COMMENTS

Comments are short papers which criticize or correct papers of other authors previously published in **Physical Review B.** Each Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Comment on "Crossover exponents in percolating superconductor-nonlinear-conductor mixtures"

Lei Gao and Wen-Gang Lu Department of Physics, Suzhou University, Suzhou 215006, China

Zhen-Ya Li

CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China and Department of Physics, Suzhou University, Suzhou 215006, China* (Received 14 November 1997)

The purpose of this comment is to point out that results appearing in a paper by Zhang [Phys. Rev. B **53**, 20 (1996)] on the crossover exponents in superconductor–nonlinear-normal-conductor composites are incorrect and to clarify the relation between the correlation length ξ and the size L of the system. [S0163-1829(99)10001-8]

In a recent paper,¹ Zhang studied the crossover exponents on superconductor–nonlinear-conductor composites (S/N) in the case of arbitrary nonlinearity. This is an important problem because previous studies are only restricted to cubic nonlinearity.²⁻⁴ In Ref. 1, a *d*-dimensional hypercubic lattice with the fraction *p* of superconductors and the fraction (1 -p) of normal conductors is considered. The conductors are assumed to have a current density **J** and electric field **E** response of the form $\mathbf{J} = \sigma_1 \mathbf{E} + \chi_1 |\mathbf{E}|^{\beta} \mathbf{E}$, where σ_1 and χ_1 are the linear conductivity and nonlinear susceptibility, respectively, β is the nonlinear exponent, and $\beta > 0$. (Here, β is equivalent to $\beta - 1$ in Ref. 1.) The nonlinear term is assumed to be weak, i.e., $\chi_1 |\mathbf{E}|^{\beta} / \sigma_1 \ll 1$. The crossover electric field E_c is defined as the electric field at which the linear response and the nonlinear response become comparable and has

$$E_{c} = \left(\frac{\sigma_{e}}{\chi_{e}}\right)^{1/\beta},\tag{1}$$

the corresponding crossover current density

$$J_c = 2\sigma_e E_c \,. \tag{2}$$

Below the percolation threshold of the superconductors, E_c and J_c are found to behave as

$$E_c \sim (p_c - p)^{M(\beta)}, \quad J_c \sim (p_c - p)^{W(\beta)},$$
 (3)

where crossover exponents $M(\beta)$ and $W(\beta)$ are β dependent, and since $\sigma_e \sim (p_c - p)^{-s}$, we have $W(\beta) = M(\beta) - s$. A crude estimate can be obtained by using an effective medium approximation, $M(\beta) = 1/2$, $W(\beta) = -1/2$ for all spatial dimensions *d* and arbitrary $\beta(>0)$.⁵ By using the connection of this nonlinear response to the conductance

fluctuation of the corresponding linear composite, we can obtain the expressions of $M(\beta)$ and $W(\beta)$.

It is found that the effective third-order nonlinear susceptibility is in proportion to the mean-square fluctuation of the effective linear conductivity σ_e in an effective linear composite²

$$\chi_e(\beta=2) \sim L^d \delta \sigma_e^2, \tag{4}$$

where *L* is the size of the system. This relation can be generalized to the effective nonlinear susceptibility $\chi_e(\beta)$ in the case of arbitrary nonlinear exponent β (Refs. 1 and 6),

$$\chi_e(\beta) \sim L^d \langle \delta \sigma_e^{(\beta+2)/2} \rangle_c, \qquad (5)$$

where $\langle \delta \sigma_e^{(\beta+2)/2} \rangle_c$ indicates the high-order $[(\beta+2)/2]$ th cumulant. The high-order relative fluctuation, which is the ratio of high-order $[(\beta+2)/2]$ th cumulant to the $[(\beta+2)/2]$ th order effective linear conductivity, can be expressed as^{1,6}

$$\frac{\langle \delta \sigma_e^{(\beta+2)/2} \rangle_c}{\sigma_e^{(\beta+2)/2}} \sim L^{d[1-(\beta+2)/2]} (p_c - p)^{-\kappa'[(\beta+2)/2]}, \quad (6)$$

where $\kappa'[(\beta+2)/2]$ denotes the divergence of the highorder relative fluctuation and can be reduced to the noise exponent ($\beta=2$). Combining Eq. (5) with Eq. (6), we can easily get

$$\chi_e(\beta) \sim L^{(2-\beta)d/2} (p_c - p)^{-(\beta+2)s/2 - \kappa'[(\beta+2)/2]}.$$
 (7)

Substituting Eq. (7) into the definition of crossover electric field and current density, we obtain

$$E_{c} \sim L^{(d/2)(1-2/\beta)}(p_{c}-p)^{\{s/2+\kappa'[(\beta+2)/2]/\beta\}}$$
(8)

668

and

$$J_{c} \sim L^{(d/2)(1-2/\beta)} (p_{c} - p)^{\{-s/2 + \{\kappa'[(\beta+2)/2]/\beta\}}.$$
 (9)

The above relations are correct for $L > \xi$, i.e., in the Euclidean regime; thus Eqs. (6)–(9) are not only valid for finite system, but also correct in the thermodynamic limit and below the percolation threshold p_c (which includes $p \rightarrow p_c^-$). In thermodynamic limits case, those physical parameters, which are similar to a system conductance such as $G \sim (p_c -p)^{-s}L^{d-2}$, depend on both $p_c - p$ and L.⁷ Therefore, the crossover exponents $M(\beta)$ and $W(\beta)$, which describe the dependence of the crossover electric field and current density on $(p_c - p)$, are given as follows:

$$M(\beta) = \frac{s}{2} + \frac{\kappa'[(\beta+2)/2]}{\beta} \tag{10}$$

and

$$W(\beta) = -\frac{s}{2} + \frac{\kappa'[(\beta+2)/2]}{\beta}; \qquad (11)$$

when $\beta = 2$, the above results will be reduced to the wellknown results $M(2) = [\kappa'(2) + s]/2$ and $W(2) = [\kappa'(2) - s]/2$, respectively.

Here we must emphasize that the above results differ from Eqs. (9) and (10) in Ref. 1. If we replace L by the correlation length ξ in Eqs. (8) and (9), which diverges as $\xi \sim (p_c - p)^{-\nu}$ near the percolation threshold, we can easily get Eqs. (9) and (10) in Ref. 1. Unfortunately, such substitution is unreasonable. It is known that L and ξ are two different physics parameters. In the vicinity of p_c , ξ is the function of $p_c - p$, while L is a fixed quantity for a given system (in the thermodynamic limit L is taken as ∞) and is independent of $p_c - p$. While at the percolation threshold, however, the percolation correlation length ξ diverges and the above relations are not approached; the whole system is always in the fractal or self-similar regime. In this case, these physical parameters will only depend on *L* and can be obtained by making $(p_c - p) \sim \xi^{-1/\nu} = L^{-1/\nu}$, i.e., replacing ξ with *L* (not L with ξ). In order to demonstrate that L cannot be replaced by ξ , we also give some concrete examples. (i) Hui remarked that " $[\delta\sigma_e^2/\sigma_e^2 \sim L^{-d}(p_c-p)^{-\kappa'(2)}]$, the relative fluctuation, which is the ratio of the mean-square fluctuation to the square of the effective conductivity, behaves as (p_c) $(-p)^{-\kappa'(2)}$ in a S/N mixture for p approaching to p_c from below,''³ not $\delta \sigma_e^2 / \sigma_e^2 \sim L^{-d} (p_c - p)^{-\kappa'(2)} \sim \xi^{-d} (p_c - p)^{-\kappa'(2)} \sim \xi^{-d} (p_c - p)^{\nu d - \kappa'(2)}$ according to Zhang's wrong substitution. (ii) Equation (7) shows that the critical exponent, which describes the divergence of $\chi_e(\beta)$ on $p_c - p$, should be $\kappa'[(\beta+2)/2] + [(\beta+2)/2]s^8$ not $k'[(\beta+2)/2]$ + $(\beta + 2/2) + [(2 - \beta)/2] d\nu$, which is the wrong result of replacing L with ξ . (iii) Kolek et al. mentioned that "The critical behavior of $p > p_c$ given by the law $G \propto (p - p_c)^t [G \sim (p - p_c)^t L^{d-2}]$, where G is the network conductance, t is the critical exponent, and p_c is the percolation threshold ...,"⁷ and so on. In a word, L cannot be replaced by ξ in any case.

In Zhang's work, the relation between ξ and L is confused, and L is replaced by ξ in those equations, such as Eqs. In order to analyze the properties of crossover exponents, we must look for the expression of $\kappa'[(\beta+2)/2]$.

When $L < \xi$, i.e., in the fractal regime, Eq. (6) can be written as

$$\frac{\langle \delta \sigma_e^{(\beta+2)/2} \rangle_c}{\sigma_e^{(\beta+2)/2}} \sim L^{\{d[1-(\beta+2)/2]+k'[(\beta+2)/2]/\nu\}}.$$
 (12)

On the other hand, the above relation can also be expressed as^6

$$\frac{\langle \delta \sigma_{e}^{(\beta+2)/2} \rangle_{c}}{\sigma_{e}^{(\beta+2)/2}} \sim \frac{\langle \delta G^{(\beta+2)/2} \rangle_{c}}{G^{(\beta+2)/2}} \sim L^{\{\psi_{G}[(\beta+2)/2] - [(2+\beta)/2]\zeta_{G}\}/\nu},$$
(13)

where $\psi_G[(\beta+2)/2]$ characterizes the scaling of the $[(\beta+2)/2]$ th cumulant of the global conductance distribution that comes from the local conductance fluctuation.^{9,10} The macroscopic conductance *G* behaves as $G \sim \sigma_e L^{d-2} \sim (p_c - p)^{-s} L^{d-2} \sim L^{s/\nu+d-2} \sim L^{\zeta_G/\nu}$ for $L < \xi$, where $\zeta_G = s + (d-2)\nu$.

Comparing Eq. (12) with Eq. (13), we can obtain the relation between $\kappa'[(\beta+2)/2]$ and $\psi[(\beta+2)/2]$, i.e.,

$$\kappa'\left(\frac{\beta+2}{2}\right) + d\nu = \psi_G\left(\frac{\beta+2}{2}\right) + \frac{\beta+2}{2}(d\nu - \zeta_G). \quad (14)$$

The above equation is the same as Eq. (7) in Ref. 1, but it is deduced wrongly, so that the results of Eqs. (9) and (10) in Ref. 1 are incorrect. Incidentally, according to Zhang's idea, if *L* could be replaced by ξ , Eqs. (3)–(5) and Eq. (11) in Ref. 1 would be enough to obtain $M(\beta)$ and $W(\beta)$ and it seems unnecessary to spare much effort in introducing $\kappa'[(\beta + 2)/2]$ and obtaining the relation between $\kappa'[(\beta+2)/2]$ and $\psi_G[(\beta+2)/2]$ [see Eqs. (6) and (7) in Ref. 1]. But, the introduction of $k'[(\beta+2)/2]$ is a must.⁶

Substituting Eq. (14) into Eqs. (10) and (11), we have

$$M(\beta) = \frac{1}{\beta} \left[\psi_G \left(\frac{\beta + 2}{2} \right) - \zeta_G \right] + \nu$$
 (15)

and

$$W(\beta) = \frac{1}{\beta} \left[\psi_G \left(\frac{\beta + 2}{2} \right) - \zeta_G \right] + \nu - s.$$
 (16)

Analytic and numerical results of the $\psi_G[(\beta+2)/2]$ have been obtained on a two-dimensional random resistor network in the vicinity of the percolation threshold p_c .^{8,9} Making use of the same procedure of calculation and parameters for d=2 as in Ref. 1, and noting $\psi_G(1) = \zeta_G$, we have following results: (i) $\lim M(\beta \to 0^+) \cong 1.131 > 0$ and $\lim W(\beta \to 0^+)$ $\cong -0.166 < 0$. (ii) $\lim M(\beta \to +\infty) \cong 1.333 > 0$ and $\lim W(\beta \to +\infty) \cong 0.036 > 0$.

Based on so-called "single disconnected bonds picture," Hui gives the upper bound for the crossover exponent $W(\beta) \cong \frac{1}{3}$ for arbitrary β (Ref. 11) in the two-dimensional case; we can easily get the upper bound for $M(\beta) \cong \frac{4}{3}$ independent of β , while Zhang gives $M(\beta \rightarrow 0^+) = +\infty$ and $W(\beta \rightarrow 0^+) = +\infty$, which largely exceed such bounds.

The monotonicity is the important property of $M(\beta)$ and $W(\beta)$; we have

$$\frac{d[M(\beta)]}{d\beta} = \frac{d[W(\beta)]}{d\beta} = \frac{1}{\beta^2} \left[\frac{\beta}{2} \frac{d\{\psi_G[(\beta+2)/2]\}}{d[(\beta+2)/2]} - \psi_G\left(\frac{\beta+2}{2}\right) + \zeta_G \right].$$
(17)

Note that $\psi_G[(\beta+2)/2] > 0$, $d\psi_G[(\beta+2)2]d[(\beta+2)/2] < 0$, and $\zeta_G = \psi_G(1)$ takes the maximum value of $\psi[(\beta+2)/2]$; we have $d[M(\beta)]/d\beta = d[W(\beta)]/d\beta > 0$ for any $\beta > 0$. This conclusion is also in agreement with the numerical results. Both $M(\beta)$ and $W(\beta)$ are monotonically increasing functions with the increase of β ; $M(\beta) > 0$ for any $\beta(>0)$, while $W(\beta)$ may take positive, zero, and negative values.

Since $M(\beta) > 0$ and $dM(\beta)/d\beta > 0$, it shows that the crossover field E_c vanishes faster for larger β ; the larger the nonlinearity β , the smaller the electric field that is needed to stimulate a remarkable nonlinear response. This can be understood, for the nonlinear term $\chi_e |E_c|^{\beta}$, which can be compared with the linear term σ_e ; with the increase of β , E_c will be needed to reduce and the nonlinear region will increase accordingly.

On the other hand, in a smaller β such as $\beta \rightarrow 0^+$, then $E_c \sim (p_c - p)^{1.130}$ takes the maximum for finite $p_c - p$. In fact, as $\beta \rightarrow 0^+$, the nonlinear component has become a linear component; thus the system possesses the largest linear region.

As to the crossover current density J_c , we have the following results:

*Mailing address.

- ¹G. M. Zhang, Phys. Rev. B **53**, 20 (1996).
- ²D. Stroud and P. M. Hui, Phys. Rev. B **37**, 8719 (1988).
- ³P. M. Hui, Phys. Rev. B **49**, 15 344 (1994); K. W. Yu and P. M. Hui, *ibid.* **50**, 13 327 (1994).
- ⁴O. Levy and D. J. Bergman, Phys. Rev. B 50, 3652 (1994).
- ⁵P. M. Hui and K. H. Chung, Physica A 231, 408 (1996).
- ⁶R. Blumenfeld and D. J. Bergman, Phys. Rev. B **43**, 13682 (1991).

 $J_{c} \rightarrow +\infty, \quad W(\beta) < 0, \ \beta < \beta_{c},$ $J_{c} \rightarrow \text{const}, \quad W(\beta) = 0, \ \beta = \beta_{c},$ $J_{c} \rightarrow 0, \quad W(\beta) > 0, \ \beta > \beta_{c},$ (18)

where $\beta_c \approx 8.15$ is a critical value at which $W(\beta) = 0$.

Our conclusions are perfectly opposite to that in Ref. 1. We believe that our results are more reliable from the viewpoint of the physics meaning.

Finally, other mistakes in Ref. 1 also exist. Equation (1) is a wrong form and Eq. (2) should be J_c not $I_c (=L^{d-1}J_c)$. Both Eq. (4) and Eq. (5) are wrong, and they are contrary to each other because $\sigma_e \sim (p_c - p)^{-s}$.

Summarily, our conclusions for a two-dimensional S/N composite are (1) $M(\beta) > 0$ for arbitrary $\beta > 0$ (this is same as that in Ref. 1; it implies that the nonlinear response of the S/N composite becomes remarkable in the vicinity of percolation threshold, and a small electric field can lead to an enhancement of nonlinear response. $M(\beta)$ increases monotonically with the increase of β (this result is opposite to that in Ref. 1); for a large β , we may predict that a somewhat smaller electric field is enough to stimulate a remarkable nonlinear response. (2) $W(\beta)$ may take positive, zero, and negative values (this conclusion is same as that in Ref. 1), and monotonic increase with the increase of β (this conclusion is opposite to that in Ref. 1), so that J_c shows a complex behavior such as diverging or keeping invariance or vanishing with the increase of β as $p \rightarrow p_c^-$. We can conclude that for $\beta < \beta_c (=8.15)$, when $p \rightarrow p_c^-$, J_c will diverge, and only E_c can be used to describe the crossover effect. While for $\beta > \beta_c$, both E_c and J_c will vanish as $p \rightarrow p_c^-$ and can be used to describe the crossover effect.

This project was supported by the National Natural Science Foundation of China under Grant No. 19974042.

- ⁷ A. Kolek, Phys. Rev. B 53, 14 185 (1996); A. Kolek and A. Kusy, J. Phys. C 21, L573 (1988).
- ⁸A. A. Snarskii and S. I. Buda, Physica A **241**, 350 (1997).
- ⁹R. Blumenfeld, Y. Meir, A. Aharony, and A. Brooks Harris, Phys. Rev. B 35, 3524 (1987).
- ¹⁰Y. Meir, R. Blumenfeld, A. Aharony, and A. Brooks Harris, Phys. Rev. B 34, 3424 (1986).
- ¹¹P. M. Hui, Phys. Rev. B **41**, 1673 (1990).