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We consider a model of strongly correlategelectrons interacting by superexchange orbital interactions in
the ferromagnetic phase of LaMgOlt is found that the classical orbital order with alternating occugigd
orbitals has a full rotational symmetry at orbital degeneracy, and the excitation spectrum derived using the
linear spin-wave theory is gapless. The quantum corrections to the order parameter and to the ground state
energy restore the cubic symmetry of the model. By applying a uniaxial pressure orbital degeneracy is lifted in
a tetragonal field and one finds an orbital-flop phase with a gap in the excitation spectrum. In two dimensions
the classical order is more robust near the orbital degeneracy and quantum effects are suppressed. The orbital
excitations obtained using finite temperature diagonalization of two-dimensional clusters consist of a quasi-
particle accompanied by satellite structures. The orbital waves found within the linear spin-wave theory
provide an excellent description of the dominant pole of these sp¢B04a63-182@09)05309-9

[. INTRODUCTION cussed recently that this might lead to a novel type of a
spin-liquid®1%*3In a special case of ferromagnetieM) or-
Recently much attention has been attracted to the propeder (which represents a simplified spinless problgenly
ties of La_,AMnO;, with A=Ca,Sr,Ba, and the related orbital excitations contribute to the properties of the ground
compounds, in which the colossal magnetoresistance argtate and the quantum effects are expected to be smaller.
metal-insulator transition are observed:he parent com- Unlike in the cuprate materials, hole doping in the man-
pound LaMnQ is insulating with layered-type antiferromag- ganites leads to FM states, insulating at low doping, and
netic (AF) ordered statethe A-type antiferromagngt ac-  metallic at higher doping’ Although the FM phase is un-
companied by the orbital order with alternatloneaforbnals stable for the undoped LaMnQthe building blocks are FM
occupied by a single electron of Mh ions? Such orbitally ~ planes. A proper understanding of pure orbital excitations
ordered states might be promoted by a cooperative Jahtas to start from the uniform FM phase, where the spin op-
Teller effect® playing a decisive role in charge transpbrt, erators can be integrated out. Such a state could possibly be
but could also result from an electronic instabifitfhe lat-  realized in LaMnQ at large magnetic field and will serve as
ter possibility is now under debate, as the band structura reference state to consider hole propagation in doped man-
calculations performed within the extension of local densityganites, similarly as the AF spin state provides a reference
approximation(LDA) to strongly correlated transition metal state for the hole propagation in the cuprates. Therefore, we
oxides, the so-called LDAU approach, give indeed charge- consider in this paper an effective model with only orbital
ordered ground states without assuming lattice distortions asuperexchange interactions which involves elastates and
their driving force® Charge ordering was also found within results from the effective Hamiltonians derived in Refs.
the Hartree-Fock calculations on lattice models by Mi-9-12 in the relevant high-spin state. Of course, it is identical
zokawa and Fujimon. for the cuprates and for the manganites. We note, however,
The dominating energy scale in late transition metal ox-that orbital interactions may be also induced by lattice dis-
ides is the local Coulomb interactidn betweend electrons  tortions, but these contributions are expected to be less im-
at transition metal ions which motivates the description ofportant than the orbital superexcharfeand will be ne-
ground state and low-energy excitations in terms of effectiveglected.
models with spin and orbital degrees of freedom. Such mod- So far, little is known about the consequences of orbital
els, introduced both for the cupraté$and more recently for excitations for long-range order and transport properties in
the manganite¥)~*2show that the spin and orbital degrees of doped systems, but it might be expected that such excitations
freedom are interrelated which leads to an interesting probeither bind to a moving hole, or lead to hole scattering even
lem, even without doping. Orbital interactions in the groundwhen the spins are alignédThe knowledge of orbital exci-
state lead to a particular orbital ordering that depends on th&tions is a prerequisite for a better understanding of the tem-
magnetic ordering, and vice versa. An interesting aspect gberature dependence of the resistivity and optical conductiv-
such system is that the elementary excitations have eitherity in the FM phase of doped manganites. Although the
pure spin, or pure orbital, or mixed spin-orbital double exchange mechanism is quite successful in explaining
charactet3~1° This gives large quantum fluctuation correc- why the spin order becomes FM with increasing doping of
tions to the order parameter in AF phases, and it was dista; ,A,MnQg, it fails to reproduce the experimentally ob-
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singly occupied orthogonak, orbitals at two nearest-
neighbor sites(two orthogonale, orbitals are then singly
z + - occupied in the intermediate excited statesn example of
X — + X — _*_ such a model is the superexchange interaction in the FM
state of LaMnQ which originates from d/d!
tzzl tzzl :d?(tgg)df(tggeé) excitations into a high-spird;f5 state
S + 7 — |8A;), as shown schematically in Fig. 1. It gives the effective
Hamiltonian with orbital interactiorts*?

4
t t t t {2
= o ZN G Hy=— ——> P&, @
Z+_ s %__ _+ 7L_?_Z e(°A) i)
X
—r? orbitals along the consideradaxis, ande (°A;) is the

[ -
excitation energy. The orbital degrees of freedom are de-

FIG. 1. Schematic representation of the virtdai!—d’d> ex-  scribed by the projection operato?%ﬁ which select a pair
citations in LaMnQ for the starting FM configuratiod},;d’,;|0)  of orbitals|Z) and|&), being parallel and orthogonal to the
which involve the high-spin°A;) state and generate effective or- directions of the considered boxd ) in a cubic lattice.

b_iFaI superexchange in_ter_actior(a) for a boqd along the axis The Hamiltonian(2) has cubic symmetry and may be
(ij)L; (b) for a bond within the §,b) plane j)]. written using any reference basis in tegsubspace. For the
on. conventional choice of #—r2~|z) andx?—y?~|x) orbit-
served temperature dependence of the ressﬁ?_niﬁye_n als, the above projection operators are represented by the
more puzzling and contradicting naive expectations is th%rbital operators®, with a=a,b,c for three cubic axes
incoherent optical conductivity with a small Drude peak ob- b o

served in a FM metallic phase at higher dopthdhis be-

(a) (b)

wheret is the hopping element between the directionzt 3

H . . . . §§ — _ ~a a o _
havior demonstrates the importance of orbital dynamics in Piy=G—1mG++ G+ (G- ). ()
doped manganites which appears to be predominantly inco- . . )
herent in the relevant parameter regifié3 It is convenient to replace the orbital operatets by the

The paper is organized as follows. The orbital superexPseudospin operatof* with u=x,z
change model is presented in Sec. Il. We derive the classical
phases with alternating orbitals on two sublattices in three AP = _1(T2x 3TN, S=TZ (4)
and two dimensions, and analyze their dependence on the
crystal field splitting. Orbital excitations are derived in Sec.The latter operators may be represented by the Pauli matrices
Il using a pseudospin Hamiltonian and an extension of then the same way as spin operatdf§= 30" and obey the
linear spin-wave theorfl SWT) to the present situation with same commutation relations. Therefore, itie component
no conservation of orbital quantum number. We present nuef pseudospin is given b¥7= 3(n;,—n;,), and we identify
merical results for the dispersion of orbital waves and deterthe orbital states as up and down pseudo$gje=|1) and
mine quantum fluctuation corrections to the ground-state er(l—z>z|l>, respectively. We take the prefactdet?/&(°A,;)

ergy and to the order parameter in Sec. IV. The derivedn Eq. (2) as the energy unit for the superexchange interac-
spectra are compared with the results of exact diagonalizajon. Thus, one finds a pseudospin Hamiltonian

tion in Sec. V. A short summary and conclusions are given in
Sec. VL.
Hy=332 [TZIT24+ 3T T J3(TI T+ TATY)]
Il. ORBITAL HAMILTONIAN AND CLASSICAL STATES ol

A. Orbital superexchange interactions +23 >, T, (5
We consider a three-dimensior@D) Mott insulator with (W
one g electron per site. The effect?ve Hamiltonian which \yhere the prefactor of the mixed termy/3 is negative in the
describes e, electrons in a cubic crystal at strong a direction and positive in thé direction’® We choose a
coupling’~ convention that the bonds labeled @g)|| ({ij)L) connect
nearest-neighbor sites withia (o) planes(along thec axis).
H=H,+H, @) The virtual excitations which lead to the interactions de-
consists of the superexchange pdst, and the orbital split-  Scribed by Eq(5) are shown in Fig. 1. Here we neglected a
ting term due to crystal-field tertd,. Here we will consider trivial constant term which gives the energy efJ/2 per
a special case of the Fi}, band in which the spin dynamics bond, i.e.,—3J/2 per site in a 3D system. We emphasize that
is integrated out and one is left with the effective interactionghe SU2) symmetry is explicitly broken iH;, and the in-
between the electronéholey in different orbital states. In teraction depends only on two pseudospin operafgrand
this case the only superexchange channel which contributé .
is the effective interaction via the high-spin state, and thus The crystal-field term removes the degeneracyxpfand
the interaction occurs only between the pairs of ions with|z) orbitals
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TABLE I. Occupied orbitals at two sublatticédsandB as found in the classical FM ground state at orbital
degeneracyE,=0) for a few representative values of the orbital rotation amgleee Eq(7)].

0 ieA jeB
0 i(322—r2)s|z> x?—y?=[x)

e
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H=—ES T2 ©) to generate the new orthogonal orbitdlg) and |iv) and

z 2 1 investigate the energy as a function@f The AF order im-
posed by the Hamiltoniahl ; in a cubic system implies the
. alternation of these orthogonal orbitals in the rotated basis

and is connected with the uniaxial pressure. This term IT'_ — g o .
induced by static distortions in a tetragonal field and is of iw) and|jv) at two sublattices, i.eicA andjeB. Afew
examples of various possible choices of the orthogonal orbit-

particular importance in a two-dimension@D) system. ==
als{|iu),|iv)} are given in Table | for representative values
of 6.
B. Classical ground states The rotation(7) leads to the following transformation of
Before analyzing the excitation spectra of the Hamil-the pseudospin operators:
tonian (5), one has to determine first the classical ground X -
state of the system that will serve as a reference state to Ti—Ticos 26— Tisin 20,
calculate the Gaussian fluctuations. Neglecting the irrelevant s ,
phase factors, the classical configurations which minimize Ti—Tisin 26+ Ticos 20, ®
the interaction terms(5) are characterized by the two- and the interaction HamiltoniaH ; is then transformed into
sublattice pseudospin order, with two angles describing ori-
entations of pseudospins, one at each sublattice. As usually, H“):HH"+ HY, 9
the classical ground state is obtained by minimizing the en-
ergy with respect to these two rotation angles, i.e., by choos-

J
ing the optimal orbitals. H\fzi > [(2+cos 467 3sin4) T, T
Let us consider first the terrAl; at orbital degeneracy anl
E,=0. The superexchange interactié?) induces the alter- +(2—cos 49= \[3sin 40) T/T?— (sin 49= \3cos 4)
nation oforthogonal orbitalsin the ground state in all three a7 g
directions, and is equivalent to tt@AF order in the pseu- X(TITi+TTH ], (10)

dospin spaceThis configuration gives the lowest energy on

the mean-field level, as the virtual transitions represented in 0_ _ XTX 272
Fig. 1 give the largest contribution, if the hopping involves H %%L [(1~cos49) TTj+(1+cosa9)TiT]
one occupied and one unoccupied orbital of the same type , 7wz
(e.g., either directional or planarA priori, the optimal +sinAg(TiTi+TiT)) . (1)
choice of the occupied orbitals could be unique on the clasas in Eq. (5), the bonds in the first surfl0) are parallel to
sical level due to the cubic symmetry of superexchange ingijther thea or b axis, while the bonds in the second s(v)
teraction(2). Therefore, we perform a uniform rotation of are parallel to the axis. The classical energy is minimized if

{|2).|x)} orbitals by an anglé at each site (TiTH=—1, e, if the orbitals order “antiferromagneti-
cally.”
- . : The Hamiltonian given now by Eq$10) and(11) has the
|Ii> =( 0930 sma) ( |_IZ>) (7) symmetry of the cubic lattice, bwurprisingly one finds the
liv) —sing cosd/\|ix) full rotational symmetryof the present interacting problem
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As before, the orbitalgix) and|jv) are occupied at two
sublatticesj e A and j € B, respectively, and the orbital or-
der is AF in the classical state, with the transformed opera-
tors (T{)=—1/2 and(Tj)=+1/2, respectively. As a result
one finds that the angles for the occupied orbitals are indeed
opposite on the two sublattices.

The operatorsT} and T{ may be now transformed as in
Egs.(8) using the actual rotations W= w/4* ¢, as given in
Egs. (12) and (13), and the transformed Hamiltonian takes
the form

FIG. 2. Alternating orbital order in FM LaMn® (|x)
+2))/V2 an (x)—|2))/y2 as found aE,—0. HO=H{+H?+HY, (14)

on the classical level at orbital degeneracy. In other words, 3
classically the lowest energy is alwalige= — 3J/4 per site, _ _ 1T 272
independent of the rotation angle, as long as alternating or- H‘f) 2 %H [(2 cos4p=1)TiTj+ (2 cos &b+ 1)TiT]
bitals on neighboring sites are occupied. This follows from ]
the particular structure of the rotated Hamiltoni@ which +2sin4p(T) T =TT = V3(TITHHTIT)], (15
has identical factors of 3 in front of the diagonal{T; and
off-diagonal « ;T contributions, when these are summed s o s
over all the bonds which originate at each site, and these ~HI=1J > [(cosdp+1)TIT+(cos 4p—1)T(T;
coefficients are independent of the rotation angldén con- (L
trast to the Heisenberg antiferromagfte¢AF), however, this —sind¢(T{T;—-T{T)H]1, (16)
symmetry concerns only theummedcontributions, and not
the interactions along the individual bonds.

A finite orbital fieldE,# O breaks the rotational symmetry H?=E,>, (\;sin2¢ T?—cos2p T), (17
on the classical level. It acts along thaxis, and it is there- [
fore easy to show that the ground state in the limitEgf i )
.0 is realized by the alternating occupied orbitals beingVNeréAi=—1 forieA andi;=1 forieB. The energy of
symmetric/antisymmetric linear combinations|ef and|x)  the classical ground state is given by
orbitals?? i.e., the occupied states correspond to the rotated 3 .
orbitals (7) |ix) and |iv) on the two sublattices with an ME_ _ 2 it
angled= /4, s>hown in Izig. 2Asee also Table)l In particu- Esp 4J cos 4p 2 E.sin2$ (18)
lar, this state is different from the alternating directional or-
bitals 3x>—r? and 3y?>—r?, which might have been naively and is minimized by
expected. It follows in the limit of degenerate orbitals from
the “orbital-flop” phase, in analogy to a spin-flop phase for ) E,
the HAF at finite magnetic field. With increasiridecreas- sin2¢=&7- (19
ing) E, the orbitals tilt out of the state shown in Fig. 2, and

approach/x) (|z>_) orbite_lls, respectively, which may be in_— At orbital degeneracy E,=0) this result is equivalent to
terpreted as an increasing FM component of the magnetizgg -0 (6=74) in Eq.(7), as obtained also in Ref. 12

tion in the pseudospin model. and one recovers from E@18) the energy of—3J/4 as a

Itis convenient to describe this tilting of pseudospins dueparticular realization of the degenerate classical phases with

to the crystal field<E, by making two different transforma- ; : ; ;
tions (7) at both sublattices, rotating the orbitals by an angle%tre|r£6|m<ng J(?rf)k:ﬁgﬁ,cgleogz'éaf}' t-lf;zeinailtti)glv gr[)eiétnl(gitlﬁ(;/rz?ﬂ(;
6= ml4— ¢ on sublatticeA, and by an anglé#= m/4+ ¢ on =

sublatticeB, so that the relative angle between thecupied ic;re|dz>()si|§ ;;:Cipll;a dTﬁZeC?She%E;%nSJESSSI(?;Z;St;u:Hepoocl?r'
orbitals is m/2—2¢ and decreases with increasing i.e., — P

with increasince cupied orthogonal orbitals at orbital degeneracy. In contrast,
9=z the value of¢=m/4 corresponds to performing no rotation

ar ar on theA sublattice, while the orbitals are interchanged on the
i) COS(z‘(ﬁ) Sin(z‘(ﬁ) liz) B sublattice[see Egs.(12) and (13)]. The latter situation
= , describes a state obtained in strong orbital field, with only
liv) —sin(z—¢) COS(Z_(/)) lix) one type of orbitals occupied, a “FM orbital state.” The
4 4 orbital field changes therefore the orbital ordering from the

(12 AF to FM one in a continuous fashion.
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C. Two-dimensional orbital model starting from the rotated Hamiltoniaii4). Here we choose
As a special case we consider also a 2D orbital mode‘ihe Holstein-Primakoff transformatiéhfor localized pseu-

with the interactions in theab) plane. In this case the cubic d0SPin operatorsT(=1/2)
symmetry is explicitly broken, and the classical state is of a
spin-flop type. It corresponds to alternatingly occupied orbit-
als on the two sublattices, with the orbitals oriented in the
plane and given byy==/4 at E,=0, see Fig. 2. A finite
value ofE, tilts the orbitals out of the plandk) orbitals by
an angle¢, and the Hamiltonian reduces to

T =al(1-ala)¥? T, =(1-ala) Y,
Tr=ala— 3, (24)

for i € A sublattice and

_ wiho\ 1. -_Tht PSR
Hop=H{+H7, (20) T =(1-b/b)*;, T, =bj(1-b/b)"
as there is no bond in thedirection. The classical energy is sz:% _E}‘Ej (25)
Eg"[fz —1J(2 cos4p+1)— 3 E,sin2¢. (21)  for the j e B sublattice. After replacing the square roots by

! ) the leading lowest order terms, and inserting the expansion
Therefore, one finds the same energy-08J/4 as in a 3D jnig Eq.(14), one diagonalizes the linearized Hamiltonian by
model at orbital degeneracy. This shows thatahaital su- 5 consecutive transformations. Note that, contrary to the

perexchange interactions are geometrically frustratadd  LAF aiso cubic terms in boson operators are present in the
the bonds in the third dimension cannot lower the energy, bu,

) : Expansion due to the anomalous interactiong T} .
only allow for restoring the rotational symmetry on the clas-

. : . ) ) The linearized Hamiltonian simplifies by introducing the
sical level and rotating the orthogonal orbitals in an arbitrary _ — =
way. The energy21) is minimized by Fourier transformed boson operataisandb, given by

. E —_ /2 ikria. —_\F s
sm2¢>=4—3, (22) ak_\[ﬁgke aj, b= NJ;Be ib;

if |E,|<4J; otherwise sin==1. Interestingly, the value and by transforming to new boson operatfag,b,}

of the field at which the orbitals are fully polarized is re- . .

duced by one third from the value obtained in three dimen- ac=(a—b)/\2, b=(ac+b)/\2. (26)

sions (19). This S.hOWS. that although the orbital exchangeOne finds the effective orbital Hamiltonian of the form

energy can be gained in a 3D model only on the bonds along

two directions in the alternatingrbital-flop phase either at

or close toE,=0, one has to counteract the superexchange HLSW=JZ

on the bonds in all three directions when the field is applied. K
We note that the present orbital model becomes purely

classical in one dimension, if the lattice effects are neglected, +3>

as we have assumed in the present model. This follows from K

the derivation which gives the superexchange interactions Gfhere the coefficients, andB, depend on angle,

Ising type between thiz) orbitals along thee axis, and one

can always choose this axis along the considered chain. A=3—-B,, (28

Thus, one finds the Hamiltonian

1
Akalak‘f‘ E Bk(alaik‘f' aka_k)

1
Akblbk—EBk(blbiwbkb_k)}, 27)

By=3[(2 cos4p—1)y (k) +(cosdp+1)y, (k)], 29

and thek dependence is given byH(k)=%(coskx+cosky),

At orbital degeneracy,=0) the occupied orbitals alternate @nd by v, (k) =cosk,, respectively. After a Bogoliubov
along the one-dimensional chain between two orthogonal orransformation
bitals, and one may for example choose the occupied states

as|z) and|x) on even and odd sites, respectively. The en-

ergy of this ground state per one site-is)/2, which allows  with the parameters
to conclude that energy gains due to orbital interactions per

site are significantly reduced only below the 2D case. Ay 1 A 1
W=\5—-*5 vk=—sgnBy\5—-5 (G
2 Nk 2 2 Mk 2

Ill. ORBITAL EXCITATIONS IN LINEAR SPIN-WAVE ) ) )
THEORY with 7,= AZ—BZ, and an equivalent transformation for the

) ) ) by, bosons, the Hamiltoniat27) is diagonalized, and takes
The superexchange in the orbital subspace is AF and onge following form:

may map the orbital terms in the Hamiltonié®) onto a spin

problem in order to treat the elementary excitations within 3 + . T

the LSWT. The equations of motion can then be linearized Hst:; (0 (P agayt o (d)BB). (32
by a standard techniqifelet us first discuss the results of

LSWT for the spin-flop phase induced by an orbital field, The orbital-wave dispersion is given by

Hip= 232 T, — EZZ T (23
| I

ak=ukak+vka1k (30)
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FIG. 3. Orbital-wave excitations as obtained for different values
of the crystal-field splittinds, for a 3D (left) and 2D(right) orbital
superexchange modél). The result shown for a 3D system B&j
=0 was obtained for the orbitals rotated By #/4 (7), and corre-

In both cases the system is quasi-2D and the dispersion origi-
nates only from the planar componektsandk,, .

sponds to thde,— 0 limit of the orbital-flop phase. IV. NUMERICAL RESULTS
. The excitation spectra given by E@33) for different
EooN 1 -
i (#)=33{1+3[(2 cos4p—1) (k) crystal-field splittings are shown in Fig. 3 for the 3D system
+(cosdp+1)y, (K)HY2 (33 along different directions of the fcc Brillouin zofleappro-

priate for the alternating orbital order. Most interestingly, a
The orbital excitation spectrum consists of two branches likegapless orbital-wave excitation is found for the 3D system at
for instance, in an anisotropic Heisenberg mddel. orbital degeneracy. Obviously this is due to the fact that the

The dependence on the fiel) is implicitly contained in  classical ground state energy is independent of the rotation
the above relations via the angle as determined by Egs. angle ¢ at E,=0, as we have shown in Sec. Il. At first
(19) and (22) for the 3D and 2D model, respectively. The glance, however, one does not expect such a gapless mode,
dispersion changes between the casepef0 (cos4p=1) as the Hamiltonian5) does not obey a continuous &Y
which stands for the spin-flop phase at orbital degeneracygymmetry. The cubic symmetry of the model, however, is
and the case op= /4 (cos4p=—1) which corresponds to restored if one includes the quantum fluctuations; they are
the uniform phase with eithex) (E,=6J) or |z) (E,< shown in Fig. 4 as functions of the rotation angle Note
—6J) orbitals occupied. The orbital field therefore changesthat the quantum corrections are small and comparable to
the orbital-wave dispersion from AF to FM state. The those of the 3D HAF. They do depend on the rotation angle,
orbital-wave dispersion for a 2D system, can eas"y be foun@®S the orbital-wave dispersion does. If the dispersion is com-
from Eq. (33) by settingy, (k)=0. pletely 2D-like, wj (¢=m/4)=3J\1=y(K), correspond-

In the case of a vanishing orbital field the classical groundng to Q, (#=0) (35), the quantum corrections are largest,
state is degenerate with respect to a rotation of the orbitalas this dispersion has a line of nodes alonglth2 direction,
around an arbitrary angld. In LSWT, nevertheless, the .., @ oq=0 for 0<g<.
orbital-wave dispersion depends éni.e., the orbital-wave It is interesting to note that this fully 2D orbital-wave
velocity is highly anisotropic, and one finds dispersion leads to an orbital ordered state at zero tempera-

ture only. At any finite temperature fluctuations destroy the

. L _ ) long-range ordefas in the 2D HAFR. In this way one finds

O, (0)=33{1= §[(V3cos D—sin20)?y,(K) + (V3cos W gp orbital-liquid state at nonzero temperature, similar to that
; 2 ; 1/2 obtained in a Schwinger-boson approach by Ishihara, Ya-
*sin20)%yy (k) +4 sirt20, ()1} (34) manaka, and Nagaosa for the doped systeim higher order
spin-wave theory, however, it might very well be that a gap
with vy, (k) =cosk,,, respectively. It is straightforward to occurs in the excitation spectrum. We expect, however, that
verify that the excitations are gapless, independent of théhis gap, if it arises, is small, with its size being proportional
rotation angle. 1f6=0, the orbital-waves given by EG33)  to the size of quantum fluctuations.
take a particularly simple form, and is identical to the dis- The cubic symmetry of the model Bt=0 is satisfied by
persion found in the spin-flop phase &t 7/4, the quantum-corrected ground-state enefgig. 4), as the
energy is invariant under rotations by any angke n#/6,
. _ wheren is any natural number. This can be expected as such
O (0=0)=3IV1xy(K)=w (¢=m/4). (35  a rotation corresponds to merely directing the orbitals along
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guantum correctiolE/J as functions of the crystal-field splitting '

E,/J. The res_ults for the 3D model and 2D model are shown by fullyr5nsition point. The increase of the gap fy>6J is there-
and dashed lines, respectively. fore due to a complete FM alignment of the orbitals along
the field axis in this parameter regime, and any excitation
different cubic axes and/or interchanging the sublattides acts then against the orbital field. In Fig. 6 also the quantum
andB. corrections to the ground-state energy and the order param-
At finite values ofE, the spectrum becomes gapp@dy.  eter are shown as functions of the orbital field. As expected,
5) because the degeneracy of the classical ground state tise presence of a gap in the excitation spectrum suppresses
removed. Note that this is different from a HAF in a finite quantum fluctuations.
magnetic field, because there one still has full continuous The quasi-2D state, i.e., the alternation|xf and|z) on
symmetry in the spin-flop phase with respect to rotationgwo sublattices, is destabilized by any finite orbital fi&lg
along the field axis, which justifies the existence of a Gold-# 0. Taking for instancé&,> 0, the orbital field shifts down-
stone mode. For small orbital fields the gap first increases upvards the energy of the occupiéd orbitals on one sublat-
to a maximum reached d&,=3J (2J), while for larger tice by E,/2, while the energy ofz) orbitals increases by
values the gap decreases and vanish&satJ (4J) fora  E,/2 on the other sublattice, so that the orbital field does not
3D (2D) model. This can be understood by making the analiower the energy of the system. Therefore, the state With
ogy with an AF Ising model in a magnetic field. As the field = 77/4 is selected instead for the classical ground state for
increases, the energy of a spin-flip excitation decreases as th@y nonzero orbital fiefd because in this state the pseu-
loss of interaction energy associated with this excitation islospins can tilt towards the orbital field, reducing the energy
partly compensated by the energy gain due to the parallelf the system. Such orbitals forming the ground state are
alignment of the excited spin to the field. Approaching theshown in Fig. 2.
phase transition from the spin-flop to FM ordering, this mode The dispersion for the unrotated state suggests that the
becomes softer and is found at zero energy exactly at theffective dimensionality of the system is reduced from three
to effectively two dimensions in the absence of an orbital
splitting. This anisotropy results in overall smaller quantum
fluctuations in a 3D model &,=0 than in the correspond-
ing HAF, as discussed above. The anisotropy of the 3D
model manifests itself in the energy contribution coming
from the bonds in thed,b) plane and along the axis, as
shown in Fig. 7. ForE,=0 the classical energy along the
chain is zero, and the orbital superexchange energyJf 3
is gained by the planar bonds. One finds that quantum con-
tributions to the ground-state energy tend to decrease the

0.00

-0.02

-0.04

AE 3D

energy stored in the bonds along the chain, and increase the

-0.06 | ————= AE 2D 1 energy in the plane.
——— AT“2D For the 2D system the situation at orbital degeneracy is
quite different(see Fig. 3. The lack of interactions along the
—0.08 : c axis breaks the symmetry of the model alreadyEat0,
0.0 2.0 4.0 6.0 8.0 opens a gap in the excitation spectrum and suppresses quan-

-—> E/J

FIG. 6. Quantum corrections to the renormalized order paramthe gap closes at an orbital field which compensates the en-

eterAT?, and to the energE (in the units ofJ), as functions of

the crystal-field splittingz,/J.

tum fluctuations. Increasing the orbital field, however, the
system resembles the behavior of a 3D system, where also

ergy loss due to the orbital superexchange between identical
(FM) orbitals. At this value of the field§,=4J), the full
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180 T2, r=TZ, C0OS 24+ TX, psin 2y, (36)

so that the correlation function depends on two anglemd

¢. In Fig. 8 the intersite orbital correlation in the ground
state is shown as a contour plot. Whitkark) regions corre-
spond to positivenegative values, respectively. One finds
that the neighbor correlations have their largest value if the
orbitals are rotated byy=w/4 and y=3m/4 (or ¢p=3m/4

and = m/4), i.e., under this rotation of the basis states the
system looks similar to a ferromagnet, indicating that the
occupied [x)+|z))/\2 and (x)—|z))/y2 orbitals are alter-
nating in a 2D model, as shown in Fig. 2. Note that quantum
fluctuations are small as in the ground state and one finds

(TAT?, 1)=0.246. This demonstrates at the same time the
advantage of basis rotation in the exact diagonalization

= 90

0 study, because in the original unrotated basis one finds in-
0 4l 180 stead(T{T/, r)=0, which might lead in a naive interpreta-
o tion to a large overestimation of quantum fluctuations.

The ground-state correlatiod?TZ, 5) are in excellent
FIG. 8. Contour plot of theotatednearest-neighbor orbital cor- agreement with the LSWT results. By comparing the results
relation function(T#T%, ;) as function of the angleg andy fora  obtained aff=0.1J,0.2], and 0.9 we found that the calcu-
16-site planar cluster witk,=0 andT=0.1]. White regions cor- lated low-temperature correlation functions are almost iden-
respond to positivéFM) and black areas to negativ&F) orbital  tical in this temperature range, and thus the values shown in
correlations, i.e.(TZT?, g)>0.24 (<—0.24), respectively. They Fig. 8 for T=0.1J are representative for the ground state.
are separated by 25 contour lines chosen with the step of 0.02 in tiEhey demonstrate an instability of the system towards the
interval[ —0.24,0.24. symmetry-broken state. This finding is similar to the HAF,
where such a tendency could also be found, in spite of the
dispersion of the orbital waves is recovered, see Fig. 3, theelatively small size of the considered clust&rghe inter-
spectrum is gapless, and the quantum fluctuations reach site correlations decrease at higher temperatures, and thus the
maximal value. We would like to emphasize that this behav+esults at higher temperaturés>2J differ dramatically
ior is qualitatively different from the HAF, where the anoma- from those presented in Fig. 8. By investigating the tempera-
lous terms=T;, T+ andT; T; are absent, and quantum fluc- ture dependence of the orbital correlation functions it has
tuations vanlsh at the crossover from the spin-flop to |:|v|been recently established that the orbital order melt§ at

phase. ~J.2
Next we discuss the results for the dynamical orbital re-

sponse functions in the case of orbital degeneracy. The dy-

V. COMPARISON WITH EXACT DIAGONALIZATION IN namic structure factors for the orbital excitations are defined
A 2D CLUSTER as

It is instructive to make a comparison between the ana-
lytic approximations of Sec. Il and the exact diagonalization T @)= — 1 j dt(TZTZ (t)>e—imt (37)
of 2D finite clusters using the finite temperature diagonaliza- a q '
tion method® In contrast to the mean-field approach pre-
sented in Sec. Il, one finds a unique ground state,at0 by 1 (= _
exact diagonalization, and no rotation of the basis has to be Ty ()= EJ dt(Ty T_q(t))e ' (38)
made to investigate the stability of the ground state. Making _°°

the rotation of the basi7) is, however, still useful in exact The corresponding orbital response functions evaluated with
diagonalization as it gives more physical insight into the ob-

tained correlation functions which become simpler and moréeSpeCt to therotated local quantization aX'STtZIZ(“’) and
transparent when calculated within an optimized basisIq (), are defined instead by tilded operat¢8§). The
Moreover, they offer a simple tool to compare the results.SW approximation does not allow us to investigate the con-
obtained by exact diagonalization with those of the analyticsequences of the coupling of single excitonic excitations to
approach, presented in Sec. IV. We shall present below théhe order parameter, represented by the temTéTjZ, as
results obtained with % 4 clusters; similar results were also these terms contribute only in cubic order when the expan-
found for ten-site clusters. sion to the bosonic operators is made. Therefore, the mixed
First we calculate nearest-neighbor correlation function interms involving products off7 and zj at two neighboring
the ground statéTZT%, ), where the operators with a tilde sites in the Hamiltonian Eq(5) could contribute only in
refer to a rotated basis higher order spin-wave theory. This motivated us to perform
similar calculations within finite temperature diagonalization
=, « for the simplified Hamiltonian without these terms, which we
Ti=Tjcos 2¢+T; sin 2¢, refer to as the truncated Hamiltonian.
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FIG. 9. Transverse response functl‘ﬁgi_(w) (left pary and longitudinal response functid’rﬁz(w) (right pary calculated with respect
to the original basis state9€0) using finite-temperature diagonalizationTat 0.1J for a 16-site planar cluster witk,=0 for: (a) the
orbital interactions as given by EL0) (full lines); (b) the truncated Hamiltoniatdashed lines Vertical lines indicate the position of
orbital-wave excitations as obtained from LSWT. The spectra are broadenie- BylJ.

The transverse and longitudinal orbital response functwo peaks merge into a single structure at those valuep of
tions, T" ~(w) and T?4w), calculated for the full orbital gt whichw, (¢=0)=w, (¢=0).
Hamiltonian given in Eq(5), and with respect to the original  The successful comparison of the LSWT results with the
choice of orbital basig|z),|x)} are shown in Fig. 9. The pumerical diagonalization is summarized in Fig. 11, where
response functions consist in each case of a dominant pogie first moment of the spectra of the full Hamiltonian, the
accompanied by a pronounced satellite structure, both for thgingle mode which results from the truncated Hamiltonian,

transverse and longitudinal excitations. The dominant polend the dispersion from the LSWE&s found from Eq(33)
energies are close to the two modes found by the spin-wavgt =0 and neglecting the dispersion duektg,

analysis, but the energies are lowered for those momenta
which show strong satellite structures at higher energies. In . TN
order to establish that the satellite structures are, in spin- wg =3IV1=3)(a),
wave language, due to higher-order processes in spin-wave

theory, we performed the same calculation for the truncate@re compared. Clearly, Fig. 11 shows an excellent agreement
Hamiltonian. One finds then an excellent agreent€ig. 9  petween the dispersions calculated within different ap-
between the single modes which result from the numericaproaches. From the fact that the first moment of the response
diagonalization and the position of the orbital-wave as deterfunctions for the full Hamiltonian coincides with the re-
mined by Eq.(33). sponse functions of the truncated Hamiltonian, we conclude
An additional numerical check was made using the rothe LSWT approach captures the leading terms in orbital
tated orbital basis which determines the transverse correlatynamics, and the satellite structure for the full Hamiltonian
tions ('Nl'fl'jq> shown in Fig. 10. Here¢p=m/4 and ¢ is due to higher-order orbital-wave interactions that are not
=3mn/4 for the A andB sublattice, respectively. In contrast to taken into account within LSWT.
the unrotated orbital basis, we find that the dispersive poles As already discussed in Secs. Il and IV, the orbitals are
in the longitudinal excitation spectrum vanish entirely. In-tilded in the direction of the effective orbital field due to the
stead, this missing mode appears now in the transverse cha@rbital splitting. This behavior is also found in our diagonal-
nel, where both modes are found and are accompanied by thgation studies, and one finds that the expectation values
satellite structures. We note that the response functions in th@{T;) and(T{T}) depend on the orbital splitting, (Fig.
rotated basis resemble the response functions of a HAHM,2). Both correlation functions are calculated using the un-
where the spin-wave excitations are also found only in theotated basis set. Although the crossover to the uniform state
transverse response functiohAs before, the satellite struc- with |x) orbitals occupied is smooth in the numerical study,
tures disappear and two distinct peaks with the same interthe agreement with the result of the LWST approach is once
sities are found, if the truncated Hamiltonian is used. Thesagain very good.

(39
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FIG. 12. Ground state expectation valugsT}) (left) and
(T{T;) (right) for a 16-site 2D clusterf,=0, T=0.1]) as func-
tions of the orbital splitting=,/J (squares Full lines represent the
same expectation values obtained using the LSWT approach.

such as the colossal magnetoresistance manganites. The FM
state can be considered as the reference state into which
holes are doped.

We have shown that the orbitals order and alternate be-
tween the two sublattices, which is equivalent to the AF

orbitals as a function of frequenay for different momenta at low  grder in the(orbital) pseudospin space. The orbital excitation
temperature. Calculations were performed for a 16-site 2D cluster E§pectrum consists of two branches. one of which is found to

E,=0 andT=0.1] for (a) the orbital interaction as specified in Eq.
(20) (full lines) and (b) neglecting the mixed terms T,

spectra are broadened by=0.1J.

VI. SUMMARY AND CONCLUSIONS

be gapless in the 3D system within LSWT. This is a conse-
quence of the degeneracy of the model at a classical level.
Thus, we find here a quite peculiar situation. Although the
Hamiltonian is not invariant under a global orbital rotatién
[see Eq(7)], and the correlation functions along the different

In summary we considered the low-energy effectivedirections change _with9, this rotation does not affect the
model for strongly correlated electrons in twofold degeneraté@nergy of theclassicalground state. It turns out, however,
e, bands and investigated the consequences of the orbitdpat quantum quctugtlon corrections to the groun_d state en-
degrees of freedom for a FM system at half filling. Although €rgy restore the cubic symmetand select the rotation angle
a saturated ferromagnet might only be realized in undope@t €ither6=0,7/6, or 7/3. For these states the orbital exci-
systems in high magnetic fields, we believe that this model i§ation spectra are purely 2D, which demonstrates that in fact
a relevant starting point in order to understand the influencéh€ effective dimensionality of the orbital model (5) is re-
of orbital dynamics in FM doped transition metal oxides, duced to 2We note that for a gapless 2D dispersion of the

1.5
1.0
05

0'(()0,0) (n/ﬁ,O) (1510) (n,rlt/2) (niﬂ:) (n/2,In/2) (0,0)

orbital excitations in three dimensions one expects that or-
bital long-range order disappears away from 0, as in the
2D Heisenberg model.

The orbital model1) has novel and interesting quantum
properties, and is quite different from the Heisenberg model.
In contrast to the HAF, the quantum fluctuations in zero field
aresmallerin the 2D than in the 3D orbital model, and the
2D model is thereforenore classicatlue to the anisotropy of
the orbital interactions. However, a finite splitting of the or-
bitals E, opens a gap in the excitation spectrum of a 3D
model, and the quantum effects are then reduced in an
orbital-flop phase stable at small value§Bf|. Both in a 3D
and 2D case, the orbital excitation spectra become gapless at
the crossover value dE, at which the “FM” orbital order
sets in. The quantum fluctuations are then identical and reach
their maximum.

We have verified that the linear approximation within the

FIG. 11. Dispersion of orbital waves along the main directionsSPin-wave theory reproduces the essential features of the or-

in the 2D Brillouin zone calculated for a*44 cluster. Results for

bital excitations in the present situation, where the total pseu-

the first moment calculated using the full and truncated Hamiltoniardospin quantum number and tité component of total pseu-
(empty and full symbolsare compared with the dispersions for the dospin are not conserved. First of all, the results of the
two modes as obtained by the LSWT, shown by a solid and dashedSWT and the first moments of the orbital excitation spectra

line, respectively.

obtained from the finite-temperature diagonalization yield
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two modes in excellent quantitative agreement in a 2D Note added in proofWe believe that the present results
model, when the anomalous interactionsT;T; are ne- could be verified experimentally in the future. Orbital order-
glected. Second, the inclusion of these terms in exact diagang in the FM planes of thé-type AF LaMnG, has recently
nalization leads to a satellite structure in the response fundeen observed by Murakaneit al>® using resonant x-ray
tions, while the first moment remains almost unchanged. Iiscattering’* with an orbital ordering consistent with that
order to calculate the satellites observed in the exact diagshown in Fig. 2. However, a quantitative comparison with
nalization one needs to go beyond the leading order in thé-AF LaMnO; would have to include as well additional or-
spin-wave theory, and include the cubic terms in the bosomital interactions which follow from the AF superexchange
operators. The comparison with finite temperature diagonalbetween the FM planes and from the Jahn-Teller effect.
ization allows us to conclude that orbital waves with the
dispersion of the order of Bare characteristic for the FM
states of the undoped degenerejesystems’?

We believe that the presented analytic treatment of orbital It is our pleasure to thank L. F. Feiner and G. Khaliullin
excitations provides a good starting point for considering thdor valuable discussions and H. Barentzen for the critical
dynamics of a single hole in the orbital model. This would reading of the manuscript. One of (kv.d.B) acknowledges
allow us to understand the origin of puzzling optical andwith appreciation the support by the Alexander von
transport properties of the doped manganites and clarify thelumboldt-Stiftung, Germany. A.M.O. acknowledges partial
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