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Orbital dynamics in ferromagnetic transition-metal oxides

Jeroen van den Brink, Peter Horsch, and Frank Mack
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Federal Republic of Germany

Andrzej M. Oleś
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We consider a model of strongly correlatedeg electrons interacting by superexchange orbital interactions in
the ferromagnetic phase of LaMnO3 . It is found that the classical orbital order with alternating occupiedeg

orbitals has a full rotational symmetry at orbital degeneracy, and the excitation spectrum derived using the
linear spin-wave theory is gapless. The quantum corrections to the order parameter and to the ground state
energy restore the cubic symmetry of the model. By applying a uniaxial pressure orbital degeneracy is lifted in
a tetragonal field and one finds an orbital-flop phase with a gap in the excitation spectrum. In two dimensions
the classical order is more robust near the orbital degeneracy and quantum effects are suppressed. The orbital
excitations obtained using finite temperature diagonalization of two-dimensional clusters consist of a quasi-
particle accompanied by satellite structures. The orbital waves found within the linear spin-wave theory
provide an excellent description of the dominant pole of these spectra.@S0163-1829~99!05309-6#
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I. INTRODUCTION

Recently much attention has been attracted to the pro
ties of La12xAxMnO3, with A5Ca,Sr,Ba, and the relate
compounds, in which the colossal magnetoresistance
metal-insulator transition are observed.1 The parent com-
pound LaMnO3 is insulating with layered-type antiferromag
netic ~AF! ordered state~the A-type antiferromagnet!, ac-
companied by the orbital order with alternation ofeg orbitals
occupied by a single electron of Mn31 ions.2 Such orbitally
ordered states might be promoted by a cooperative J
Teller effect,3 playing a decisive role in charge transpor4

but could also result from an electronic instability.5 The lat-
ter possibility is now under debate, as the band struc
calculations performed within the extension of local dens
approximation~LDA ! to strongly correlated transition meta
oxides, the so-called LDA1U approach, give indeed charge
ordered ground states without assuming lattice distortion
their driving force.6 Charge ordering was also found with
the Hartree-Fock calculations on lattice models by M
zokawa and Fujimori.7

The dominating energy scale in late transition metal
ides is the local Coulomb interactionU betweend electrons
at transition metal ions which motivates the description
ground state and low-energy excitations in terms of effec
models with spin and orbital degrees of freedom. Such m
els, introduced both for the cuprates,8,9 and more recently for
the manganites,10–12show that the spin and orbital degrees
freedom are interrelated which leads to an interesting pr
lem, even without doping. Orbital interactions in the grou
state lead to a particular orbital ordering that depends on
magnetic ordering, and vice versa. An interesting aspec
such system is that the elementary excitations have eith
pure spin, or pure orbital, or mixed spin-orbit
character.13–15 This gives large quantum fluctuation corre
tions to the order parameter in AF phases, and it was
PRB 590163-1829/99/59~10!/6795~11!/$15.00
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cussed recently that this might lead to a novel type o
spin-liquid.9,16,13In a special case of ferromagnetic~FM! or-
der ~which represents a simplified spinless problem!, only
orbital excitations contribute to the properties of the grou
state and the quantum effects are expected to be smalle

Unlike in the cuprate materials, hole doping in the ma
ganites leads to FM states, insulating at low doping, a
metallic at higher doping.17 Although the FM phase is un
stable for the undoped LaMnO3, the building blocks are FM
planes. A proper understanding of pure orbital excitatio
has to start from the uniform FM phase, where the spin
erators can be integrated out. Such a state could possibl
realized in LaMnO3 at large magnetic field and will serve a
a reference state to consider hole propagation in doped m
ganites, similarly as the AF spin state provides a refere
state for the hole propagation in the cuprates. Therefore,
consider in this paper an effective model with only orbi
superexchange interactions which involves theeg states and
results from the effective Hamiltonians derived in Re
9–12 in the relevant high-spin state. Of course, it is identi
for the cuprates and for the manganites. We note, howe
that orbital interactions may be also induced by lattice d
tortions, but these contributions are expected to be less
portant than the orbital superexchange,18 and will be ne-
glected.

So far, little is known about the consequences of orb
excitations for long-range order and transport properties
doped systems, but it might be expected that such excitat
either bind to a moving hole, or lead to hole scattering ev
when the spins are aligned.19 The knowledge of orbital exci-
tations is a prerequisite for a better understanding of the t
perature dependence of the resistivity and optical conduc
ity in the FM phase of doped manganites. Although t
double exchange mechanism is quite successful in explai
why the spin order becomes FM with increasing doping
La12xAxMnO3, it fails to reproduce the experimentally ob
6795 ©1999 The American Physical Society
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6796 PRB 59VAN DEN BRINK, HORSCH, MACK, AND OLEŚ
served temperature dependence of the resistivity.20 Even
more puzzling and contradicting naive expectations is
incoherent optical conductivity with a small Drude peak o
served in a FM metallic phase at higher doping.21 This be-
havior demonstrates the importance of orbital dynamics
doped manganites which appears to be predominantly in
herent in the relevant parameter regime.22,23

The paper is organized as follows. The orbital super
change model is presented in Sec. II. We derive the class
phases with alternating orbitals on two sublattices in th
and two dimensions, and analyze their dependence on
crystal field splitting. Orbital excitations are derived in Se
III using a pseudospin Hamiltonian and an extension of
linear spin-wave theory~LSWT! to the present situation with
no conservation of orbital quantum number. We present
merical results for the dispersion of orbital waves and de
mine quantum fluctuation corrections to the ground-state
ergy and to the order parameter in Sec. IV. The deriv
spectra are compared with the results of exact diagona
tion in Sec. V. A short summary and conclusions are given
Sec. VI.

II. ORBITAL HAMILTONIAN AND CLASSICAL STATES

A. Orbital superexchange interactions

We consider a three-dimensional~3D! Mott insulator with
one eg electron per site. The effective Hamiltonian whic
describes eg electrons in a cubic crystal at stron
coupling9–12

H5HJ1Hz ~1!

consists of the superexchange partHJ , and the orbital split-
ting term due to crystal-field termHz . Here we will consider
a special case of the FMeg band in which the spin dynamic
is integrated out and one is left with the effective interactio
between the electrons~holes! in different orbital states. In
this case the only superexchange channel which contrib
is the effective interaction via the high-spin state, and th
the interaction occurs only between the pairs of ions w

FIG. 1. Schematic representation of the virtualdi
4dj

4→di
3dj

5 ex-
citations in LaMnO3 for the starting FM configurationdiz↑

† djx↑
† u0&

which involve the high-spinu6A1& state and generate effective o
bital superexchange interactions:~a! for a bond along thec axis
( i j )'; ~b! for a bond within the (a,b) plane (i j )i .
e
-

n
o-

-
al
e
he
.
e

u-
r-
n-
d
a-
n

s

es
s
h

singly occupied orthogonaleg orbitals at two nearest
neighbor sites~two orthogonaleg orbitals are then singly
occupied in the intermediate excited states!. An example of
such a model is the superexchange interaction in the
state of LaMnO3 which originates from di

4dj
4


di
3(t2g

3 )dj
5(t2g

3 eg
2) excitations into a high-spindj

5 state
u6A1&, as shown schematically in Fig. 1. It gives the effecti
Hamiltonian with orbital interactions11,12

HJ52
t2

«~6A1!
(̂
i j &
P ^ i j &

zj , ~2!

wheret is the hopping element between the directional 3z2

2r 2 orbitals along the consideredc axis, and«(6A1) is the
excitation energy. The orbital degrees of freedom are
scribed by the projection operatorsP ^ i j &

zj which select a pair
of orbitals uz& and uj&, being parallel and orthogonal to th
directions of the considered bond^ i j & in a cubic lattice.

The Hamiltonian~2! has cubic symmetry and may b
written using any reference basis in theeg subspace. For the
conventional choice of 3z22r 2;uz& andx22y2;ux& orbit-
als, the above projection operators are represented by
orbital operatorst i

a , with a5a,b,c for three cubic axes

P ^ i j &
zj 5~ 1

2 2t i
a!~ 1

2 1t j
a!1~ 1

2 1t i
a!~ 1

2 2t j
a!. ~3!

It is convenient to replace the orbital operatorst i
a by the

pseudospin operatorsTi
m with m5x,z

t i
a~b!52 1

2 ~Ti
z7A3Ti

x!, t i
c5Ti

z . ~4!

The latter operators may be represented by the Pauli mat
in the same way as spin operatorsTi

a5 1
2 s i

a and obey the
same commutation relations. Therefore, thezth component
of pseudospin is given byTi

z5 1
2 (nix2niz), and we identify

the orbital states as up and down pseudospinux&[u↑& and
uz&[u↓&, respectively. We take the prefactorJ5t2/«(6A1)
in Eq. ~2! as the energy unit for the superexchange inter
tion. Thus, one finds a pseudospin Hamiltonian

HJ5 1
2 J(

^ i j &i
@Ti

zTj
z13Ti

xTi
x7A3~Ti

xTj
z1Ti

zTj
x!#

12J (
^ i j &'

Ti
zTj

z , ~5!

where the prefactor of the mixed term}A3 is negative in the
a direction and positive in theb direction.24 We choose a
convention that the bonds labeled as^ i j &i (^ i j &') connect
nearest-neighbor sites within (a,b) planes~along thec axis!.
The virtual excitations which lead to the interactions d
scribed by Eq.~5! are shown in Fig. 1. Here we neglected
trivial constant term which gives the energy of2J/2 per
bond, i.e.,23J/2 per site in a 3D system. We emphasize th
the SU~2! symmetry is explicitly broken inHJ , and the in-
teraction depends only on two pseudospin operatorsTi

x and
Ti

z .
The crystal-field term removes the degeneracy ofux& and

uz& orbitals
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TABLE I. Occupied orbitals at two sublatticesA andB as found in the classical FM ground state at orbi
degeneracy (Ez50) for a few representative values of the orbital rotation angleu @see Eq.~7!#.

u i PA jPB

0
1

A3
~3z22r 2![uz& x22y2[ux&

p

6
z22y2 1

A3
~3x22r 2!

p

4
1

A6
@2z21(A321)x22(A311)y2#

1

A6
@2z22(A311)x21(A321)y2#

p

3
2

1

A3
~3y22r 2! x22z2

p

2
x22y2[ux& 2

1

A3
~3z22r 2![2uz&

3p

4
1

A6
@2z22(A311)x21(A321)y2#

1

A6
@2z21(A321)x22(A311)y2#
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Hz52Ez(
i

Ti
z ~6!

and is connected with the uniaxial pressure. This term
induced by static distortions in a tetragonal field and is
particular importance in a two-dimensional~2D! system.

B. Classical ground states

Before analyzing the excitation spectra of the Ham
tonian ~5!, one has to determine first the classical grou
state of the system that will serve as a reference stat
calculate the Gaussian fluctuations. Neglecting the irrelev
phase factors, the classical configurations which minim
the interaction terms~5! are characterized by the two
sublattice pseudospin order, with two angles describing
entations of pseudospins, one at each sublattice. As usu
the classical ground state is obtained by minimizing the
ergy with respect to these two rotation angles, i.e., by cho
ing the optimal orbitals.

Let us consider first the termHJ at orbital degeneracy
Ez50. The superexchange interaction~2! induces the alter-
nation oforthogonal orbitalsin the ground state in all thre
directions, and is equivalent to theG-AF order in the pseu-
dospin space. This configuration gives the lowest energy o
the mean-field level, as the virtual transitions represente
Fig. 1 give the largest contribution, if the hopping involv
one occupied and one unoccupied orbital of the same
~e.g., either directional or planar!. A priori, the optimal
choice of the occupied orbitals could be unique on the c
sical level due to the cubic symmetry of superexchange
teraction ~2!. Therefore, we perform a uniform rotation o
$uz&,ux&% orbitals by an angleu at each site

S u i m̄&

u i n̄&
D 5S cosu sinu

2sinu cosu D S u iz&

u ix&
D ~7!
is
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to generate the new orthogonal orbitalsu i m̄& and u i n̄& and
investigate the energy as a function ofu. The AF order im-
posed by the HamiltonianHJ in a cubic system implies the
alternation of these orthogonal orbitals in the rotated ba
u i m̄& and u j n̄& at two sublattices, i.e.,i PA and j PB. A few
examples of various possible choices of the orthogonal or
als $u i m̄&,u i n̄&% are given in Table I for representative valu
of u.

The rotation~7! leads to the following transformation o
the pseudospin operators:

Ti
x→Ti

xcos 2u2Ti
zsin 2u,

Ti
z→Ti

xsin 2u1Ti
zcos 2u, ~8!

and the interaction HamiltonianHJ is then transformed into

H u5H i
u1H'

u , ~9!

H i
u5

J

2 (
^ i j &i

@~21cos 4u7A3sin 4u!Ti
xTj

x

1~22cos 4u6A3sin 4u!Ti
zTj

z2~sin 4u6A3cos 4u!

3~Ti
xTj

z1Ti
zTj

x!#, ~10!

H'
u 5J (

^ i j &'
@~12cos 4u! Ti

xTj
x1~11cos 4u!Ti

zTj
z

1sin 4u~Ti
xTj

z1Ti
xTj

z!#. ~11!

As in Eq. ~5!, the bonds in the first sum~10! are parallel to
either thea or b axis, while the bonds in the second sum~11!
are parallel to thec axis. The classical energy is minimized
^Ti

zTj
z&52 1

4 , i.e., if the orbitals order ‘‘antiferromagneti
cally.’’

The Hamiltonian given now by Eqs.~10! and~11! has the
symmetry of the cubic lattice, butsurprisingly one finds the
full rotational symmetryof the present interacting problem



rd

o
m

ed
es

y

in

te

r
y
m
or

d
-
tiz

u
-
gl

-
ra-
t
eed

n

s

,

with

ar-
-
ast,
n
the

nly
e
he

6798 PRB 59VAN DEN BRINK, HORSCH, MACK, AND OLEŚ
on the classical level at orbital degeneracy. In other wo
classically the lowest energy is alwaysEMF523J/4 per site,
independent of the rotation angle, as long as alternating
bitals on neighboring sites are occupied. This follows fro
the particular structure of the rotated Hamiltonian~9! which
has identical factors of 3 in front of the diagonal}Ti

zTj
z and

off-diagonal }Ti
xTj

x contributions, when these are summ
over all the bonds which originate at each site, and th
coefficients are independent of the rotation angleu. In con-
trast to the Heisenberg antiferromagnet~HAF!, however, this
symmetry concerns only thesummedcontributions, and not
the interactions along the individual bonds.

A finite orbital fieldEzÞ0 breaks the rotational symmetr
on the classical level. It acts along thec axis, and it is there-
fore easy to show that the ground state in the limit ofEz
→0 is realized by the alternating occupied orbitals be
symmetric/antisymmetric linear combinations ofuz& and ux&
orbitals,12 i.e., the occupied states correspond to the rota
orbitals ~7! u i m̄& and u i n̄& on the two sublattices with an
angleu5p/4, shown in Fig. 2~see also Table I!. In particu-
lar, this state is different from the alternating directional o
bitals 3x22r 2 and 3y22r 2, which might have been naivel
expected. It follows in the limit of degenerate orbitals fro
the ‘‘orbital-flop’’ phase, in analogy to a spin-flop phase f
the HAF at finite magnetic field. With increasing~decreas-
ing! Ez the orbitals tilt out of the state shown in Fig. 2, an
approachux& (uz&) orbitals, respectively, which may be in
terpreted as an increasing FM component of the magne
tion in the pseudospin model.

It is convenient to describe this tilting of pseudospins d
to the crystal field}Ez by making two different transforma
tions ~7! at both sublattices, rotating the orbitals by an an
u5p/42f on sublatticeA, and by an angleu5p/41f on
sublatticeB, so that the relative angle between theoccupied
orbitals is p/222f and decreases with increasingf, i.e.,
with increasingEz ,

S u im&

u in&
D 5S cosS p

4
2f D sinS p

4
2f D

2sinS p

4
2f D cosS p

4
2f D D S u iz&

u ix&
D ,

~12!

FIG. 2. Alternating orbital order in FM LaMnO3: (ux&
1uz&)/A2 an (ux&2uz&)/A2 as found atEz→0.
s,

r-

e

g

d

-

a-

e

e

S u j m&

u j n&
D 5S cosS p

4
1f D sinS p

4
1f D

2sinS p

4
1f D cosS p

4
1f D D S u jz&

u jx&
D .

~13!

As before, the orbitalsu im& and u j n& are occupied at two
sublattices,i PA and j PB, respectively, and the orbital or
der is AF in the classical state, with the transformed ope
tors ^Ti

z&521/2 and^Tj
z&511/2, respectively. As a resul

one finds that the angles for the occupied orbitals are ind
opposite on the two sublattices.

The operatorsTi
x and Ti

z may be now transformed as i
Eqs.~8! using the actual rotations byu5p/46f, as given in
Eqs. ~12! and ~13!, and the transformed Hamiltonian take
the form

H f5H i
f1H'

f1Hz
f , ~14!

H i
f5

J

2 (
^ i j &i

@~2 cos 4f21!Ti
xTj

x1~2 cos 4f11!Ti
zTj

z

12 sin 4f~Ti
xTj

z2Ti
zTj

x!6A3~Ti
xTj

z1Ti
zTj

x!#, ~15!

H'
f5J (

^ i j &'
@~cos 4f11!Ti

xTj
x1~cos 4f21!Ti

zTj
z

2sin 4f~Ti
xTj

z2Ti
zTj

x!#, ~16!

Hz
f5Ez(

i
~l isin 2f Ti

z2cos 2f Ti
x!, ~17!

wherel i521 for i PA andl i51 for i PB. The energy of
the classical ground state is given by

E3D
MF52

3

4
J cos 4f2

1

2
Ezsin 2f ~18!

and is minimized by

sin 2f5
Ez

6J
. ~19!

At orbital degeneracy (Ez50) this result is equivalent to
cos 2u50 (u5p/4) in Eq. ~7!, as obtained also in Ref. 12
and one recovers from Eq.~18! the energy of23J/4 as a
particular realization of the degenerate classical phases
alternating orthogonal orbitals. The above result~19! is valid
for uEzu<6J; otherwise one of the initial orbitals~either ux&
or uz&) is occupied at each site, and the state is fully pol
ized (sin 2f561). The case off50 corresponds to the oc
cupied orthogonal orbitals at orbital degeneracy. In contr
the value off5p/4 corresponds to performing no rotatio
on theA sublattice, while the orbitals are interchanged on
B sublattice@see Eqs.~12! and ~13!#. The latter situation
describes a state obtained in strong orbital field, with o
one type of orbitals occupied, a ‘‘FM orbital state.’’ Th
orbital field changes therefore the orbital ordering from t
AF to FM one in a continuous fashion.
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C. Two-dimensional orbital model

As a special case we consider also a 2D orbital mo
with the interactions in the (a,b) plane. In this case the cubi
symmetry is explicitly broken, and the classical state is o
spin-flop type. It corresponds to alternatingly occupied orb
als on the two sublattices, with the orbitals oriented in
plane and given byu5p/4 at Ez50, see Fig. 2. A finite
value ofEz tilts the orbitals out of the planarux& orbitals by
an anglef, and the Hamiltonian reduces to

H 2D
f 5H i

f1Hz
f , ~20!

as there is no bond in thec direction. The classical energy i

E2D
MF52 1

4 J~2 cos 4f11!2 1
2 Ezsin 2f. ~21!

Therefore, one finds the same energy of23J/4 as in a 3D
model at orbital degeneracy. This shows that theorbital su-
perexchange interactions are geometrically frustrated, and
the bonds in the third dimension cannot lower the energy,
only allow for restoring the rotational symmetry on the cla
sical level and rotating the orthogonal orbitals in an arbitr
way. The energy~21! is minimized by

sin 2f5
Ez

4J
, ~22!

if uEzu<4J; otherwise sin 2f561. Interestingly, the value
of the field at which the orbitals are fully polarized is r
duced by one third from the value obtained in three dim
sions ~19!. This shows that although the orbital exchan
energy can be gained in a 3D model only on the bonds al
two directions in the alternating~orbital-flop! phase either a
or close toEz50, one has to counteract the superexcha
on the bonds in all three directions when the field is appli

We note that the present orbital model becomes pu
classical in one dimension, if the lattice effects are neglec
as we have assumed in the present model. This follows f
the derivation which gives the superexchange interaction
Ising type between theuz& orbitals along thec axis, and one
can always choose this axis along the considered ch
Thus, one finds the Hamiltonian

H1D52J(
i

Ti
zTi 11

z 2Ez(
i

Ti
z . ~23!

At orbital degeneracy (Ez50) the occupied orbitals alternat
along the one-dimensional chain between two orthogona
bitals, and one may for example choose the occupied st
as uz& and ux& on even and odd sites, respectively. The e
ergy of this ground state per one site is2J/2, which allows
to conclude that energy gains due to orbital interactions
site are significantly reduced only below the 2D case.

III. ORBITAL EXCITATIONS IN LINEAR SPIN-WAVE
THEORY

The superexchange in the orbital subspace is AF and
may map the orbital terms in the Hamiltonian~5! onto a spin
problem in order to treat the elementary excitations wit
the LSWT. The equations of motion can then be lineariz
by a standard technique.3 Let us first discuss the results o
LSWT for the spin-flop phase induced by an orbital fie
el
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starting from the rotated Hamiltonian~14!. Here we choose
the Holstein-Primakoff transformation25 for localized pseu-
dospin operators (T51/2)

Ti
15āi

†~12āi
†āi !

1/2, Ti
25~12āi

†āi !
1/2āi ,

Ti
z5āi

†āi2
1
2 , ~24!

for i PA sublattice and

Tj
15~12b̄ j

†b̄ j !
1/2b̄ j , Tj

25b̄ j
†~12b̄ j

†b̄ j !
1/2,

Tj
z5 1

2 2b̄ j
†b̄ j , ~25!

for the j PB sublattice. After replacing the square roots
the leading lowest order terms, and inserting the expans
into Eq.~14!, one diagonalizes the linearized Hamiltonian
two consecutive transformations. Note that, contrary to
HAF, also cubic terms in boson operators are present in
expansion due to the anomalous interactions}Ti

zTj
x .

The linearized Hamiltonian simplifies by introducing th
Fourier transformed boson operatorsāk and b̄k given by

āk5A2

N(
i PA

eikr i āi , b̄k5A2

N(
j PB

eikr j b̄ j

and by transforming to new boson operators$ak ,bk%

ak5~ āk2b̄k!/A2, bk5~ āk1b̄k!/A2. ~26!

One finds the effective orbital Hamiltonian of the form

HLSW5J(
k

FAkak
†ak1

1

2
Bk~ak

†a2k
† 1aka2k!G

1J(
k

FAkbk
†bk2

1

2
Bk~bk

†b2k
† 1bkb2k!G , ~27!

where the coefficientsAk andBk depend on anglef,

Ak532Bk , ~28!

Bk5 1
2 @~2 cos 4f21!g i~k!1~cos 4f11!g'~k!#,

~29!

and thek dependence is given byg i(k)5 1
2 (coskx1cosky),

and by g'(k)5coskz, respectively. After a Bogoliubov
transformation

ak5ukak1vka2k
† ~30!

with the parameters

uk5A Ak

2hk
1

1

2
, vk52sgn~Bk!A Ak

2hk
2

1

2
, ~31!

with hk5AAk
22Bk

2, and an equivalent transformation for th
bk bosons, the Hamiltonian~27! is diagonalized, and take
the following form:

HLSW5(
k

„vk
2~f!ak

†ak1vk
1~f!bk

†bk…. ~32!

The orbital-wave dispersion is given by
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vk
6~f!53J$16 1

3 @~2 cos 4f21!g i~k!

1~cos 4f11!g'~k!#%1/2. ~33!

The orbital excitation spectrum consists of two branches l
for instance, in an anisotropic Heisenberg model.26

The dependence on the fieldEz is implicitly contained in
the above relations via the anglef, as determined by Eqs
~19! and ~22! for the 3D and 2D model, respectively. Th
dispersion changes between the case off50 (cos 4f51)
which stands for the spin-flop phase at orbital degenera
and the case off5p/4 (cos 4f521) which corresponds to
the uniform phase with eitherux& (Ez>6J) or uz& (Ez<
26J) orbitals occupied. The orbital field therefore chang
the orbital-wave dispersion from AF to FM state. Th
orbital-wave dispersion for a 2D system, can easily be fou
from Eq. ~33! by settingg'(k)50.

In the case of a vanishing orbital field the classical grou
state is degenerate with respect to a rotation of the orb
around an arbitrary angleu. In LSWT, nevertheless, the
orbital-wave dispersion depends onu, i.e., the orbital-wave
velocity is highly anisotropic, and one finds

Vk
6~u!53J$16 1

6 @~A3cos 2u2sin2u!2gx~k!1~A3cos 2u

1sin2u!2gy~k!14 sin22ug'~k!#%1/2 ~34!

with gx,y(k)5coskx,y , respectively. It is straightforward to
verify that the excitations are gapless, independent of
rotation angle. Ifu50, the orbital-waves given by Eq.~33!
take a particularly simple form, and is identical to the d
persion found in the spin-flop phase atf5p/4,

Vk
6~u50!53JA16g i~k!5vk

7~f5p/4!. ~35!

FIG. 3. Orbital-wave excitations as obtained for different valu
of the crystal-field splittingEz for a 3D ~left! and 2D~right! orbital
superexchange model~1!. The result shown for a 3D system atEz

50 was obtained for the orbitals rotated byu5p/4 ~7!, and corre-
sponds to theEz→0 limit of the orbital-flop phase.
,
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In both cases the system is quasi-2D and the dispersion o
nates only from the planar componentskx andky .

IV. NUMERICAL RESULTS

The excitation spectra given by Eq.~33! for different
crystal-field splittings are shown in Fig. 3 for the 3D syste
along different directions of the fcc Brillouin zone27 appro-
priate for the alternating orbital order. Most interestingly,
gapless orbital-wave excitation is found for the 3D system
orbital degeneracy. Obviously this is due to the fact that
classical ground state energy is independent of the rota
angle u at Ez50, as we have shown in Sec. II. At firs
glance, however, one does not expect such a gapless m
as the Hamiltonian~5! does not obey a continuous SU~2!
symmetry. The cubic symmetry of the model, however,
restored if one includes the quantum fluctuations; they
shown in Fig. 4 as functions of the rotation angleu. Note
that the quantum corrections are small and comparabl
those of the 3D HAF. They do depend on the rotation ang
as the orbital-wave dispersion does. If the dispersion is co
pletely 2D-like, vk

6(f5p/4)53JA16g i(k), correspond-
ing to Vk

6(u50) ~35!, the quantum corrections are large
as this dispersion has a line of nodes along theG-Z direction,
i.e., v (0,0,q)

2 50 for 0,q,p.
It is interesting to note that this fully 2D orbital-wav

dispersion leads to an orbital ordered state at zero temp
ture only. At any finite temperature fluctuations destroy t
long-range order~as in the 2D HAF!. In this way one finds
an orbital-liquid state at nonzero temperature, similar to t
obtained in a Schwinger-boson approach by Ishihara,
manaka, and Nagaosa for the doped system.28 In higher order
spin-wave theory, however, it might very well be that a g
occurs in the excitation spectrum. We expect, however,
this gap, if it arises, is small, with its size being proportion
to the size of quantum fluctuations.

The cubic symmetry of the model atEz50 is satisfied by
the quantum-corrected ground-state energy~Fig. 4!, as the
energy is invariant under rotations by any angleu5np/6,
wheren is any natural number. This can be expected as s
a rotation corresponds to merely directing the orbitals alo

s

FIG. 4. Quantum corrections for the 3D system as functions
rotation angleu for the renormalized order parameterDTz ~full
lines! and the ground-state energyDE/J ~dashed lines!.
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different cubic axes and/or interchanging the sublatticeA
andB.

At finite values ofEz the spectrum becomes gapped~Fig.
5! because the degeneracy of the classical ground sta
removed. Note that this is different from a HAF in a fini
magnetic field, because there one still has full continu
symmetry in the spin-flop phase with respect to rotatio
along the field axis, which justifies the existence of a Go
stone mode. For small orbital fields the gap first increases
to a maximum reached atEz53J (2J), while for larger
values the gap decreases and vanishes atEz56J (4J) for a
3D ~2D! model. This can be understood by making the an
ogy with an AF Ising model in a magnetic field. As the fie
increases, the energy of a spin-flip excitation decreases a
loss of interaction energy associated with this excitation
partly compensated by the energy gain due to the par
alignment of the excited spin to the field. Approaching t
phase transition from the spin-flop to FM ordering, this mo
becomes softer and is found at zero energy exactly at

FIG. 5. GapD/J in the orbital excitation spectrum and energ
quantum correctionDE/J as functions of the crystal-field splitting
Ez /J. The results for the 3D model and 2D model are shown by
and dashed lines, respectively.

FIG. 6. Quantum corrections to the renormalized order par
eterDTz, and to the energyDE ~in the units ofJ!, as functions of
the crystal-field splittingEz /J.
is

s
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p

l-

the
s
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e
e

transition point. The increase of the gap forEz.6J is there-
fore due to a complete FM alignment of the orbitals alo
the field axis in this parameter regime, and any excitat
acts then against the orbital field. In Fig. 6 also the quant
corrections to the ground-state energy and the order par
eter are shown as functions of the orbital field. As expect
the presence of a gap in the excitation spectrum suppre
quantum fluctuations.

The quasi-2D state, i.e., the alternation ofux& and uz& on
two sublattices, is destabilized by any finite orbital fieldEz
Þ0. Taking for instanceEz.0, the orbital field shifts down-
wards the energy of the occupiedux& orbitals on one sublat-
tice by Ez/2, while the energy ofuz& orbitals increases by
Ez/2 on the other sublattice, so that the orbital field does
lower the energy of the system. Therefore, the state witu
5p/4 is selected instead for the classical ground state
any nonzero orbital field29 because in this state the pse
dospins can tilt towards the orbital field, reducing the ene
of the system. Such orbitals forming the ground state
shown in Fig. 2.

The dispersion for the unrotated state suggests that
effective dimensionality of the system is reduced from th
to effectively two dimensions in the absence of an orb
splitting. This anisotropy results in overall smaller quantu
fluctuations in a 3D model atEz50 than in the correspond
ing HAF, as discussed above. The anisotropy of the
model manifests itself in the energy contribution comi
from the bonds in the (a,b) plane and along thec axis, as
shown in Fig. 7. ForEz50 the classical energy along th
chain is zero, and the orbital superexchange energy of 3J/4
is gained by the planar bonds. One finds that quantum c
tributions to the ground-state energy tend to decrease
energy stored in the bonds along the chain, and increase
energy in the plane.

For the 2D system the situation at orbital degeneracy
quite different~see Fig. 3!. The lack of interactions along th
c axis breaks the symmetry of the model already atEz50,
opens a gap in the excitation spectrum and suppresses q
tum fluctuations. Increasing the orbital field, however, t
system resembles the behavior of a 3D system, where
the gap closes at an orbital field which compensates the
ergy loss due to the orbital superexchange between iden
~FM! orbitals. At this value of the field (Ez54J), the full

ll

-

FIG. 7. Energy contribution normalized per one site due
bonds along thec axis ~chain! and within the (a,b) plane~plane!.



th
ch
av
a-
c-
M

na
on
za
e

b
in
t
b

or
si
lt
ti
t
o

i
e

d

s
the

the
he

um
nds
the
ion
in-

-

lts

en-
n in
te.
the
F,
the

s the

ra-
as
t

re-
dy-
ed

ith

on-
to

an-
ixed

rm
on
e

-

n t

6802 PRB 59VAN DEN BRINK, HORSCH, MACK, AND OLEŚ
dispersion of the orbital waves is recovered, see Fig. 3,
spectrum is gapless, and the quantum fluctuations rea
maximal value. We would like to emphasize that this beh
ior is qualitatively different from the HAF, where the anom
lous terms}Ti

1Tj
1 andTi

2Tj
2 are absent, and quantum flu

tuations vanish at the crossover from the spin-flop to F
phase.

V. COMPARISON WITH EXACT DIAGONALIZATION IN
A 2D CLUSTER

It is instructive to make a comparison between the a
lytic approximations of Sec. III and the exact diagonalizati
of 2D finite clusters using the finite temperature diagonali
tion method.30 In contrast to the mean-field approach pr
sented in Sec. II, one finds a unique ground state atEz50 by
exact diagonalization, and no rotation of the basis has to
made to investigate the stability of the ground state. Mak
the rotation of the basis~7! is, however, still useful in exac
diagonalization as it gives more physical insight into the o
tained correlation functions which become simpler and m
transparent when calculated within an optimized ba
Moreover, they offer a simple tool to compare the resu
obtained by exact diagonalization with those of the analy
approach, presented in Sec. IV. We shall present below
results obtained with 434 clusters; similar results were als
found for ten-site clusters.

First we calculate nearest-neighbor correlation function
the ground statêT̃i

zT̃i 1R
z &, where the operators with a tild

refer to a rotated basis

T̃i
z5Ti

zcos 2f1Ti
x sin 2f,

FIG. 8. Contour plot of therotatednearest-neighbor orbital cor

relation function^T̃i
zT̃i 1R

z & as function of the anglesf andc for a
16-site planar cluster withEz50 andT50.1J. White regions cor-
respond to positive~FM! and black areas to negative~AF! orbital

correlations, i.e.,̂ T̃i
zT̃i 1R

z &.0.24 (,20.24), respectively. They
are separated by 25 contour lines chosen with the step of 0.02 i
interval @20.24,0.24#.
e
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e
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T̃i 1R
z 5Ti 1R

z cos 2c1Ti 1R
x sin 2c, ~36!

so that the correlation function depends on two anglesf and
c. In Fig. 8 the intersite orbital correlation in the groun
state is shown as a contour plot. White~dark! regions corre-
spond to positive~negative! values, respectively. One find
that the neighbor correlations have their largest value if
orbitals are rotated byf5p/4 andc53p/4 ~or f53p/4
andc5p/4), i.e., under this rotation of the basis states
system looks similar to a ferromagnet, indicating that t
occupied (ux&1uz&)/A2 and (ux&2uz&)/A2 orbitals are alter-
nating in a 2D model, as shown in Fig. 2. Note that quant
fluctuations are small as in the ground state and one fi

^T̃i
zT̃i 1R

z &.0.246. This demonstrates at the same time
advantage of basis rotation in the exact diagonalizat
study, because in the original unrotated basis one finds
stead^Ti

zTi 1R
z &.0, which might lead in a naive interpreta

tion to a large overestimation of quantum fluctuations.
The ground-state correlations^T̃i

zT̃i 1R
z & are in excellent

agreement with the LSWT results. By comparing the resu
obtained atT50.1J,0.2J, and 0.5J we found that the calcu-
lated low-temperature correlation functions are almost id
tical in this temperature range, and thus the values show
Fig. 8 for T50.1J are representative for the ground sta
They demonstrate an instability of the system towards
symmetry-broken state. This finding is similar to the HA
where such a tendency could also be found, in spite of
relatively small size of the considered clusters.31 The inter-
site correlations decrease at higher temperatures, and thu
results at higher temperaturesT.2J differ dramatically
from those presented in Fig. 8. By investigating the tempe
ture dependence of the orbital correlation functions it h
been recently established that the orbital order melts aT
;J.22

Next we discuss the results for the dynamical orbital
sponse functions in the case of orbital degeneracy. The
namic structure factors for the orbital excitations are defin
as

Tq
zz~v!5

1

2pE2`

`

dt^Tq
zT2q

z ~ t !&e2 ivt, ~37!

Tq
12~v!5

1

2pE2`

`

dt^Tq
1T2q

2 ~ t !&e2 ivt. ~38!

The corresponding orbital response functions evaluated w
respect to therotated local quantization axis,T̃q

zz(v) and

T̃q
12(v), are defined instead by tilded operators~36!. The

LSW approximation does not allow us to investigate the c
sequences of the coupling of single excitonic excitations
the order parameter, represented by the terms}Ti

xTj
z , as

these terms contribute only in cubic order when the exp
sion to the bosonic operators is made. Therefore, the m
terms involving products ofTi

z and Tj
x at two neighboring

sites in the Hamiltonian Eq.~5! could contribute only in
higher order spin-wave theory. This motivated us to perfo
similar calculations within finite temperature diagonalizati
for the simplified Hamiltonian without these terms, which w
refer to as the truncated Hamiltonian.

he
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FIG. 9. Transverse response functionTq
12(v) ~left part! and longitudinal response functionTq

zz(v) ~right part! calculated with respec
to the original basis states (u50) using finite-temperature diagonalization atT50.1J for a 16-site planar cluster withEz50 for: ~a! the
orbital interactions as given by Eq.~10! ~full lines!; ~b! the truncated Hamiltonian~dashed lines!. Vertical lines indicate the position o
orbital-wave excitations as obtained from LSWT. The spectra are broadened byG50.1J.
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The transverse and longitudinal orbital response fu
tions, T12(v) and Tzz(v), calculated for the full orbital
Hamiltonian given in Eq.~5!, and with respect to the origina
choice of orbital basis$uz&,ux&% are shown in Fig. 9. The
response functions consist in each case of a dominant
accompanied by a pronounced satellite structure, both for
transverse and longitudinal excitations. The dominant p
energies are close to the two modes found by the spin-w
analysis, but the energies are lowered for those mom
which show strong satellite structures at higher energies
order to establish that the satellite structures are, in s
wave language, due to higher-order processes in spin-w
theory, we performed the same calculation for the trunca
Hamiltonian. One finds then an excellent agreement~Fig. 9!
between the single modes which result from the numer
diagonalization and the position of the orbital-wave as de
mined by Eq.~33!.

An additional numerical check was made using the
tated orbital basis which determines the transverse corr
tions ^T̃q

1T̃2q
2 & shown in Fig. 10. Heref5p/4 and c

53p/4 for theA andB sublattice, respectively. In contrast
the unrotated orbital basis, we find that the dispersive po
in the longitudinal excitation spectrum vanish entirely. I
stead, this missing mode appears now in the transverse c
nel, where both modes are found and are accompanied b
satellite structures. We note that the response functions in
rotated basis resemble the response functions of a H
where the spin-wave excitations are also found only in
transverse response function.31 As before, the satellite struc
tures disappear and two distinct peaks with the same in
sities are found, if the truncated Hamiltonian is used. Th
-
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two peaks merge into a single structure at those valuesq
at whichvk

1(f50)5vk
2(f50).

The successful comparison of the LSWT results with
numerical diagonalization is summarized in Fig. 11, whe
the first moment of the spectra of the full Hamiltonian, t
single mode which results from the truncated Hamiltonia
and the dispersion from the LSWT@as found from Eq.~33!
at f50 and neglecting the dispersion due tokz#,

vq
653JA16 1

3 g i~q!, ~39!

are compared. Clearly, Fig. 11 shows an excellent agreem
between the dispersions calculated within different a
proaches. From the fact that the first moment of the respo
functions for the full Hamiltonian coincides with the re
sponse functions of the truncated Hamiltonian, we conclu
the LSWT approach captures the leading terms in orb
dynamics, and the satellite structure for the full Hamiltoni
is due to higher-order orbital-wave interactions that are
taken into account within LSWT.

As already discussed in Secs. II and IV, the orbitals
tilded in the direction of the effective orbital field due to th
orbital splitting. This behavior is also found in our diagona
ization studies, and one finds that the expectation val
^Ti

zTj
z& and ^Ti

xTj
x& depend on the orbital splittingEz ~Fig.

12!. Both correlation functions are calculated using the u
rotated basis set. Although the crossover to the uniform s
with ux& orbitals occupied is smooth in the numerical stud
the agreement with the result of the LWST approach is o
again very good.
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VI. SUMMARY AND CONCLUSIONS

In summary we considered the low-energy effect
model for strongly correlated electrons in twofold degener
eg bands and investigated the consequences of the or
degrees of freedom for a FM system at half filling. Althou
a saturated ferromagnet might only be realized in undo
systems in high magnetic fields, we believe that this mode
a relevant starting point in order to understand the influe
of orbital dynamics in FM doped transition metal oxide

FIG. 10. Transverse response functionT̃q
12(v) for the rotated

orbitals as a function of frequencyv for different momenta at low
temperature. Calculations were performed for a 16-site 2D clust
Ez50 andT50.1J for ~a! the orbital interaction as specified in Eq
~10! ~full lines! and ~b! neglecting the mixed terms}Ti

xTj
z . The

spectra are broadened byG50.1J.

FIG. 11. Dispersion of orbital waves along the main directio
in the 2D Brillouin zone calculated for a 434 cluster. Results for
the first moment calculated using the full and truncated Hamilton
~empty and full symbols! are compared with the dispersions for th
two modes as obtained by the LSWT, shown by a solid and das
line, respectively.
e
tal

d
is
e
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such as the colossal magnetoresistance manganites. Th
state can be considered as the reference state into w
holes are doped.

We have shown that the orbitals order and alternate
tween the two sublattices, which is equivalent to the A
order in the~orbital! pseudospin space. The orbital excitatio
spectrum consists of two branches, one of which is found
be gapless in the 3D system within LSWT. This is a con
quence of the degeneracy of the model at a classical le
Thus, we find here a quite peculiar situation. Although t
Hamiltonian is not invariant under a global orbital rotationu
@see Eq.~7!#, and the correlation functions along the differe
directions change withu, this rotation does not affect th
energy of theclassicalground state. It turns out, howeve
that quantum fluctuation corrections to the ground state
ergy restore the cubic symmetryand select the rotation angl
at eitheru50,p/6, or p/3. For these states the orbital exc
tation spectra are purely 2D, which demonstrates that in
the effective dimensionality of the orbital model (5) is r
duced to 2. We note that for a gapless 2D dispersion of t
orbital excitations in three dimensions one expects that
bital long-range order disappears away fromT50, as in the
2D Heisenberg model.

The orbital model~1! has novel and interesting quantu
properties, and is quite different from the Heisenberg mod
In contrast to the HAF, the quantum fluctuations in zero fie
aresmaller in the 2D than in the 3D orbital model, and th
2D model is thereforemore classicaldue to the anisotropy o
the orbital interactions. However, a finite splitting of the o
bitals Ez opens a gap in the excitation spectrum of a 3
model, and the quantum effects are then reduced in
orbital-flop phase stable at small values ofuEzu. Both in a 3D
and 2D case, the orbital excitation spectra become gaple
the crossover value ofEz at which the ‘‘FM’’ orbital order
sets in. The quantum fluctuations are then identical and re
their maximum.

We have verified that the linear approximation within t
spin-wave theory reproduces the essential features of the
bital excitations in the present situation, where the total ps
dospin quantum number and thezth component of total pseu
dospin are not conserved. First of all, the results of
LSWT and the first moments of the orbital excitation spec
obtained from the finite-temperature diagonalization yie

at

s

n

ed

FIG. 12. Ground state expectation values^Ti
xTj

x& ~left! and
^Ti

zTj
z& ~right! for a 16-site 2D cluster (Ez50, T50.1J) as func-

tions of the orbital splittingEz /J ~squares!. Full lines represent the
same expectation values obtained using the LSWT approach.
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two modes in excellent quantitative agreement in a
model, when the anomalous interactions;Ti

xTj
z are ne-

glected. Second, the inclusion of these terms in exact dia
nalization leads to a satellite structure in the response fu
tions, while the first moment remains almost unchanged
order to calculate the satellites observed in the exact dia
nalization one needs to go beyond the leading order in
spin-wave theory, and include the cubic terms in the bo
operators. The comparison with finite temperature diago
ization allows us to conclude that orbital waves with t
dispersion of the order of 4J are characteristic for the FM
states of the undoped degenerateeg systems.32

We believe that the presented analytic treatment of orb
excitations provides a good starting point for considering
dynamics of a single hole in the orbital model. This wou
allow us to understand the origin of puzzling optical a
transport properties of the doped manganites and clarify
expected differences with the hole dynamics in thet-J
model.
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Note added in proof.We believe that the present resu
could be verified experimentally in the future. Orbital orde
ing in the FM planes of theA-type AF LaMnO3 has recently
been observed by Murakamiet al.33 using resonant x-ray
scattering,34 with an orbital ordering consistent with tha
shown in Fig. 2. However, a quantitative comparison w
A-AF LaMnO3 would have to include as well additional o
bital interactions which follow from the AF superexchan
between the FM planes and from the Jahn-Teller effect.12
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