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Strong-coupling approach to the magnetization process of polymerized quantum spin chains

A. Honeckef
International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy
(Received 15 September 1998

Polymerized quantum spin chaifise., spin chains with a periodic modulation of the coupling constants
exhibit plateaus in their magnetization curves when subjected to homogeneous external magnetic fields. We
argue that the strong-coupling limit yields a simple but general explanation for the appearance of plateaus as
well as of the associated quantization condition on the magnetization. We then proceed to explicitly compute
series for the plateau boundaries of trimerized and quadrumerized spin-1/2 chains. The picture is completed by
a discussion of how the universality classes associated with the transitions at the boundaries of magnetization
plateaus arise in many cases from a first-order strong-coupling effective Hamiltonian.
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Quantum spin systems at lo(@r zerg temperatures can such that at zero temperature the magnetizatibt) can
exhibit plateaus in their magnetization curves when subonly take finitely many values. For sp#ithey are subject to
jected to strong external fields. Such phenomena in quasthe quantization condition
one-dimensional systems have recently been a subject of in- ,
tense interest. In one dimension, there is an intriguing PS(1-(M))eZ, ©)
interplay between theoretical progress on a systematic undewith a normalization such that the magnetization has satura-
standing of the underlying mechanisisee, e.g., Ref.)land  tion values(M)= = 1. This quantization condition was ob-
an increasing number of experimeritge, e.g., Refs. 2 and tained(for S=1/2) in Ref. 4. Similar quantization conditions
3) on materials which are believed to be predominantly onévere found in Refs. 1 and 11. In particular the latter was also
dimensional. motivated by considering a limit in which the system de-

Here we study polymerized spBiguantum spin chains in couplgs into cluste_rs of finitely many spins. In fac_t, this
a magnetic field. Their Hamiltonian is given by counting argument is completely independent of the internal
' coupling inside the cluster of the spins. The quantization

condition (3) is therefore insensitive to details of the model.
H=> J,5.Su.1—-hY &, (1)  However, not only the transition values of the magnetic field
X X but also the question if a possible plateau is realized even in
where we assume periodicity of the coupling constants wit this limit depends on the precise coupling inside the cluster.
: ; n:or the linear arrangemerl) and antiferromagneticl,
periodp, i.e., >0 (Xx#Xg), all values of(M) permitted by Eq(3) are in-
deed realized al, =0.
H= I @ Clearly, i i izati
y, it remains also to be shown that the quantization

We will mostly concentrate on spi=1/2 and the antifer- condition(3) is indeed valid at generic points in the param-
romagnetic regimd,=0. Our work is largely motivated by €ter space, not only for the special points where sdme
Ref. 4, which studied the zero-temperature magnetizatior=0. This can be supported by series expansions around the
process of theS=1/2 polymerized chaingl) using finite- decoupling point, an issue to which we shall return below.
size diagonalization and a perturbative bosonization analysis A first property which one can derive for the full interact-
around the case of equal coupling constalgts J. Polymer-  ing spin-1/2 system is the upper critical fidlg, at which the

ized XY chains had been studied before in Ref. 5 using thdransition to a fully polarized ferromagnetic state takes place.
Jordan-Wigner transformation. In addition to the well-knownFor antiferromagnetid,=0 it is simply given by the van-
dimerized case, also trimeriZed and quadrumeriz@c? ishing of the gap for the one-spin-wave dispersion above the
chains have already been investigated in more detail. It waterromagnetic background. The value bf. is therefore
found that the trimerized chain exhibits a plateau in the maggiven by the maximal eigenvalue of the followipg p ma-
netization curve at one-third of the saturation trix:
magnetizatiorf;” while the quadrumerized chain can exhibit ok
a plateau at half of the saturation value in addition to a spin Jptdi —d o - 0 —€Jp
gap®® Here we wish to complete the picture by discussing -J;  J3+J, -J, O . 0
the “strong-coupling” limit where at least one coupling con-

stant is small with respect to the others, ik,,—0. E 0 2 J ,
As is known, e.g., from studies of spin laddé?s? the 2 . 0

magnetization process is easy to understand if sdye 0. 0 e 0 —Jp-1

In this limit, the chain(1) decouples into clusters @fspins. _e—ika 0 . 0 —Jp1 Jp1tdp

These “strongly coupled” clusters magnetize independently 4)
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wherek arises from a Fourier transform using the periodicityin order to make the presentation more compact.
(2) (see also Refs. 6 and 9 for a detailed analysis of special A few remarks may be in place regarding the method used
caseg. For antiferromagnetid,> 0, the lowest-energy exci- here which is summarized, e.g., in Sec. 3 of Ref. 14. Like the
tations occur ak=0 for p even and ak= 7 for podd if we  method of Ref. 13 it exploits the fact that the leading coef-
introduce the momentum by a translationpdfites[as in Eq.  ficients of the series can be obtained on a finite lattice. How-
(4)]. ever, we use recurrence relations for the coefficients and an

In order not to get lost in too many parameters, we restricexact symbolic representation throughout the computation
ourselves to the same subspace that was also consideredvitile in Ref. 13 a symbolic result was reconstructed from a
Ref. 4 before we proceed further. We will now concentratehigh-precision numerical computation. Presumably, cluster
on the following periodic arrangement of coupling constantsexpansion algorithmsésee, e.g., Ref. 25vould be more ef-

3 ficient than the two aforementioned methods, but we prefer a
5]

5) simpleminded approach because of the ease with which it
Now we return to the computation of the largest eigenvalueTro

can be applied tp>2 as well.
of Eq. (4). The cas@=2 is a hit special; the correct special-

for xe pZ,

otherwise.
For p=3, there is a plateau §M)=1/3, as one infers
m the above inspection of the ca3e=0. Its lower and

ization of Eq.(4) to p=2 readgwith the notation(5)]
1 J+J —J—eky’
2\ —3-eky 4y ©

Using Eq.(6) for p=2 and Eq.(4) for p=3 and 4 atk
=pm (modulo 27) we find

hp=?'=3+1, (7)
3 1 1
(p=3)_= I Y 2_ 7 12
h(P 79+ 357 +4\/9J 433 +43'?, (8)
1
hie™ =3+ 53" +237 =230 +7'%), 9

respectively.

upper boundariesh{’~» andh{’~%, respectively are de-

termined by th&k= 7 gap of the single-spin excitations. Up
to fifth order inJ’, one finds the following series:

he™ g 211 77437 7606883

— g2 3 A
7 ~97" 8107 " 1312200 ' 18895680

7188324510751 54 (75
69989034112006 (7%,

"3
he™ 3 1 521 394169

7 2 187 648072_ 699840 ’

2260895171 ,  535736196039221 _
7936185600€ 4319824545792000%

Next we turn to series expansions of the plateau bound-
aries forp<4. For the present systems, we expect that the
sharp steps between the magnetization plateaus which are o )
present for)’=0 or J=0 soften as soon as one turns on Last, forp=4 all relevant excitations havie=0 in the
J,J'>0, but that nothing further happens. This scenario wagntiferromagnetic regimé,J’>0. For reasons that should be
in fact confirmed by the numerical and perturbative analysi®bvious from the results we content ourselves with second-

+0O(T°). (12)

aroundJ=J' of Ref. 4.
For p=2 the only nontrivial plateau is located &)
=0. Its boundary is given by th&=0 spin gapE(P=2).

order series for the gag(P=% and the lower and upper
boundaries of théM)=1/2 plateau k= andh®~=*, re-
spectively:

Series expansions id’'/J for this gap have already been

carried out some time ago in Ref. 12 up to third order and E(P=4 1 1

have recently been extended to ninth order in Ref. 13. Add- 3 1+ V3-12)- 74+ V6+2)7
ing a further order to Eq29) of Ref. 13[in passing we have

also checked Eq$28) and(30) of the referenckone arrives 1
at G428) and(30) P - —6307%— 163960,3+ 28775/2
13248
E(P=2) 1 3 1 5 761 2 3
q_ 7 272, -3 T g4 7" 5 +276026._7 +O(j ),
7 12780 37 " 3e 1228
heP= 4 26+8y2+17 1
. 18997276+ 21739877_ 214359199g8 AP S V6+812+17
176947 707788 679477248 J 2 48 14837760
. 11960596181 0, 833277779047 X (—2385712/6+4730320/3— 4947835/2
+O(TM). (10
- h{= 1 2y2-3 21691231648
Here we have used the abbreviation 2 44— 4 2
J 16 43008
_J 11 °
J= J (11 +0O(T3). (13
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With the choice of coupling constan(S) there is a sec-
ond decoupling limit, namely)— 0, which for p=3 is not
equivalent to the case discussed before. This limit is special
in that several of the coupling constar(® vanish at the
same time. This leads @— 2 free spins in zeroth order ih
These free spins are immediately polarized once a magnetic
field is applied. Only the two spins coupled BY require a Wi 1
finite magnetic field to polarize. This leads to &M)=1 T,
—2/p plateau whose upper boundary is given hﬁg)z\]’ -
-0@J). 05 +“"+~+~+‘+\+. e

At first order inJ, one now has to perform degenerate e
perturbation theory for the free spins. It turns out that at this
order they behave as isolated clusterspef2 spins. The 0 ' ' ' )
corresponding transition fields have been tabulated in Ref. 11 ' ry ’
and are indeed a reasonable first approximation to the plateau

[ < : " B - :
bOlIJtn.da”ets ft?lr &pt :.ﬁc.)f FI\)te'I 4 g: 'f"“ge] . ihf the upper critical field7). The dotted line is our tenth-order series

IS actually not di .'CU O obtan expanspns or expansion10) for the spin gap. Crosses show the 24 numerical
some plateau boundaries. Poor convergence is, however, {0~ ot cabra and Grynbet&ef. 4 and the diamonds denote the

be anticipated. In the present case, internal properties of thgagnetic fieldsh at 3’ =J associated t¢M)=0 and(M)=1, re-
decoupled clusters are computed perturbativelyich were  spectively.
already taken care of exactly at zeroth order in the expan-
sions around)’=0). This is reflected, e.g., in the fact that E(P=4)
the fundamental excitations start to dispefise., depend on 3= 1- 2\771+ (T3,
k) only in the second order id.

At p=3 we find the following 11th-order series for the h(P=4)

Cc

1.5 .

FIG. 1. Gap and transition fields f@r=2. The solid line shows

boundaries of théM)=1/3 plateau: 1 _a. g1 1 2.1 5 5 4 4
3t g Tt T3 e
- 201 497 11887 52929
h(P=3) _ e O o7, 200 g 94Y4Y g
a3, 107, 1185 845 2567 204 81927 ' 1638
J 2 32 256 256‘7
180845 T
537329 834121 . 310154551 + T 0077,
n 77+ 782220 65536
24576 32768 7077888
h(P=4)
15865989569 % 11 1 5 3 4, 7 _
e et V) —11 — 4 1_ 3_ 4__ 6
gag3aese Y O ) 7 Tty T 1 512/
L9, TS5 8555
h(P=3) 40967 4096'7 655367
o _ 1 1., 5 73+19 o, 1817,
7 727 e e’ Teie? _ 2051 o, o1y (15
5242887 )
4199 96157 3539135
* Toee08’ ' 589824 28311557 For the gapEP=*4 we restrict ourselves to second order
only, since the high degeneracy(&f)=0 for J=0 starts to
133012373 _ 11 invalidate our approach at third order.
- 6794772487 +O(T ). (14 We compare our perturbative results to the 24 numeri-

cal dat4 in Figs. 1-3. The solid lines show our results for

the upper critical field$,., and the dotted lines denote the
This result is valid irrespective of the sign 8f Indeed, we series expansions aroudd= 0, while the dash-dotted lines
find agreement with the second-order result of Ref. 6 forin Figs. 2 and 3 show the expansions arouJsel0. Crosses
ferromagnetic coupling<<0. ForJ<0 andJ’'>0, there is denote thd =24 numerical data of Ref. 4 and the diamonds
an experimental realization of a trimerized system:show the magnetic fields associated to the plateau values of
3CuCl- 2dioxane. However, since the coupling constants of M) at J’=J. For the isotropic chain they arfe=0 for
this material are roughly given b¥/J’ ~ —5, the experimen- (M)=0 andh=2J for (M)=1. The fields associated with
tal magnetization curd8 is far outside the range of validity (M)=1/3 and (M)=1/2 are computed from the Bethe-
of our series(14); actually no magnetization plateau is ob- ansatz solution of the Heisenberg chésee, e.g., Ref. 11
served experimentally. Since Abelian bosonization predicts the plateaus to open for

For p=4 and antiferromagnetid,J’>0, one finds the J’#J,* the diamonds denote the expected ending points of

following counterpart of Eqs(13): the magnetization plateaus.
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expansiong13) aroundJ’ =0 compare again favorably with
the numerical data of Ref. 4 although the series are only of
second order. Also the series foﬁ‘;:‘” in Egs. (15 agrees

quite well with the numerical data fal' >J, while that for
hé’i:“) yields good agreement at least at the right boundary

of Fig. 3. The small} series forE(P=%) is not even shown,
since due to its low order it cannot be expected to give sen-
sible results in the region of interest. As in the cpse3, the
limited quality of the series fod’>J can be expected on
general grounds and is also indicated by inspection of the
value of the coefficients in Eq$15).

A comparison of the serigd4) and(15) with the numeri-
cal data of Ref. 4 is complicated by the fact that the latter
does not extend into the region of sma#-only the region
J'<J is covered well. We have therefore performed some

FIG. 2. Transition fields fopp=3. The solid line shows the
upper critical field(8), the dotted lines the seri¢$2) for smallJ’,
and the dash-dotted lines the seri#&d) for small J. Crosses show
L =24 numerical data of Cabra and GrynbéRef. 4 and the dia-
monds denote the magnetic fieltisat J'=J associated tqM)
=1/3 and(M) =1, respectively.

further numerical computations fgr=3 andp=4. At suf-
ficiently smallJ one can then nicely verify the series order
by order—much in the spirit of Ref. 13. In this manner we
have verified the lowest five to six orders of all series in Egs.
(14) and(15) (a standard numerical accuracy is not sensitive
to the highest ordeys

The casg=2 is shown for completeness in Fig. 1. Since It has been pointed out recently by several autliees,
here the regimed’ <J andJ’=J are equivalent, we display €.9., Refs. 17-22that the strong-coupling approach can be
only the former. Here the dotted line shows our tenth-orde€xtended to describe the transitions between plateaus by an
series expansiofil0) for the excitation energy &=0. The effective Hamiltonian. For the case discussed here, one will
overall agreement is excellent, as has already been observétigeneral have to retain two states per site in first order in
for the gap in Ref. 13. J’. These two states correspond to the two plateau ground

Figure 2 shows the next cape=3. The serie12) are in states atl’ =0 between which we wish to describe the tran-
excellent agreement with thie=24 numerical data fod’ sition. If the coupling constants are chosen to preserve parity
<J. Even the ending point of theM ) = 1/3 plateau is repro- [as is the case, e.g., for EG)], symmetry arguments imply
duced quite well. Fod’' >J, the upper boundary of the pla- that the effective Hamiltonian is aXXZ chain. Hence one
teaus is also reproduced reasonably by Ef4), while the can immediately carry over some well-known universal
agreement for the lower boundary is poor despite the lengtRroperties of theXXZ chain(see, e.g., Sec. Il of Ref. 11 for
of the series. This is not entirely surprising as we have rea review to polymerized spin chains. First, the mapping to
marked above. In fact, inspection of the expression foithe XXZ chain in the strong-coupling limits implies that the

ht(?‘i=3) in Egs.(14) shows that the coefficients get larger with €xponents of the correlation functions at the plateau bound-

increasing order such that this series might actually not cond'I€s are given by

verge in the region shown in Fig. 2.
This comparison of perturbation theory and finite-size di- —9 :E (16)
agonalization is completed with the cgse 4 in Fig. 3. The =4 ThyT e

Second, the transitions at the plateau boundaries are pre-

25 | o e dicted to be of the Dzhaparidze-Nersesyan—Pokrovsky-
<M>=1 ; e Talapov(DN-PT) type?3?4i.e., the magnetization as a func-
2 L . *,,F**’* i tion of applied fieldh has a square-root behavior close to the
_____ Iﬁ*‘"“\.\ plateau boundaries. The same conclusions are obtained by
s T <M> =172 | the Abelian bosonization analysis of the lindit—J.# This

5+ Fhrtrey S
wi <M>=1/2 +‘¥¥+ +++++++‘+‘+—+~+1.,,_

o follows from results in the theory of commensurate-
o incommensurate transitioflswhich in addition imply that

e o ] the exponent$16) as well as the DN-PT square-root behav-

el ior should be universal. The fact that identical conclusions

0.5 - **m.h* ++++++++++* are reached py considering two different_ limiting cases is in
M>=0 T Me =0 agreement with such a universal scenario.

0 PO G Before concluding, it should be mentioned that the quan-

0 02 04 06 08 1 12 14 16 18 2 tization condition(3) may have to be relaxed in certain cases.

rn For example, it has been showsee, e.g., Refs. 17 and )26
that an{(M)=1/2 plateau can appear if a next-nearest neigh-
bor interaction is added to the dimerized chain, 8g.with
p=2 (for generalizations of this situation see Ref).Zlhis

phenomenon can be also understood within the strong-

FIG. 3. Same as Fig. 2, but far=4. The solid line shows Eq.
(9), the dotted lines Eqg13), and the dash-dotted lines Eq&5).
Diamonds denote magnetic fields associated \Wh =0, 1/2, and
1, respectively.
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coupling analysis~?°if one goes to first order, i.e., beyond J'<J, including the ending points of the plateaus. Such fa-
the naive decoupling limif’ =0. The crucial role is played vorable conditions are probably a special feature of polymer-
by the XXZ anisotropy appearing in the first-order effective ized spin-1/2 chains, as is the observatitrat here the con-
XXZ chain. If this effectiveXXZ anisotropy turns out to be dition (3) is necessarpnd sufficient for the appearance of a
sufficiently large A >1), a gap opens and translational sym- plateau at positivd’ #J.
metry is spontaneously broken. In this manner one finds a It is straightforward to extend the approach of this paper
further plateau precisely in the middle between the two valto more general interactions or to the computation of other
ues of (M) predicted by considering just the limit' =0.  quantities. We are confident that further explicit strong-
This illustrates thap in Eq. (3) should be taken as the period coupling computations will provide a useful tool, e.g., if new
of the ground state which in general can be differ@et, an  experimental data are to be explained in terms of model
integer multiple of the period of the Hamiltonian. Hamiltonians.

To summarize, we have shown that the study of the
strong-coupling limit not only provides a simple way to un-
derstand the magnetization process of polymerized spin | would like to thank D.C. Cabra and M.D. Grynberg for
chains qualitatively, but that also quantitatively competitiveproviding me with their numerical data. | am grateful to them
results can be obtained with moderate effort. In some reand P. Pujol for useful discussions and comments. This work
spects, the situation is even nicer than for spin lad#fets: was carried under under financial support from TMR Grant
The bare series id’ yield good results in the entire region No. FMRX-CT96-0012.
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