

m*
;~Uc2

2U !, ~7!

but the exchange interaction remains finite

Jab;tab
2 /U, ~8!

and one can expect that increasingU at finite tab drives the
system from a Kondo to a RKKY metallic phase. The critic
line where this could take place can be estimated by equa
TKondo

o andJab , and using Eqs.~7!, ~8!, we find

URKKY~ tab!'Uc2
24tab

2 /Uc2
. ~9!

This expression is valid only in thetab→0 limit, where to
leading order we have ignored the modifications of the~self-
consistently adapting! electronic bath. This estimate is plo
ted in Fig. 9, where it is compared with the perturbati
theory predictions for the metallic phase boundary, and
location of the first-order metal-insulator transition.

As we can see, according to IPT, the first-order transit
preemptsthe approach to the RKKY-Kondo critical line
supporting the validity of IPT-based predictions.

The ITP prediction that the introduction of RKKY inter
actions induces a first-order metal-insulator transition fin
additional support if we recall that a similar conclusion w
obtained by introducing additional RKKY interactions in th
large-N approaches to correlated electrons.31 However, we
emphasize that this approach did not have the two-impu
Kondo physics built in, and, in particular, the possibility th
the RKKY-Kondo competition induces a nontrivial critica
point even on the impurity level.
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An interesting question that deserves further study is
role of the two-impurity Kondo model critical point in th
destruction of the metallic phase. Of course, this ques
would be particularly relevant if additions of small perturb
tions, perhaps disorder, could stabilize the metallic phas
larger values ofU, so that the relevant critical point becom
physically accessible.

V. CONCLUSIONS

In this paper, we addressed the role of short-ranged m
netic correlations in determining the behavior of strong
correlated electronic systems. To account for these effe
which are not properly treated by existing approaches,
propose a two-site cluster generalization of the Hubb
model in infinite dimensions as the simplest model conta
ing the relevant physics. The model is mapped onto a t
impurity Kondo-Anderson model in a self-consistently det
mined bath, making it possible to directly address
competition between the Kondo effect and RKKY intera
tions in a lattice context.

Using a well-known approximation scheme for solvin
the self-consistency conditions, we have determined
phase diagram of our model and discussed the modificat
of the metallic behavior. We find that the addition of RKK
interactions induces a first-order metal-insulator transiti
by energetically favoring the insulating phase. Addition
low-energy spin fluctuations emerge, leading to enhan
ments of the specific heat in the intermediate tempera
range, both in the metallic and insulating phases.
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APPENDIX: STABILITY OF d5` SOLUTIONS

In this appendix, we describe a method that can be use
examine the local stability of thed5` self-consistency
equations, Eqs.~2!–~5!. The method is based on the obse
vation that these equations can be derived using a variati
approach, i.e., by extremizing a certain functional in analo
with standard Landau-Ginzburg formulations of mean-fie
theory.

In the present case, this functional takes a form

F@Gs~ ivn!#52
1

2
t2

1

b(
s

(
vn

tr@Gs
2~vn!#

1F imp@Gs~ ivn!#, ~A1!

whereF imp@Gs( ivn)# is the free energy of the two-impurity
model as defined by the action of Eqs.~4! and ~5!

F imp@Gs~ ivn!#52
1

b
lnE Dc* Dce2Seff[Gs~ ivn!] .

~A2!

Here, we consider Eqs.~4!,~5! as adefinitionof the effective
action, so thatF@Gs( ivn)# is a functional of aarbitrary, yet
unspecified functionGs( ivn).

In analogy with conventional Landau-Ginzburg formul
tion, we think ofGs( ivn) as an order parameter~function!.
The mean-field equations are then obtained by extremiz
the above functional with respect to variations in the form
Gs( ivn). The extremum condition reads

dF@G#

dGs~ ivn!
50, ~A3!

giving

Gs~ ivn!5Gs
imp~ ivn!. ~A4!

Here,Gs
imp( ivn) is the local Green function of the impurit

model corresponding to afixed ‘‘bath’’ Green function
Gs( ivn)

Gs
imp~ ivn!5^cs* ~ ivn!cs~ ivn!&Seff[G] . ~A5!

Note thatGs
imp( ivn) is also afunctionalof Gs( ivn).

Obviously, Eq.~A5! is identical to Eq.~3!, so that we
recover thed5` the self-consistency conditions Eqs.~2!–
~5!.

Before going further, it is worthwhile to comment on th
physical interpretation of the functional of Eqs.~A1!,~A2!.
Using the expressions for the free energy ofd5` models,8

one can show that our functional reduces to thefree energy,
when evaluated for the value ofGs( ivn) corresponding to
the solutions of the self-consistency conditions, Eqs.~2!–~5!.
We conclude thatF@G# represents afree-energy functional,
in the usual Landau-Ginzburg sense.
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When the self-consistency conditions are solved num
cally, one typically makes an initial guess forGs( ivn), de-
fining the effective action of the impurity model using E
~5!. The impurity model is then solved by any method ava
able, and a value ofGs( ivn) obtained from Eq.~3!. In nu-
merical analysis, this iterative procedure is known as
‘‘substitution-iteration method,’’ which is repeated until co
vergence is reached. In the following, we prove a gene
theorem that such an iterative procedure converges towa
local ~nearest! minimumof the free-energy functional. We
note that the set of all possible functionsGs( ivn) form a
vector space~more precisely an infinite dimensional Hilbe
space!, and for notational simplicity, denote these vectors
x.

We define thegradientvector fieldg(x) as

g~x!5]xF@x#, ~A6!

so that Eq.~A3! can be written as

g~x!ux5xo
50. ~A7!

Here,xo corresponds to the solution of the self-consisten
condition, i.e., is a locally stationary point ofF@x#. If we
define further the quantity

f5x2g~x!, ~A8!

we find that at the stationary point

xo5f~xo!. ~A9!

In this language, the substitution-iteration search for the
lution can be written as

x~n11!5f„x~n!…, ~A10!

and the solution corresponds to

xo5 lim
n→`

x~n!. ~A11!

Note that theincrementof x(n) can be also written as

Dx~n!5x~n11!2x~n!52g„x~n!…. ~A12!

As we can see, the iteration takes the vectorx in the direction
opposite to the gradient, i.e., ‘‘down the hill,’’ so that th
iteration converges only in the vicinity of alocal minimum.

On general grounds, we expect the physical solutions n
first-order transitions to belocally stable. We can check this
stability, by making a small modification in the initial con
ditions that produce the respective solutions. More precis
we should first find the convergent metallic and insulat
solutionsxo

M andxo
I . We can then examine the stability o

for example, the insulating solution by restarting the iterat
search from a new initial guess
i-

-

e

al
s a

y

y

o-

ar

y,

n

xi~n50!5~12c!xo
I 1cxo

M . ~A13!

The solution is locally stable if forc sufficiently small the
iteration procedure converges tox5xo

I . We can similarly
check the stability of the metallic solution by choosingc
'1.

In order to apply these ideas, we first test them in
well-examined limit corresponding totab50. We find that
the metallic solution is stable throughout the coexistence
gion, but that the insulating solution becomes unstable aT
→0. These findings are in complete agreement with
result23 that Uc2 is a T50 critical point at which~upon re-
ducing U! the insulating solution becomes unstable, and
new metallic solution emerges. We can apply these ideas
tabÞ0, in which caseboth solutions are found to be locally
stable, in agreement with a first-order scenario.

We conclude this discussion by an explicit construction
the ‘‘Landau-Ginzburg’’ functional, which represents an
lustration of the above stability considerations. To do th
we note that in the case of thed5` equations, the gradien
vector takes the form

g5Gimp@G#2G, ~A14!

which can be calculated by any method that solves
Anderson impurity model, e.g., the YY approach.25 Once the
gradient is available, it is possible to determine the evolut
of F@x# along any particular direction in thex space. In
particular, we expect the physical solutions to be lo
minima, separated by an unstable solution~local maximum
or a saddle point!. It is thus useful to consider the directio
~vector! connecting the two solutions, which can be para
etrized as

FIG. 10. Landau free energy fortab50, U52.6 and tempera-
turesT50.003– 0.033 in steps ofDT50.006. The inset shows th
free-energy difference between the two minima as a function
temperature.
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x~ l !5~12l !xo
I 1l xo

M . ~A15!

The incrementof F@x(l )# can be expressed as a line integ

DF~ l !5F@x~ l !#2F@xo
I #5E

0

1

dl¢ •g„x~ l !…. ~A16!

We can numerically compute this line integral by an app
priate discretization procedure, and typical results in thetab
50 limit are plotted in Fig. 10.
3

e

A

t

t

l

-

Here, we showDF(l ) for U52.6 and for several differ-
ent temperatures. As we can see, atTÞ0 both the metallic
and the insulating solution are locally stable, but the insul
ing one becomes unstable asT→0, in agreement with our
stability considerations. We also note that as the temperat
is increased, the free energy of the metallic solution (l
51) increases, until thespinodalis reached, where the loca
minimum becomes an inflection point and becomes even
cally unstable. Of course, this instability ispreemptedby a
first-order transition, which in this case happens at finite te
perature, in agreement with the findings of Refs. 13,14.
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