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Comment on ‘‘Crossover exponents in percolating
superconductor–nonlinear-conductor mixtures’’
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The purpose of this comment is to point out that results appearing in a paper by Zhang@Phys. Rev. B53, 20
~1996!# on the crossover exponents in superconductor–nonlinear-normal-conductor composites are incorrect
and to clarify the relation between the correlation lengthj and the size L of the system.
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In a recent paper,1 Zhang studied the crossover expone
on superconductor–nonlinear-conductor composites~S/N! in
the case of arbitrary nonlinearity. This is an important pro
lem because previous studies are only restricted to c
nonlinearity.2–4 In Ref. 1, ad-dimensional hypercubic lattice
with the fractionp of superconductors and the fraction (
2p) of normal conductors is considered. The conductors
assumed to have a current densityJ and electric fieldE re-
sponse of the formJ5s1E1x1uEubE, wheres1 andx1 are
the linear conductivity and nonlinear susceptibility, resp
tively, b is the nonlinear exponent, andb.0. ~Here, b is
equivalent tob21 in Ref. 1.! The nonlinear term is assume
to be weak, i.e.,x1uEub/s1!1. The crossover electric field
Ec is defined as the electric field at which the linear respo
and the nonlinear response become comparable and ha

Ec5S se

xe
D 1/b

, ~1!

the corresponding crossover current density

Jc52seEc . ~2!

Below the percolation threshold of the superconductors,Ec
andJc are found to behave as

Ec;~pc2p!M ~b!, Jc;~pc2p!W~b!, ~3!

where crossover exponentsM (b) and W(b) are b depen-
dent, and sincese;(pc2p)2s, we have W(b)5M (b)
2s. A crude estimate can be obtained by using an effec
medium approximation,M (b)51/2,W(b)521/2 for all
spatial dimensionsd and arbitraryb(.0).5 By using the
connection of this nonlinear response to the conducta
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fluctuation of the corresponding linear composite, we c
obtain the expressions ofM (b) andW(b).

It is found that the effective third-order nonlinear susce
tibility is in proportion to the mean-square fluctuation of th
effective linear conductivityse in an effective linear
composite2

xe~b52!;Lddse
2 , ~4!

whereL is the size of the system. This relation can be ge
eralized to the effective nonlinear susceptibilityxe(b) in the
case of arbitrary nonlinear exponentb ~Refs. 1 and 6!,

xe~b!;Ld^dse
~b12!/2&c , ~5!

where ^dse
(b12)/2&c indicates the high-order@(b12)/2#th

cumulant. The high-order relative fluctuation, which is t
ratio of high-order @(b12)/2#th cumulant to the @(b
12)/2#th order effective linear conductivity, can be e
pressed as1,6

^dse
~b12!/2&c

se
~b12!/2

;Ld @12 ~b12!/2#~pc2p!2k8@~b12!/2#, ~6!

where k8@(b12)/2# denotes the divergence of the hig
order relative fluctuation and can be reduced to the no
exponent (b52). Combining Eq.~5! with Eq. ~6!, we can
easily get

xe~b!;L ~22b!d/2~pc2p!2 ~b12!s/2 2k8@~b12!/2#. ~7!

Substituting Eq.~7! into the definition of crossover electri
field and current density, we obtain

Ec;L ~d/2! ~12 2/b!~pc2p!$s/2 1 k8@~b12!/2#/b% ~8!
668 ©1999 The American Physical Society
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and

Jc;L ~d/2! ~12 2/b!~pc2p!$2 s/2 1 $k8@~b12!/2#/b%. ~9!

The above relations are correct forL.j, i.e., in the Eu-
clidean regime; thus Eqs.~6!–~9! are not only valid for finite
system, but also correct in the thermodynamic limit and
low the percolation thresholdpc ~which includesp→pc

2). In
thermodynamic limits case, those physical parameters, w
are similar to a system conductance such asG;(pc
2p)2sLd22, depend on bothpc2p and L.7 Therefore, the
crossover exponentsM (b) and W(b), which describe the
dependence of the crossover electric field and current den
on (pc2p), are given as follows:

M ~b!5
s

2
1

k8@~b12!/2#

b
~10!

and

W~b!52
s

2
1

k8@~b12!/2#

b
; ~11!

when b52, the above results will be reduced to the we
known results M (2)5 @k8(2)1s#/2 and W(2)5 @k8(2)
2s#/2, respectively.

Here we must emphasize that the above results d
from Eqs. ~9! and ~10! in Ref. 1. If we replaceL by the
correlation lengthj in Eqs. ~8! and ~9!, which diverges as
j;(pc2p)2n near the percolation threshold, we can eas
get Eqs.~9! and~10! in Ref. 1. Unfortunately, such substitu
tion is unreasonable. It is known thatL andj are two differ-
ent physics parameters. In the vicinity ofpc , j is the func-
tion of pc2p, while L is a fixed quantity for a given system
~in the thermodynamic limitL is taken as̀ ) and is indepen-
dent ofpc2p. While at the percolation threshold, howeve
the percolation correlation lengthj diverges and the abov
relations are not approached; the whole system is alway
the fractal or self-similar regime. In this case, these phys
parameters will only depend onL and can be obtained b
making (pc2p);j2 1/n5L2 1/n, i.e., replacingj with L ~not
L with j!. In order to demonstrate thatL cannot be replaced
by j, we also give some concrete examples.~i! Hui remarked
that ‘‘@dse

2/se
2 ;L2d(pc2p)2k8(2)#, the relative fluctua-

tion, which is the ratio of the mean-square fluctuation to
square of the effective conductivity, behaves aspc

2p)2k8(2) in a S/N mixture forp approaching topc from
below,’’3 not dse

2/se
2 ;L2d(pc2p)2k8(2);j2d(pc

2p)2k8(2)5(pc2p)nd2k8(2) according to Zhang’s wrong
substitution.~ii ! Equation~7! shows that the critical expo
nent, which describes the divergence ofxe(b) on pc2p,
should bek8@(b12)/2#1 @(b12)/2# s,8 not k8@(b12)/2#
1 (b12/2)1 @(22b)/2# dn, which is the wrong result of
replacingL with j. ~iii ! Kolek et al. mentioned that ‘‘The
critical behavior of p.pc given by the law G}(p
2pc)

t @G;(p2pc)
tLd22#, whereG is the network conduc-

tance, t is the critical exponent, andpc is the percolation
threshold ...,’’7 and so on. In a word,L cannot be replaced b
j in any case.

In Zhang’s work, the relation betweenj and L is con-
fused, andL is replaced byj in those equations, such as Eq
-
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~4! and ~5! in Ref. 1, incorrectly. Their so-called crossov
exponents characterize by no means the physical param
dependence on (pc2p).

In order to analyze the properties of crossover expone
we must look for the expression ofk8@(b12)/2#.

When L,j, i.e., in the fractal regime, Eq.~6! can be
written as

^dse
~b12!/2&c

se
~b12!/2

;L $d@12 ~b12!/2#1 k8@~b12!/2#/n%. ~12!

On the other hand, the above relation can also be
pressed as6

^dse
~b12!/2&c

se
~b12!/2

;
^dG~b12!/2&c

G~b12!/2
;L $cG@~b12!/2#2@~21b!/2#zG%/n,

~13!

where cG@(b12)/2# characterizes the scaling of the@(b
12)/2#th cumulant of the global conductance distributio
that comes from the local conductance fluctuation.9,10 The
macroscopic conductanceG behaves asG;seL

d22;(pc
2p)2sLd22;Ls/n 1d22;LzG /n for L,j, where zG5s
1(d22)n.

Comparing Eq.~12! with Eq. ~13!, we can obtain the re-
lation betweenk8@(b12)/2# andc@(b12)/2#, i.e.,

k8S b12

2 D1dn5cGS b12

2 D1
b12

2
~dn2zG!. ~14!

The above equation is the same as Eq.~7! in Ref. 1, but it is
deduced wrongly, so that the results of Eqs.~9! and ~10! in
Ref. 1 are incorrect. Incidentally, according to Zhang’s id
if L could be replaced byj, Eqs.~3!–~5! and Eq.~11! in Ref.
1 would be enough to obtainM (b) andW(b) and it seems
unnecessary to spare much effort in introducingk8@(b
12)/2# and obtaining the relation betweenk8@(b12)/2#
andcG@(b12)/2# @see Eqs.~6! and ~7! in Ref. 1#. But, the
introduction ofk8@(b12)/2# is a must.6

Substituting Eq.~14! into Eqs.~10! and ~11!, we have

M ~b!5
1

b FcGS b12

2 D2zGG1n ~15!

and

W~b!5
1

b FcGS b12

2 D2zGG1n2s. ~16!

Analytic and numerical results of thecG@(b12)/2# have
been obtained on a two-dimensional random resistor netw
in the vicinity of the percolation thresholdpc .8,9 Making use
of the same procedure of calculation and parameters fod
52 as in Ref. 1, and notingcG(1)5zG , we have following
results: ~i! lim M (b→01)>1.131.0 and limW(b→01)
>20.166,0. ~ii ! lim M (b→1`)>1.333.0 and lim
W(b→1`)>0.036.0.

Based on so-called ‘‘single disconnected bonds pictur
Hui gives the upper bound for the crossover expon
W(b)> 1

3 for arbitrary b ~Ref. 11! in the two-dimensional
case; we can easily get the upper bound forM (b)> 4

3 inde-
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pendent ofb, while Zhang givesM (b→01)51` and
W(b→01)51`, which largely exceed such bounds.

The monotonicity is the important property ofM (b) and
W(b); we have

d@M ~b!#

db
5

d@W~b!#

db

5
1

b2Fb2 d$cG@~b12!/2#%

d@~b12!/2#
2cGS b12

2 D1zGG .
~17!

Note that cG@(b12)/2#.0, dcG@(b12)2#d @(b
12)/2#,0, and zG5cG(1) takes the maximum value o
c@(b12)/2#; we haved@M (b)#/db 5 d@W(b)#/db.0 for
any b.0. This conclusion is also in agreement with the n
merical results. BothM (b) and W(b) are monotonically
increasing functions with the increase ofb; M (b).0 for
anyb(.0), while W(b) may take positive, zero, and neg
tive values.

Since M (b).0 and dM(b)/db.0, it shows that the
crossover fieldEc vanishes faster for largerb; the larger the
nonlinearityb, the smaller the electric field that is needed
stimulate a remarkable nonlinear response. This can be
derstood, for the nonlinear termxeuEcub, which can be com-
pared with the linear termse ; with the increase ofb, Ec will
be needed to reduce and the nonlinear region will incre
accordingly.

On the other hand, in a smallerb such asb→01, then
Ec;(pc2p)1.130 takes the maximum for finitepc2p. In
fact, asb→01, the nonlinear component has become a l
ear component; thus the system possesses the largest
region.

As to the crossover current densityJc , we have the fol-
lowing results:
-

n-

se

-
ear

Jc→1`, W~b!,0, b,bc ,

Jc→const, W~b!50, b5bc , ~18!

Jc→0, W~b!.0, b.bc ,

wherebc'8.15 is a critical value at whichW(b)50.
Our conclusions are perfectly opposite to that in Ref.

We believe that our results are more reliable from the vie
point of the physics meaning.

Finally, other mistakes in Ref. 1 also exist. Equation~1! is
a wrong form and Eq.~2! should beJc not I c (5Ld21Jc).
Both Eq.~4! and Eq.~5! are wrong, and they are contrary t
each other becausese;(pc2p)2s.

Summarily, our conclusions for a two-dimensional S
composite are~1! M (b).0 for arbitraryb.0 ~this is same
as that in Ref. 1; it implies that the nonlinear response of
S/N composite becomes remarkable in the vicinity of per
lation threshold, and a small electric field can lead to
enhancement of nonlinear response.M (b) increases mono-
tonically with the increase ofb ~this result is opposite to tha
in Ref. 1!; for a largeb, we may predict that a somewha
smaller electric field is enough to stimulate a remarka
nonlinear response.~2! W(b) may take positive, zero, an
negative values~this conclusion is same as that in Ref. 1!,
and monotonic increase with the increase ofb ~this conclu-
sion is opposite to that in Ref. 1!, so thatJc shows a complex
behavior such as diverging or keeping invariance or van
ing with the increase ofb asp→pc

2 . We can conclude tha
for b,bc(58.15), whenp→pc

2 , Jc will diverge, and only
Ec can be used to describe the crossover effect. While
b.bc , both Ec and Jc will vanish asp→pc

2 and can be
used to describe the crossover effect.
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