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Low-frequency excitations of a disordered Wigner crystal
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We develop a consistent theory for the response of the disordered electron crystal in a strong magnetic field.
The Coulomb interaction is taken in the Hartree-Fock approximation and the impurity interaction in the
self-consistent Born approximation. We find two distinct phases, a crystalline phase at low disorder and an
amorphous phase at stronger disorder. As in recent experiments by C.-C. Li, L. W. Engel, D. Shahar, D. C.
Tsui, and M. ShayegdiPhys. Rev. Lett79, 1353(1997)] and by L. W. Engel, C.-C. Li, D. Shahar, D. C. Tsui,
and M. ShayegafSolid State Commun104, 167 (1997], we find in the crystalline phase a well-defined
excitation peak which we identify as a magnetophonon in the disordered system. In the experiments at lower
magnetic fields a strong damping of the excitation is found and finally the mode disappears still in the
insulating regime. Based on our calculations we suggest a Landau damping picture as an explanation: At lower
magnetic field a transition to the amorphous phase takes place and the energy gap of the crystalline phase
vanishes. In consequence the magnetophonon can couple to single-particle transitions which leads to Landau
damping of this mod€.S0163-18209)09509-0

I. INTRODUCTION quantum Hall effect at filling factors as low as=1/5 and
(weakey v=2/9 at stronger disorder only the=1 and the
The crystallization of a low-density electron gas at low 1/3 fraction is observed. In this regime there are a number of
temperatures was predicted by Wigharlong time ago. Up other experimental features that cannot be accounted for in
to now experimental evidence for such an electron solid hathe picture of a simple pinned Wigner crystal phase: A uni-
been found in two-dimensional electron gases on the surfacgersal conductance at the metal-insulator transittanmuch
of liquid helium and in semiconductor heterostructures. Inweaker than exponentidhlgebrai¢ dependence of,, on
general, in semiconductor systems the application of a strong/T,%° and the dampingfinally overdamping of the pinning
magnetic field is necessary for the solidification becausemode in weaker magnetic fields associated with a decrease of
first, the small electronic band mass leads to enhanced quaits frequency:®!® Alternative models for systems with stron-
tum fluctuations, second, the relatively large dielectric conger disorder have been discussed; single-particle
stant weakens the Coulomb interaction, and, third, the relalocalization®!” the formation of a Hall insulator®'>® and
tively large electron density causes an enhanced kinetithe existence of a glasggmorphousWigner phasé®?%®
energy in the uncondensed state. Experimental evidence for In this paper we develop a mean-field theory for the dis-
an electron solid at zero magnetic field are rate.agree-  ordered Wigner crystal in which the competition between the
ment with experimentg¢Refs. 3—6 and Refs. 7,8, calcula- Coulomb interaction and disorder can be calculated micro-
tions of the ground-state energy show that without disordegcopically and determine consistently its ac and dc response
the crystal is expected to form in the strong magnetic field aproperties: To this end we follow the approach of Ando who
filling factors betweeny=1/5 and v=1/7 in the electron takes into account the impurity interaction in the noninteract-
systeml and in the hole crystal around=1/31° Since the ing system in the self-consistent Born approximatfoand
energy of the fractional quantum Hall liquid isat 1/5 only  add to this model the Coulomb interaction in the Hartree-
slightly smaller than in the electron crystal, a reentrantFock approximation. From Ref. 23 it directly follows how
metal-insulator transition at this filling factor as a termina-the response properties have to be evaluated to preserve the
tion of the quantum Hall regime is experimentally observedbasic conservation laws. Our results support the idea of the
The interpretation in terms of the formation of a Wigner formation of a glassy state at high disorder: While for weak
crystal in these systems has been supported by measuremedisorder we find a crystalline phase with a typical pro-
of the thermally activated dc transplr,the threshold be- nounced energy gap at the Fermi level for strong disorder a
havior of the nonlinear conductante>!?and the detection state with a more or less pronounced dip of the density of
of increased noise for greater voltages than the thresholstates at the Fermi level results. In this state the hexagonal
voltage>'? Furthermore, in ac measurements in the GHz remodulation of the electron density is reduced but stays finite.
gime a resonance was observed that has been interpreted Hse finite hexagonal order in our mean-field theory and the
pinning mod@ of the Wigner crystal or directly as its mag- tails of the density of states in the energy gap leading to a
netophonon mode with the expected dispersiayf’. 1314 finite density of states at the Fermi level, we interpret as
The important role of disorder has been demonstrated isignatures of a very short-range order in an amorphous or
more recent experiments on lower mobility electror’ or  glassy phase.
hole systemé&® Here the metal-insulator transition occurs at  In a previous papé? we showed that we can explain in
larger filling factors, up tor~0.6 in electron systemS. this picture the experimentally measured turnover from an
While in low disorder samples one sees a reentrant fractionaxponential dependence of the resistance kgTlto be ex-
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pendence in the amorphous state. Here we want to describe

our approach in detail and compare our results to the ac - +
measurements of Refs. 18,16 mentioned earlier in this intro-

duction: In a strong magnetic field a sharp resonance in the

GHz regime is found which becomes increasingly damped at Veff Vdir Vexc

weaker magnetic fields and finally vanishes while still in the ./\/W\//\/. = ANy O

insulating regime. In our model we offer an interpretation of

this phenomenon as a Landau damping effect: At first we FIG. 1. Dyson’s equation for the ground state in our approxima-
establish that the transition between crystalline phase and thi@n: Impurity interaction in dashed lines with crosses and effective
amorphous phase can be driven by a decreasing magnefi@ulomb interaction in double wavy line.

field, i.e., the energy gap is reduced to zero. Therefore, at
strong magnetic fields, in the crystalline phase, the frequency
of the resonance is well in the energy gap of the electron
crystal. At smaller magnetic fields the energy gap becomes
smaller and the pinning mode couples to single-particle tran-
sitions(Landau damping At yet smaller magnetic fields the
energy gap vanishes and the amorphous phase sets in where
the pinning mode vanishes because of overdamping. Xq)x(F)(DfX,kylz)(F’), 3

pected in the electron solid to a much softelgebrai¢ de- 9

G(r,r',2)=2, GX,X",2)Dx(1)®%,(r")
X, X'

N _ kkyl2
:Z G(k,z)ex;{lkxx—l Xzy )
kX

whereG(k,z) depends on only one vectkrof the hexagonal

Il. FORMALISM reciprocal lattice. TheDX(F) are the lowest Landau-level
A. The ground state eigenfunctions
For the major interactions in the system, the Coulomb
interaction and the disorder potential, we take the Hartree- > 1 Xy (x—X)?
Fock approximationHF) and the the self-consistent Born bx(r)= Xz Tz (4)
approximation(SCBA). These approximations are discussed 7L,

justified in Refs. 25,26. For the sake of let . . . S
and justified in Refs. 25,26. For the sake of completeness angf the problem without Coulomb and disorder interaction in

readability we give a summary of the corresponding formal- . .
thy We give a su y sponding he Landau gauge with the eigenenergy=fiw./2. These

ism in this subsection: In the finite-temperature Matsubar . .

formalism we write for the self-energy unctions depend on the center coordlnXteThfa cylcotron
resonance frequency s, andl is the magnetic length. In
our representation E¢3) we only take into account the low-
est Landau level, which is justified in strong magnetic fields.

E(F'F/*“’n):G(F’ F,'wn)<vdis(F)Vdis(F’)> As derived in Ref. 26 we find
2
+a=i [ dirn(m) == ; ! o
(r=r) Jarnr s =, G(K2) =GOk 2)+G%(2)Y, S(K-p,2)G(p.2)
p
© 1S lm expionm Gl 12
— == — Im expl r,r, . VY

D

Where|5 is a vector of the reciprocal lattice and the unper-
turbed Green’s functio®® is given by

Here( ) is the disorder average of the correlation function of
the disorder potentiavdis(F), w,=(2n+1)=w/(Bh) are the
fermionic Matsubara frequencies, ae 1/(kgT). With this
self-energy we solve Dyson’s equation

GoK,z)= &% ; (6)
' “Oitwn—(€0— 1)

For the self-energy we obtain3(k,z)=3(k,z)%s
+3(k,2)"F with
G(F,F',wn)zeo(F,F',wan drdr”Go(r,r", wp)
. . Edis(lz,z)=£G(IZ,z)F2(IZ) @)
X" " w)G(r" ' w,). (2) 4
and
A considerable simplification for the solution of Dyson’s

equation(Fig. 1) is achieved using a representati6ifk, z) FZ(IZ):FZex;< yz) ®)

of the Green’s function 2
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wherey=k|l, I'>=4n,V3/27l2, andn, is the number of
scatterers per area with individual scattering potentials

V(F)=V05(F). For the self-energy of the Hartree-Fock term
it follows that

3, (K,2)"F=Wj(k) p(K) (9)
with

. e? y2\[1
Wo(k)= Texl{ - ?) y(l— Sk0)

y2 ) 172 y2
D(Z)(E) '0(1)
FIG. 2. (a) Egs.(19)—(21) in diagrammatic form(b) Alternative

where |, is the modified Bessel function of the first kind. way of generating exactly the same diagrams, where 1 and 1’ and 2
Furthermore, and 2’ are closed.

: (10

- 1 (e - . for the combined Hartree-Fock interaction is the second dia-
pk)=— ;J_EdenF(e)lm[G(_k’e_“ﬂ M1 (1D gram on the right-hand side of the first line in Fig. 1. The
. o ) third term is the diagrammatic representation of the self-
Wltf)‘ tlhe Fermi distribution functiomg(e) = (ex(e~w)B]  energy of the impurity interaction.
+1) -
The self-energys (k,z)"F in Eq. (9) is formally equiva-

= ] B. The dynamic response
lent to a self-energy term resulting in a Hartree approxima-

tion with an effective Coulomb propagatdr Our analysis of the dynamic response properties starts
with the susceptibilityy. We adopt the formalism and nota-
. 27e? 5. y2\ [m\Y2 (y? tion in Ref. 23 and define
Vel )—W (1=do—exp 7 Y| 5| lo| 7 oy )
&(n(1) _6G(1,1Y)
_ | _ | X(L2=— =i (17
To show this we start from a general single-particle potential (2) (2)
of the form . )
Here 1 stands for the quadruple; (t;) andU(2) is an ex-
- _ . ternal potential perturbation contributing to the Hamiltonian
V(r)=>, V(K) exp(ikr). (13)

densityU(Fz,tg)n(Fz,tz), wheren is the electronic particle
density. The index denotes the causal response andhe

As derived in Ref. 25 the self-ener that results in Eq. . . ;
ot 9 thermal expectation value. According to Ref. 23 we write

(5) from this potential is given by

2

X y 8G(1,1*;U)
Epot(k)=exp<—z —_—

3 =L (12,172%), (18)

U=0

V(K). (14)

EquatingX (k,2)"" and S o and making use of the identity \here G(1,1';U) is the U-dependent thermal Matsubara
1 2 Green’s function which depends on a complex time argu-
K= —— e —k ment. As is carried out in Sec. Il F for the present case the
n(k) 78X p(—k) (15 . .
2l 4 causal Green’s function can be obtained from the Matsubara
Green’s function by replacing the complex frequemneyby
w+i8. This procedure is discussed in detail in Ref. 28. Fol-
lowing Ref. 23 we can write fot. an integral equation

derived in Ref. 26 n(k)=n(—K) is the Fourier transform of
the electron density], we find

<

. . 2me? y2 7\ 12
V(k)=n(k)W(1—512,0)—exp(z)y(5) |o<

-

2
” L(12,12")=—-G(1,2)G(2,1)+ f d3d4 d5 d6 G(1,3)
(16)

This is the single-particle potential obtained in the Hartree X G(4,1')E(35,46L(62,52, 19
approximation with an effective Coulomb propagator given

by Eqg. (12). The first factor inV; is the usual direct term WhereG(1,2')=G(1,2,U=0) and

where the interaction with a positive background is removed

for k=0. The second term arises from the Fock diagram of =(35 462[
the self-energy and leads to a modification of the Coulomb ’
propagator. Using the effective Coulomb propagator we can

write a simplified Dyson’s equation for the ground state adn Fig. 2(a) we write Eqg.(19) in diagrammatic form with a
shown diagrammatically in Fig. 1. The Hartree-like diagramself-energy given by

53(3,4)
5G(6,5)

(20

Uu=0
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[2(314)]U:0 A~ N AQ I’ 9 ~ N
112 (G, wp) = ”B(Q) > mep(dion oy, (29
=—i5(3—4)f d20g(F3— 1) S(t3—t,)G(2,2%) Hn
) R with
+i(Vais(r3) Vais(12))G(3,4). (21) o -
. . . Wﬁﬁr(qiiwnviqu)
It is obvious that exactly the same diagrams that are gen- :
erated from the integral equatiofis8)—(21) in Fig. 2(a) can L. ) .
also be generated by a procedure demonstrated in Fy. 2 ZZ G(K"+Kiwp+iwy)G(—K'—K',iwy)
First, the “ladder sum” over all impurity interaction lines is K
carried out(see upper ling For a noninteracting homoge- iz, . . i12. I
neous electron gas this summation has been carried out in Xexp{— S ax(k+k’) exp{?k”x(2q+ k+k') |,

Ref. 29. The corresponding ladder summation in the here
considered interacting system with hexagonal density modu- (26)
lation reduces to the results in Ref. 29 in the cések’

=0 (see Secs. C, D, and Hn the second step, a “bubble

summation” over the effective Coulomb interaction follows 1 (»+|Z)2|2+( -, +IZ’)2I2
(lower line). According to Eq.(18) the diagram folL has to AlZ gr(6)=—2exp[ _ q } (27)
be closed on the left and on the right side. 2ml 4
C. The bare bubble D. Bubble with a single impurity interaction line
We begin the evaluation of the “ladder sum” in Figl2, As an important intermediate step we analyze the bubble

upper line, with the evaluation of the “bare bubbléI?® for

- ' with a single impurity interaction lingl* which is depicted
which we write

in the second diagram of the right-hand side of the first line

1 in Fig. 2(b) and given by

o(r,r'iwy)= i > G iwy+iw)G(r lioy).
n!

(22) Hl(rl,rz,lwn)=E > J dradr,G(r3,ry,iw, +iwy,)
n/
In this expression our representation of the Green’s function .. _ L.
Eq. (3) is inserted. We introduce a two-dimensional Fourier XG(ry,ra,iop +iog)w(rz—ry)

transform to obtain - . . .
XG(rg,r1,iwp)G(ry,ra,iwp). (28

11°Q,Q",iwy,)

Herew is the impurity interaction line

_ gt ing) I Ar LI O/ 71 s N N N N
_J' drdr’ exp(—iQr+iQ'r")II*(r,r',iwy,) W(T1—T2)=(VgilF1)VailT2))
= Y GKiwy+io)GK o)) = vMr—r,)vH(r—r,), (29
n’ XX kK’ m
X explik,X—ikyky12/2+ik X' —ikykyl/2) where ther, are the locations of the impurities that assumed
Lo L to be evenly distributed in the-y plane. Further, the impu-
X(X"—kgl?[ exp(—iQr)[X) rities are taken to be identical with an individual scattering
. otential given b
X (X—Kk,1 2] exp(iG'F)|X"). 23 P given by

Here .V r—r. )2
v”(r)=w—;exp{——( dZM) 1 (30
(X|exp(iQr)|X")=exd QX+ X')/2]exp
N2 whered parametrizes the range of the individual scattering
X[=Q%410x xrquz (29 potential andV, is its strength. We obtain for the Fourier
is the matrix element of the harmonic potential between thdransform of the impurity interaction line
lowest Landau-level eigenstates with center coordinates )
andX' given in Eq.(4). Because of the the periodicity of the w(q)=n,V2 ex;{ _ (qd)
systemII®(Q,Q’,iw,) is nonzero only if we can writ€ 0 2

=a+k andQ’=qg+k’, whereq is an element of f,he first\yheren, is the density of the impurities which will be taken
Brillouin zone of the reciprocal lattice anét, k' are n the limit of 5 scatterer ¢=0). As shown in Appendix A

reciprocal-lattice vectors. Straightforward calculation yieldsye obtain for the Eourier transform ®F! the same structure
for Ho(ﬁ+IZ,ﬁJrIZ’,iwn)EﬂE’lz,(ﬁ,iwn) as forII% in Eq. (25) (index O is replaced with index 1) with

: (31)
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which is derived in Appendix B. The variablesare on the
real frequency axis where the imaginary part of the Green’s
function vanishes outside the energy intervalX, X].

For the calculation oﬁ(ﬁ,e) we start from the Green’s

~1 >, .
T o (Qiwn iop)

= 2 7Tkk (q Iwn!lw )VI k1 kz(q)ﬂ-k kr(q Iwnilwn)

kuko function that is calculated along the real axis solving Dy-
(32 son's equatiofiEq. (5)] with contributions to the self-energy
or, in matrix notation given by Egs(7) and(9). Using Eq.(26) we find 7° where
products of Green’s-function factors with different argu-
= V|7T (33 ments enter. Then, according to €E§7) we obtainz which

yields IT through Eq.(38). In the last step we perform the

Here we obtain integration Eq.(39) along the real energy axis.

w(p)

G. The dynamic Coulomb interaction

(pl)?
Viky k= 8, i, 2 —gexlil px<k1+q>]ex;{ ol
P (34) The calculation of the density-density response funcgion
_ is now carried out according to the second equation in Fig.
whereS s the area of the electron system. Fbscatterers  2(b) which is obviously equivalent to a geometric series.

we can find Using the matrix representation we obtain directly

- r g+ k)22 x(d.0)=11(q,e)[3-V*(@)Il(g.e)]L, (40
Vi, £ )= %Rz?exp[‘ Gk } s 3(,6)=T1(G,[5-(G) (G, )] (40
with V’ ’(q) 5k k,Veﬁ(q—i-k) and

whereT'?=4n,V3/2712 provides a measure of the disorder

Strength. - 2’7762 T 1/2 q2|2 q2|2
Ver(d) = 9 1-{5| alexp—=]lo| 2|

E. The ladder sum of the impurity vortex corrections (41)

Using the procedure in Appendix A it is straightforward Equation(41) is identical with Eq.(12) except for the factor
to show that a matrix structure analogous to E@2) and &, in the latter equation which is not necessary in &)
(33) results for each of the ladder diagrams of the impuritysince we work atj#0.
interaction [first equation of Fig. t)]. For example, the
second-order diagram vyields in the matrix notation of Eq. H. The response to the effective field
33
33 The correlation functiory evaluated in Eq40) describes

2= 7%, 7OV, 7. (36 the density response to the external potentigli (g, o)
—5n(q+k w)/ﬁvext(quk’ w). Through the continuity
The summation of the impurity ladder diagrams thus turns So

into a geometric series which can be carried out to give quatlonwn(q ) =qj(q,») we can relate the density re-
sponse to the induced currents. For each Fourier component

. o g+k we can write the continuity equation as
w=2 m"=al6- V70, (37)
n - >
sn(q+k w)=—ik > o9, 0)SE(q+K, )

with (3),;1,@2:5@,‘;2. As in Eq.(25) we have @ontgTi, e & TRk ’

N - - . . - - - -
A A @ e == (G+K 2 o (d,0)(q+k)
Hep(dion)=—"7— 2 mp(dionio). (39 e %
iqu S s
X Svei(q+K',w). (42
F. Summation over the Matsubara frequencies In the first step we introduced the definitior, ,.; i (9, w)
The Matsubara frequency summation in E88) can be =6Jﬂ(ﬁ+lz,w)/5EV(ﬁ+I2’,w), where x and v denote ei-

carried out for each component of the mattlx Using stan-  ther x or 'y and J=—ej is the electrical current density.

dard technique€?® the sum over the complex Matsubara Quantities in the linear-response regime are denoted &y a
frequencies can be evaluated to give In the second step we neglect retardation to obtain purely

longitudinal electric fields given by

- A X de’
I A*’J‘ —n , "+id N [N I
w(d,e)=—Aig N F(€)[ e (a,€,€ ) SE(G+K,w) = E(q+k)5veﬁ(q+ K ). (43)

_AQQI —),,,_i5+’\99/ _),,,+ +|5 . . . -
k(0.6 )T TRk (A€ €Tt etio) Assuming a slowly varying external potentidy o, (r,t)

— i (0, €€’ —e—i8)], (39 = dvgexplar) exp(-iwt) with g—0 we have to still expect
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short-range component&;eﬁ(ﬁﬂz,w), k+#0 in the effec- 5E((§+Iz,w)=5,;,05Eext(q,w)+i27re5n(ﬁ+IZ,a))
tive potential. However, a good approximation is obtained ..
averaging out the short-range components in the effective =[ ot 2miexio(d,w)]6Ee(d, ®).

potential in Eq.(42) (“coarse graining method} in the (49)
long-range response. We then obtain
Inserting Eqs.(48) and (49) in Eq. (47) results in a power
- - L . - dissipation per area and unity of the external electric field
@dn(q,w)~ 74000, ®)qdver(d, ). (44)

- P(a,w) 3 (—3‘2(1)I “~
We choose the direction parallel tag, i.e., in the direction Pex( A, )= = o e g Mxodde)
. . o LxLy|Eext(qvw)| q
of the electric field and define for the longitudinal conduc-
tivity e Ime-L(d (50)
= —47Tq me 5(q, ).

i we? 5!’1(&,(1))

0(q,0) =0y 0,00, @)= From Eq.(46) it is, on the other hand, easy to derive the

2 -
A" Sver(qt+ w) power dissipation per unity of the effective electric field
. 2 ~ > N N
_ lwze Xo,zo(q,iv) . (45) p(ﬁ )= P(q,w) 3 Re oy x.0d 0, )] 51)
+ ] - > > -
" 1+(2me/a) xo @) LyLy|E(q,®)[? 2
In the last step we appliedn(q,w)=xo(d,)dve and  |n analogy to Eq(51) we define from Eq(50)
8V o= OV o+ 27?501 Q.
2
ext 5 _ _a),\ 5
I. Power dissipation in an an external electric field Txx0d @) =i q° Xod 4, @), (52

and oscillator strengths . .-
D > . - so thatpe,(q, w) = Rqo—ixx;o,o(qiw)]/z-

The power dissipatiorP(q, ) in a periodically modu- gquations(50) and (51) describe the power absorption in
lated two-dimensional electron system subjected to a longig,o different experimental circumstances. Equatits0)
tudinal ac electric field has been considered in Ref. 31. Hergg4s when the input power source provides the external
we will review the results and %dJUSt them to our case. Weectric field and Eq(51) holds when the effective field is
begin with the general expression provided by the power source. The first case applies when

there is basically no feedback between the Coulomb field of

p(a,w)z_fj d?r Ra[f(F,w)E(F,w)*] the induced charges in the el_ectron system a_nd the power
2 source. The second case applies when these fields are trans-
LLe ferred unweakened to the power source. A standard example
=— 2% REj(q+K w)E(q+K w)*], for the second situation is the measurement of the dc con-
2 K ductivity of the two-dimensional electron gas with a con-

tacted sample.
(46) . I .
In the next section we will discuss rf experiments on the
where| is the particle current density, arif(r,»)* is the  Strong-magnetic-field insulating phase of a two-dimensional
complex conjugate of the total electric field which results aselectron gas. These experiments are contactless, i.e., the volt-

the response to a monochromatic external electric ﬁ:%LQ age probes cr(_aating_the electric field are spatia}lly separated
- - . from the two-dimensional electron gas. As a typical example
=Eex(q, @) exp(ar—iwt). In the following we neglect retar- o giscuss the experimental setup used in Ref. 13, which is
dation effects thus keeping only longitudinal fiel#{q  described in more detail in Refs. 32 and 33. The conclusions
+k,0)=E(q+Kk,w)eg, . Therefore only longitudinal cur- are the same for the GHz measurements in Refs. 6, 18, and

rents contribute to the dissipation. Using the equation of con16. In Ref. 13 the input power of a rf frequency source is
tinuity we find transmitted via a meander line transducer into a detector. The
meander line is located 300 nm above the plane of the two-
n(ﬁ+E,w) .. dimensional electron gas. Through the meander structure a

———E(q+k,0)*|. laterally modulated longitudinal electric field is generated in

|a-+k| 4 the plane of the two-dimensional electron gas and a small

(47) amount of the power sent to the meander line from the rf

We write in linear response for the induced electron densitypource is absorbed by the electrdi. the longitudinal field

is resonant with a mode of the electron system the dissipa-
5n(d+ K,) :)A(R,o(a,w) 8V ol G, @) tion increases and a dip in the trar)smitted power is observed.

We follow Refs. 33 and 34 and give arguments that the ex-

ie. . perimentally measured power loss is to a great extent given

== aXR,o(qvw)‘SEext(q'w)v (48 by the response to a givaxternal fieldsee Eq(50)]: First,

in the contactless measurements the Coulomb fields are

and for the effective field weakened when traversing from the meander line to the elec-

LyLywe

P(dw)=——5— 2 R

k
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3.0 y - - - - low disorder, in our self-consistent procedure an effective
potential results in which the lowesbccupied subband is
separated from the thréanoccupiedl upper bands by a pro-
nounced energy gap. The three upper conductionlike bands
merge in the disorder potential. In the rest of the paper we
mostly consider the electron solid at a temperaturegof
=0.0%%/|. The three curves in Fig. 3 at this temperature
represent three special cases. At strong disorder,
=0.3%?/1, there is a dip in the density of states at the Fermi
level together with crystalline order in the sample. In Ref. 26
it was shown that the dc conductivity in this impurity range
00 e o5 o4 0z oo has an algebraic temperature dependence which is also seen
' ' el ' in experiments. At abouf =0.30e?/| there opens a gap in
the density of states that becomes comparable to the thermal
FIG. 3. The thermodynamic density of states BT  energy. In this disorder range there is a turnover to exponen-
=0.0%%/1, (solid linesI'=0.2¢?/1, dashed line§'=0.3¢?/I, dash-  tjally activated transport. In the cleanest considered system
dotted line I'=0.3%%1) and kgT=0.01?/I (dotted line I'  T=0.22/| the thermal energy is smaller than the width of
=0.271). the gap which can then be regarded as independent of the
) ) temperature. This is demonstrated in Fig. 3. As we reduce at
tron gas. Second, the Coulomb field of the induced charges is— g 202/ the temperature to a thirgg=0.01e?/I (dotted
coupled to the source of the electromptorlc force, the rf 9eNfiney), the curve of the density of states is nearly unchanged
erator, only through the meander-line transducer effectynq the relative change of the width of the gap is much
Third, only a small amount of the incident power is absorbedsyajier than a third. The activation energy can thus be re-
by the electron system. Therefore, the feedback of the i”garded as constant.
duced charges in the two-dimensional electron gas to the A reasonable approximation for the effective potential is

power source is strongly reduced. The electron system thugnained assuming the strong magnetic-field limit of the
basically reacts to an externally given potential rather than tQectron distributioy

an effective potential ang®"is measured according to Eq.

20 |

Dx2nl’e’l

10

(50). R v
The oscillator strengtli,, of the nth excitation is defined (k)= 52 exp(— k?12/4). (59
as't
Restricting ourselves to wave vectors in the first shell of the
. fEno+ 6dw 0(6.0) reciprocal lattice (e.g., the three vector&;=douy,, k;
" ) oo ’ =0o/2(\3ux—Uy), Ks=k;+k, and their negatives, where
1 fegts q0=477/(\/§a) and a is the distance of two neighboring
__ no do o Ime 2(q,0)] electrong, we obtain for the effective potential
4mq €0~ 6 0.0t
2
e 2v 22
€% [enots . . V(xy)= 1 g exa—kil?/4)
:——zf dw o Im[ o0, w)], (53 !
2q Gno—(s q
0
wheree, is the energy of thath excitation ands defines a X ‘ cos(qoy)+cos{7(\/§x—y)H - (56
small surrounding energy interval containing no other exci- o _ o
tation. The oscillator strengths obey the sum rule The potential differenc&,, between maximum and mini-
mum can be expressed as
f = me’n /4m. 54 e?
; no(@) s 54 Vo= |—3.3ﬁ exp(—1.8v). (57)
. RESULTS The modulation of the effective potential is closestdl with
a factor of 1.1 forr=0.25 and 0.9 fow=0.1. This consid-
A. The ground state eration explains the energy scale of Fig. 3. For strong mag-

Figure 3 shows for three disorder strengths the thermodynetic fields above 10 T and a GaAs heterostructure this
namic density of states of the electron solid calculated in ouProadening of the density of states has a typical energy
model. The general structure of these results has been dig?/(el) (e~12.4) in the order of 10 meV which is in the
cussed in detail in Ref. 25: In the hexagonal electron latticénfrared regime.
the Coulomb interaction which is taken in mean-field theory ~Figure 4 demonstrates that a sequence of low-disorder
creates a periodic effective potential of the same symmetryphase— strong-disorder phase- disappearance of hexago-

If not stated otherwise we assume that there are four magtal order may not only result when going from low to strong
netic flux quanta per unit cell of the lattice leading to a filling disorder but also from strong to weak magnetic field. In the
factor of v=1/4. From general grounds we then expect aupper part of this figure we plot the order parameié€k,)
splitting of the lowest Landau level into four subbarfti#t [see Egs(11) and (15)] versus the filling factor. For small
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FIG. 4. Upper part: Order parametg(k,) vs filling factor at
B=0.0%%I, solid circles I'=0.2¢%/l and open squared ,
=0.3e?/I. The dashed line is the strong magnetic-field limit of Eq. 0.00 L= ‘ . S
(55). Lower part: Width of the energy gap vs filling factor in units 0.0 0.2 04 0.6 08 1.0

: 2
of €%/l wherel , is the magnetic length at=1/4. The arrows mark o [e/l]

the points in which the strong-disorder phase is stable. FIG. 5. Real part of the conductivity vs frequency fbr

=0.3e%/, (lower par} andI’=0.2e?/1 (upper pait In solid lines is
filling factors the order parameter is close to the value shown the response to the external electric field and in dotted lines
This behavior is expected from the strong magnetic-fields shown the response to the effective figids in direction of the
limit in Eq. (55). At about »=0.4 there is a turnover to X point at the edge of the first Brillouin zone as defined in Ref. 26
decreasing order parameter with further increasing fillingwith q/(2X)=0.2. The temperature is given §=0.0%?/I, the
factor. Finally, the order parameter becomes zerol'at vertical arrows mark the position of the energy gap. The dashed line
=0.26%/1 for v=5/6=0.834 and al'=0.3¢%/| for v=3/4.  denotes the combined density of stagedative unit3.
From Fig. 4b) it can be found that the width of the energy
gap roughly follows the same dependence. However, the following figures. For energies above the energy gap there is
energy gap vanishes already 16+0.2e%/| atv=2/3 and for  a broad frequency domain with increased conductivity. A
I'=0.%?/ at v=4/5. Aroundv=2/3 forI'=0.2%/| andv  comparison with the combined density of states shows that
=4/5 and forI'=0.3?/| the strong-disorder phase is the this frequency domain is defined through the range of pos-
ground state. The density of states then only has a dip at thable single-particle excitations from the occupied valence-
Fermi level and looks qualitatively like the result fét  type band to the empty conduction-type energy bands. A
=0.3%%/I in Fig. 3. reasonable estimate for the position of the maximum of the
single-particle excitations is half the potentig),, as defined
in Eq. (57), which for the relevant magnetic fields stronger
than 10 T puts this frequency range into the infrared regime,
Figure 5 shows the diagonal elemefit=(k’ =0) of the & few times less than the cyclotron resonance. As expected,
real part of the longitudinal conductivity®! in response to the position and the weight of the single-particle resonance is
the external electric fielfEq. (52)]. According to Eq.(50) m_aarly indepgndent of the wave vector. Its weight decreases
the real part ofc®™! gives up to a factor of 2 the power With lesser disorder.
absorbed by the the electron system per unity of the external We also depict in Fig. 5 the real part of the conductivity
field. Following standard linear-response theory the poles of response to the effective field as defined in &4). As a
e ! and therefore the poles af® yield the longitudinal ~9eneral result the curve of* follows that ofo very closely
excitation frequencies Of the e|ectr0n S(ﬂ?d at h|gher fl’equencies. The deViationS fOI’ IOWer fl’equenCies
In the curves of Fig. 5 we can distinguish two frequencyare plotted in the inset of Fig.(&: First, the lowest excita-
domains which are separated by the frequency of the enerdipn Which will later be shown to be the magnetophonon pole
gap which is marked by a vertical arrow: In the regime ofvanishes completely for, and second for even smaller fre-
smaller frequencies there are discrete excitation peaks on tép/énciess drops much slower than®. Both these proper-
of a background of a small, thermally activated responseties are important in the Iim'rﬁ,w—>0 that determines the dc
These peaks will be considered in detail in context with theconductivity. The disappearance of the magnetophonon peak

B. Low-energy excitation spectrum
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T T tions. The higher excitation shows no dependence on the
1 wave vector. We therefore interpret it as a local oscillation
basically at a single site of the Wigner crystal with weak
coupling to neighboring sites. Its frequency is considerably
lowered with increasing disorder. The curves are discontin-
ued for smaller wave vectors when this “local mode” be-
comes so weak that it cannot be resolved any more. In dot-
dashed lines thg?® dispersion of the magnetophonon in the
harmonic approximatiofi is plotted. Since in this long-
wavelength approximation the off-diagonal elements of the
susceptibility are neglected no gap opens at the edge of the
Brillouin zone. We compare our quantum results for the low-
est mode with the dispersion in the harmonic approximation.
In the central region of the first Brillouin zone, for 0.1
=¢/(2X)=<0.3, the quantum-mechanical results approach
the classical dispersion for decreasing disorder. In calcula-
tions for zero disorder such a coincidence has already been
found in Ref. 27. We therefore interpret the lowest excitation
as magnetophonon mode in the disordered electron gas. Our
o . . . microscopic calculations show that in the disordered system
000 002 004 006 008 010 the dispersion for small wave vectors approaches a constant
o [¢1] instead of they®® law. This constant increases with increas-
ing disorder. In the case df=0.3e?/| which is close to the
FIG. 6. Real part of the conductivity upper figure far maximum disorder in which the solid phase is still stable we
=0.3e%/1, lower part forl'=0.2e?/1. Temperature and direction of read off a value for thg—0 limit given bmeae2/| with
q are as in Fig. 5 withg/(2X)=0.1 (circles, 0.2 (squares 0.3 ~ «=0.004. If we assume a typical experimental magnetic
(diamonds, 0.4 (triangleg, and 0.5(stars. field of 12 T and introduce the dielectric constant of GaAs,
€=12.4 we end up with an energy 6¥=0.06 meV corre-
in o also results in the harmonic approximatibrand is  sponding to a frequency of 14 GHz. For the cleaner system
caused by the long-range part of the Coulomb interaction. we read offa=0.0028 corresponding to a frequency of 10
Figure 6 shows the real part of for small frequencies GHz. The excitation frequencies measured in experiments at
at various wave vectors. At both impurity strengths two low-these magnetic fields are smaller, ranging between one and
lying excitations can be observed. Kt=0.3¢?%/| there is a two GHz (Refs. 32, 6, 18, and 16In view of the strong
bump betweenw=0.06%/| and 0.08%I that can be inter- approximations that have to be introduced to make possible a
preted as a third one. The lowest excitation shows a stgong consistent response theory of the disordered electron solid no
dependence in contrast to the second excitation with a flajetter agreement can be expected. Among others we see
dispersion. The second resonance grows continually witlthree major sources to explain the discrepancy between
larger wave vectors up to the edge of the first Brillouin zonetheory and experiment: First, our mean-field theory that leads
where g/(2X)=0.5, the lowest excitation has a maximum to a long-range hexagonal order is too simple, second, the
peak height at)/ (2X) =0.4. For finite frequencies the curves SCBA approximation for the impurity interaction is insuffi-
seem to approach a weak, close-to linear dependence efent for quantitative predictions and third, the experimental
In[Re(@®)] on w. systems might be less disordered than assumed in our calcu-
Figure 7 shows the dispersion of the two lowest excitadations.
We compare our results for the magnetophonon in the

Re[c™] [e’/h]

Re[c™] [e’/h]

010 ' ; ~ disordered electron solid with a theory in which the Coulomb
RN interaction is also taken in the Hartree-Fock approximation
0.08 | N 1 but the disorder potential is represented by an external wash-

board potential that is commensurate with the electron
solid8 In the latter case the dispersion has a linear leading-
order term ingq, i.e., for smallq it can be written asw(q)
~0+q.%° In our microscopic theory with strong disorder
the dispersion is much softer equivalent to(q)~Q
+8q", n=2.

In the experiments of Refs. 18 and 16 a resonance in the
. GHz regime was observed and studied with changing mag-
04 05 netic field: Starting from a well-developed resonance peak at

strong magnetic fields the resonance broadens at weaker

FIG. 7. Dispersion of the two lowest excitations fa@ ~ Mmagnetic fields. The peak height and the frequency of the
=0.30%I (dashed lings ' =0.2 (solid lines. The dot-dashed line Maximum decrease. For weaker magnetic fields but still in
shows the result of the harmonic approximation in the long-the insulating regime the peak vanishes in an enhanced back-
wavelength limit. ground conductivity. Based on our numerical analysis we

0.02

0.0 o 02 03
a/2IX|
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0.20 - - - : - that we can only recover qualitative features of the experi-
ments in our model. Because of the strong approximations
o5 made in our theory there is no quantitative agreement.
= IV. SUMMARY
T 0.10 In conclusion we present a quantum formalism to calcu-
% late consistently response properties of the disordered
T o5l Wigner crystal in strong magnetic fields. We find two phases
with distinct properties, a crystalline low-disorder phase with
a pronounced energy gap and an ‘“amorphous” strong-
0.00 disorder phase with a finite density of states at the Fermi

5 10 1105_1 , 20 25 30 level. The transition from a low- to a strong-disorder phase
@10 el can be driven by a decrease in the applied magnetic field: In

FIG. 8. Real part ofc®! vs frequency aty/(2X)=0.2 for T’ the crystalline regime the magnetophonon frequency of the
=0.202%/1 (solid line), I'=0.3 (dash-dotted lineand'=0.3%%|  disordered system lies well in the energy gap and the exci-
(dashed lingand atg/(2X) =0.1 for['=0.33%/| (dotted ling. The  tation peak is sharp. At the transition to the strong-disorder
other parameters are like in Fig. 5. phase the frequency of the collective mode enters the regime
of possible single-particle transitions. The mode shows typi-
g_al Landau damping: It is broadened and its frequency de-

associate with the experimental resonance the magn Creases slightly. Finally, when the strong-disorder phase be-
tophonon in the disordered electron crystal and offer a Lan- gniy. Y. 9 b

dau damping picture as an explanation for the changes witfoo <> stable, the excitation bgcomes overdampeq. In this
. ping pictu -Xplan Nge: Picture we explain recent experimental results byet al1®

varying magnetic field. Our picture is demonstrated in Fig. 8'and Engelet al 16

In the experiments? it has been reported that the activation 9 '

energy of the dc transport is an increasing function of the

magnetic field. In agreement with these experimental find- ~ APPENDIX A EVALUATION OF THE BUBBLE

ings we can associate the activation energy with the energy WITH A SINGLE IMPURITY INTERACTION LINE

gap between valence band and conduction laee Fig. 4. We insert the Fourier transform of the impurity interac-

For Iargze magnetic fields, therefore, a situation results as fofop, jine Eq.(29) and the representation of the Green'’s func-
I'=0.2e“/1 (Fig. 5 and solid line in Fig. B The magne- jon given in Eq.(3) in Eq. (28) and obtain
tophonon frequency at the small experimergabectors is

located deep in the energy gap. We find at the smallest COmyt (ﬁ i)

sidered wave vector in Fig. 5 that the height of the magne-"kk' > ™"

tophon peak is decreased but that there is still a factor of 1 w(f))

more than 10 between the conductivity background and the =_ _— 2 G(Izl,i wyt+io,)
peak conductivity. For weaker magnetic fields the size of the B n’,p S X1.Kq X3 K] X ,Ka X5 k)

energy gap is reduced and the situation becomes like in Fig. . R R

5(a) (I'=0.3e?/1): The magnetophonon frequency becomes X G(ky,iwy Tiwy)G(Ky,iw,)G(Ky,iw,)

larger than or comparable to the width of the energy gap. In i o o,
this case the magnetophonon can couple to single-particle Xexpliky, Xy ik Xg +ikoXp ik Xs]
excitations and Landau damping can occur. As is typical for 2 r o '’

Landau damping, Fig. 8 shows that the width of the magne- X expl —172(kakay +Kaxkay Koy oy, )]

tophonon peak increases and that the peak conductivity de- X (X5 — k12| exp( —ipr)| X)Xy —kyyl?|

creases. The reduction of the excitation frequency with lower 2y vy

magnetic fields can be seen as a typical phenomenon of Lan- % eXF(i5F)|Xi><X2— k2y|2| exd —i (61+ |2)]|X1>

dau damping, which for example, also occurs in plasmon

excitations in alkali metals and can be found in Fig. 8 com- X(X;—ki,I2lexdi(g+k)][X5). (A1)

paring the results fol'=0.2e%/| and I'=0.3e?/l. For still

smaller magnetic field the energy gap vanishes and only Eurther inserting the matrix elements of Eg4) yields
dip in the density of states is present. This is the casd’for _ _

=0.33. Because of this reduced density of states we sti[l'[%lz,(q,iwn)

expect an increased resistance of the electron gas. Figure 8" R .

shows that like in the experiments the magnetophonon reso- AL (9) L . Lo
nance vanishes in this regime. In Ref. 40 elastic theory was = g 2 > G(Ky,ion +iwg)G(ky,iwy)
applied to the Wigner crystal in the weak-pinning limit. It o kikz
was shown that in this case also a pinning mode can result 2 o
with frequencies increasing with the magnetic field. How- Xexp(iE[(kzx ki) + (ki—ky)(g+Kk)],
ever, in contrast with the experiments the width of the peak

i_s a decreasing and t_he height of the peak is a growing fun_c- w(ﬁ) S
tion of the magnetic flelq. T_hough our the_ory gets the experi- X 2 Texp[n (kg +ky,—q—k)x p'1}
mentally observed qualitative features right, we emphasize p
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p2l2 .
xexp(—T) > S(Kyt+Ko—K,—K;—ky—K")

K} k5
2
G(ki,lwn,+|wn)G(k2,|wn)exp‘ [(k ><k2)
+(E1—E§>><<6+E'>]z}. (A2)
We now define
P=K,+k,—k—q=—k|—ky—k—q (A3)

to eliminatek, andkj and find

> Ag o (Q)

Mg 1 (G ) =—— 5 S 3 6k iogtio)

X D wex;{il 2(Pxp)]
5 S

p2l? R
><exp( - T)Z G(K} iwy +iwy)
ki

XG(—P—kj—k'—q)

(A4)

1z . . L
xex;{iE(P—q—k’)xki .

Equatlons(32) and (35) follow after the substitution®®—
—K-— q, klﬁk1+k andklﬂk1+ K.

APPENDIX B: SUMMATION OVER THE MATSUBARA
FREQUENCIES

In this appendix we want to demonstrate how the Matsub-

ULRICH WULF
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£ e
1/ R
0(1)@
S St Re(u)
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FIG. 9. Path of integration.

- . A du - -
Hm(q,lwn)=—Amf > NF(W g (i @y, U).
r&ml

(B1)

Hereng(u)=[exp(B2)+1] ! is the Fermi distribution func-
tion which has poles with residues1/8 at the fermionic
Matsubara frequencies. For the integration a contidus
chosen as depicted in Fig. 9. Apart from the poles introduced
through the Fermi distribution function the integrand is regu-
lar in the area enclosed ly. To achieve this the two cuts at
Im(u)=0 and Im{)=—w, are taken out. At these cuts

there is a discontinuity ofr® in the interval — X<Re(u)

<X which is caused by the imaginary parts of the Green'’s-
function factors entering im® according to Eq(25). The
interval [ — X,X] is the energy range with a nonvanishing
density of states. It is obtained from the ground-state calcu-
lations and found to be well defined. Outside the interval
[ —X,X] the integrand of Eq(B1) is continuous and no con-
tribution to the contour integral results from the cuts at
Im(u)=0 and Im{)=—w,. In the limit R—« the contri-
bution of the circular part of' vanishes and we find

H (q “Un)
A X de’ o . o
=—AE,R'f_X2—7TinF(€ N7k (Q,iw,, €' +i6)
i6)+ g [ Qiwy, € +i(—wy+ )]

i(wnt0)]},

— i (d,iw,, € —

— 7kl io,, e —

ara frequency summation in E(®8) can be done using stan- where €’ is a real energy variable and we have used the
dard techniques described in Ref. 28. A similar problem hageriodicity of the Fermi functiomg(u+iw,)=ng(u). In the
been solved in Ref. 29. In the first step we use the residuaext step we introduce the analytic continuatian,—v and

theorem to write

find for realv = € the expression Eq39).
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