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d-function Bose-gas picture ofS51 antiferromagnetic quantum spin chains
near critical fields
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We study the zero-temperature magnetization curve (M2H curve! of the one-dimensional quantum anti-

ferromagnet of spin one. The HamiltonianH we consider is of the bilinear-biquadratic form:H5( i f (sW i

•sW i 11) ~1Zeeman term! wheresW i is the spin operator at sitei and f (X)5X1bX2 with 0<b,1. We focus on
validity of thed-function Bose-gas picture near the two critical fields: upper-critical fieldHs above which the
magnetization saturates and the lower-critical fieldHc associated with the Haldane gap. As for the behavior
nearHs , we take ‘‘low-energy effectiveS matrix’’ approach, where thecorrect effective Bose-gas coupling
constantc is extracted from the two down-spinSmatrix in its low-energy limit. We find that the resulting value
of c differs from the spin-wave value. We draw theM2H curve by using the resultant Bose gas, and compare
it with numerical calculation where the product-wave-function renormalization-group~PWFRG! method, a
variant of White’s density-matrix renormalization group method, is employed. Excellent agreement is seen
between the PWFRG calculation and the correctly mapped Bose-gas calculation. We also test the validity of
the Bose-gas picture near the lower-critical fieldHc . Comparing the PWFRG-calculatedM2H curves with
the Bose-gas prediction, we find that there are two distinct regions, I and II, ofb separated by a critical value
bc('0.41). In region I, 0,b,bc , the effective Bose couplingc is positive but rather small. The small value
of c makes the ‘‘critical region’’ of the square-root behaviorM;AH2Hc very narrow. Further, we find that
in theb→bc20, the square-root behavior transmutes to a different one,M;(H2Hc)

u with u'1/4. In region
II, bc,b,1, the square-root behavior is more pronounced as compared with region I, but the effective
couplingc becomesnegative. @S0163-1829~99!09009-8#
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I. INTRODUCTION

The magnetization process (M2H curve,M: magnetiza-
tion, H: magnetic field! of the one-dimensional~1D! quan-
tum spin system has recently drawn much attention, du
the remarkable progress in material synthesis techniques
high-field experiments.1 Spin chains with variousS ~spin
magnitude! and/or with nontrivial spatial structures, etc., e
hibit various interesting magnetic behaviors~e.g., field-
induced phase transitions, like the plateau in theM2H
curve2!, many of which still await theoretical analyses.

As for theM2H curve of the gapfulS51 antiferromag-
netic ~AF! Heisenberg chain, it has been known that, on ra
ing the magnetic field from zero, there is a critical fieldHc
above which the system becomes magnetized. This cri
field relates to the excitation gap~Haldane gap! D as Hc
5D/(gmB) ~g: g factor,mB : Bohr magneton!. We callHc
lower-critical field because there also existsupper-critical
field Hs ~saturation field! above which the magnetizatio
saturates toMs51. NearHs , it is well established that the
M2H curve behaves asMs2M;AHs2H.13–15 Near Hc ,
similar behaviorM;(H2Hc)

u with u'1/2 has also been
known,7,8 but numerically, whether the exponentu is exactly
1/2 or not, has remained less conclusive as compared
the behavior nearHs .

The expected square-root behaviorM;AH2Hc has been
explained via approximate mapping to thed-function Bose
gas7,8 or to the fermion gas.9 There is numerical evidence fo
such mappings,8,10 but the square-root behavior of thebulk
magnetizationitself has not been fully verified yet. In th
PRB 590163-1829/99/59~10!/6806~7!/$15.00
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finite-N (N: system size! diagonalization study,8 the small-
ness ofN disables us to make quantitative discussion of
bulk magnetization nearHc . In Ref. 10, a large-size system
is treated by the density-matrix renormalization grou5

~DMRG, for short! to study the low-lying excitations having
small Stot

z (<4). It was shown there that the low-lying ex
citations admit fermionic interpretation, just as in the case
the Bethe-ansatz solution of thed-function Bose gas at low-
particle density. This result is indeed a strong support for
Bose-gas picture, but the smallness ofStot

z implies that, in a
strict sense, the result applies only to the system in the v
ishing magnetization densitym5Stot

z /N→0.
Further, there is a quantity that is undoubtedly importa

for the Bose-gas picture, but has not been considered
ously so far: the effective Bose-gas coupling constantc. Let
us consider a 1D~effective! d-function Bose gas with the
Hamiltonian

H ~Bose!~s,c!5E dx@s]f†~x!]f~x!

1cf†~x!f†~x!f~x!f~x!#, ~1.1!

with f†(x) andf(x) being the Bose operators. By solvin
the Bethe ansatz integral equation we obtain the ground-s
energy densitye as11

e5
c3

s2
ẽ~r !, ~1.2!
6806 ©1999 The American Physical Society
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r 5
2sr

c
, r:particle number density, ~1.3!

ẽ~r !5
p2

24
r 3H 122r 13r 21S 4p2

15
24D r 3

1S 52
4p2

3 D r 41O~r 5!J . ~1.4!

In terms of the particle densityr, we have

e~r!5A3r31A4r41•••, ~1.5!

with

A35sp2/3

A4524s2p2/~3c!. ~1.6!

In the Bose-gas picture, theM2H curve of the spin chain
near the critical field corresponds to ther2m curve of the
Bose gas, wherem5]e(r)/]r is the chemical potential. As
far as the critical behavior is concerned, only ther3 term is
relevant, which determines both the critical exponen
(51/2) and the critical amplitude. Since the coefficientA3
does not depend onc, the critical behavior must bec inde-
pendent and ‘‘universal.’’ However, actualr2m curve
heavily depends on the value ofc that comes fromr4 and/or
higher-order terms. In fact, the coefficientAk of rk term (k
>4) is proportional toc32k, which becomes dominant fo
small c. Accordingly, the critical region of the square-ro
behavior will become rather narrow for smallc. Hence,
knowledge of the actual value of the effective coupling co
stantc is indispensable, in order to make a fully quantitati
test of the bose-gas picture.

The aim of the present article is to give a quantitative t
for the Bose-gas picture of the bilinear-biquadratic AF ch
in a field. For this purpose, we employ the quantum versi3

of the product-wave-function renormalization-group metho4

~PWFRG method, for short!. The PWFRG is a variant of the
White’s DMRG,5 which is specially designed to obtain th
‘‘fixed point’’ ~5thermodynamic limit of the system6! of the
DMRG iterations efficiently. In Ref. 3, it is shown that th
PWFRG, which was originally implemented for 2D classic
systems, can also be applied to 1D quantum systems b
placing the transfer-matrix multiplication with the modifie
Lanczos operation. Even with relatively small number of
tained bases, which is conventionally denoted as ‘‘m, ’’ PW-
FRG calculations accurately reproduce exactM2H curves
for integrable models,3,17 which demonstrates both the effi
ciency and the reliability of the method.

The Hamiltonian of the model we consider is

H5HBLBQ2Hzeeman, ~1.7!

HBLBQ5(
i

@SW i•SW i 111b~SW i•SW i 11!2#, Hzeeman5H(
i

Si
z ,

~1.8!

whereSW i5(Si
x ,Si

y ,Si
z) is theS51 spin operator at the sitei.

For notational simplicity, we have taken the units whe
gmB51, or, these factors are absorbed into the fieldH. Note
that we have adopted the sign convention where the co
-
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cient of the biquadratic term is written as1b, which is
different from the one adopted in Ref. 12 In this paper
consider the case 0<b,1. We concentrate on the behavio
of the M2H curve near the two critical fieldsHs andHc .

II. NEAR THE SATURATION FIELD H s

Let us consider first the system near the upper-criti
field ~saturation field! Hs54, where theM2H curve shows
the square-root behavior: 12M;AHs2H. As compared
with the one nearHc , this behavior itself is well-establishe
~by exact diagonalization13 and Bethe ansatz14,15!. Our con-
cern is how well thed-function Bose gas can describe th
M2H curveaway fromthe saturation field. For this purpos
we should derive thecorrect effective Bose-gas Hamil-
tonian, which we shall make by employing the low-ener
effectiveS-matrix approach.

Above the saturation fieldHs , the system is ferromagneti
cally ordered ~‘‘all-up’’ state!. Low-energy excitations
slightly below Hs are well described in terms of ‘‘down
spins’’ in the sea of up~‘‘ 11’’ ! spins. Regarding a down
spin as a particle, we consider two-body scattering prob
to obtain the exact two-bodyS-matrix.14,15 The point is that
in the low-energy limittheSmatrix reduces, in most cases,
that of thed-function Bose gas with an effective couplin
constant. With thiscorrect coupling constant, the bose ga
will give a quantitative description of the system nearHs .

By $us1 ,s2 , . . . ,.%(s i50,61), we denote the
Sz-diagonal bases of the spin chain. To solve the two-dow
spin problem we express the eigenvectoruk,k8. in terms of
the wave functionsc(x,y,k,k8) and f (z,k1k8) as

uk,k8&5(
x,y

c~x,y,k,k8!u11•••10
x
1•••10

y
1•••& ~2.1!

1(
z

f ~z,k1k8!u1•••1~21!
z

1•••&. ~2.2!

The two-bodyS-matrix S(k,k8) is introduced through the
asymptotic (y2x→`) behavior of the wave function

c~x,y,k,k8!;eikxeik8y1S~k,k8!eik8xeiky. ~2.3!

The eigenvalue problemHBLBQuk,k8&5E(k,k8)uk,k8& is
solved to give

E~k,k8!5e~k!1e~k8!, ~2.4!

where e(k)52212cosk is the one-particle~one-down-
spin! energy. Since the one-particle energye(k) takes its
minimum atk5p, we put

k5p1k,k85p1k8 ~2.5!

and consider the ‘‘low-energy limit’’k,k8→0. In this limit,
theSmatrix whose explicit expression has been given in R
15, becomes

S~k,k8! →
k,k;0

S~Bose!S k2k8,2
3b11

b D , ~2.6!
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whereS(Bose)(k,c) is theSmatrix of thed-function Bose gas
with HamiltonianH (Bose)(1,c) in Eq. ~1.1!. Explicitly, we
have

S~Bose!~k,c!52
c1 ik

c2 ik
. ~2.7!

Therefore, in discussing the low-energy properties near
saturation field, the bilinear-biquadratic chain~1.7! is equiva-
lent to the Bose gas with the effective coupling constant

c52
3b11

b
. ~2.8!

Some remarks are in order. Forb.0 or b,21/3 the
coupling constant~2.8! takes negative value. It has bee
known that thed-function Bose gas with negative couplin
constant is unphysical, because the system is unstable ag
formation of multiparticle bound states. In the present c
of finite-S spin chain, however,N-particle bound state with
large N are kinematically forbidden because more thanS
‘‘particles’’ cannot exist at a single site; the ‘‘collapse’’ t
occur in the negative coupling Bose gas is prevented in
original spin-chain problem. Hence, the effective Bose
with negative coupling constant, does have a meaning in
present study.

Of course, the above argument based on the ‘‘kinemat
constraint’’ on the single-site states does not preclude
existence ofN-particle bound states withN<2S. Also, there
remains possibility of bound states that extend over two
more lattice sites. As for theS51 bilinear-biquadratic chain
the bound-state problem has been discussed in Ref. 15.
two-particle bound state actually exists, but, for 0,b,1 it
is a high-energy mode that can be neglected, near the s
ration field at least. On the other hand, forb,21/3, the
lowest-energy excitation mode is actually the two-parti
bound state, which modifies the behavior of theM2H curve
near the saturation field.15 In any case, effects of the boun
states and the validity of the negative-coupling Bose-
treatment itself can be tested by a direct numerical calc
tion of theM2H curve.

We should give another remark concerning the two s
cial pointsb50(c5`) and b521/3 (c50). The former
corresponds to the hard-core Bose gase, which is equiva
to the spinless free-fermion system, and the latter to the
Bose gas. In our Bose-gas mapping scheme based on
low-energy effectiveS matrix, the above correspondenc
should be expected only in the low-energy limit~or equiva-
lently, very near the saturation field!; the original ‘‘full’’ S
matrix S(k,k8) actually differs from Sfree(k,k8)561 at
these special points.15 To what extent the system behaves
a ‘‘free’’ system is an interesting problem, which can also
studied by a direct numerical calculation.

From the Bose-gas energy densitye(r) in Eqs.~1.4! and
~1.5! with s51 and c52(3b11)/b, we obtain theM
2H curve through

M512r, ~2.9!

Hs2H5
]e~r!

]r
. ~2.10!
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At arbitrary r, we can numerically solve the Bethe-ansa
integral equation11 by converting it to a matrix equation, to
obtain]e(r)/]r within any required precision. To check th
validity of the Bose-gas description of theM2H curve, we
performed the numerical-renormalization-group calculatio
The method we employed is the quantum version3 of the
PWFRG,4 which allows us to make fixed-H calculations
sweeping the value ofH giving the M2H curve M
5M (H) in the thermodynamic limit. Figure 1 shows com
parison between the Bose-gas results and the PWFRG c
lations, where we see excellent agreements for unexpect
wide range of the fieldH. The validity of the Bose-gas pic
ture in the quantitative description of theM2H curve, is
thus verified.

Our two-down-spinS-matrix approach is easily extende
to generalS bilinear-biquadratic chain with the Hamiltonia

H5
1

S(i
@SW i•SW i 111b~SW i•SW i 11!2#. ~2.11!

FIG. 1. Comparisons of the effectived-Bose gas model and th
PWFRG calculations near the saturation fieldHs for some values of
the biquadratic interactionb. ~a! b50, ~b! b51/3, ~c! b50.6. The
open circles represent the PWFRG results with the retained num
of basesm560. The solid lines show the effectived-Bose gas
model with the couplingc52(3b11)/b. In ~b! and~c!, we draw
the free fermion curves, which correspond toucu5`, as the broken
lines for comparison.
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After a straightforward calculation very similar to the ones
Refs. 14 and 15, we obtain the effective Bose-gas coup
as

c522
11b~328S18S2!

12S1b~329S18S2!
. ~2.12!

For the pure bilinear case (b50), we have

c52/~S21!. ~2.13!

In Fig. 2, we compare the PWFRG-calculated curves foS
51/2,1,3/2,2 to Bose-gas curves with corresponding val
of c given by Eq.~2.13!. We again see satisfactory agre
ments.

Let us give a comment on previous studies related to
present one. For the spin-S ‘‘pure’’ Heisenberg AF@b50 in
Eq. ~2.11!#, the Bose-gas description nearHs has already
been made within the conventional spin-wave theoret
approach.18,8 This approach gives the value of the Bose-g
coupling constant to be

c52/S, ~2.14!

which is different from Eq.~2.13!. The spin-wave value
~2.14! deviates from~2.13! very much at smallS ~even the
sign disagrees atS51/2), although both are the same in th
largeS limit. Having seen that the Bose gas with Eq.~2.13!
gives the correctM2H curve, we must say that, at smallS,
the spin-wave approach is not reliable enough for quan
tive studies of the AF chains, even in the neighborhood
the saturation field. Note that, using the the Dyson-Male
transformation and taking the continuum limit, we can fo
mally rewrite8 the spin-chain Hamiltonian~2.11! with b50
into the d-function Bose-gas Hamiltonian with Eq.~2.14!.
Although this transformation seems to be exact in the op
tor level, there is a constraint on the state space: the bo
number cannot exceed 2S at each site. This constrain
amounts to ‘‘kinematical interaction’’ between the sp
waves, which may be the source of the disagreement
tween Eqs.~2.13! and ~2.14!.

III. NEAR THE LOWER CRITICAL FIELD H c

At H50 the ground state is singlet and nonmagnetic.
raising H, system still remains to be singlet up to a critic

FIG. 2. Comparisons of the effectived-Bose gas model and th
PWFRG calculations for variousSat b50. The diamonds, squares
triangles, and circles represent the PWFRG results forS
51/2,1,3/2, and 2, respectively. The solid lines represent the ef
tive d-Bose gas model withc52/(S21).
g
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field Hc above which the ground-state become magnetiz
The field-induced phase transition atHc is a level-crossing
transition between the singlet state and the lowest ene
triplet state~both atH50), hence the critical fieldHc is, in
our unit, just the excitation gap~‘‘Haldane gap’’! D. Then,
in the Bose-gas description nearHc , the singlet ground state
should be interpreted as the ‘‘vacuum,’’ and the triplet st
with Stot

z 51 the ‘‘one-particle state.’’
For b'0, the ‘‘one-particle’’ energy dispersionv(k)

takes its minimum atk5p. The dispersion curve around th
minimum is often assumed to be relativistic one,19,7

v~k!5AD21v2k̄2, ~3.1!

where k̄5k2p and v is called spin-wave velocity. In the
low-energy (uk̄u→0) limit, Eq. ~3.1! becomes

v~k!5D1
v2

2D
k̄2. ~3.2!

Unlike the case ofH'Hs , this ‘‘one-particle state’’ cannot
be treated exactly, because the ‘‘vacuum’’ itself is not kno
exactly due to the nonintegrability of the system@except for
some special values ofb (561,̀ )#. Accordingly, for gen-
eral b, it is impossible to calculate the exact two-bod
S-matrix S(k,k8), which is utilized in the previous section t
determine the effective coupling constantc. Nevertheless, if
we assume the Bose-gas picture to be held, we can ‘‘in
rectly’’ determine the value ofc from the M2H curve ob-
tained by the PWFRG. To see whether the obtained valu
c lies in a reasonable range or not, serves as a partial ch
of the validity of the Bose-gas picture.

NearH5Hc5D, we should relate theM2H curve to the
Bose-gas energy densitye(r) as

M5r, H2Hc5
]e~r!

]r
. ~3.3!

Then, for the square-root behavior

M;AH2Hc ~H→Hc10!, ~3.4!

we should expect the expansion of the form,

H5Hc13A3M214A4M315A5M41•••, ~3.5!

where we have used Eq.~1.5!. Since the expression~3.2! of
the one-particle energy impliess5v2/(2D) in Eqs. ~1.1!
and ~1.6!, we have

A35
sp2

3
5

p2v2

6D
, ~3.6!

A4524v4p2/~12D2c!. ~3.7!

From Eqs.~1.4!–~1.6!, it is clear that the width of critical
region essentially depends on the reduced coupling cons
c̃ defined by@see Eq.~1.6!#

c̃5c/s,

524A3 /A4 . ~3.8!

If we rewrite Eq.~3.5! as

c-
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H2Hc5ap2M2~11gM1dM2!@1O~M5!#, ~3.9!

a condition for the square-root criticality isugM u!1 ~and
also udM u!1). By WM

(c) , we denote width of the critica
region inM, which we conveniently define as

WM
~c!50.1/ugu. ~3.10!

Then M,WM
(c) implies ugM u,0.1, which may be regarde

as a necessary condition for the criticality. Corresponding
we can introduceWH

(c) defined by

WH
~c!5ap2~WM

~c!!2, ~3.11!

which represents the width of the critical region inH2Hc .
Let us now check the Bose-gas prediction of theM2H

curve by comparing it with the PWFRG calculations. Fro
theH2M curve, we determineD (5Hc),a,g, andd in Eq.
~3.9! by the least-square fitting. The numerical values
these parameter which we present below are best-fit val
Since DMRG/PWFRG is a deterministic algorithm, hen
our numerical data contain no statistical error, it is hard~and
may be meaningless! to estimate the ‘‘error bars.’’ Neverthe
less, fitting uncertainty that mainly comes from choice of t
‘‘fitting window’’ ~fitting range ofM ) exists. In this sense
we can make rough estimates of the ‘‘error bars’’ who
typical values are: 1% or less~for D), 5% or less~for a),
20% or less~for g), 50% or less~for d).

In Fig. 3, we show the PWFRG results of theH2M
curves nearHc for b50,1/3. The obtained values ofD are
0.410~for b50) and 0.699~for b51/3), both of which are

FIG. 3. Comparisons of the effectived-Bose gas model and th
PWFRG calculations near the lower-critical fieldHc(5D). ~a! The
pure AF Heisenberg pointb50. ~b! The AKLT point b51/3. The
open circles represent the PWFRG results with the retained num
of basesm5100. The solid lines show the least-square fitting
sults of the form:H5D1ap2M2(11gM1dM2).
,

r
s.
,

e

e

in good agreement with the known values 0.4105~for the
former20! and 0.699~for the latter21,24!.

To verify the relationa5s5v2/(2D) we need values of
v. For b50 using the known value10,19 v52.46 we have
s57.38, which should be compared witha57.65 obtained
from theH2M curve; the obtained value ofa is in reason-
able agreement withs. For b51/3 there seems to be n
serious numerical evaluation ofv. We therefore consult Ref
21 where a variational calculation ofv(k) beyond the
single-mode approximation22 ~which gives s55/9
50.555 . . . ) ismade; we have

s5~326451359A6529!/11752250.5246 . . . .
~3.12!

This value is also in reasonable agreement witha50.487
obtained from theH2M curve. Hence, theH2M curves
reproduce the ‘‘one-particle quantities’’ in the Bose-gas p
ture.

Although the obtained values ofa are consistent with the
bose-gas prediction, the results rely on the fitting form~3.9!
(constant1M2-term1 . . . ) whose validity itself should be
tested in some way. For this purpose, we replaced theM2

factor in the second term in the right-hand side of Eq.~3.9!
with Mm, and made the least-square analysis regarding
exponentm as another fitting variable. As for theb50 case,
we obtained the best-fit valuem52.01, which is very close
to 2, supporting the expansion~3.9!. Hence, in the following
analyses, we fixm52 and use Eq.~3.9! as the fitting func-
tion.

The coefficientsg andd are estimated to be

b50:g528.65, d532.6 ~3.13!

b51/3:g523.63, d57.46. ~3.14!

Since the negative values ofg implies the positive effective
bose-coupling constant, our PWFRG calculation supports
validity of the Bose-gas picture forb50,1/3.

We should point out that, although the Bose-gas pred
tion for the square-root behavior seems to be valid,
‘‘critical region’’ of the square-root behavior in theM2H
curve is rather narrow, since the obtained values ofg andd
are non-negligibly large. In fact, the quantityWM

(c) defined by
Eq. ~3.10! characterizing the width of the critical region,
very small: 0.012~for b50) and 0.028~for b51/3). Corre-
sponding values ofWH

(c) defined by~3.11! are even smaller:
0.010 (b50) and 3.831023 (b51/3).

One notable behavior which we found in the PWFR
calculation is that, on raisingb from 0, the H2M curve
becomes flatter and flatter, or equivalently, the value ofa in
~3.9! becomes smaller and smaller; there seems to be a c
cal valuebc ('0.41) at whicha vanishes. Accordingly, the
critical behavior of theM2H curve at Hc changes from
square-root type to another one;(H2Hc)

u(u'0.25) ~Fig.
4!. In the Bose-gas picture, this change of theM2H curve
may be understood as the vanishing of thek̄2 term in the
expansion of the one-particle excitation energyv(k). Inter-
estingly, a qualitative change of the static structure fac
S(q) has been found24 very nearbc . Since both of these
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changes reflect changes in the ground state and the
energy excitation mode of the system, it is likely that th
have a common origin.

The above interpretation for the case ofb5bc assumes
that the system can still be mapped to an interacting B
gas, although the one-particle energy dispersionv(k) may
be different from the parabola@v(k)5D1const3( k̄)4

1 . . . , is expected#. Logically, the breakdown of the Bose
gas mapping itself may also be a possible interpretation.
test whether the system can actually be described by a B
gas with nonparabolicv(k), we should, first of all, know the
properties of such ‘‘nonparabolic delta-function Bose ga
itself in some detail. However, the nonparabolicity makes
system nonintegrable, disabling us to perform the Bethe
satz calculation to obtain an exact solution. Nevertheless
can calculate the two-bodySmatrix also for the nonparaboli
case, and using this, we can apply the ‘‘Bethe-ansatz
proximation’’ method15,16 to have the low-density behavio
of the system. In this view, theM4 term as the first nontrivia
term in the fitting function forb5bc can be simply inter-
preted as the expectedk̄4 term inv(k). This line of analysis,
which is beyond the scope of the present paper and is lef
future study, will help clarify the nature of the bilinea
biquadratic chain atb5bc .

Above bc , the square-root behavior reappears. Howev
the coefficientg becomes positive~although small!, imply-
ing negativeeffective coupling constant~Fig. 5!. The square-

FIG. 4. The H2M curve at b50.4('bc) near the lower-
critical field Hc(5D). The open circles represent the PWFRG
sult with m5100. The solid line shows the least-square fitting res
of the form:H5D1AM41BM5.

FIG. 5. TheH2M curve atb50.6 near the lower-critical field
Hc(5D). The open circles represent the PWFRG result withm
5100. The solid line shows the least-square fitting result. We
the Bose-gas coupling constant takes the negative value.
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root behavior itself becomes manifest due to smallugu, but
the negative coupling disables us to take the naive Bose
picture in this region ofb; for justification of the picture, we
should inspect the ‘‘bound states,’’ just as we did in discu
ing the M2H curve near the upper-critical fieldHs . Note
that for systems in the Haldane phase where the orientati
order ~characterized by the string order parameter25! exists,
the ‘‘particle’’ is a moving domain wall separating two re
gions each of which has complete orientational order.26,21,23

In this view, totalSz carried by a low-lying excitation mode
is the ‘‘height’’ of the wall. Then, if the wall width is narrow
(; one lattice spacing!, we can adopt a similar reasoning a
in the previous section justifying the negative coupling bo
gas picture: formation of stable bound states will be forb
den due to the kinematical constraint that the local w
height (; total Sz, for thin wall! cannot exceedS. The actual
situation is, however, subtle because the domain-wal
somewhat fuzzy~due to the zero-spin defects26! and its width
may not be narrow.21 In this view, we should say that ful
justification of the Bose-gas picture forb.bc seems to re-
quire further study. Nevertheless, the square-root beha
M;AH2Hc itself is confirmed by our PWFRG calculation

IV. SUMMARY

In this paper, we have studied the zero-temperature m
netization process (M2H curve! of the S51 isotropic anti-
ferromagnetic spin chain with both the bilinear and biqu
dratic forms of interactions in the range 0<b,1 whereb is
the coefficient ratio between the biquadratic term and
bilinear term. Quantitative test for the Bose-gas picture n
the critical fieldsHs ~saturation field! andHc ~lower-critical
field! has been made with the help of the product-wa
function renormalization-group~PWFRG! method, which is
a variant of White’s density-matrix renormalization grou
~DMRG!.

Near Hs we have derived the correct effective Bose-g
coupling constant from the two down-spin scattering mat
in its low-energy limit. The resulting delta-function Bose g
yields M2H curves, which are in good agreement with t
PWFRG calculations.

NearHc , the square-root behaviorM;AH2Hc has been
confirmed by our PWFRG calculation throughout the ran
of b studied. Here it should be noted a recent finite-s
scaling calculation by Sakai and Takahashi gave a consis
result for theb50 case.27 We have, however, found two
distinct regions ofb separated by a critical valuebc'0.41.
In the small b region, 0,b,bc , the effective Bose-gas
coupling c extracted from the PWFRG-calculatedM2H
curve is positive but small, making the critical region of th
square-root behavior rather narrow; it becomes narrower
narrower on approachingbc . At bc , theM2H curve seems
to exhibit a different critical behaviorM;(H2Hc)

u with
u'0.25. In the largeb region, although the square-root b
havior is more pronounced due to large value ofucu, the sign
of c becomes negative, which sharply contrasts to the sm
b region.

As regards theM2H curve of the bilinear-biquadratic
Heisenberg chain, cusplike singularities in the ‘‘middl
field’’ region have been known for integrableSU(N)
chains.28 Whether a similar behavior can also be found f
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general, nonintegrable cases is an interesting problem.
though we have concentrated on the behavior near the c
cal fields in the present paper, we have obtained a fullM
2H curve fromH50 to H5Hs . In the largeb region, we
have actually found a clear cusplike singularity very simi
to the one in theSU(3) ~Lai-Sutherland! model,29 whose
detailed account will be given in a separate paper.

Finally we would like to remark that the Bose-gas d
scription, which we investigated in the present paper may
be the only one for ‘‘quantitative’’ description of theM
2H curve of the AF spin chain. For example, in a rece
paper, Yamamoto30 gave a different picture for the ground
state properties of the bilinear-biquadratic chain. Such
analysis may be helpful for clarifying nature of the system
the regionb.bc . Also, ‘‘quantifying’’ other low-energy
.
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effective theories is an interesting and important proble
For this purpose, the approach we have taken in Sec
where microscopic quantities of the effective theory are
tracted from bulk quantities calculated by a reliable meth
like the DMRG.
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