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We study the zero-temperature magnetization cuMe-H curve of the one-dimensional quantum anti-
ferromagnet of spin one. The Hamiltoniah we consider is of the bilinear-biquadratic formi=3,f(s,
-Si4+1) (+Zeeman termwhereéi is the spin operator at siteandf (X) =X+ 8X? with 0<B8<1. We focus on
validity of the §-function Bose-gas picture near the two critical fields: upper-critical fildbove which the
magnetization saturates and the lower-critical fidldassociated with the Haldane gap. As for the behavior
nearHg, we take “low-energy effectiveS matrix” approach, where theorrect effective Bose-gas coupling
constant is extracted from the two down-sp8matrix in its low-energy limit. We find that the resulting value
of c differs from the spin-wave value. We draw the—H curve by using the resultant Bose gas, and compare
it with numerical calculation where the product-wave-function renormalization-g(BMpFRG method, a
variant of White's density-matrix renormalization group method, is employed. Excellent agreement is seen
between the PWFRG calculation and the correctly mapped Bose-gas calculation. We also test the validity of
the Bose-gas picture near the lower-critical field. Comparing the PWFRG-calculatdd—H curves with
the Bose-gas prediction, we find that there are two distinct regions, | and gl separated by a critical value
B:(=~0.41). In region |, B< B< B, the effective Bose couplingis positive but rather small. The small value
of ¢ makes the “critical region” of the square-root behavidr~ \H —H_. very narrow. Further, we find that
in the 8— B.— 0, the square-root behavior transmutes to a different bhe(H —H,)? with #~1/4. In region
Il, B.<B<1, the square-root behavior is more pronounced as compared with region I, but the effective
couplingc becomesegative [S0163-18209)09009-9

[. INTRODUCTION finite-N (N: system sizpdiagonalization stud§,the small-
ness ofN disables us to make quantitative discussion of the
The magnetization proces$/(—H curve,M: magnetiza- bulk magnetization nedf. In Ref. 10, a large-size system
tion, H: magnetic field of the one-dimensionallD) quan- is treated by the density-matrix renormalization group
tum spin system has recently drawn much attention, due tPMRG, for shor} to study the low-lying excitations having
the remarkable progress in material synthesis techniques asall St (<4). It was shown there that the low-lying ex-
high-field experiment$. Spin chains with variousS (spin  citations admit fermionic interpretation, just as in the case of
magnitudg and/or with nontrivial spatial structures, etc., ex- the Bethe-ansatz solution of tidefunction Bose gas at low-
hibit various interesting magnetic behaviofs.g., field- particle density. This result is indeed a strong support for the
induced phase transitions, like the plateau in Me-H  BOse-gas picture, but the smallnessSpf implies that, in a
curve®), many of which still await theoretical analyses. strict sense, the result applies only to the system in the van-
As for theM —H curve of the gapfub=1 antiferromag- ishing magnetization densityp=S{,/N—0.
netic (AF) Heisenberg chain, it has been known that, on rais- Further, there is a quantity that is undoubtedly important
ing the magnetic field from zero, there is a critical figeld ~ for the Bose-gas picture, but has not been considered seri-
above which the system becomes magnetized. This criticusly so far: the effective Bose-gas coupling constartet
field relates to the excitation gaftialdane gapA asH, Us consider a 1D0effectivg o-function Bose gas with the
=A/(gug) (g: g factor, ug: Bohr magneton We callH,  Hamiltonian
lower-critical field because there also existpper-critical

field Hy (saturation field above which the magnetization

saturates tM =1. NearH,, it is well established that the H(Bose(fﬂc):f dx[ g (X)deb(X)

M—H curve behaves abl;— M~ H—H.** 1 NearH,,

similar behaviorM ~(H—H.)? with #~1/2 has also been +coT ()T (X)p(0)B(x)],  (L.1)

known,® but numerically, whether the exponemts exactly

1/2 or not, has remained less conclusive as compared withith ¢'(x) and ¢(x) being the Bose operators. By solving

the behavior near;. the Bethe ansatz integral equation we obtain the ground-state
The expected square-root behavidr- H—H, has been energy density as

explained via approximate mapping to thdunction Bose

gas® or to the fermion gaS There is numerical evidence for 3

such mapping®;° but the square-root behavior of thweilk = C_”E(r), 1.2

magnetizationitself has not been fully verified yet. In the a?

0163-1829/99/5A.0)/68067)/$15.00 PRB 59 6806 ©1999 The American Physical Society



PRB 59 S5-FUNCTION BOSE-GAS PICTURE OB=1 ... 6807

20 cient of the biquadratic term is written as B, which is

r= Tp p:particle number density,  (1.3)  different from the one adopted in Ref. 12 In this paper we
consider the case9B8<1. We concentrate on the behavior
~ 2 , , A2 . of the M —H curve near the two critical fieldd; andH. .
e(r)—ﬁr ‘1—2r+3r +(E—4>r
5 1. NEAR THE SATURATION FIELD Hg
+|{5-— L%T)r“ﬂL O(r5)}. (1.4 Let us consider first the system near the upper-critical
field (saturation fieldd Hg=4, where theM —H curve shows
In terms of the particle density, we have the square-root behavior:-IM ~H,—H. As compared
5 4 with the one neaH., this behavior itself is well-established
€(p)=Azp +Asp "+ -+, (1.9 (py exact diagonalizatid and Bethe ansat¢'d. Our con-
with cern is how well thes-function Bose gas can describe the
M —H curveaway fromthe saturation field. For this purpose,
As=o07?l3 we should derive thecorrect effective Bose-gas Hamil-
tonian, which we shall make by employing the low-energy
A= —40°7?(3c). (1.6 effective Smatrix approach.

Above the saturation fielHl 5, the system is ferromagneti-
cally ordered (“all-up” state). Low-energy excitations
slightly below Hg are well described in terms of “down
spins” in the sea of ug" +1") spins. Regarding a down
spin as a particle, we consider two-body scattering problem
to obtain the exact two-bodg-matrix4*° The point is that
in thelow-energy limitthe Smatrix reduces, in most cases, to
that of the 5-function Bose gas with an effective coupling
constant. With thiscorrect coupling constant, the bose gas

In the Bose-gas picture, thd —H curve of the spin chain
near the critical field corresponds to tpe- u curve of the
Bose gas, wherg=de(p)/dp is the chemical potential. As
far as the critical behavior is concerned, only gieterm is
relevant, which determines both the critical exponent
(=1/2) and the critical amplitude. Since the coefficiént
does not depend og the critical behavior must be inde-
pendent and “universal.” However, actuai—,Lf1 curve
E%T]\glz Odrzg?r,:gfm? :Eiggl,uﬁgtggéf?i%zs ;rfo’r)nkJ t ;?:/(ir will give a quantitative descriptign of the system nédy.

=4) is proportional toc®~, which becomes dominant for _, 5 {loy,02, ... >}(0;=0,x1), we denote the
small c. Accordingly, the critical region of the square-root S'-diagonal bases of the spin chain. To so,Ive.the two-down-
behavior will become rather narrow for small Hence, SP" problem we express the eigenvediok’ > in terms of

knowledge of the actual value of the effective coupling con-the wave functiongj(x,y.k,k’) andf(z,k+k’) as

stantc is indispensable, in order to make a fully quantitative

test of the bose-gas picture. _ o kK'Y= %(xykk )11 --101---101---) (2.1
The aim of the present article is to give a quantitative test X<y X y

for the Bose-gas picture of the bilinear-biquadratic AF chain

in a field. For this purpose, we employ the quantum version

of the product-wave-function renormalization-group method + E f(z,k+k')[1---1(—=1)1---). (2.2

(PWFRG method, for shortThe PWFRG is a variant of the z z

White’s DMRG; which is specially designed to obtain the The two-bodySmatrix S(k,k’) is introduced through the

“fixed point” (=thermodynamic limit of the systetnof the . ) ;
DMRG iterations efficiently. In Ref. 3, it is shown that the asymptotic § —x— ) behavior of the wave function

PWFRG, which was originally implemented for 2D classical o o
systems, can also be applied to 1D quantum systems by re- P(xy,k k') ~e e Y+ sk, ke e, (2.3
placing the transfer-matrix multiplication with the modified . , , N

Lanczos operation. Even with relatively small number of re-The e|gen\_/alue problent{g solk,k') =E(k,k")[k,K") is
tained bases, which is conventionally denoted &g PW- solved to give
FRG calculations accurately reproduce exisct H curves

for integrable model®!” which demonstrates both the effi-

ciency and the reliability of the method. where e(k)=—2+2cosk is the one-particle(one-down-
The Hamiltonian of the model we consider is spin) energy. Since the one-particle energfk) takes its
minimum atk= 7, we put

E(k,k")=e(k)+ e(k"), (2.9

H= HBLBQ_ Hzeeman (1.7
k=7m+rk'=7+K’ (2.5

Hego=2 [S-S+1+B8(S S04, Hpeemar HY S,
BLBQ EI [S-Se2+ B(S-S0)7) seemat EI and consider the “low-energy limit'k, " — 0. In this limit,

(1.8 theSmatrix whose explicit expression has been given in Ref.

2 : . . 15, becomes
whereS;= (S, ,Sf) is theS=1 spin operator at the site

For notational simplicity, we have taken the units where
gug=1, or, these factors are absorbed into the fiéldNote S(k,k') — S%Bose( K—K',—
that we have adopted the sign convention where the coeffi- K, k~0

38+1
B

: (2.6)
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whereS(Bos¢Yk, c) is theSmatrix of the-function Bose gas B B e B
with Hamiltonian 7 (B°¢1.c) in Eq. (1.1). Explicitly, we i 1
have

ctik
c—ik’

S8 (k,c) =~ (2.7

Therefore, in discussing the low-energy properties near the
saturation field, the bilinear-biquadratic ch&in?) is equiva- P S RS I S

lent to the Bose gas with the effective coupling constant (a) ¢ o O'i_M . 2
3B+ 1 | LI B B ) | T T T 1 | T T T 7 | LI B B )
c=— . 2.8
3 (2.8

Some remarks are in order. F@>0 or f<—1/3 the
coupling constant(2.8) takes negative value. It has been
known that thes-function Bose gas with negative coupling
constant is unphysical, because the system is unstable against
formation of multiparticle bound states. In the present case R
of finite-S spin chain, howeven-particle bound state with 0 0.05 0.1 0.15 02
large N are kinematically forbidden because more th&h 2
“particles” cannot exist at a single site; the “collapse” to AL B L BN
occur in the negative coupling Bose gas is prevented in the sl B=06 4
original spin-chain problem. Hence, the effective Bose gas
with negative coupling constant, does have a meaning in the
present study. ozl i

Of course, the above argument based on the “kinematical
constraint” on the single-site states does not preclude the
existence ofN-particle bound states with<2S. Also, there 0 4
remains possibility of bound states that extend over two or Y Tamm—
more lattice sites. As for th8= 1 bilinear-biquadratic chain, (© 1-M
the bound-state problem has been discussed in Ref. 15. The ) )

o parice bound sae acualy exists, bu 0fB=1 1 101 ComBarion o e Slechmtoss g e 1

e e el e e e b acion. (0500 515, 5 05,

lowest-energy excitation mode is actually the two-particleoloen cwcleirepresent tht_e PWFRG results with tht_e retained number
. e . of basesm=60. The solid lines show the effectivé-Bose gas

bound state, wh|_ch modlfles the behavior of Me-H curve model with the coupling:= — (38+1)/8. In (b) and(c), we draw

near the saturation _flgljé.ln any case, .effects O_f the bound the free fermion curves, which correspond¢p=o, as the broken

states and the validity of the negative-coupling Bose-gagnes for comparison.

treatment itself can be tested by a direct numerical calcula-

tion of theM —H curve. ] ]

We should give another remark concerning the two spefAt arbitrary p, we can numerically solve the Bethe-ansatz
cial points 8=0(c=%) and 8= —1/3 (c=0). The former integral equatioht by converting it to a matrix equation, to
corresponds to the hard-core Bose gase, which is equivalefbtainde(p)/dp within any required precision. To check the
to the spinless free-fermion system, and the latter to the fre®alidity of the Bose-gas description of thé—H curve, we
Bose gas. In our Bose-gas mapping scheme based on tRe€rformed the numerical-renormalization-group calculations.
low-energy effectiveS matrix, the above correspondence The method we employed is the quantum ver3ioh the
should be expected on|y in the |Ow-energy ||r(m' equi\/a- F’WFRGA,1 which allows us to make fixett calculations
lently, very near the saturation fig|cthe original “full” S  sweeping the value oH giving the M—H curve M
matrix S(k,k’) actually differs from Sydk,k’)=+1 at =M(H) in the thermodynamic limit. Figure 1 shows com-
these special poinfS.To what extent the system behaves asparison between the Bose-gas results and the PWFRG calcu-
a “free” system is an interesting problem, which can also belations, where we see excellent agreements for unexpectedly
studied by a direct numerical calculation. wide range of the fieldd. The validity of the Bose-gas pic-

From the Bose-gas energy densép) in Egs.(1.4) and  ture in the quantitative description of thd —H curve, is

(1.5 with o=1 andc=—(3B8+1)/B, we obtain theM  thus verified.
—H curve through Our two-down-spinS-matrix approach is easily extended

to generalS bilinear-biquadratic chain with the Hamiltonian

4-H

M=1-p, (2.9

S

_ 9¢€(p)

1 . 5
(2.10 H=352 [§-S+A(S S (21D
ap i
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04 T | LI LI N [ 4 B |
5=1/2,1,3/2,2
(B=0)

field H. above which the ground-state become magnetized.
The field-induced phase transition ldt is a level-crossing
transition between the singlet state and the lowest energy
triplet state(both atH=0), hence the critical fieldH, is, in
our unit, just the excitation gaffHaldane gap”) A. Then,
in the Bose-gas description nddg, the singlet ground state
should be interpreted as the “vacuum,” and the triplet state
. ] with S;=1 the “one-particle state.”
h 0.05 ol 005 02 For B~0, the “one-particle” energy dispersiom(k)

S-M takes its minimum ak= 7. The dispersion curve around this
minimum is often assumed to be relativistic dfi¢,

FIG. 2. Comparisons of the effectii@Bose gas model and the
PWFRG calculations for variou8at 8= 0. The diamonds, squares, —
— JA24 ., 212

triangles, and circles represent the PWFRG results $®r w(k)=VA“+vks,

=1/2,1,3/2, and 2, respectively. The solid lines represent the eﬁec\;\/here?—k— andu is called spin-wave velocity. In the
tive 5-Bose gas model witle=2/(S—1). L v P Y-

low-energy (k|—0) limit, Eq. (3.1) becomes

After a straightforward calculation very similar to the ones in 2
Refs. 14 and 15, we obtain the effective Bose-gas coupling w(K)=A+ e (3.2

5 Unlike the case oH~Hg, this “one-particle state” cannot
_ 5 1+B(3-85+8S)) (2.1p  be treated exactly, because the “vacuum” itself is not known
1-S+B(3-95+8%?) ' exactly due to the nonintegrability of the syst¢except for
- some special values @gf (==1,2)]. Accordingly, for gen-
For the pure bilinear caseg=0), we have eral B, it is impossible to calculate the exact two-body
S-matrix S(k,k"), which is utilized in the previous section to
c=2/(S-1). (2.13 determine the effective coupling constantNevertheless, if
In Fig. 2, we compare the PWFRG-calculated curvesSor We assume the Bose-gas picture to be held, we can “indi-

=1/2,1,3/2,2 to Bose-gas curves with corresponding valueectly” determine the value of from theM —H curve ob-
of ¢ given by Eq.(2.13. We again see satisfactory agree- tained by the PWFRG. To see whether the obtained value of

(3.2

ments. c lies in a reasonable range or not, serves as a partial check
Let us give a comment on previous studies related to th&f the validity of the Bose-gas picture.
present one. For the spBi*‘pure” Heisenberg AF 3=0 in NearH=H. =A, we _should relate th®1 —H curve to the
Eq. (2.11)], the Bose-gas description nehir, has already Bose-gas energy densig(p) as
been made within the conventional spin-wave theoretical de(p)
approach®8 This approach gives the value of the Bose-gas M=p, H-H.= e(p _ 3.3
coupling constant to be ap
c=2/S, (2.14 Then, for the square-root behavior
which is different from Eq.(2.13. The spin-wave value M~VH-H; (H—H:+0), 34

(2.14) deviates from(2.13 very much at smalb (even the e should expect the expansion of the form,
signdisagrees ab=1/2), although both are the same in the

large S limit. Having seen that the Bose gas with Eg.13) H=H.+3A;M2+4A,M3+5AM*+ ..., (3.5
gives the correcM —H curve, we must say that, at sm&ll . .

the spin-wave approach is not reliable enough for quantita\-Nhere we ha_ve used E({L_.S). _Slnce t2he expr_eSS|o(|$.2) of
tive studies of the AF chains, even in the neighborhood ofhe one-particle energy implies=v/(24) in Egs. (1.)
the saturation field. Note that, using the the Dyson—MaIee\?lnd (1.6), we have

transformation and taking the continuum limit, we can for- om? w2
mally rewrité® the spin-chain Hamiltoniaf2.11) with =0 Ag=——= A (3.6
into the S-function Bose-gas Hamiltonian with E@2.14). 3 6
Although this transformation seems to be exact in the opera-
g P A= —dv*?/(12A%c). 3.7

tor level, there is a constraint on the state space: the boson
number cannot exceedS2at each site. This constraint From Egs.(1.4—(1.6), it is clear that the width of critical
amounts to “kinematical interaction” between the spin region essentially depends on the reduced coupling constant
waves, which may be the source of the disagreement be&: yafined by[see Eq(1.6)]
tween Eqs(2.13 and(2.14).
c=clo,
Ill. NEAR THE LOWER CRITICAL FIELD  H,

At H=0 the ground state is singlet and nonmagnetic. On =~ 4AslAs 3.8
raising H, system still remains to be singlet up to a critical If we rewrite Eq.(3.5) as
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P L B in good agreement with the known values 0.4X0& the
[ B=0 former®) and 0.699(for the lattef*24.

HeA+ o ML+ M+5+M2) To verify the relationa=o=v?/(2A) we need values of
v. For B=0 using the known vald8'®y=2.46 we have

o=17.38, which should be compared with=7.65 obtained

from theH — M curve; the obtained value af is in reason-

] able agreement witlr. For 8=1/3 there seems to be no

. serious numerical evaluation of We therefore consult Ref.

1 21 where a variational calculation ab(k) beyond the

0 003 o single-mode  approximatiéh (which gives o=5/9

(a) M =0.5%...) ismade; we have

0.6

04

B=1/3 i o= (32645+359,/6529/117522=0.524 . . . .
] (3.12

This value is also in reasonable agreement with 0.487
obtained from theH —M curve. Hence, théed—M curves
reproduce the “one-particle quantities” in the Bose-gas pic-
ture.

Although the obtained values of are consistent with the
! bose-gas prediction, the results rely on the fitting fdB19)
0 0.1 02 (constant- M?-term+ . . . ) whose validity itself should be
(b) M tested in some way. For this purpose, we replacedMie

FIG. 3. Comparisons of the effecti®®Bose gas model and the fa_ctor 'g the second term In the right-hand Sl.de of qu)
PWFRG calculations near the lower-critical figi(=A). (a) The ~ With M, and made the least-square analysis regarding the
pure AF Heisenberg poing=0. (b) The AKLT point 3=1/3. The  €XPoneniu as another fitting variable. As for the=0 case,
open circles represent the PWFRG results with the retained numb&/€ obtained _the best-fit val_qe=2.01, Wh'(_:h Is very C|959
of basesm=100. The solid lines show the least-square fitting re-t0 2, supporting the expansi¢8.9). Hence, in the following

0.9
H=A+o#m M (149 M+5*M”)

A = 0.699
038 3

H
LI N N B [N B B BN B L B |

0.7

sults of the formH =A + am®M2(1+ yM + SM?). analyses, we fixu=2 and use Eq(3.9 as the fitting func-
tion.
H—H.=am®M2(1+ yM+ SM[+O(M®)], (3.9 The coefficientsy and 6 are estimated to be
a condition for the square-root criticality {yM|<1 (and B=0:y=—8.65 5=32.6 (3.13

also |[sM|<1). By W{¥, we denote width of the critical
region inM, which we conveniently define as B=1/3:y=—3.63, 5=7.46. (3.14

(c) — . . . . .. .
Wii'=0.117]. (3.10 Since the negative values gfimplies the positive effective

(©) it . bose-coupling constant, our PWFRG calculation supports the
ThenM <W,y implies | yM|<0.1, which may be regarded validity of the Bose-gas picture fg8=0,1/3.

as a necessary condition for the criticality. Correspondingly, We should point out that, although the Bose-gas predic-

i (c) ] ) . '
we can introducéVy;” defined by tion for the square-root behavior seems to be valid, the
© 2 a(CN2 “critical region” of the square-root behavior in thil —H
Wi = am™(Wy')®, (31D curve is rather narrow, since the obtained valuey aihd &

which represents the width of the critical regionHin-H. . are non-negligibly '?fge- In fact_, the quant\M,\_,lC)_ deﬁ”ed by_

Let us now check the Bose-gas prediction of ¥Me-H Eqg. (3.10 characterizing the width of the critical region, is
curve by comparing it with the PWFRG calculations. FromVery small: 0.012for =0) and 0.028for g=1/3). Corre-
theH— M curve, we determind (=H,),a,y, andsin Eq.  Sponding values ofV(®) defined by(3.11) are even smaller:
(3.9 by the least-square fitting. The numerical values for0-010 (3=0) and 3.8<10°° (B=1/3). .
these parameter which we present below are best-fit values. One notable behavior which we found in the PWFRG
Since DMRG/PWFRG is a deterministic algorithm, hence,calculation is that, on raisingg from 0, theH—M curve
our numerical data contain no statistical error, it is h@ad ~ becomes flatter and flatter, or equivalently, the value af
may be meaningles$o estimate the “error bars.” Neverthe- (3.9 becomes smaller and smaller; there seems to be a criti-
less, fitting uncertainty that mainly comes from choice of thecal valueg. (~0.41) at whicha vanishes. Accordingly, the
“fitting window” (fitting range ofM) exists. In this sense, critical behavior of theM —H curve atH. changes from
we can make rough estimates of the “error bars” whosesdguare-root type to another ore(H—H.)’(6~0.25) (Fig.
typical values are: 1% or leg$or A), 5% or less(for «),  4)- In the Bose-gas picture, this change of ¥e-H curve
20% or lesgfor y), 50% or lesgfor §). may be understood as the vanishing of #feterm in the

In Fig. 3, we show the PWFRG results of tihé—M expansion of the one-particle excitation energfk). Inter-
curves neaH, for 3=0,1/3. The obtained values & are  estingly, a qualitative change of the static structure factor
0.410(for B=0) and 0.699for B=1/3), both of which are  S(q) has been fourfd very nears.. Since both of these



PRB 59 S5-FUNCTION BOSE-GAS PICTURE OB=1 ... 6811

root behavior itself becomes manifest due to small but
the negative coupling disables us to take the naive Bose-gas
picture in this region of3; for justification of the picture, we
should inspect the “bound states,” just as we did in discuss-
ing the M —H curve near the upper-critical fields. Note
that for systems in the Haldane phase where the orientational
order (characterized by the string order paranf®eexists,
the “particle” is a moving domain wall separating two re-
i gions each of which has complete orientational of§ét:?3
o7l In this view, totalS” carried by a low-lying excitation mode
M is the “height” of the wall. Then, if the wall width is narrow
(~ one lattice spacingwe can adopt a similar reasoning as
_FIG. 4. TheH—M curve at=0.4(~p) near the lower- n the previous section justifying the negative coupling bose-
critical field Ho(=A). The open circles represent the PWFRG re- ¢ nictyre: formation of stable bound states will be forbid-
f,?ltth\’:tfz:?n:.,_lio_%zhi,\S,l?tlfélpﬂesshows the least-square fitting resultge ‘que to the kinematical constraint that the local wall
T : height (~ total &, for thin wall) cannot excee&. The actual
situation is, however, subtle because the domain-wall is
changes reflect changes in the ground state and the lowsomewhat fuzzydue to the zero-spin defeéfsand its width
energy excitation mode of the system, it is likely that theymay not be narrow” In this view, we should say that full
have a common origin. justification of the Bose-gas picture f@> 3. seems to re-
The above interpretation for the case @ 8. assumes quire further study. Nevertheless, the square-root behavior
that the system can still be mapped to an interacting Bosg — ./JH—H_ itself is confirmed by our PWFRG calculation.
gas, although the one-particle energy dispersigk) may
be different from the_ parabold w(k) = A + constx (k)* IV. SUMMARY
+ ..., isexpected Logically, the breakdown of the Bose-
gas mapping itself may also be a possible interpretation. To In this paper, we have studied the zero-temperature mag-
test whether the system can actually be described by a Bosetization processM —H curve of the S=1 isotropic anti-
gas with nonparabolie(k), we should, first of all, know the ferromagnetic spin chain with both the bilinear and biqua-
properties of such “nonparabolic delta-function Bose gas’dratic forms of interactions in the ranges(8<<1 wherep is
itself in some detail. However, the nonparabolicity makes theahe coefficient ratio between the biquadratic term and the
system nonintegrable, disabling us to perform the Bethe arbilinear term. Quantitative test for the Bose-gas picture near
satz calculation to obtain an exact solution. Nevertheless, wihe critical fieldsH¢ (saturation fielglandH . (lower-critical
can calculate the two-bodymatrix also for the nonparabolic field) has been made with the help of the product-wave-
case, and using this, we can apply the “Bethe-ansatz agunction renormalization-grouPWFRG method, which is
proximation” method®*® to have the low-density behavior a variant of White’s density-matrix renormalization group
of the system. In this view, thi1* term as the first nontrivial (DMRG).
term in the fitting function for8= 8. can be simply inter- NearHg we have derived the correct effective Bose-gas
preted as the expectéd term inw (k). This line of analysis, coupling constant from the two down-spin scattering matrix
which is beyond the scope of the present paper and is left fdp its low-energy limit. The resulting delta-function Bose gas
future study, will help clarify the nature of the bilinear- YieldsM —H curves, which are in good agreement with the
biquadratic Chain aﬂ:ﬁc PWFRG Ca|Cu|atI0nS.
Above 3., the square-root behavior reappears. However, NearH., the square-root behavitd ~ yH—H_ has been
the Coefﬁcient»y becomes positivéa]though Sma}L |mp|y_ confirmed by our PWFRG calculation throughout the range

ing negativeeffective coupling constarifig. 5). The square- ©Of B studied. Here it should be noted a recent finite-size
scaling calculation by Sakai and Takahashi gave a consistent

result for theB=0 cas€’ We have, however, found two

1llll|llll|llll|llll

B=0.4
H=A+A*M*+B*M’

0.9

0.8

H
LI LINL UL N I N B B |

o
=

0'7:' B=06I R distinct regions of3 separated by a critical valyg,~0.41.
[ In the small B8 region, 0<B< ., the effective Bose-gas
ol FEArTHMI(L MM i coupling ¢ extracted from the PWFRG-calculated —H
= b Azy4d . curve is positive but small, making the critical region of the
[ = 9‘%{5 ] square-root behavior rather narrow; it becomes narrower and
0sE - ] narrower on approaching. . At 8., theM —H curve seems
. i to exhibit a different critical behavioM ~(H—H_.)? with
[ ] 0~0.25. In the largeB region, although the square-root be-
N I T B BT havior is more pronounced due to large valugadf the sign
0.05 01 0.15 02 of c becomes negative, which sharply contrasts to the small-
M B region.
FIG. 5. TheH—M curve atB=0.6 near the lower-critical field As regards theM —H curve of the bilinear-biquadratic

H.(=A). The open circles represent the PWFRG result with Heisenberg chain, cusplike singularities in the “middle-
=100. The solid line shows the least-square fitting result. We sefield” region have been known for integrabl&U(N)
the Bose-gas coupling constant takes the negative value. chains?® Whether a similar behavior can also be found for
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general, nonintegrable cases is an interesting problem. Akffective theories is an interesting and important problem.
though we have concentrated on the behavior near the critFFor this purpose, the approach we have taken in Sec. llI
cal fields in the present paper, we have obtained aNull where microscopic quantities of the effective theory are ex-
—H curve fromH=0 to H=H. In the largeg region, we tracted from bulk quantities calculated by a reliable method,
have actually found a clear cusplike singularity very similarlike the DMRG.
to the one in theSU(3) (Lai-Sutherland model?® whose
deta_|led account will t_Je given in a separate paper. ACKNOWLEDGMENTS
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