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Strong-coupling approach to the magnetization process of polymerized quantum spin chains

A. Honecker*
International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy

~Received 15 September 1998!

Polymerized quantum spin chains~i.e., spin chains with a periodic modulation of the coupling constants!
exhibit plateaus in their magnetization curves when subjected to homogeneous external magnetic fields. We
argue that the strong-coupling limit yields a simple but general explanation for the appearance of plateaus as
well as of the associated quantization condition on the magnetization. We then proceed to explicitly compute
series for the plateau boundaries of trimerized and quadrumerized spin-1/2 chains. The picture is completed by
a discussion of how the universality classes associated with the transitions at the boundaries of magnetization
plateaus arise in many cases from a first-order strong-coupling effective Hamiltonian.
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Quantum spin systems at low~or zero! temperatures can
exhibit plateaus in their magnetization curves when s
jected to strong external fields. Such phenomena in qu
one-dimensional systems have recently been a subject o
tense interest. In one dimension, there is an intrigu
interplay between theoretical progress on a systematic un
standing of the underlying mechanisms~see, e.g., Ref. 1! and
an increasing number of experiments~see, e.g., Refs. 2 an
3! on materials which are believed to be predominantly o
dimensional.

Here we study polymerized spin-S quantum spin chains in
a magnetic field. Their Hamiltonian is given by

H5(
x

JxSW x•SW x112h(
x

Sx
z , ~1!

where we assume periodicity of the coupling constants w
periodp, i.e.,

Jx5Jx1p . ~2!

We will mostly concentrate on spinS51/2 and the antifer-
romagnetic regimeJx>0. Our work is largely motivated by
Ref. 4, which studied the zero-temperature magnetiza
process of theS51/2 polymerized chains~1! using finite-
size diagonalization and a perturbative bosonization anal
around the case of equal coupling constantsJx5J. Polymer-
ized XY chains had been studied before in Ref. 5 using
Jordan-Wigner transformation. In addition to the well-know
dimerized case, also trimerized6,7 and quadrumerized8,9

chains have already been investigated in more detail. It
found that the trimerized chain exhibits a plateau in the m
netization curve at one-third of the saturatio
magnetization,6,7 while the quadrumerized chain can exhib
a plateau at half of the saturation value in addition to a s
gap.8,9 Here we wish to complete the picture by discuss
the ‘‘strong-coupling’’ limit where at least one coupling co
stant is small with respect to the others, i.e.,Jx0

→0.
As is known, e.g., from studies of spin ladders,10,11 the

magnetization process is easy to understand if someJx0
50.

In this limit, the chain~1! decouples into clusters ofp spins.
These ‘‘strongly coupled’’ clusters magnetize independen
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such that at zero temperature the magnetization^M & can
only take finitely many values. For spinS they are subject to
the quantization condition

pS~12^M &!PZ, ~3!

with a normalization such that the magnetization has sat
tion values^M &561. This quantization condition was ob
tained~for S51/2) in Ref. 4. Similar quantization condition
were found in Refs. 1 and 11. In particular the latter was a
motivated by considering a limit in which the system d
couples into clusters of finitely many spins. In fact, th
counting argument is completely independent of the inter
coupling inside the cluster of thep spins. The quantization
condition~3! is therefore insensitive to details of the mode
However, not only the transition values of the magnetic fie
but also the question if a possible plateau is realized eve
this limit depends on the precise coupling inside the clus
For the linear arrangement~1! and antiferromagneticJx
.0 (xÞx0), all values of^M & permitted by Eq.~3! are in-
deed realized atJx0

50.
Clearly, it remains also to be shown that the quantizat

condition ~3! is indeed valid at generic points in the param
eter space, not only for the special points where someJx0

50. This can be supported by series expansions around
decoupling point, an issue to which we shall return below

A first property which one can derive for the full interac
ing spin-1/2 system is the upper critical fieldhuc at which the
transition to a fully polarized ferromagnetic state takes pla
For antiferromagneticJx>0 it is simply given by the van-
ishing of the gap for the one-spin-wave dispersion above
ferromagnetic background. The value ofhuc is therefore
given by the maximal eigenvalue of the followingp3p ma-
trix:

1

2S Jp1J1 2J1 0 ••• 0 2eikJp

2J1 J11J2 2J2 0 ••• 0

0 2J2 � � � A

A � � � � 0

0 ••• 0 � � 2Jp21

2e2 ikJp 0 ••• 0 2Jp21 Jp211Jp

D ,

~4!
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wherek arises from a Fourier transform using the periodic
~2! ~see also Refs. 6 and 9 for a detailed analysis of spe
cases!. For antiferromagneticJx.0, the lowest-energy exci
tations occur atk50 for p even and atk5p for p odd if we
introduce the momentum by a translation ofp sites@as in Eq.
~4!#.

In order not to get lost in too many parameters, we rest
ourselves to the same subspace that was also consider
Ref. 4 before we proceed further. We will now concentr
on the following periodic arrangement of coupling constan

Jx5H J8 for xPpZ,

J otherwise.
~5!

Now we return to the computation of the largest eigenva
of Eq. ~4!. The casep52 is a bit special; the correct specia
ization of Eq.~4! to p52 reads@with the notation~5!#

1

2S J81J 2J2eikJ8

2J2e2 ikJ8 J1J8
D . ~6!

Using Eq. ~6! for p52 and Eq.~4! for p53 and 4 atk
5pp ~modulo 2p) we find

huc
~p52!5J1J8, ~7!

huc
~p53!5

3

4
J1

1

2
J81

1

4
A9J224JJ814J82, ~8!

huc
~p54!5J1

1

2
~J81A2J222JJ81J82!, ~9!

respectively.
Next we turn to series expansions of the plateau bou

aries forp<4. For the present systems, we expect that
sharp steps between the magnetization plateaus which
present forJ850 or J50 soften as soon as one turns
J,J8.0, but that nothing further happens. This scenario w
in fact confirmed by the numerical and perturbative analy
aroundJ5J8 of Ref. 4.

For p52 the only nontrivial plateau is located at^M &
50. Its boundary is given by thek50 spin gapE(p52).
Series expansions inJ8/J for this gap have already bee
carried out some time ago in Ref. 12 up to third order a
have recently been extended to ninth order in Ref. 13. A
ing a further order to Eq.~29! of Ref. 13@in passing we have
also checked Eqs.~28! and~30! of the reference# one arrives
at

E~p52!

J
512

1

2
J2

3

8
J 21

1

32
J 32

5

384
J 42

761

12288
J 5

1
18997

1769472
J 61

21739

7077888
J 72

214359199

6794772480
J 8

1
11960596181

4892236185600
J 91

833277779047

117413668454400
J 10

1O~J 11!. ~10!

Here we have used the abbreviation

J5
J8

J
~11!
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in order to make the presentation more compact.
A few remarks may be in place regarding the method u

here which is summarized, e.g., in Sec. 3 of Ref. 14. Like
method of Ref. 13 it exploits the fact that the leading co
ficients of the series can be obtained on a finite lattice. Ho
ever, we use recurrence relations for the coefficients and
exact symbolic representation throughout the computa
while in Ref. 13 a symbolic result was reconstructed from
high-precision numerical computation. Presumably, clus
expansion algorithms~see, e.g., Ref. 15! would be more ef-
ficient than the two aforementioned methods, but we prefe
simpleminded approach because of the ease with whic
can be applied top.2 as well.

For p53, there is a plateau at^M &51/3, as one infers
from the above inspection of the caseJ850. Its lower and
upper boundaries (hc1

(p53) and hc2

(p53) , respectively! are de-

termined by thek5p gap of the single-spin excitations. U
to fifth order inJ8, one finds the following series:

hc1

~p53!

J
5

8

9
J1

211

810
J 22

77437

1312200
J 31

7606883

188956800
J 4

1
7188324510751

269989034112000
J 51O~J 6!,

hc2

~p53!

J
5

3

2
2

1

18
J2

521

6480
J 22

394169

6998400
J 3

2
2260895171

79361856000
J 42

535736196039221

43198245457920000
J 5

1O~J 6!. ~12!

Last, for p54 all relevant excitations havek50 in the
antiferromagnetic regimeJ,J8.0. For reasons that should b
obvious from the results we content ourselves with seco
order series for the gapE(p54) and the lower and uppe
boundaries of thêM &51/2 plateau (hc1

(p54) andhc2

(p54) , re-

spectively!:

E~p54!

J
5

1

2
~11A32A2!2

1

24
~41A61A2!J

2
1

132480
~3079A62163960A3128775A2

1276026!J 21O~J 3!,

hc1

~p54!

J
5

1

2
~11A32A2!1

2A618A2117

48
J1

1

14837760

3~22385712A614730320A324947835A2

17747472!J 21O~J 3!,

hc2

~p54!

J
511

1

A2
1

2A223

16
J1

21691A2231648

43008
J 2

1O~J 3!. ~13!
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With the choice of coupling constants~5! there is a sec-
ond decoupling limit, namelyJ→0, which for p>3 is not
equivalent to the case discussed before. This limit is spe
in that several of the coupling constants~2! vanish at the
same time. This leads top22 free spins in zeroth order inJ.
These free spins are immediately polarized once a magn
field is applied. Only the two spins coupled byJ8 require a
finite magnetic field to polarize. This leads to an^M &51
22/p plateau whose upper boundary is given byhc2

(p)5J8

2O(J).
At first order in J, one now has to perform degenera

perturbation theory for the free spins. It turns out that at t
order they behave as isolated clusters ofp22 spins. The
corresponding transition fields have been tabulated in Ref
and are indeed a reasonable first approximation to the pla
boundaries for 3<p<6 of Ref. 4 at largeJ8.

It is actually not difficult to obtain expansions inJ for
some plateau boundaries. Poor convergence is, howeve
be anticipated. In the present case, internal properties o
decoupled clusters are computed perturbatively~which were
already taken care of exactly at zeroth order in the exp
sions aroundJ850). This is reflected, e.g., in the fact th
the fundamental excitations start to disperse~i.e., depend on
k) only in the second order inJ.

At p53 we find the following 11th-order series for th
boundaries of thêM &51/3 plateau:

hc1

~p53!

J
5J211

3

2
J222

107

32
J242

1185

256
J251

845

256
J26

1
537329

24576
J271

834121

32768
J282

310154551

7077888
J29

2
15865989569

84934656
J2101O~J211!,

hc2

~p53!

J
5J1

1

2
2

1

4
J222

5

64
J231

19

64
J242

1317

8192
J26

1
4199

196608
J271

96157

589824
J282

3539135

28311552
J29

2
133012373

679477248
J2101O~J211!. ~14!

This result is valid irrespective of the sign ofJ. Indeed, we
find agreement with the second-order result of Ref. 6
ferromagnetic couplingJ,0. For J,0 andJ8.0, there is
an experimental realization of a trimerized syste
3CuCl2•2dioxane. However, since the coupling constants
this material are roughly given byJ/J8'25, the experimen-
tal magnetization curve16 is far outside the range of validity
of our series~14!; actually no magnetization plateau is o
served experimentally.

For p54 and antiferromagneticJ,J8.0, one finds the
following counterpart of Eqs.~13!:
ial
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E~p54!

J
512

1

4
J211O~J22!,

hc1

~p54!

J
511

1

2
J211

1

4
J221

1

4
J232

5

32
J242

41

64
J25

2
201

256
J262

497

2048
J271

11887

8192
J281

52929

16384
J29

1
180845

65536
J2101O~J211!,

hc2

~p54!

J
5J1

1

2
1

1

4
J212

1

16
J232

3

16
J242

7

512
J26

1
449

4096
J271

715

4096
J281

6555

65536
J29

2
62051

524288
J2101O~J211!. ~15!

For the gapE(p54) we restrict ourselves to second ord
only, since the high degeneracy at^M &50 for J50 starts to
invalidate our approach at third order.

We compare our perturbative results to theL524 numeri-
cal data4 in Figs. 1–3. The solid lines show our results f
the upper critical fieldshuc, and the dotted lines denote th
series expansions aroundJ850, while the dash-dotted line
in Figs. 2 and 3 show the expansions aroundJ50. Crosses
denote theL524 numerical data of Ref. 4 and the diamon
show the magnetic fields associated to the plateau value
^M & at J85J. For the isotropic chain they areh50 for
^M &50 andh52J for ^M &51. The fields associated with
^M &51/3 and ^M &51/2 are computed from the Bethe
ansatz solution of the Heisenberg chain~see, e.g., Ref. 11!.
Since Abelian bosonization predicts the plateaus to open
J8ÞJ,4 the diamonds denote the expected ending points
the magnetization plateaus.

FIG. 1. Gap and transition fields forp52. The solid line shows
the upper critical field~7!. The dotted line is our tenth-order serie
expansion~10! for the spin gap. Crosses show theL524 numerical
data of Cabra and Grynberg~Ref. 4! and the diamonds denote th
magnetic fieldsh at J85J associated tôM &50 and^M &51, re-
spectively.
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The casep52 is shown for completeness in Fig. 1. Sin
here the regimesJ8<J andJ8>J are equivalent, we display
only the former. Here the dotted line shows our tenth-or
series expansion~10! for the excitation energy atk50. The
overall agreement is excellent, as has already been obse
for the gap in Ref. 13.

Figure 2 shows the next casep53. The series~12! are in
excellent agreement with theL524 numerical data forJ8
,J. Even the ending point of thêM &51/3 plateau is repro-
duced quite well. ForJ8.J, the upper boundary of the pla
teaus is also reproduced reasonably by Eqs.~14!, while the
agreement for the lower boundary is poor despite the len
of the series. This is not entirely surprising as we have
marked above. In fact, inspection of the expression
hc1

(p53) in Eqs.~14! shows that the coefficients get larger wi

increasing order such that this series might actually not c
verge in the region shown in Fig. 2.

This comparison of perturbation theory and finite-size
agonalization is completed with the casep54 in Fig. 3. The

FIG. 2. Transition fields forp53. The solid line shows the
upper critical field~8!, the dotted lines the series~12! for small J8,
and the dash-dotted lines the series~14! for small J. Crosses show
L524 numerical data of Cabra and Grynberg~Ref. 4! and the dia-
monds denote the magnetic fieldsh at J85J associated tô M &
51/3 and^M &51, respectively.

FIG. 3. Same as Fig. 2, but forp54. The solid line shows Eq
~9!, the dotted lines Eqs.~13!, and the dash-dotted lines Eqs.~15!.
Diamonds denote magnetic fields associated with^M &50, 1/2, and
1, respectively.
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expansions~13! aroundJ850 compare again favorably with
the numerical data of Ref. 4 although the series are only
second order. Also the series forhc2

(p54) in Eqs. ~15! agrees

quite well with the numerical data forJ8.J, while that for
hc1

(p54) yields good agreement at least at the right bound

of Fig. 3. The small-J series forE(p54) is not even shown,
since due to its low order it cannot be expected to give s
sible results in the region of interest. As in the casep53, the
limited quality of the series forJ8.J can be expected on
general grounds and is also indicated by inspection of
value of the coefficients in Eqs.~15!.

A comparison of the series~14! and~15! with the numeri-
cal data of Ref. 4 is complicated by the fact that the lat
does not extend into the region of smallJ—only the region
J8!J is covered well. We have therefore performed so
further numerical computations forp53 andp54. At suf-
ficiently small J one can then nicely verify the series ord
by order—much in the spirit of Ref. 13. In this manner w
have verified the lowest five to six orders of all series in E
~14! and~15! ~a standard numerical accuracy is not sensit
to the highest orders!.

It has been pointed out recently by several authors~see,
e.g., Refs. 17–22! that the strong-coupling approach can
extended to describe the transitions between plateaus b
effective Hamiltonian. For the case discussed here, one
in general have to retain two states per site in first orde
J8. These two states correspond to the two plateau gro
states atJ850 between which we wish to describe the tra
sition. If the coupling constants are chosen to preserve pa
@as is the case, e.g., for Eq.~5!#, symmetry arguments imply
that the effective Hamiltonian is anXXZ chain. Hence one
can immediately carry over some well-known univers
properties of theXXZ chain~see, e.g., Sec. II of Ref. 11 fo
a review! to polymerized spin chains. First, the mapping
the XXZ chain in the strong-coupling limits implies that th
exponents of the correlation functions at the plateau bou
aries are given by

hz52, hxy5
1

2
. ~16!

Second, the transitions at the plateau boundaries are
dicted to be of the Dzhaparidze-Nersesyan–Pokrovs
Talapov~DN-PT! type;23,24 i.e., the magnetization as a func
tion of applied fieldh has a square-root behavior close to t
plateau boundaries. The same conclusions are obtaine
the Abelian bosonization analysis of the limitJ8→J.4 This
follows from results in the theory of commensurat
incommensurate transitions25 which in addition imply that
the exponents~16! as well as the DN-PT square-root beha
ior should be universal. The fact that identical conclusio
are reached by considering two different limiting cases is
agreement with such a universal scenario.

Before concluding, it should be mentioned that the qu
tization condition~3! may have to be relaxed in certain case
For example, it has been shown~see, e.g., Refs. 17 and 26!
that an^M &51/2 plateau can appear if a next-nearest nei
bor interaction is added to the dimerized chain, Eq.~1! with
p52 ~for generalizations of this situation see Ref. 27!. This
phenomenon can be also understood within the stro
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6794 PRB 59A. HONECKER
coupling analysis17–20 if one goes to first order, i.e., beyon
the naive decoupling limitJ850. The crucial role is played
by theXXZ anisotropy appearing in the first-order effecti
XXZ chain. If this effectiveXXZ anisotropy turns out to be
sufficiently large (D.1), a gap opens and translational sym
metry is spontaneously broken. In this manner one find
further plateau precisely in the middle between the two v
ues of ^M & predicted by considering just the limitJ850.
This illustrates thatp in Eq. ~3! should be taken as the perio
of the ground state which in general can be different~i.e., an
integer multiple! of the period of the Hamiltonian.

To summarize, we have shown that the study of
strong-coupling limit not only provides a simple way to u
derstand the magnetization process of polymerized s
chains qualitatively, but that also quantitatively competiti
results can be obtained with moderate effort. In some
spects, the situation is even nicer than for spin ladders:10,11

The bare series inJ8 yield good results in the entire regio
s

-
a

l-

e

in

-

J8,J, including the ending points of the plateaus. Such f
vorable conditions are probably a special feature of polym
ized spin-1/2 chains, as is the observation4 that here the con-
dition ~3! is necessaryand sufficient for the appearance of a
plateau at positiveJ8ÞJ.

It is straightforward to extend the approach of this pap
to more general interactions or to the computation of oth
quantities. We are confident that further explicit stron
coupling computations will provide a useful tool, e.g., if ne
experimental data are to be explained in terms of mo
Hamiltonians.
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