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Monte Carlo study of a mixed spin-3/2 and spin-1/2 Ising ferrimagnetic model
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The magnetic properties of a mixed Ising ferrimagnetic model on a square lattice, in which the two inter-
penetrating square sublattices have spins that can take two valaeis1/2, alternated with spins that can take
four values,S= +3/2,+1/2, are studied. This model can be relevant for understanding the magnetic behavior
of the new class of organometallic ferrimagnetic materials that exhibit spontaneous magnetic moments at room
temperature. We carried out exact ground-state calculations for the model and employ a Monte Carlo algorithm
to obtain the finite-temperature phase diagram for both the transition and compensation temperatures. The role
of the different interactions in the Hamiltonian is explored. When only the nearest-neighbor interaction and the
crystal-field term are included our results indicate no compensation point at finite temperature. When the
next-nearest-neighbor interaction between the spirnst 1/2 exceeds a minimum value that depends on the
other parameters in the Hamiltonian, a compensation point appears. The interaction betwSen+Bg
spins, next-nearest neighbors in the lattice, has the effect of changing the compensation temperature.
[S0163-18299)03905-3

I. INTRODUCTION crystal-field interactions has shown interesting types of mag-
netic behavior, quite different from those of the 1-1/2 model,

Although theoretical models of ferrimagnetic systemswhen studied using effective-field theorfesut so far this
have been around since the times ofeNethere is recent Simple model has shown no compensation points. Recent
experimental motivation for reopening this area of researchstudies using nonperturbative algorithms like Monte Carlo
In recent years several groups have started an ambitious prand transfer-matrix calculations for mixeti1/2 and =2,
gram to design and synthesize new classes of magnetic ma-1,0 spins have yielded important information on how com-
terials using the techniques of molecular organic chemistrypensation temperatures occirt* In order to obtain more
The goal is to produce organic materials soluble in organid€liable results and further understand the appearance of
solvents, biocompatible, optically transparent, with spontacompensation points we study the mixed 3/2-1/2 Ising model
neous moments at room temperatﬁrléerrimagnetic order- Wwith a more general Hamiltonian than the one studied with
ing seems to play a fundamental role in these materials. Theffective mean-field theories and with a nonperturbative
recently developed amorphous V(TCNE) (solveny, technique, the Monte Carlo algorithm.
where TCNE is tetracyanoethylene, are organometallic com- The aspects of interest in our study will be mainly the
pounds that, although they have not yet been crystallizedinite-temperature phase diagram and the possible existence
seem to have a 1/2-3/2 ferrimagnetic structure and orderingf compensation pointsvhich occurs irN-type ferrimagnets

temperatures as high as 400°K. as classified in Ref.)1
Mixed Ising systems have been introduced as simple
models that can show ferrimagnetic behavior and that may Il. THE MODEL AND ITS GROUND STATES

show compensation points dt-type behavior in Nel clas-

sification nomenclature. The compensation point is the tem- The Hamiltonian we study includes nearest- and next-
perature where the resultant magnetization vanishes belofiearest-neighbors interactions and the crystal field. It has the
the critical point. The existence of compensation temperaform

tures has interesting applications, particularly in magneto-

optic recording. Since this type of recording is done using ,, >

the thermal effect of light, it is desirable that the magnetic ¢ _Jlmzm SUJ_J%%» Umo“_‘]3<§n> S‘S‘_Dzi S

field required for recording should change greatly in a rela- )
tively narrow temperature range, the precise effect that hap-

pens at the compensation point, where only a small drivingvhere o= +*1/25==*3/2,+1/2. J;, J,, and J; are the
field is required to reverse the magnetization. Also, the coexchange-interaction parameters &ni$ the crystal field, all
ercive force increases near the compensation temperature fi¢-energy units{nn) and(nnn) stand for nearest and next-
voring the creation of small, stable, magnetic domains. nearest neighbors, respectively. Previous studies with effec-
Mixed Ising models have been studied by several methoddve mean-field theories only included thh and theD
such as high-temperature series expan$iand mean and terms’

effective-field approachés An exact solution of a mixed The models to be considered will be labeled by enumer-
1-1/2 Ising model on a Union Jack lattice has been found foating the parameters different from zero in the Hamiltonian.
a low-dimensional manifold in the parameter spacd. For example, thel;-D model is the one in which all the
mixed Ising 3/2-1/2 model with nearest-neighbors andparameters are zero exceltandD.

0163-1829/99/5A.0)/67846)/$15.00 PRB 59 6784 ©1999 The American Physical Society



PRB 59 MONTE CARLO STUDY OF A MIXED SPIN-3/2 AND ... 6785

— T T T T Boltzmann’s constaritg=1. Our program calculates the in-
Ji=-D T ternal energy per site,
+3/2+1/2 -
+1/2+3/2

0.8
0.6

04 £1/2+1/2
02 b £1/2+1/2

1
§ E:E<H>' 2

Ji
o

02F t1/251/2

04 F1/2£1/2 1325 1/2 i

0.6 F1/2+3/2 - 2

_Oj J L IJI =|D L Ly ] C:F[<H2>_<H>2]’ 3)
08 -06 -04 02 0 02 04 06 03 1

the specific heat per site,

the sublattice magnetizations per site,
FIG. 1. Ground-state diagram for tlle-D model. In each re-
gion the configurations of the>22 cells are indicatedl; andD are 2 2
in energy units. M1=—2<E Si>, M2=—2<2 (Tj>, (4)
Lo\ Lo\ J
In order to obtain the ground-state diagram, we calculatehe total magnetization per sitd)=(M;+M,)/2, and the
the configurations of a2 cell* With rotational symmetry  susceptibility,

taken into account this cell has 40 different configurations.

Which one is the ground state depends on the particular set XIB(<M2>—<M)2). 5)
of parameters in the Hamiltonian. As an example, in Figs. ]S . . . . .
and 2 we show the ground-state diagrams fortp® and ince we are partlcularly mtere_sted in studying the possible
the J,-J,-D models, respectively. In each graph the ground_emstencg of compensat]on pomts, all our numerical results
state configurations of the>22 cells are indicated. The are obtained for the ferrimagnetic ca_!sIKO._

equations of the boundaries between the regions are obtained In order to I_ocate_ the compensation points an order pa-

by pairwise equating the ground-state energies. FodiHe rameter per spin defined by

model, Fig. 1, there are two possible ground states for the

ferrimagnetic systemJ;<0) and two for the ferromagnetic O= i Z S+o, (6)

system (,>0). For theJ;-J,-D model with J;<0 the 2\ |13 e

ground-state diagram is divided in four regions, as seen in = ,

Fig. 2. which is equivalent to the average of the absolute value of
the total magnetization, was also measured. At the compen-
sation temperatur&;,n,, the total magnetization of the sys-

. MONTE CARLO CALCULATIONS tem must be zero and, in the case of an infinite lattice, the

) ) ) order paramete© would reach the zero value. For finite

We have applied standard importance sampling methodgtices, the order parameterreaches an absolute minimum

to simulate the Hamiltonian given by Edl). Periodic 4t the compensation temperature. Another efficient way to

boundary conditions ob X L lattices were imposed and €on- |ocateT,,is to find the temperature at which the sublattice

figurations were generated by sequentially traversing the lafnagnetizations have equal magnitude and opposite signs

tice and malgng smgle-sp[n flip attempts. The fl|p$ are acy|M,|=|M,| and sgny,;) = —sgn(M,) atTeomgd, Such that

cepted or rejected according to a heat-bath algorithm. Ouiye total magnetization is zero.
data were generated with 4®onte Carlo steps per spin in

lattices with L=40, after 16 warming steps per spin. The V. RESULTS

error bars were taken from the standard deviation of blocks '

of 10> measurements each. We defifie= 1/kgT and take A. The J,-D model

The results for the order parameter shown in Fig. 3 indi-
cate that this model has no compensation point. From these

8 T T T T T T T

61 +1/2F1/2 £B2F1/2 4 results we can distinguish three types of magnetic behavior.
f  FU2ELR Fl2E3/2 WhenD/|J,|=0 the magnetization curves are of type Q in
.| ] the Neel classificatior, typical of a ferromagnet. AB/|J,|

becomes negative, in the rangel <D/|J;| <0, the magne-

AR o 2D/ -3 i tization falls rapidly from its saturation value &=0 in a
2r ] way that is not described in Meé&s classification. AD/|J,]
A1 1/2 —1/2F1/2 |£3/241/2 —3/2F1/2 = —1 there is a mixed phase &t 0 where two ground-state
slF1/2+1/2 £1/241/2 |F1/2+3/2 +1/2+3/2 - configurations occur with equal probability, the ground state
" . . . . . . of the S spins consists of a mixed phase in which they can
4 -6 D/OIJxl 8 take the value$= +1/2 or S= =+ 3/2 with equal probability

(see Fig. L Hence the ground-state magnetization of the
FIG. 2. Ground-state diagram for thig-J,-D model withJ, ~ System is equal to the average of the magnetizations of the

<0. There are four regions, in each of which the configurations ofwo phases. FoD/|J;|]<—1, the magnetization becomes

the 2x 2 cells are indicated. typelL (in Neel's classification Plots of the sublattice mag-
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FIG. 3. Order parameter vs temperature for Jaed model for FIG. 5. Specific heat vs temperature for theD model for
several values oD/[J,[(J;=—1). several values ob/|J;| (J;=—1). The position of the maximum

netizations show that th& sublattice is the one with the gives an estimate of thé,i, . The lines are guides for the eye.

strongest dependence on the paramBteas can be seen in
Fig. 4.

Figure 5 shows the specific-heat curves. Notice that whe
D/|J;|— —1 there is a secondary peak in the curves tha
increases and moves toward zero temperatur&/ gk | ap-
proaches—1. Also, if two curves have a parameter value
D/|3;]=—1%A, then the low-temperature behavior of the

curves is the same. This suggests that the existence of tt|es resent anomalous local minima at low temperatures due
mixed phase ab/|J;|=—1 induces a phase transition &t > P S . P
tH-'tS proximity to the mixed phase at=0.

=0, such that the system has a zero-temperature phase tra In Fig. 7 we present the critical temperatures calculated

sition as well as a finite-temperature oneTaf;; /|J1| =0.92 - I :
+0.01. The symmetry of the heat capacity with respect tOfrom the maxima in the susceptibilities and previous results

) i " “obtained with an effective-field approximatiéiwhen D —
D/|J1/+1 is a rather common phenomenon at f|eld—dr|ven_oo’ theJ,-D model becomes a standatdL/2 Ising system

first-order transitions, even for systems that only have Swith a critical temperaturépredicted from Onsager’s solu-

phase transition af =0, such as the one-dimensional Ising tion) Ty (exact)|J;|~0.575. In the limitD —oo the model

chain. AtT=0 the specific heat vanishes, due the finite €N scomes a standard Ising model with half the spins taking

gtrgtye gggr git\g’ssr?] tlheeir?g)lljz;filciat;sasngtéﬁ I;)(:Z)efééxcnet e values* 1/2 and the other half taking the values3/2,
' P gas sy ’ T with a critical temperatur@ i (exact)]J,|~1.725. Figure 7

The zero-temperature phase transition can also be seen in
}'he magnetic susceptibility curves. In Fig. 6 the plots of the
(‘nverse susceptibility }/ show the critical temperatures de-
ined by the value at which %/~0. Notice that when
D/|J1|=—1 the inverse susceptibility goes to zero at the
critical temperatureT,,;;/|J;|=0.92+0.01, and also aff

ie0- For values oD/|J;| near—1, the inverse susceptibili-

13).
1.0 . : 20.0 . .
M, o D/MJ,|=1.0
0.5 > D/|J,|=0.0
4 D/J,|=—0.7
15.0 - o D/, |=-1.0 T
0.0 * DI, |=—1.7
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= D=0.0 -
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FIG. 4. Temperature dependence of the sublattice magnetiza- FIG. 6. Temperature variation of the inverse magnetic suscepti-
tions M; and M, for the J;-D model for several values of bilities for several values db/|J,| for the J;-D model. The mini-
D/|J31|/(3;=—1). As can be verified in Fig. 3 they never cancel mum gives an estimate of thE.,;; that is consistent with the one
each other and both go to zero at the critical temperature. obtained from Fig. 5. The lines are guides for the eye.
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FIG. 7. The finite-temperature phase diagram for theD FIG. 8. The total magnetization and the order parameter vs the
model. The Monte Carlo results are indicated by thewith error ~ temperature for thel;-J,-D model atD/[J;|=—1 and J,/[J,]
estimates. The solid line corresponds to effective-field regRigs. =10 (©),J2/|31]=12 (A), andJ,/[J4|=15(¢). The empty sym-

7). The arrows indicate the exact value®f.;; in the two limiting bols are for the total magnetization and the equivalent filled sym-
casespD/|J =+, bols correspond to the order parameter. Notice that the compensa-

tion temperature is nearly independent of the valug off J,| (if
n§>Jr2“”‘) but the critical temperature increases with increasing val-

shows that our results are consistent with the exact solutio
ues ofJ,/|J].

in both limiting cases. Notice that the critical temperature

shows no special behavior @/|J;|=—1, which corre- magnetizations have opposite signs at this temperature the
sponds to a phase transition in the ground-state diagfégn  compensation point occurs. Further increasd.ofJ;| does
1). The reason is the absence of next-nearest interacligns not change the compensation temperature that has already
so that the system d spins can be considered as a nonin-been reached, but has the effect of keeping the system or-
teracting system at lowW. For a detailed discussion of this dered at higher temperatures such that the critical point oc-
kind of “cage effect” for anS=1 antiferromagnet, see Ref. curs at higher temperatures.
14. We have plotted the critical and compensation tempera-
tures as a function af,/|J,| for several values ob/|J,| as
shown in Fig. 10. These plots clearly show that the compen-
sation temperatures do not appear until theinteraction
takes some minimum value that depends @HJ,|, after
Since our data show that thig-D model does not have WhichT¢,n,is almost independent df. It can also be seen
compensation points and there are recent results that indicateat asl;/|J,| grows the variation of the critical temperature
that some mixed Ising ferrimagnetic models present comperikecomes independent of the crystal-field parambter
sation points when the next-nearest-neighbors interaction be-  o0.50 ; . . . ;
tween theo spins (,) is taken into accourt®!*we include

B. Effect of next-nearest-neighbors interactions.J;-J,-J3-D
model

the J, term in the Hamiltonian, i.e., th&;-J,-D model. The oM, (J,=10)
total magnetization curves shown in Fig. 8 clearly indicate 0.40 | = |M,| (J,=10) :
the presence of compensation temperatures for this model. In Zim 82:12;

the same figure we also present the order-parameter curves

and show that they reach an absolute minimum at the com- 930 |

pensation point. Notice that, for a fixed value®f|J,|, the

compensation temperature remains basically unchanged once

J, /|3, exceeds a minimum value; however, as expected, the

critical temperature keeps increasing with increasing values

of J,. These results are quite general and do not depend on ., |  compensation Point ®

the particular value ob/|J,| selected in Fig. 8. Q@%%
In order to understand how the compensation phenom- %Z%

enon occurs we present the absolute values of the sublattice ¢ qg ) . . . .

magnetizations in Fig. 9. As thi /|J,| parameter increases, 0.0 20 4.0 6.0 8.0 100

the ferromagnetic interaction between th&pins grows, en- KL

abling the o sublattice (1,) to remain ordered at higher  F|G. 9. Absolute value of the sublattice magnetizations vs the

temperatures. At the same time, tBeublattice magnetiza- temperature for thel;-J,-D model atD/|J;|=—1 and J,/|J,|

tion (M) decreases with increasing temperatures until both=10,15. The compensation temperature is reached at the crossing

sublattices magnetizations are equal in magnitude at som®int |M;(Tcomp|=|M2(Teomp |, Where the total magnetization is

temperature below the critical one. Since the sublatticegero and the order parameter has a minimum as seen in Fig. 8.

<|M>

0.20
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FIG. 10. Critical and compensation temperatures as function of FIG. 11. Total magnetization vs temperature for Jael,-J5-D
J, 1|34 for the J;-J,-D model atD/|J;|=—1,0,4. The minimum model at D/|J;|=—1 and J,/|3,|]=10, for several values of
value of J,/|J;| for the compensation temperature to appear de-J3/|J4|. For this choice of parameters the compensation point only
pends on the value db/|J]. exists if —0.5<J5/[J;|<0.5.

We have also found compensation points when the next- For theJ;-D model (the model with only nearest neigh-
nearest-neighbor interaction between hepins (3) is in-  bors and the crystal fieJdve obtained a critical temperature
cluded in the Hamiltonian, th@;-J,-J5-D model. In Fig. 11  dependence with thB/|J;| parameter that is similar to the
we show the total magnetization curves for different valueone obtained through effective-field theory for the same
of J3/|J,| with fixed D/|J,| and a value o8,/|J,| above the model/ Our Monte Carlo results are consistent with Onsag-
minimum required in order to obtain a compensation pointer's exact solutions in the two limiting cases, and thus supe-
As Fig. 11 shows, the compensation temperature increaséi®r to the effective-field result. We have also found a mag-
toward the critical temperature with increasing positive val-netization curve type that is not described in eNe
ues ofJz/|J;]. When, for a big enough value dk/|J;|, classification: The data show that th#-D model does not
both temperatures become equal we do not have a compehave compensation points. This is consistent with previous
sation point anymore, only a critical point. For increasingnonperturbative results in similar modéfs'
negative values al;/|J;| the compensation temperature de-  Our results show that a compensation point appears when
creases until it disappears. Consequently, small variations dhe next-nearest-neighbors interaction betweendhepins
J3/]34| can change the compensation point from zero up tdJ2) is included in the Hamiltonian. The minimum value of
the critical temperature, but have little effect on the criticalJ2/|J1| for a compensation point to exist depends on the
point. The value of3/|J;| for which T¢omp goes to zero  Vvalue of the other parameters in the Hamiltonian. We found
corresponds to a phase transition in the ground-state diagrathat for theJ;-J,-D model once the compensation point ap-
of the J;-J,-J3-D model. All our results are for a 4040  pears it remains approximately constant for das J5'"'" for
system size, but since the compensation point is not a critica fixed value ofD/|J,].
point, a study of finite-size effects would add little to its  The effect of the next-nearest-neighbor interactigrbe-

analysis. tween thesS spins, thel;-J,-J3-D model, is to change the
compensation temperature in a range that varies from zero up
V. CONCLUSIONS to the critical temperature.

Our study suggests that compensation temperatures are

We have applied a Monte Carlo algorithm to study aextremely dependent on the interactions in the Hamiltonian
mixed Ising system on a square lattice. Our model has twand that there is a relatively narrow combination of param-
interpenetrating square sublattices, one of spirs*=1/2  eters for which they can exist. Experimental evidence of the
and the other with spinS= = 3/2. The Hamiltonian includes effect of long-range interactions on compensation points has
nearest-, next-nearest-neighbors interactions and the crystalready been fountf:®
field. In order to study the ferrimagnetic ordering the cou-
pling between nearest neighbors is chosen to be antiferro-
magnetic. We have calculated the exact ground-state ener-
gies and the finite-temperature phase diagram showing the We are indebted to Mark Novotny and Erik Machado for
critical and compensation temperatures. many useful comments during the course of this work.
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