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The purpose of this comment is to point out that results appearing in a paper by [Hiarsg Rev. B63, 20
(1996] on the crossover exponents in superconductor—nonlinear-normal-conductor composites are incorrect
and to clarify the relation between the correlation length and the sizeL of the system.
[S0163-182€09)10001-8

In a recent paperZhang studied the crossover exponentsfluctuation of the corresponding linear composite, we can
on superconductor—nonlinear-conductor compogBeN) in obtain the expressions ®1(8) andW(g).
the case of arbitrary nonlinearity. This is an important prob- It is found that the effective third-order nonlinear suscep-
lem because previous studies are only restricted to cubitbility is in proportion to the mean-square fluctuation of the
nonlinearity>~* In Ref. 1, ad-dimensional hypercubic lattice effective linear conductivity o in an effective linear
with the fractionp of superconductors and the fraction (1 composité
—p) of normal conductors is considered. The conductors are de 2
assumed to have a current densltgnd electric fieldE re- Xe(B=2)~L 00y, (4)

sponse of the ford= o, E+ x4|E|’E, whereo, andy; are  ynerel is the size of the system. This relation can be gen-
the linear conductivity and nonlinear susceptibility, respec-ggjized to the effective nonlinear susceptibility( 8) in the

tively, B is the nonlinear exponent, an@>0. (Here, 8IS ¢age of arbitrary nonlinear exponedit(Refs. 1 and §
equivalent tg8— 1 in Ref. 1) The nonlinear term is assumed

to be weak, i.e.x;|E|#/o,<1. The crossover electric field Xe(B)~LY 85 PT212) | (5)
E. is defined as the electric field at which the linear response

and the nonlinear response become comparable and has Where (6o *2"2); indicates the high-ordef(8+2)/2]th
cumulant. The high-order relative fluctuation, which is the

oo\ VP ratio of high-order [(B8+2)/2]th cumulant to the[(B8
EC:(X_) : (1) +2)/2]th order effective linear conductivity, can be ex-
e pressed d¢

the corresponding crossover current density (50(’3”)’2)
e Cc

J=20E,. @ me[l_ (ﬁ+2)/2](pc_p)—K/[(B+2)/2]' (6)
Below the percolation threshold of the superconductBes, where k'[(B+2)/2] denotes the divergence of the high-
andJ. are found to behave as order relative fluctuation and can be reduced to the noise
Ec~(pc—PM?, I~ (pc—p)™MP, &) 2225;3;(3%). Combining Eq.(5) with Eq. (6), we can
where crossover exponeni$(B) and W(B) are 8 depen- e B)~ LB )~ (B2 ((8+22 ()

dent, and sinces.~(p.—p) "5, we have W(B)=M(B)

—s. A crude estimate can be obtained by using an effectiveSubstituting Eq.(7) into the definition of crossover electric
medium approximationM (B)=1/2,W(B)=—1/2 for all  field and current density, we obtain

spatial dimensionsl and arbitrary3(>0).° By using the

connection of this nonlinear response to the conductance E ~L (@2 1= 2B — p)isl2+ «'[(B+2)/2)/B} (8
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and

©)

The above relations are correct for- ¢, i.e., in the Eu-
clidean regime; thus Eq#6)—(9) are not only valid for finite

Jo~ L@ A=28)(p _ pyi=si2+ {«'[(B+202},
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(4) and (5) in Ref. 1, incorrectly. Their so-called crossover
exponents characterize by no means the physical parameters
dependence onp—p).

In order to analyze the properties of crossover exponents,
we must look for the expression a&f [ (B8+2)/2].

When L<¢, i.e., in the fractal regime, Eq6) can be

system, but also correct in the thermodynamic limit and beyyitten as

low the percolation thresholgl, (which includesp—p). In

thermodynamic limits case, those physical parameters, which

are similar to a system conductance such @s-(p.
—p) SL972, depend on botip,—p andL.’ Therefore, the
crossover exponents! (8) and W(B), which describe the

dependence of the crossover electric field and current densi

on (p.—p), are given as follows:

s k'[(B+2)/2]

M= 5+ (10
and
! +2)12
wig -5+ 2, v

when B=2, the above results will be reduced to the well-
known resultsM(2)=[«'(2)+s]/2 and W(2)=[«'(2)
—s]/2, respectively.

(B+2)2
(0oe e L{dl1- (B+2)/2)+ K'[(B+2)02v} - (19)
(B+2)I2 :
Ue
On the other hand, the above relation can also be ex-
gressed &s

+2)12
(80 f PR,
Ué,mz)/z

B <5G(B+2)/2>C

~ L{lﬂe[(ﬁ+ 2)12]-[(2+ B)2)¢cH v
G(A+2)12 '

(13

where [ (B+2)/2] characterizes the scaling of thé¢gs
+2)/2]th cumulant of the global conductance distribution
that comes from the local conductance fluctuafidhThe
macroscopic conductanc8 behaves asG~ o L9 %~ (p,
—p) SLY 2~ SvHtdm2 | Gelv for L<¢, where {g=s
+(d—=2)v.

Comparing Eq(12) with Eq. (13), we can obtain the re-

Here we must emphasize that the above results diffefation betweerx'[(B+2)/2] and ¢ (B+2)/2], i.e.,

from Egs.(9) and (10) in Ref. 1. If we replacel by the
correlation lengthé in Egs. (8) and (9), which diverges as

&~(p.—p) 7 near the percolation threshold, we can easily

get Egs.(9) and(10) in Ref. 1. Unfortunately, such substitu-
tion is unreasonable. It is known thiatand £ are two differ-
ent physics parameters. In the vicinity pf, £ is the func-
tion of p.—p, while L is a fixed quantity for a given system
(in the thermodynamic limiL is taken asc) and is indepen-
dent ofp,—p. While at the percolation threshold, however,
the percolation correlation length diverges and the above

+2
+ 'BT(dv—ge). (14)

2

2

K/

+dV: ¢G(B+2>

The above equation is the same as &g.in Ref. 1, but it is
deduced wrongly, so that the results of E(.and (10) in
Ref. 1 are incorrect. Incidentally, according to Zhang's idea,
if L could be replaced by, Egs.(3)—(5) and Eq.(11) in Ref.

1 would be enough to obtail (8) andW(B) and it seems
unnecessary to spare much effort in introducirg (B

relations are not approached; the whole system is always if2)/2] and obtaining the relation betweed [(8+2)/2]
the fractal or self-similar regime. In this case, these physicaiind /[ (8+2)/2] [see Eqs(6) and(7) in Ref. 1]. But, the

parameters will only depend dn and can be obtained by
making (p.— p)~ &~ Y=L~ i.e., replacingt with L (not
L with £). In order to demonstrate thatcannot be replaced
by & we also give some concrete exampl@sHui remarked

that “[ 802/ a% ~L " Y(p,—p) @], the relative fluctua-

tion, which is the ratio of the mean-square fluctuation to the

square of the effective conductivity, behaves as. (
—p)~ <@ in a S/N mixture forp approaching tq, from
below,”®>  not  So/a?~L Y p—p) < @D~ 9(p,
—p) @ =(p.,—p)"? <@ according to Zhang's wrong
substitution.(ii) Equation(7) shows that the critical expo-
nent, which describes the divergence xaf{ 8) on p.—p,
should bex’[(B+2)/2]+ [(B+2)/2]s,® not k'[(B+2)/2]
+ (B+2/2)+ [(2— B)/2] dv, which is the wrong result of
replacingL with & (iii) Kolek et al. mentioned that “The
critical behavior of p>p. given by the law Ge(p
— P [G~(p—pe)'L9"?], whereG is the network conduc-
tance,t is the critical exponent, ang@. is the percolation
threshold ...,” and so on. In a word, cannot be replaced by
£in any case.

In Zhang’'s work, the relation betweefiand L is con-
fused, and. is replaced by in those equations, such as Egs.

introduction ofk’[(8+2)/2] is a musf
Substituting Eq(14) into Egs.(10) and(11), we have

1] (B2
M('B)_E l/fe(T)—{G +v (15
and
RS
W('B)_E e T)—ge +v—s. (16)

Analytic and numerical results of theg[ (8+2)/2] have
been obtained on a two-dimensional random resistor network
in the vicinity of the percolation threshofa}, .%° Making use
of the same procedure of calculation and parametersl for
=2 as in Ref. 1, and notings(1)={g, we have following
results: (i) lImM(B—0%)=1.131>0 and limW(B8—0")
=-0.166<0. (i) limM(B8— +»)=1.333>0 and lim
W(B— +2)=0.036>0.

Based on so-called “single disconnected bonds picture,”
Hui gives the upper bound for the crossover exponent
W(B)=1% for arbitrary 8 (Ref. 11 in the two-dimensional
case; we can easily get the upper boundNiB) =35 inde-
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pendent of 3, while Zhang givesM(B—0")=+= and
W(B—0") =+, which largely exceed such bounds.

The monotonicity is the important property bf(3) and
W(B); we have

diM(A)] _dIW(A)]

dp dg
1B d{ydl(B+2)2]} B+2)+
T2 dpror Vel Tz Tre
(17)
Note that [ (B+2)/2]>0, dyi[(B+2)2]d[(B

+2)/2]<0, and {g= (1) takes the maximum value of

Y (B+2)12]; we haved[M (8)]/dB = d[W(B)]/dB>0 for
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Jo— t+ o,

W(B)<0, B<Bc,

J.—const,

W(B)=0, B=pc. (18

Je—0, W(B)>0, B>pc,

where 8,~8.15 is a critical value at whickV(B)=0.

Our conclusions are perfectly opposite to that in Ref. 1.
We believe that our results are more reliable from the view-
point of the physics meaning.

Finally, other mistakes in Ref. 1 also exist. Equatipis
a wrong form and Eq(2) should beJ, not I, (=L9"1J,).
Both Eq.(4) and Eq.(5) are wrong, and they are contrary to
each other because.~ (p.—p) " °.

Summarily, our conclusions for a two-dimensional S/N
composite arél) M(B8)>0 for arbitrary3>0 (this is same

any g>0. This conclusion is also in agreement with the nu-55 that in Ref. 1; it implies that the nonlinear response of the

merical results. BotiM(8) and W() are monotonically /N composite becomes remarkable in the vicinity of perco-
increasing functions with the increase f M(B8)>0 for  |ation threshold, and a small electric field can lead to an

?HYB(TO)v while W(B) may take positive, zero, and nega- enhancement of nonlinear respondé() increases mono-
ive values.

Since M(B8)>0 and dM(RB)/dB>0, it shows that the
crossover fielce; vanishes faster for larges; the larger the

tonically with the increase g8 (this result is opposite to that
in Ref. 1); for a largeB, we may predict that a somewhat
smaller electric field is enough to stimulate a remarkable

nonlinearity 3, the smaller the electric field that is needed tongnjinear responsé2) W(3) may take positive, zero, and
stimulate a remarkable nonlinear response. This can be Uprpgative valuesthis conclusion is same as that in Ref, 1

derstood, for the nonlinear tergy|E¢|#, which can be com-
pared with the linear ternr, ; with the increase oB, E. will

and monotonic increase with the increaseBofthis conclu-
sion is opposite to that in Ref),1so that), shows a complex

be needed to reduce and the nonlinear region will increasgehavior such as diverging or keeping invariance or vanish-

accordingly.
On the other hand, in a smallgr such as—0", then
E.~(p.— p) 1130 takes the maximum for finitg,—p. In

fact, asp— 0", the nonlinear component has become a lin-
ear component; thus the system possesses the largest lin

region.
As to the crossover current densily, we have the fol-
lowing results:

ing with the increase oB asp—p. . We can conclude that

for B<B.(=8.15), whenp—p. , J. will diverge, and only

E. can be used to describe the crossover effect. While for
> B., both E. and J, will vanish asp—p, and can be
ed to describe the crossover effect.
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