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Low-frequency excitations of a disordered Wigner crystal

Ulrich Wulf
Technische Universita¨t Cottbus, Fakulta¨t 1, Postfach 101344, D-03013 Cottbus, Germany

~Received 8 September 1998!

We develop a consistent theory for the response of the disordered electron crystal in a strong magnetic field.
The Coulomb interaction is taken in the Hartree-Fock approximation and the impurity interaction in the
self-consistent Born approximation. We find two distinct phases, a crystalline phase at low disorder and an
amorphous phase at stronger disorder. As in recent experiments by C.-C. Li, L. W. Engel, D. Shahar, D. C.
Tsui, and M. Shayegan@Phys. Rev. Lett.79, 1353~1997!# and by L. W. Engel, C.-C. Li, D. Shahar, D. C. Tsui,
and M. Shayegan@Solid State Commun.104, 167 ~1997!#, we find in the crystalline phase a well-defined
excitation peak which we identify as a magnetophonon in the disordered system. In the experiments at lower
magnetic fields a strong damping of the excitation is found and finally the mode disappears still in the
insulating regime. Based on our calculations we suggest a Landau damping picture as an explanation: At lower
magnetic field a transition to the amorphous phase takes place and the energy gap of the crystalline phase
vanishes. In consequence the magnetophonon can couple to single-particle transitions which leads to Landau
damping of this mode.@S0163-1829~99!09509-0#
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I. INTRODUCTION

The crystallization of a low-density electron gas at lo
temperatures was predicted by Wigner1 a long time ago. Up
to now experimental evidence for such an electron solid
been found in two-dimensional electron gases on the sur
of liquid helium and in semiconductor heterostructures.
general, in semiconductor systems the application of a str
magnetic field is necessary for the solidification becau
first, the small electronic band mass leads to enhanced q
tum fluctuations, second, the relatively large dielectric c
stant weakens the Coulomb interaction, and, third, the r
tively large electron density causes an enhanced kin
energy in the uncondensed state. Experimental evidence
an electron solid at zero magnetic field are rare.2 In agree-
ment with experiments~Refs. 3–6! and Refs. 7,8, calcula
tions of the ground-state energy show that without disor
the crystal is expected to form in the strong magnetic field
filling factors betweenn51/5 and n51/7 in the electron
system9 and in the hole crystal aroundn51/3.10 Since the
energy of the fractional quantum Hall liquid is atn51/5 only
slightly smaller than in the electron crystal, a reentra
metal-insulator transition at this filling factor as a termin
tion of the quantum Hall regime is experimentally observ
The interpretation in terms of the formation of a Wign
crystal in these systems has been supported by measurem
of the thermally activated dc transport,4,5 the threshold be-
havior of the nonlinear conductance,11,5,12 and the detection
of increased noise for greater voltages than the thres
voltage.5,12 Furthermore, in ac measurements in the GHz
gime a resonance was observed that has been interpret
pinning mode6 of the Wigner crystal or directly as its mag
netophonon mode with the expected dispersion}q2/3.13,14

The important role of disorder has been demonstrate
more recent experiments on lower mobility electron15–17 or
hole systems.18 Here the metal-insulator transition occurs
larger filling factors, up ton;0.6 in electron systems.15

While in low disorder samples one sees a reentrant fractio
PRB 590163-1829/99/59~10!/6700~12!/$15.00
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quantum Hall effect at filling factors as low asn51/5 and
~weaker! n52/9 at stronger disorder only then51 and the
1/3 fraction is observed. In this regime there are a numbe
other experimental features that cannot be accounted fo
the picture of a simple pinned Wigner crystal phase: A u
versal conductance at the metal-insulator transition,15 a much
weaker than exponential~algebraic! dependence ofrxx on
1/T,8,5 and the damping~finally overdamping! of the pinning
mode in weaker magnetic fields associated with a decreas
its frequency.18,16Alternative models for systems with stron
ger disorder have been discussed; single-part
localization,3,17 the formation of a Hall insulator,19,15,8 and
the existence of a glassy~amorphous! Wigner phase.20,21,5

In this paper we develop a mean-field theory for the d
ordered Wigner crystal in which the competition between
Coulomb interaction and disorder can be calculated mic
scopically and determine consistently its ac and dc respo
properties: To this end we follow the approach of Ando w
takes into account the impurity interaction in the nonintera
ing system in the self-consistent Born approximation22 and
add to this model the Coulomb interaction in the Hartre
Fock approximation. From Ref. 23 it directly follows ho
the response properties have to be evaluated to preserv
basic conservation laws. Our results support the idea of
formation of a glassy state at high disorder: While for we
disorder we find a crystalline phase with a typical pr
nounced energy gap at the Fermi level for strong disorde
state with a more or less pronounced dip of the density
states at the Fermi level results. In this state the hexag
modulation of the electron density is reduced but stays fin
The finite hexagonal order in our mean-field theory and
tails of the density of states in the energy gap leading t
finite density of states at the Fermi level, we interpret
signatures of a very short-range order in an amorphous
glassy phase.

In a previous paper24 we showed that we can explain i
this picture the experimentally measured turnover from
exponential dependence of the resistance vs 1/kBT to be ex-
6700 ©1999 The American Physical Society



cr
a

tr
th

d
he
o
w
t

ne
,
n
ro

e
an
e
h

m
e
n
ed
a
a
ar

o

’s

l

in

-
ds.

r-

a-
ive

PRB 59 6701LOW-FREQUENCY EXCITATIONS OF A DISORDERED . . .
pected in the electron solid to a much softer~algebraic! de-
pendence in the amorphous state. Here we want to des
our approach in detail and compare our results to the
measurements of Refs. 18,16 mentioned earlier in this in
duction: In a strong magnetic field a sharp resonance in
GHz regime is found which becomes increasingly dampe
weaker magnetic fields and finally vanishes while still in t
insulating regime. In our model we offer an interpretation
this phenomenon as a Landau damping effect: At first
establish that the transition between crystalline phase and
amorphous phase can be driven by a decreasing mag
field, i.e., the energy gap is reduced to zero. Therefore
strong magnetic fields, in the crystalline phase, the freque
of the resonance is well in the energy gap of the elect
crystal. At smaller magnetic fields the energy gap becom
smaller and the pinning mode couples to single-particle tr
sitions~Landau damping!. At yet smaller magnetic fields th
energy gap vanishes and the amorphous phase sets in w
the pinning mode vanishes because of overdamping.

II. FORMALISM

A. The ground state

For the major interactions in the system, the Coulo
interaction and the disorder potential, we take the Hartr
Fock approximation~HF! and the the self-consistent Bor
approximation~SCBA!. These approximations are discuss
and justified in Refs. 25,26. For the sake of completeness
readability we give a summary of the corresponding form
ism in this subsection: In the finite-temperature Matsub
formalism we write for the self-energy

S~rW,rW8,vn!5G~rW,rW8,vn!^Vdis~rW !Vdis~rW8!&

1d~rW2rW8!E drW9n~rW9!
e2

urW92rW8u

2
e2

urW2rW8u

1

b (
vn8

lim
h→01

exp~ ivn8h!G~rW,rW8,vn8!.

~1!

Here^ & is the disorder average of the correlation function
the disorder potentialVdis(rW), vn5(2n11)p/(b\) are the
fermionic Matsubara frequencies, andb51/(kBT). With this
self-energy we solve Dyson’s equation

G~rW,rW8,vn!5G0~rW,rW8,vn!1E drW9drW-G0~rW,rW9,vn!

3S~rW9,rW-,vn!G~rW-,rW8,vn!. ~2!

A considerable simplification for the solution of Dyson
equation~Fig. 1! is achieved using a representationG(kW ,z)
of the Green’s function
ibe
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G~rW,rW8,z!5 (
X,X8

G~X,X8,z!FX~rW !FX8
* ~rW8!

5(
kWX

G~kW ,z!expS ikxX2 i
kxkyl

2

2 D
3FX~rW !F

~X2kyl 2!
* ~rW8!, ~3!

whereG(kW ,z) depends on only one vectorkW of the hexagonal
reciprocal lattice. TheFX(rW) are the lowest Landau-leve
eigenfunctions

FX~rW !5
1

AAp lL y

expF i
Xy

l 2 GexpF2
~x2X!2

2l 2 G , ~4!

of the problem without Coulomb and disorder interaction
the Landau gauge with the eigenenergye05\vc /2. These
functions depend on the center coordinateX. The cylcotron
resonance frequency isvc and l is the magnetic length. In
our representation Eq.~3! we only take into account the low
est Landau level, which is justified in strong magnetic fiel

As derived in Ref. 26 we find

G~kW ,z!5G0~kW ,z!1G0~z!(
pW

S~kW2pW ,z!G~pW ,z!

3cosF l 2

2
~kW3pW !zG , ~5!

wherepW is a vector of the reciprocal lattice and the unpe
turbed Green’s functionG0 is given by

G0~kW ,z!5dkW ,0

1

i\vn2~e02m!
. ~6!

For the self-energy we obtain S(kW ,z)5S(kW ,z)dis

1S(kW ,z)HF with

Sdis~kW ,z!5
1

4
G~kW ,z!G2~kW ! ~7!

and

G2~kW !5G2 expS 2
y2

2 D , ~8!

FIG. 1. Dyson’s equation for the ground state in our approxim
tion: Impurity interaction in dashed lines with crosses and effect
Coulomb interaction in double wavy line.
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wherey5ukW u l , G254nIV0
2/2p l 2, andnI is the number ofd

scatterers per area with individual scattering potent
V(rW)5V0d(rW). For the self-energy of the Hartree-Fock ter
it follows that

S~kW ,z!HF5W0~kW !r~kW ! ~9!

with

W0~kW !5
e2

l
expS 2

y2

2 D F1

y
~12dkW ,0!

2expS y2

4 D S p

2 D 1/2

I 0S y2

4 D G , ~10!

where I 0 is the modified Bessel function of the first kind
Furthermore,

r~kW !52
1

pE2e

e

de nF~e!Im@G~2kW ,e2m1 ih!#, ~11!

with the Fermi distribution functionnF(e)5„exp@(e2m)b#
11…21.

The self-energyS(kW ,z)HF in Eq. ~9! is formally equiva-
lent to a self-energy term resulting in a Hartree approxim
tion with an effective Coulomb propagator27

Veff~kW !5
2pe2

uku F ~12dkW ,0!2expS y2

4 D yS p

2 D 1/2

I 0S y2

4 D G .
~12!

To show this we start from a general single-particle poten
of the form

V~rW !5( V~kW ! exp~ ikW rW !. ~13!

As derived in Ref. 25 the self-energySpot that results in Eq.
~5! from this potential is given by

Spot~kW !5expS 2
y2

4 DV~kW !. ~14!

EquatingS(kW ,z)HF andSpot and making use of the identity

n~kW !5
1

2p l 2 expS 2y2

4 D r~2kW ! ~15!

derived in Ref. 26@n(kW )5n(2kW ) is the Fourier transform o
the electron densityn], we find

V~kW !5n~kW !
2pe2

uku F ~12dkW ,0!2expS y2

4 D yS p

2 D 1/2

I 0S y2

4 D G .
~16!

This is the single-particle potential obtained in the Hart
approximation with an effective Coulomb propagator giv
by Eq. ~12!. The first factor inVeff is the usual direct term
where the interaction with a positive background is remov
for kW50. The second term arises from the Fock diagram
the self-energy and leads to a modification of the Coulo
propagator. Using the effective Coulomb propagator we
write a simplified Dyson’s equation for the ground state
shown diagrammatically in Fig. 1. The Hartree-like diagra
ls

-

l

e

d
f
b
n
s

for the combined Hartree-Fock interaction is the second d
gram on the right-hand side of the first line in Fig. 1. T
third term is the diagrammatic representation of the s
energy of the impurity interaction.

B. The dynamic response

Our analysis of the dynamic response properties st
with the susceptibilityx. We adopt the formalism and nota
tion in Ref. 23 and define

x~1,2!5
d^n~1!&c

dU~2!
52 i

dG~1,11!c

dU~2!
. ~17!

Here 1 stands for the quadruple (rW1 ,t1) andU(2) is an ex-
ternal potential perturbation contributing to the Hamiltoni
densityU(rW2 ,t2)n(rW2 ,t2), wheren is the electronic particle
density. The indexc denotes the causal response and^ & the
thermal expectation value. According to Ref. 23 we write

dG~1,11;U !

dU~2!
U

U50

5L~12,1121!, ~18!

where G(1,18;U) is the U-dependent thermal Matsubar
Green’s function which depends on a complex time ar
ment. As is carried out in Sec. III F for the present case
causal Green’s function can be obtained from the Matsub
Green’s function by replacing the complex frequencyiv by
v1 id. This procedure is discussed in detail in Ref. 28. F
lowing Ref. 23 we can write forL an integral equation

L~12,1828!52G~1,28!G~2,18!1E d3 d4 d5 d6 G~1,3!

3G~4,18!J~35,46!L~62,52!, ~19!

whereG(1,28)5G(1,28,U50) and

J~35,46!5F dS~3,4!

dG~6,5!G
U50

. ~20!

In Fig. 2~a! we write Eq.~19! in diagrammatic form with a
self-energy given by

FIG. 2. ~a! Eqs.~19!–~21! in diagrammatic form.~b! Alternative
way of generating exactly the same diagrams, where 1 and 1’ a
and 2’ are closed.
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@S~3,4!#U50

52 id~324!E d2veff~rW32rW2!d~ t32t2!G~2,21!

1 i ^Vdis~rW3!Vdis~rW4!&G~3,4!. ~21!

It is obvious that exactly the same diagrams that are g
erated from the integral equations~18!–~21! in Fig. 2~a! can
also be generated by a procedure demonstrated in Fig.~b!:
First, the ‘‘ladder sum’’ over all impurity interaction lines i
carried out~see upper line!. For a noninteracting homoge
neous electron gas this summation has been carried o
Ref. 29. The corresponding ladder summation in the h
considered interacting system with hexagonal density mo
lation reduces to the results in Ref. 29 in the casekW5kW8
50 ~see Secs. C, D, and E!. In the second step, a ‘‘bubbl
summation’’ over the effective Coulomb interaction follow
~lower line!. According to Eq.~18! the diagram forL has to
be closed on the left and on the right side.

C. The bare bubble

We begin the evaluation of the ‘‘ladder sum’’ in Fig. 2~b!,
upper line, with the evaluation of the ‘‘bare bubble’’P0 for
which we write

P0~rW,rW8,ivn!5
1

b (
n8

G~rW,rW8,ivn81 ivn!G~rW8,rW,ivn8!.

~22!

In this expression our representation of the Green’s func
Eq. ~3! is inserted. We introduce a two-dimensional Four
transform to obtain

P0~QW ,QW 8,ivn!

5E drW drW8 exp~2 iQW rW1 iQW 8rW8!P0~rW,rW8,ivn!

5 (
n8,X,X8,k,k8

G~kW ,ivn81 ivn!G~kW8,ivn!

3exp~ ikxX2 ikxkyl
2/21 ikx8X82 ikx8ky8l

2/2!

3^X82ky8l
2u exp~2 iQW rW !uX&

3^X2kyl
2u exp~ iQW 8rW !uX8&. ~23!

Here

^Xuexp~ iQW rW !uX8&5exp@ iQx~X1X8!/2#exp

3@2Q2l 2/4#dX8,X1Qyl 2 ~24!

is the matrix element of the harmonic potential between
lowest Landau-level eigenstates with center coordinateX
andX8 given in Eq.~4!. Because of the the periodicity of th
systemP0(QW ,QW 8,ivn) is nonzero only if we can writeQW

5qW 1kW and QW 85qW 1kW8, whereqW is an element of the firs
Brillouin zone of the reciprocal lattice andkW , kW8 are
reciprocal-lattice vectors. Straightforward calculation yie
for P0(qW 1kW ,qW 1kW8,ivn)[P̂kW ,kW8

0 (qW ,ivn)
n-

in
re
u-

n
r

e

s

P̂kW ,kW8
0

~qW ,ivn!5
ÂkW ,kW8~qW !

b (
ivn8

p̂kW ,kW8
0

~qW ,ivn ,ivn8!, ~25!

with

p̂kW ,kW8
0

~qW ,ivn ,ivn8!

5(
kW9

G~kW91kW ,ivn1 ivn8!G~2kW92kW8,ivn8!

3expF2
i l 2

2
qW 3~kW1kW8!GexpF i l 2

2
kW93~2qW 1kW1kW8!G ,

~26!

and

ÂkW ,kW8~qW !5
1

2p l 2expF2
~qW 1kW !2l 21~qW 81kW8!2l 2

4
G . ~27!

D. Bubble with a single impurity interaction line

As an important intermediate step we analyze the bub

with a single impurity interaction lineP̂1 which is depicted
in the second diagram of the right-hand side of the first l
in Fig. 2~b! and given by

P1~rW1 ,rW2 ,ivn!5
1

b (
n8

E drW3drW4G~rW3 ,rW2 ,ivn81 ivn!

3G~rW1 ,rW3 ,ivn81 ivn!w~rW32rW4!

3G~rW4 ,rW1 ,ivn!G~rW2 ,rW4 ,ivn!. ~28!

Herew is the impurity interaction line

w~rW12rW2!5^Vdis~rW1!Vdis~rW2!&

5(
m

vm~rW12rWm!vm~rW22rWm!, ~29!

where therWm are the locations of the impurities that assum
to be evenly distributed in thex-y plane. Further, the impu
rities are taken to be identical with an individual scatteri
potential given by

vm~rW !5
V0

pd2expF2
~rW2rWm!2

d2 G , ~30!

whered parametrizes the range of the individual scatter
potential andV0 is its strength. We obtain for the Fourie
transform of the impurity interaction line

w~q!5nIV0
2 expF2

~qd!2

2 G , ~31!

wherenI is the density of the impurities which will be take
in the limit of d scatterer (d50). As shown in Appendix A
we obtain for the Fourier transform ofP1 the same structure
as forP0 in Eq. ~25! ~index 0 is replaced with index 1) with
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p̂kW ,kW8
1

~qW ,ivn ,ivn8!

5 (
kW1 ,kW2

p̂kW ,kW1

0
~qW ,ivn ,ivn8!V̂I ;kW1 ,kW2

~qW !p̂k2
W ,kW8
0

~qW ,ivn ,ivn8!,

~32!

or, in matrix notation

p̂15p̂0V̂Ip̂
0. ~33!

Here we obtain

VI ;kW1 ,kW2
5dkW1 ,kW2(

pW

w~p!

S
exp@ i l 2pW 3~kW11qW !#expF2

~pl !2

2 G ,
~34!

whereS is the area of the electron system. Ford scatterers
we can find

VI ;kW1 ,kW2
~qW !5dkW1 ,kW2

G2

4
expF2

~qW 1kW1!2l 2

2
G , ~35!

whereG254nIV0
2/2p l 2 provides a measure of the disord

strength.

E. The ladder sum of the impurity vortex corrections

Using the procedure in Appendix A it is straightforwa
to show that a matrix structure analogous to Eqs.~32! and
~33! results for each of the ladder diagrams of the impur
interaction @first equation of Fig. 2~b!#. For example, the
second-order diagram yields in the matrix notation of E
~33!

p̂25p̂0V̂Ip̂
0V̂Ip̂

0. ~36!

The summation of the impurity ladder diagrams thus tu
into a geometric series which can be carried out to give

p̂5(
n

p̂n5p̂0@ d̂2V̂Ip̂
0#21, ~37!

with ( d̂)kW1 ,kW2
5dkW1 ,kW2

. As in Eq. ~25! we have

P̂kW ,kW8~qW ,ivn!5
ÂkW ,kW8~qW !

b (
ivn8

p̂kW ,kW8~qW ,ivn ,ivn8!. ~38!

F. Summation over the Matsubara frequencies

The Matsubara frequency summation in Eq.~38! can be

carried out for each component of the matrixP̂. Using stan-
dard techniques28,29 the sum over the complex Matsuba
frequencies can be evaluated to give

P̂kW ,kW8~qW ,e!52ÂkW ,kW8E
2X

X de8

2p i
nF~e8!@p̂kW ,kW8~qW ,e,e81 id!

2p̂kW ,kW8~qW ,e,e82 id!1p̂kW ,kW8~qW ,e,e81e1 id!

2p̂kW ,kW8~qW ,e,e82e2 id!#, ~39!
.

s

which is derived in Appendix B. The variablese are on the
real frequency axis where the imaginary part of the Gree
function vanishes outside the energy interval@2X,X#.

For the calculation ofP̂(qW ,e) we start from the Green’s
function that is calculated along the real axis solving D
son’s equation@Eq. ~5!# with contributions to the self-energ
given by Eqs.~7! and~9!. Using Eq.~26! we find p̂0 where
products of Green’s-function factors with different arg
ments enter. Then, according to Eq.~37! we obtainp̂ which

yields P̂ through Eq.~38!. In the last step we perform th
integration Eq.~39! along the real energy axis.

G. The dynamic Coulomb interaction

The calculation of the density-density response functiox
is now carried out according to the second equation in F
2~b! which is obviously equivalent to a geometric serie
Using the matrix representation we obtain directly

x̂~qW ,e!5P̂~qW ,e!@ d̂2V̂eff~qW !P̂~qW ,e!#21, ~40!

with V̂kW ,kW
eff (qW )5dkW ,kW8Veff(qW 1kW ) and

Veff~qW !5
2pe2

q F12S p

2 D 1/2

ql expS q2l 2

4 D I 0S q2l 2

4 D G .
~41!

Equation~41! is identical with Eq.~12! except for the factor
dkW ,0 in the latter equation which is not necessary in Eq.~41!
since we work atqÞ0.

H. The response to the effective field

The correlation functionx evaluated in Eq.~40! describes
the density response to the external potential,x̂kW ,kW8(q

W ,v)
5dn(qW 1kW ,v)/dvext(qW 1kW8,v). Through the continuity
equationvn(qW ,v)5qW jW(qW ,v) we can relate the density re
sponse to the induced currents. For each Fourier compo
qW 1kW we can write the continuity equation as

vdn~qW 1kW ,v!52
qW 1kW

e (
kW8

ŝkW ,kW8~qW ,v!dEW ~qW 1kW8,v!

5
2 i

e2 ~qW 1kW !(
kW8

ŝkW ,kW8~qW ,v!~qW 1kW8!

3dveff~qW 1kW8,v!. ~42!

In the first step we introduced the definitionŝm,n;kW ,kW8(q
W ,v)

5dJm(qW 1kW ,v)/dEn(qW 1kW8,v), wherem and n denote ei-
ther x or y and J52e j is the electrical current density
Quantities in the linear-response regime are denoted byd.
In the second step we neglect retardation to obtain pu
longitudinal electric fields given by

dE~qW 1kW ,v!5
i

e
~qW 1kW !dveff~qW 1kW ,v!. ~43!

Assuming a slowly varying external potentialdvext(rW,t)
5dv0 exp(iqWrW) exp(2ivt) with qW→0 we have to still expect
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short-range componentsdveff(qW 1kW ,v), kWÞ0 in the effec-
tive potential. However, a good approximation is obtain
averaging out the short-range components in the effec
potential in Eq. ~42! ~‘‘coarse graining method’’! in the
long-range response. We then obtain

vdn~qW ,v!'
2 i

e2 qW ŝ0,0~qW ,v!qW dveff~qW ,v!. ~44!

We choose thex direction parallel toqW , i.e., in the direction
of the electric field and define for the longitudinal condu
tivity

s~qW ,v![sx,x;0,0~qW ,v!5
ive2

q2

dn~qW ,v!

dveff~qW 1v!

5
ive2

q2

x̂0,0~qW ,v!

11~2pe2/q!x̂0,0~qW ,v!
. ~45!

In the last step we applieddn(qW ,v)5x̂0,0(qW ,v)dv0 and
dveff5dv012pe2dn/q.

I. Power dissipation in an an external electric field
and oscillator strengths

The power dissipationP(qW ,v) in a periodically modu-
lated two-dimensional electron system subjected to a lo
tudinal ac electric field has been considered in Ref. 31. H
we will review the results and adjust them to our case.
begin with the general expression30

P~qW ,v!52
e

2E d2r Re@ jW~rW,v!EW ~rW,v!* #

52
LxLye

2 (
kW

Re@ jW~qW 1kW ,v!EW ~qW 1kW ,v!* #,

~46!

where jW is the particle current density, andEW (rW,v)* is the
complex conjugate of the total electric field which results
the response to a monochromatic external electric fieldEW ext

5EW ext(qW ,v) exp(iqWrW2ivt). In the following we neglect retar
dation effects thus keeping only longitudinal fieldsEW (qW

1kW ,v)5E(qW 1kW ,v)eWqW 1kW . Therefore only longitudinal cur-
rents contribute to the dissipation. Using the equation of c
tinuity we find

P~qW ,v!52
LxLyve

2 (
kW

ReFn~qW 1kW ,v!

uqW 1kW u
E~qW 1kW ,v!* G .

~47!

We write in linear response for the induced electron den

dn~qW 1kW ,v!5x̂kW ,0~qW ,v!dvext~q,v!

52
ie

q
x̂kW ,0~qW ,v!dEext~q,v!, ~48!

and for the effective field
d
e

-

i-
re
e

s

-

y

dE~qW 1kW ,v!5dkW ,0dEext~q,v!1 i2pedn~qW 1kW ,v!

5@dkW ,012p iex̂kW ,0~qW ,v!#dEext~q,v!.

~49!

Inserting Eqs.~48! and ~49! in Eq. ~47! results in a power
dissipation per area and unity of the external electric fiel

pext~qW ,v!5
P~qW ,v!

LxLyuEW ext~qW ,v!u2
52

e2v

2q2Imx̂0,0~qW ,v!

52
v

4pq
Ime 0,0

21 ~qW ,v!. ~50!

From Eq. ~46! it is, on the other hand, easy to derive th
power dissipation per unity of the effective electric field

p~qW ,v!5
P~qW ,v!

LxLyuEW ~qW ,v!u2
5

Re@sx,x;0,0~qW ,v!#

2
. ~51!

In analogy to Eq.~51! we define from Eq.~50!

sx,x;0,0
ext ~qW ,v!5 i

e2v

q2 x̂0,0~qW ,v!, ~52!

so thatpext(qW ,v)5Re@sx,x;0,0
ext (qW ,v)#/2.

Equations~50! and~51! describe the power absorption i
two different experimental circumstances. Equation~50!
holds when the input power source provides the exter
electric field and Eq.~51! holds when the effective field is
provided by the power source. The first case applies w
there is basically no feedback between the Coulomb field
the induced charges in the electron system and the po
source. The second case applies when these fields are t
ferred unweakened to the power source. A standard exam
for the second situation is the measurement of the dc c
ductivity of the two-dimensional electron gas with a co
tacted sample.

In the next section we will discuss rf experiments on t
strong-magnetic-field insulating phase of a two-dimensio
electron gas. These experiments are contactless, i.e., the
age probes creating the electric field are spatially separ
from the two-dimensional electron gas. As a typical exam
we discuss the experimental setup used in Ref. 13, whic
described in more detail in Refs. 32 and 33. The conclusi
are the same for the GHz measurements in Refs. 6, 18,
16. In Ref. 13 the input power of a rf frequency source
transmitted via a meander line transducer into a detector.
meander line is located 300 nm above the plane of the t
dimensional electron gas. Through the meander structu
laterally modulated longitudinal electric field is generated
the plane of the two-dimensional electron gas and a sm
amount of the power sent to the meander line from the
source is absorbed by the electrons.33 If the longitudinal field
is resonant with a mode of the electron system the diss
tion increases and a dip in the transmitted power is obser
We follow Refs. 33 and 34 and give arguments that the
perimentally measured power loss is to a great extent gi
by the response to a givenexternal field@see Eq.~50!#: First,
in the contactless measurements the Coulomb fields
weakened when traversing from the meander line to the e
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6706 PRB 59ULRICH WULF
tron gas. Second, the Coulomb field of the induced charge
coupled to the source of the electromotoric force, the rf g
erator, only through the meander-line transducer eff
Third, only a small amount of the incident power is absorb
by the electron system. Therefore, the feedback of the
duced charges in the two-dimensional electron gas to
power source is strongly reduced. The electron system
basically reacts to an externally given potential rather tha
an effective potential andpext is measured according to Eq
~50!.

The oscillator strengthf n0 of thenth excitation is defined
as31

f n05E
en02d

en01d
dv p~qW ,v!

52
1

4pqEen02d

en01d
dv v Im@e 0,0

21 ~q,v!#

52
e2

2q2E
en02d

en01d
dv v Im@ x̂0,0~qW ,v!#, ~53!

whereen0 is the energy of thenth excitation andd defines a
small surrounding energy interval containing no other ex
tation. The oscillator strengths obey the sum rule

(
n

f n0~q!5pe2ns /4m. ~54!

III. RESULTS

A. The ground state

Figure 3 shows for three disorder strengths the thermo
namic density of states of the electron solid calculated in
model. The general structure of these results has been
cussed in detail in Ref. 25: In the hexagonal electron lat
the Coulomb interaction which is taken in mean-field theo
creates a periodic effective potential of the same symme
If not stated otherwise we assume that there are four m
netic flux quanta per unit cell of the lattice leading to a fillin
factor of n51/4. From general grounds we then expec
splitting of the lowest Landau level into four subbands.35 At

FIG. 3. The thermodynamic density of states atkBT
50.03e2/ l , ~solid linesG50.2e2/ l , dashed linesG50.3e2/ l , dash-
dotted line G50.33e2/ l ) and kBT50.01e2/ l ~dotted line G
50.2e2/ l ).
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low disorder, in our self-consistent procedure an effect
potential results in which the lowest~occupied! subband is
separated from the three~unoccupied! upper bands by a pro
nounced energy gap. The three upper conductionlike ba
merge in the disorder potential. In the rest of the paper
mostly consider the electron solid at a temperature ofb
50.03e2/ l . The three curves in Fig. 3 at this temperatu
represent three special cases. At strong disorder,G
50.33e2/ l , there is a dip in the density of states at the Fer
level together with crystalline order in the sample. In Ref.
it was shown that the dc conductivity in this impurity rang
has an algebraic temperature dependence which is also
in experiments. At aboutG50.30e2/ l there opens a gap in
the density of states that becomes comparable to the the
energy. In this disorder range there is a turnover to expon
tially activated transport. In the cleanest considered sys
G50.2e2/ l the thermal energy is smaller than the width
the gap which can then be regarded as independent of
temperature. This is demonstrated in Fig. 3. As we reduc
G50.2e2/ l the temperature to a third,b50.01e2/ l ~dotted
lines!, the curve of the density of states is nearly unchang
and the relative change of the width of the gap is mu
smaller than a third. The activation energy can thus be
garded as constant.

A reasonable approximation for the effective potential
obtained assuming the strong magnetic-field limit of t
electron distribution27

n~kW !5
n

2p l 2 exp~2k2l 2/4!. ~55!

Restricting ourselves to wave vectors in the first shell of
reciprocal lattice ~e.g., the three vectorskW15q0uW y , kW2

5q0/2(A3uW x2uW y), kW35kW11kW2 and their negatives, wher
q054p/(A3a) and a is the distance of two neighborin
electrons!, we obtain for the effective potential

V~x,y!5
e2

l

2n

k1l
exp~2k1

2l 2/4!

3H cos~q0y!1cosFq0

2
~A3x2y!G J . ~56!

The potential differenceVmm between maximum and mini
mum can be expressed as

Vmm5
e2

l
3.3An exp~21.8n!. ~57!

The modulation of the effective potential is close toe2/ l with
a factor of 1.1 forn50.25 and 0.9 forn50.1. This consid-
eration explains the energy scale of Fig. 3. For strong m
netic fields above 10 T and a GaAs heterostructure
broadening of the density of states has a typical ene
e2/(e l ) (e'12.4) in the order of 10 meV which is in th
infrared regime.

Figure 4 demonstrates that a sequence of low-diso
phase→ strong-disorder phase→ disappearance of hexago
nal order may not only result when going from low to stro
disorder but also from strong to weak magnetic field. In t
upper part of this figure we plot the order parameterr(kW1)
@see Eqs.~11! and ~15!# versus the filling factor. For smal
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filling factors the order parameter is close to the valuen.
This behavior is expected from the strong magnetic-fi
limit in Eq. ~55!. At about n50.4 there is a turnover to
decreasing order parameter with further increasing fill
factor. Finally, the order parameter becomes zero aG
50.2e2/ l for n55/650.834 and atG50.3e2/ l for n53/4.
From Fig. 4~b! it can be found that the width of the energ
gap roughly follows the samen dependence. However, th
energy gap vanishes already forG50.2e2/ l at n52/3 and for
G50.3e2/ l at n54/5. Aroundn52/3 for G50.2e2/ l andn
54/5 and forG50.3e2/ l the strong-disorder phase is th
ground state. The density of states then only has a dip a
Fermi level and looks qualitatively like the result forG
50.33e2/ l in Fig. 3.

B. Low-energy excitation spectrum

Figure 5 shows the diagonal element (kW5kW850) of the
real part of the longitudinal conductivitysext in response to
the external electric field@Eq. ~52!#. According to Eq.~50!
the real part ofsext gives up to a factor of 2 the powe
absorbed by the the electron system per unity of the exte
field. Following standard linear-response theory the pole
e21 and therefore the poles ofsext yield the longitudinal
excitation frequencies of the electron solid.36

In the curves of Fig. 5 we can distinguish two frequen
domains which are separated by the frequency of the en
gap which is marked by a vertical arrow: In the regime
smaller frequencies there are discrete excitation peaks on
of a background of a small, thermally activated respon
These peaks will be considered in detail in context with

FIG. 4. Upper part: Order parameterr(kW1) vs filling factor at
b50.03e2/ l , solid circles G50.2e2/ l and open squaresG
50.3e2/ l . The dashed line is the strong magnetic-field limit of E
~55!. Lower part: Width of the energy gap vs filling factor in uni
of e2/ l 0 wherel 0 is the magnetic length atn51/4. The arrows mark
the points in which the strong-disorder phase is stable.
d
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following figures. For energies above the energy gap ther
a broad frequency domain with increased conductivity.
comparison with the combined density of states shows
this frequency domain is defined through the range of p
sible single-particle excitations from the occupied valen
type band to the empty conduction-type energy bands
reasonable estimate for the position of the maximum of
single-particle excitations is half the potentialVmm as defined
in Eq. ~57!, which for the relevant magnetic fields strong
than 10 T puts this frequency range into the infrared regim
a few times less than the cyclotron resonance. As expec
the position and the weight of the single-particle resonanc
nearly independent of the wave vector. Its weight decrea
with lesser disorder.

We also depict in Fig. 5 the real part of the conductivitys
in response to the effective field as defined in Eq.~51!. As a
general result the curve ofsext follows that ofs very closely
at higher frequencies. The deviations for lower frequenc
are plotted in the inset of Fig. 5~a!: First, the lowest excita-
tion which will later be shown to be the magnetophonon p
vanishes completely fors, and second for even smaller fre
quenciess drops much slower thansext. Both these proper-
ties are important in the limitqW ,v→0 that determines the d
conductivity. The disappearance of the magnetophonon p

.

FIG. 5. Real part of the conductivity vs frequency forG
50.3e2/ l , ~lower part! andG50.2e2/ l ~upper part!. In solid lines is
shown the response to the external electric field and in dotted l

is shown the response to the effective field.qW is in direction of the
X point at the edge of the first Brillouin zone as defined in Ref.
with q/(2X)50.2. The temperature is given byb50.03e2/ l , the
vertical arrows mark the position of the energy gap. The dashed
denotes the combined density of states~relative units!.
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in s also results in the harmonic approximation37 and is
caused by the long-range part of the Coulomb interactio

Figure 6 shows the real part ofsext for small frequencies
at various wave vectors. At both impurity strengths two lo
lying excitations can be observed. AtG50.3e2/ l there is a
bump betweenv50.06e2/ l and 0.07e2/ l that can be inter-
preted as a third one. The lowest excitation shows a stronq
dependence in contrast to the second excitation with a
dispersion. The second resonance grows continually w
larger wave vectors up to the edge of the first Brillouin zo
where q/(2X)50.5, the lowest excitation has a maximu
peak height atq/(2X)50.4. For finite frequencies the curve
seem to approach a weak, close-to linear dependenc
ln@Re(sext)# on v.

Figure 7 shows the dispersion of the two lowest exc

FIG. 6. Real part of the conductivity upper figure forG
50.3e2/ l , lower part forG50.2e2/ l . Temperature and direction o

qW are as in Fig. 5 withq/(2X)50.1 ~circles!, 0.2 ~squares!, 0.3
~diamonds!, 0.4 ~triangles!, and 0.5~stars!.

FIG. 7. Dispersion of the two lowest excitations forG
50.30e2/ l ~dashed lines!, G50.2 ~solid lines!. The dot-dashed line
shows the result of the harmonic approximation in the lon
wavelength limit.
-

at
th
e

of

-

tions. The higher excitation shows no dependence on
wave vector. We therefore interpret it as a local oscillati
basically at a single site of the Wigner crystal with we
coupling to neighboring sites. Its frequency is considera
lowered with increasing disorder. The curves are discon
ued for smaller wave vectors when this ‘‘local mode’’ b
comes so weak that it cannot be resolved any more. In
dashed lines theq2/3 dispersion of the magnetophonon in th
harmonic approximation38 is plotted. Since in this long-
wavelength approximation the off-diagonal elements of
susceptibility are neglected no gap opens at the edge of
Brillouin zone. We compare our quantum results for the lo
est mode with the dispersion in the harmonic approximati
In the central region of the first Brillouin zone, for 0.
<q/(2X)<0.3, the quantum-mechanical results approa
the classical dispersion for decreasing disorder. In calc
tions for zero disorder such a coincidence has already b
found in Ref. 27. We therefore interpret the lowest excitat
as magnetophonon mode in the disordered electron gas.
microscopic calculations show that in the disordered sys
the dispersion for small wave vectors approaches a cons
instead of theq2/3 law. This constant increases with increa
ing disorder. In the case ofG50.3e2/ l which is close to the
maximum disorder in which the solid phase is still stable
read off a value for theq→0 limit given by V'ae2/ l with
a50.004. If we assume a typical experimental magne
field of 12 T and introduce the dielectric constant of GaA
e512.4 we end up with an energy ofV50.06 meV corre-
sponding to a frequency of 14 GHz. For the cleaner sys
we read offa50.0028 corresponding to a frequency of 1
GHz. The excitation frequencies measured in experiment
these magnetic fields are smaller, ranging between one
two GHz ~Refs. 32, 6, 18, and 16!. In view of the strong
approximations that have to be introduced to make possib
consistent response theory of the disordered electron soli
better agreement can be expected. Among others we
three major sources to explain the discrepancy betw
theory and experiment: First, our mean-field theory that le
to a long-range hexagonal order is too simple, second,
SCBA approximation for the impurity interaction is insuffi
cient for quantitative predictions and third, the experimen
systems might be less disordered than assumed in our c
lations.

We compare our results for the magnetophonon in
disordered electron solid with a theory in which the Coulom
interaction is also taken in the Hartree-Fock approximat
but the disorder potential is represented by an external w
board potential that is commensurate with the elect
solid.38 In the latter case the dispersion has a linear leadi
order term inq, i.e., for smallq it can be written asv(q)
'V1bq.39 In our microscopic theory with strong disorde
the dispersion is much softer equivalent tov(q)'V
1bqn, n>2.

In the experiments of Refs. 18 and 16 a resonance in
GHz regime was observed and studied with changing m
netic field: Starting from a well-developed resonance pea
strong magnetic fields the resonance broadens at we
magnetic fields. The peak height and the frequency of
maximum decrease. For weaker magnetic fields but stil
the insulating regime the peak vanishes in an enhanced b
ground conductivity. Based on our numerical analysis

-
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associate with the experimental resonance the ma
tophonon in the disordered electron crystal and offer a L
dau damping picture as an explanation for the changes
varying magnetic field. Our picture is demonstrated in Fig
In the experiments,3,5 it has been reported that the activatio
energy of the dc transport is an increasing function of
magnetic field. In agreement with these experimental fi
ings we can associate the activation energy with the ene
gap between valence band and conduction band~see Fig. 4!.
For large magnetic fields, therefore, a situation results as
G50.2e2/ l ~Fig. 5 and solid line in Fig. 8!. The magne-
tophonon frequency at the small experimentalq vectors is
located deep in the energy gap. We find at the smallest c
sidered wave vector in Fig. 5 that the height of the mag
tophon peak is decreased but that there is still a facto
more than 10 between the conductivity background and
peak conductivity. For weaker magnetic fields the size of
energy gap is reduced and the situation becomes like in
5~a! (G50.3e2/ l ): The magnetophonon frequency becom
larger than or comparable to the width of the energy gap
this case the magnetophonon can couple to single-par
excitations and Landau damping can occur. As is typical
Landau damping, Fig. 8 shows that the width of the mag
tophonon peak increases and that the peak conductivity
creases. The reduction of the excitation frequency with low
magnetic fields can be seen as a typical phenomenon of
dau damping, which for example, also occurs in plasm
excitations in alkali metals and can be found in Fig. 8 co
paring the results forG50.2e2/ l and G50.3e2/ l . For still
smaller magnetic field the energy gap vanishes and on
dip in the density of states is present. This is the case foG
50.33. Because of this reduced density of states we
expect an increased resistance of the electron gas. Figu
shows that like in the experiments the magnetophonon r
nance vanishes in this regime. In Ref. 40 elastic theory
applied to the Wigner crystal in the weak-pinning limit.
was shown that in this case also a pinning mode can re
with frequencies increasing with the magnetic field. Ho
ever, in contrast with the experiments the width of the pe
is a decreasing and the height of the peak is a growing fu
tion of the magnetic field. Though our theory gets the exp
mentally observed qualitative features right, we emphas

FIG. 8. Real part ofsext vs frequency atq/(2X)50.2 for G
50.20e2/ l ~solid line!, G50.3 ~dash-dotted line! and G50.33e2/ l
~dashed line! and atq/(2X)50.1 forG50.33e2/ l ~dotted line!. The
other parameters are like in Fig. 5.
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that we can only recover qualitative features of the exp
ments in our model. Because of the strong approximati
made in our theory there is no quantitative agreement.

IV. SUMMARY

In conclusion we present a quantum formalism to cal
late consistently response properties of the disorde
Wigner crystal in strong magnetic fields. We find two phas
with distinct properties, a crystalline low-disorder phase w
a pronounced energy gap and an ‘‘amorphous’’ stro
disorder phase with a finite density of states at the Fe
level. The transition from a low- to a strong-disorder pha
can be driven by a decrease in the applied magnetic field
the crystalline regime the magnetophonon frequency of
disordered system lies well in the energy gap and the e
tation peak is sharp. At the transition to the strong-disor
phase the frequency of the collective mode enters the reg
of possible single-particle transitions. The mode shows ty
cal Landau damping: It is broadened and its frequency
creases slightly. Finally, when the strong-disorder phase
comes stable, the excitation becomes overdamped. In
picture we explain recent experimental results by Liet al.18

and Engelet al.16

APPENDIX A: EVALUATION OF THE BUBBLE
WITH A SINGLE IMPURITY INTERACTION LINE

We insert the Fourier transform of the impurity intera
tion line Eq.~29! and the representation of the Green’s fun
tion given in Eq.~3! in Eq. ~28! and obtain

P̂kW ,kW8
1

~qW ,ivn!

5
1

b (
n8,pW

w~pW !

S (
X1 ,kW1 ,X18 ,kW18 ,X2 ,kW2 ,X28 ,kW28

G~kW1 ,ivn81 ivn!

3G~kW18 ,ivn81 ivn!G~kW2 ,ivn!G~kW28 ,ivn!

3exp@ ik1xX11 ik1x8 X181 ik2xX21 ik2x8 X28#

3exp@2 l 2/2~k1xk1y1k1x8 k1y8 1k2xk2y1k2x8 k2y8 !#

3^X282k2y8 l 2u exp~2 ipW rW !uX2&^X12k1yl
2u

3exp~ ipW rW !uX18&^X22k2yl
2u exp@2 i ~qW 1kW !#uX1&

3^X182k1y8 l 2uexp@ i ~qW 1kW8!#uX28&. ~A1!

Further inserting the matrix elements of Eq.~24! yields

P̂kW ,kW8
1

~qW ,ivn!

5
ÂkW ,kW8~qW !

b (
ivn8

(
kW1 ,kW2

G~kW1 ,ivn81 ivn!G~kW2 ,ivn!

3expH i
l 2

2
@~kW23kW1!1~kW12kW2!~qW 1kW !#zJ

3(
pW

w~pW !

S
exp$ i l 2@~kW11kW22qW 2kW !3pW 8#%
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3expS 2
p2l 2

2 D (
kW18 ,kW28

d~kW11kW22kW ,2kW182kW22kW8!

3G~kW18 ,ivn81 ivn!G~kW28 ,ivn! expH i
l 2

2
@~kW183kW28!

1~kW182kW28!3~qW 1kW8!#zJ . ~A2!

We now define

PW 5kW11kW22kW2qW 52kW182kW282kW2qW ~A3!

to eliminatekW2 andkW28 and find

P̂kW ,kW8
1

~qW ,ivn!5
ÂkW ,kW8~qW !

b (
ivn8 ,PW

(
kW1

G~kW1 ,ivn81 ivn!

3G~PW 2kW11kW1qW ,ivn!

3expF i
l 2

2
~PW 2qW 2kW !3kW1G

3expH i
l 2

2
@PW 3~kW82kW !#J

3(
pW

w~pW !

S
exp@ i l 2~PW 3pW !#

3expS 2
p2l 2

2 D(
kW18

G~kW18 ,ivn81 ivn!

3G~2PW 2kW182kW82qW !

3expF i
l 2

2
~PW 2qW 2kW8!3kW18G . ~A4!

Equations~32! and ~35! follow after the substitutionsPW→
2KW 2qW , kW1→kW11kW andkW18→kW181KW .

APPENDIX B: SUMMATION OVER THE MATSUBARA
FREQUENCIES

In this appendix we want to demonstrate how the Mats
ara frequency summation in Eq.~38! can be done using stan
dard techniques described in Ref. 28. A similar problem
been solved in Ref. 29. In the first step we use the resi
theorem to write
-

.

-

s
e

P̂kW ,kW8~qW ,ivn!52ÂkW ,kW8E
G

du

2p i
nF~u!p̂kW ,kW8~qW ,ivn ,u!.

~B1!

HerenF(u)5@exp(bz)11#21 is the Fermi distribution func-
tion which has poles with residues21/b at the fermionic
Matsubara frequencies. For the integration a contourG is
chosen as depicted in Fig. 9. Apart from the poles introdu
through the Fermi distribution function the integrand is reg
lar in the area enclosed byG. To achieve this the two cuts a
Im(u)50 and Im(u)52vn are taken out. At these cut
there is a discontinuity ofp̂0 in the interval2X<Re(u)
<X which is caused by the imaginary parts of the Green
function factors entering inp̂0 according to Eq.~25!. The
interval @2X,X# is the energy range with a nonvanishin
density of states. It is obtained from the ground-state ca
lations and found to be well defined. Outside the interv
@2X,X# the integrand of Eq.~B1! is continuous and no con
tribution to the contour integral results from the cuts
Im(u)50 and Im(u)52vn . In the limit R→` the contri-
bution of the circular part ofG vanishes and we find

P̂kW ,kW8~qW ,ivn!

52ÂkW ,kW8E
2X

X de8

2p i
nF~e8!$p̂kW ,kW8~qW ,ivn ,e81 id!

2p̂kW ,kW8~qW ,ivn ,e82 id!1p̂kW ,kW8@qW ,ivn ,e81 i ~2vn1d!#

2p̂kW ,kW8@qW ,ivn ,e82 i ~vn1d!#%,

where e8 is a real energy variable and we have used
periodicity of the Fermi functionnF(u1 ivn)5nF(u). In the
next step we introduce the analytic continuationivn→v and
find for realv5e the expression Eq.~39!.

FIG. 9. Path of integration.
am,

.

.

1E. P. Wigner, Phys. Rev.46, 1002~1934!.
2V. M. Pudalov, M. D’Iorio, S. V. Krachenko, and J. W. Camp

bell, Phys. Rev. Lett.70, 1866 ~1993!; J. Yoon, C. C. Li, D.
Shahar, D. C. Tsui, and M. Shayegan, cond-mat/9807235~un-
published!.

3R. L. Willett, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W.
West, and K. W. Baldwin, Phys. Rev. B38, 7881~1988!.

4H. W. Jiang, R. L. Willett, H. L. Stormer, D. C. Tsui, L. N
Pfeiffer, and K. W. West, Phys. Rev. Lett.65, 633 ~1990!.
5V. J. Goldman, M. Santos, M. Shayegan, and J. E. Cunningh

Phys. Rev. Lett.65, 2189~1990!.
6M. A. Paalanen, R. L. Willett, P. B. Littlewood, R. R. Ruel, K

W. West, L. N. Pfeiffer, and D. J. Bishop, Phys. Rev. B45, 11
342 ~1992!; M. A. Paalaneni, R. L. Willet, R. R. Ruel, P. B
Littlewood, K. W. West, and L. N. Pfeiffer,ibid. 45, 13 784
~1992!.



el

v.

n,

,

un

n

.

n

.

.

v.

PRB 59 6711LOW-FREQUENCY EXCITATIONS OF A DISORDERED . . .
7M. B. Santos, Y. W. Suen, M. Shayegan, Y. P. Li, L. W. Eng
and D. C. Tsui, Phys. Rev. Lett.68, 1188~1992!; M. B. Santos,
J. Jo, Y. W. Suen, L. W. Engel, and M. Shayegan, Phys. Re
46, 13 639~1992!.

8H. C. Manoharan and M. Shayegan, Phys. Rev. B50, 17 662
~1994!.

9P. K. Lam and S. M. Girvin, Phys. Rev. B30, 473 ~1984!; D.
Levesque, J. J. Weis, and A. H. MacDonald,ibid. 30, 1056
~1984!; H. Y. Yi and H. A. Fertig,ibid. 58, 4019~1998!.

10X. Zhu and S. G. Louie, Phys. Rev. Lett.70, 335~1993!; R. Price,
P. M. Platzman, and S. He,ibid. 70, 339 ~1993!.

11R. L. Willett, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W.
West, M. Shayegan, M. Santos, and T. Sajoto, Phys. Rev. B40,
6432 ~1989!.

12Y. P. Li, T. Sajoto, L. W. Engel, D. C. Tsui, and M. Shayega
Phys. Rev. Lett.67, 1630~1991!.

13E. Y. Andrei, G. Deville, D. C. Glattli, F. I. B. Williams, E. Paris
and B. Etienne, Phys. Rev. Lett.60, 2765~1988!.

14H. L. Stormer and R. L. Willett, Phys. Rev. Lett.62, 972 ~1989!.
15D. Shahar, D. C. Tsui, M. Shayegan, R. N. Bhatt, and J. E. C

ningham, Phys. Rev. Lett.74, 4511~1995!; M. Shayegan, Solid
State Commun.102, 155 ~1997!.

16L. W. Engel, C.-C. Li, D. Shahar, D. C. Tsui, and M. Shayega
Solid State Commun.104, 167 ~1997!.

17V. T. Dolgopolov, G. V. Kravchenko, A. A. Shashkin, and S. V
Kravchenko, Phys. Rev. B46, 13 303~1992!; S. V. Kravchenko,
J. A. A. J. Perenboom, and V. Mi. Pudalov,ibid. 44, 13 513
~1991!.

18C.-C. Li, L. W. Engel, D. Shahar, D. C. Tsui, and M. Shayega
Phys. Rev. Lett.79, 1353~1997!.

19S. Kivelson, D.-H. Lee, and S.-C. Zhang, Phys. Rev. B46, 2223
~1992!.

20H. Aoki, J. Phys. C12, 633 ~1979!.
,

B

-

,

,

21S. T. Chui and B. Tanatar, Phys. Rev. Lett.74, 458 ~1995!.
22T. Ando and Y. Uemura, J. Phys. Soc. Jpn.36, 959 ~1974!; T.

Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys.54, 437
~1982!.

23G. Baym and L. P. Kadanoff, Phys. Rev.124, 287 ~1961!.
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27R. Côté and A. H. MacDonald, Phys. Rev. B44, 8759 ~1991!;

Phys. Rev. Lett.65, 2662~1990!.
28G. D. Mahan,Many-Particle Physics~Plenum, New York, 1986!,

Chap. 3.3.
29D. Antoniou, A. H. MacDonald, and J. Swihart, Phys. Rev. B41,

5440 ~1990!.
30J. D. Jackson,Classical Electrodynamics~Wiley, New York,

1975!, Chaps. 6.8 and 6.10.
31C. Dahl, Phys. Rev. B41, 5763~1990!.
32G. Deville, A. Valdes, E. Y. Andrei, and F. I. B. Williams, Phys

Rev. Lett.53, 588 ~1984!.
33D. C. Glattli, G. Deville, V. Duburcq, and F. I. B. Williams, Surf

Sci. 229, 344 ~1990!.
34B. G. A. Normand, P. A. Littlewood, and A. J. Millis, Phys. Re

B 46, 3920~1992!.
35D. R. Hofstadter, Phys. Rev. B14, 2239 ~1976!; A. H. Mac-

Donald, ibid. 28, 6713~1983!.
36D. Pines,Elementary Excitations in Solids~Benjamin/Cummings,

Reading, MA, 1963!, Chaps. 3-4.
37U. Wulf ~unpublished!.
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