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Nonlinear hydrodynamics and tilt modulus of flux-line liquids
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~Received 21 August 1998!

In this paper we use non-Gaussian hydrodynamics to study the magnetic response of a flux-line liquid in the
mixed state of a type-II superconductor. Both the derivation of our model, which goes beyond conventional
Gaussian flux liquid hydrodynamics, and its relationship to other approaches used in the literature are dis-
cussed. We focus on the response to a transverse tilting field which is controlled by the tilt modulusc44 of the
flux array. We show that interaction effects can enhancec44 even in infinitely thick clean materials. This
enhancement can be interpreted as the appearance of a disentangled flux-liquid fraction. In contrast to earlier
work, our theory incorporates the nonlocality of the intervortex interaction in the field direction. This nonlo-
cality is crucial for obtaining a nonvanishing renormalization of the tilt modulus in the thermodynamic limit of
thick samples.@S0163-1829~99!00909-1#
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I. INTRODUCTION

The static and dynamic properties of magnetic flux l
tices in type-II superconductors have been the focus of m
theoretical and experimental work over the last ten year1,2

Interest in this field was revived by the discovery of the hig
Tc materials, where thermal fluctuations melt the Abrikos
flux lattice at temperatures and fields well below the me
field transition atHc2(T).3,4 The flux lattice melting is a first
order transition in clean samples,5 with an associated jump in
the bulk magnetization, and it has been observ
experimentally.6–13 In conventional low-temperature type-
superconductors, the region of the phase diagram where
mal fluctuations are important is extremely small and me
field theory provides a good description of the physics of
flux-line array. In the high-Tc materials, in contrast, the
melted flux liquid replaces the Abrikosov lattice over a lar
region of the phase diagram. Understanding the propertie
the flux liquid is therefore crucial for controlling the mag
netic response of these materials.

The conventional Abrikosov flux lattice is characteriz
by two broken symmetries. First, the translational symme
is broken by the ordering of the magnetic flux lines in
triangular lattice in the plane perpendicular to the exter
field. Secondly, the gauge symmetry along the field is bro
by the alignment of the vortices with the external field.
natural question then arises of whether these two symme
are recovered simultaneously upon melting, or rather t
are recovered in succession at two different temperatu
The latter scenario would allow for the appearance of a
entangled flux liquid phase where translational symmetry
recovered, but the longitudinal gauge symmetry is still b
ken. At a second transition temperature the disentangled
liquid would then be replaced by an entangled flux liqu
where the longitudinal gauge symmetry is also recover
Alternatively, if both symmetries are recovered simul
neously, the Abrikosov lattice would melt directly into a
entangled flux liquid. The precise nature of such an
tangled liquid remains an open question.14 The existence of a
disentangled liquid phase, exhibiting longitudin
superconductivity—the ability to support currents flowin
PRB 590163-1829/99/59~9!/6499~18!/$15.00
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without dissipation in the direction parallel to the flu
lines—in clean samples has been proposed some time ag
Feigel’man and collaborators.15 Early simulations provided
support for Feigel’man’s ideas,16–18but more recent numeri
cal work indicates that the two transitions observed in ear
work may have been the consequence of finite s
effects.19,20 Recent numerical results support the scena
that the Abrikosov lattice melts directly into an entangl
liquid and no disentangled liquid phase exists in infinite
thick samples.19–21 Open questions, however, remain co
cerning the role of various approximations used in the d
ferent numerical models, particularly the range of the int
vortex interaction.

A closely related property of the vortex array that pr
vides a direct measure of longitudinal vortex correlations
the tilt modulusc44. It can be probed by measuring the r
sponse of the flux array to a small additional magnetic fi

dH' , applied perpendicularly to the external fieldẑH0 re-
sponsible for the onset of the vortex state. Such a transv
field tilts the lines away from the direction of alignment wi
H0 . Correlated disorder induced, for instance, by align
damage tracks in the material can drive 1/c44 to zero, yield-
ing a transverse Meissner effect, which has been propose
the signature of the Bose glass phase.22,23 The role of corre-
lated disorder in enhancing longitudinal correlations in t
liquid phase has also been observed experimentally in m
rials with a single family of twin planes by using the dc flu
transformer configuration.24 These materials contain pract
cally no small-scale disorder, so that the macroscopic fl
liquid regions in the channels between twin planes are v
clean. The experiments suggest that the enhancement ofc44,
interpreted as the onset of a disentangled liquid phase,
finite-size effect that decreases with increasing sam
thickness.25 In thick samples, the experiments indicate th
the vortex lattice melting and the loss of longitudinal sup
conductivity coincide in clean materials. Even though a tr
Meissner effect with vanishing 1/c44 is not expected in infi-
nitely thick, clean samples, it is clear that interactions c
enhance the tilt modulus of clean flux liquids and suppr
the transverse response of the superconductor.
6499 ©1999 The American Physical Society
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In this paper we employ hydrodynamics to evaluate
renormalization of the tilt modulus of a clean flux liquid du
to interactions. Our starting point is a long-wavelength h
drodynamic free energy that includesnon-Gaussiancou-
plings in the hydrodynamic fields. It therefore goes beyo
the Gaussian flux-line liquid hydrodynamic free energy d
cussed before in the literature.26,27We show that such a non
Gaussian hydrodynamic free energy can either be wri
down phenomenologically or it can be derived by using
mapping of the classical statistical mechanics of vortex li
with nonlocal interactions onto the quantum statistical m
chanics of two-dimensionalcharged bosons, introduced
some time ago by Feigel’man and collaborators.15 Our cen-
tral result is the expression for the renormalizedwave-vector-
dependenttilt modulus given in Eq.~1.7! below. This is a
perturbative result that extends earlier results by ot
authors28,29 in two important ways. First, it incorporates bo
the finite range and the nonlocality of the intervortex int
action in the field direction. This nonlocality plays a cruc
role in controlling the tilt response. It is only when the no
locality is properly accounted for that a finite renormaliz
tion of c44 is obtained in a clean flux-line liquids of infinit
thickness. In addition, our formalism allows us to evalu
the full wave vector dependence of the renormalized
modulus—a result that was not discussed before in the
erature.

Before discussing our result in more detail, it is useful
make contact with already existing work. The tilt modulus
the Abrikosov lattice is easily calculated from the Ginzbu
Landau free energy for a superconductor in a field. It is d
persive both in the longitudinal and in the in-plane directio
due to the nonlocal character of the intervortex interact
and it has a rather complicated expression, particularly
layered material. It naturally separates in the sum of t
contributions

c44~q' ,qz!5c44
v ~qz!1c44

c ~q' ,qz!, ~1.1!

with q' and qz wave vectors perpendicular and parallel
the external field, respectively. The first term on the rig
hand side of Eq.~1.1! is the single vortex contribution, aris
ing from the self-energy part of the tilt energy. Neglecting
weak logarithmic dependence onqz , it is given by31–34

c44
v 'n0ẽ1 , ~1.2!

wheren05B0z /f0 is the average areal density of vortice
with B0z the mean induction along the external field dire
tion andf05hc/2e the flux quantum, andẽ1 is the single-
vortex tilt energy defined below. The second term in E
~1.1! is the contribution from intervortex interactions. It
strongly dispersive and in layered materials it is giv
by32–34

c44
c ~q' ,qz!5

B0z
2

4p

1

11qz
2l̃'

2 1q'
2 p2l̃'

2
, ~1.3!

where l̃'5l' /(12H/Hc2)1/2 is the effective penetration
length in theab plane~the field is applied along theĉ axis!
andp is the anisotropy ratio. It is important to stress that t
long wavelength tilt modulus
e
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c445c44~q'50,qz50!5
B0z

2

4p S 11
1

4pl̃'
2 p2n0

D ~1.4!

is generally dominated by the large collective contributi
(B0z

2 /4p). The second term inside the brackets in Eq.~1.4!,
arising from the single-vortex contribution, would domina
only at very low vortex densities where the expression
c44 is in any case modified.34

The tilt modulus of aflux-line liquid cannot be evaluated
directly. It is, however, expected that the bare flux-liquid t
modulus, denoted here byc44

0 (q' ,qz), does not differ con-
siderably from that of the lattice given in Eq.~1.1!.35 In fact,
a direct coarse-graining of the microscopic intervortex int
action yields a Gaussian long-wavelength free energy of
entangled flux-line liquid with a tilt modulus given precise
by Eq. ~1.1! above.36 Interactions responsible for nonlinear
ties in the long-wavelength free energy will, however, ren
malizec44

0 .
The renormalization ofc44 in flux-line liquids has been

studied before by employing the analogy between the
rected vortex lines induced in a three-dimensional superc
ductor by the external fieldẑH0 and the imaginary-time
world lines of two-dimensional bosons.37,3,4The most severe
approximation made in the form of this boson mapping
troduced by Nelson,3,4 is that the pairwise interaction be
tween flux lines is approximated as local in the field dire
tion (z), i.e., only the interaction between vortex segments
equal heightz is considered. This corresponds to an insta
taneous pairwise interaction between the bosons. One o
consequences of this approximation is that it completely
glects the collective part of the tilt modulus. Hence in th
model c44 is given by the single-vortex part, which is in
versely proportional to the boson superfluid densityns ,

c44
v 5

B0z
2

4p

1

4pl'
2 p2ns

. ~1.5!

The superfluid phase of bosons (ns5n0) corresponds to an
entangled liquid of magnetic flux lines withc44

v given by Eq.
~1.2!. A finite normal-fluid fraction of bosons of densitynn
5n02ns corresponds to a disentangled fraction of flux li
uid and enhances the tilt modulus. A normal-fluid phase
bosons withns50 corresponds to a disentangled flux liqu
with infinite tilt modulus and transverse Meissner effe
Täuber and Nelson~TN! recently employed this boson map
ping to evaluate the renormalization ofc44

v due to sample
thickness, different boundary conditions and various types
disorder.28 They found that for finite sample thickness~cor-
responding to a nonzero boson temperature! there is a non-
vanishing normal-fluid component which suppressesc44

v . On
the other hand, the normal-fluid density always vanishes
infinitely thick samples~or vanishing boson temperature!, so
that the flux liquid is always entangled in this limit.

Feigel’man and co-workers15 incorporated the nonlocality
of the intervortex interaction in the field direction in the b
son formalism. They showed that the statistical mechanic
vortex lines with nonlocal interactions maps onto that o
two-dimensionalchargedbosons. This nonlocal mapping in
corporates the collective part of the vortex tilt modulus. La
kin and Vinokur29 and later Geshkenbein30 used this nonlo-
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cal boson mapping to generalize the expression~1.5!
obtained by TN. These authors proposed that the lo
wavelength renormalized tilt modulus can be written
terms of the superfluid densityns of two-dimensional bosons
interacting with a gauge field as

c44
LV5

B0z
2

4p S 11
1

4pl̃'
2 p2ns

D . ~1.6!

The superfluid density was evaluated perturbatively
Feigel’man and co-workers15 for the case where the repu
sive interaction among the bosons is infinitely long rang
corresponding to a vortex liquid withl'→`. These authors
argued that in this limit a distinct disentangled flux liqu
phase with divergingc44 exists in infinitely thick supercon
ducting samples.

The calculation of the interaction renormalization of t
flux liquid tilt modulus via hydrodynamics described he
has the advantage that it naturally incorporates the nonlo
ity of the intervortex interaction and it allows us to eas
treat the case of finitel. The non-Gaussian hydrodynamic
used as the starting point contains bare elastic constants
are determined by the intervortex interaction. In particu
the bare tilt modulus is given by Eq.~1.1!. The corrections to
c44 due to the nonlinearities are evaluated perturbatively. O
main result is an expression for the wave vector-depend
renormalized tilt modulus, given by

1

c44
R ~q' ,qz!

5
1

c44
0 ~q' ,qz!

F12
n0ẽ1

c44
0 ~q' ,qz!

nn~q' ,qz!

n0
G ,

~1.7!

wherenn(q' ,qz) has the rather complicated integral expre
sion given in Eq.~6.7! below. The corrections to the til
modulus incorporated innn can be interpreted in terms of
disentangled fraction of the flux liquid—hence a ‘‘norma
fluid component.’’ When the nonlocality of the intervorte
interaction in the field direction is neglected, Eq.~1.7! be-
comes identical to the result obtained by Ta¨uber and Nelson
@see Eq.~3.33! of Ref. 28#. In this case the long-wavelengt
c44 is not renormalized in infinitely thick samples.

Our result, Eq.~1.7!, is also simply related to the Larkin
Vinokur formula given in Eq.~1.6!. This is immediately seen
by introducing a normal fluid fraction in Eq.~1.6! as nn
5n02ns , and then expanding for small values of the norm
fluid fraction,nn /n0!1, to obtain

1

c44
LV

'
1

c44
0 F12

n0ẽ1

c44
0

nn

n0
G , ~1.8!

with c44
0 given by Eq.~1.4!. This expression is formally iden

tical to the long-wavelength (q'50, qz50) limit of our re-
sult.

We find that interaction effects in a clean flux liquid d
lead to a nonvanishing renormalization of the tilt modulus
the thermodynamic limit of thick samples. This correction
present only if the nonlocality of the intervortex interactio
is properly incorporated. The correction remains, howev
small at all fields higher than about 1 T. Our results a
perturbative and cannot be used to infer quantitative con
sions about the existence of a true disentangled flux liq
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phase. One of the main outcomes of our work is the dev
opment of a transparent hydrodynamic framework that
be used to study the role of the nonlocality of the intervor
interaction on the tilt response, both in clean materials an
the presence of disorder of various geometries. Note tha
conventional, Gaussian hydrodynamics the effect of disor
on c44 cannot be detected.

In Sec. II we discuss the general form of the London fr
energy used as the starting point to study the magnetic p
erties of superconductors in the mixed state. The vari
response functions of interest are also defined there. A
discussing the response to a tilt field in Sec. III, we revi
and contrast in Secs. IV and V, respectively, the results
tained by conventional Gaussian hydrodynamics and by
local boson mapping. After showing how hydrodynami
can be derived from the boson model in Sec. VI, we int
duce our non-Gaussian hydrodynamic model and discus
relationship to previous work. Our results are discussed
Sec. VII. Finally, a rigorous derivation of the nonlocal, no
Gaussian hydrodynamics from the charged boson analog
displayed in Appendix A, and the perturbative evaluation
the renormalization ofc44 from interactions is displayed in
Appendix B.

II. MAGNETIC RESPONSE OF THE VORTEX ARRAY

High-Tc superconductors are uniaxial, strongly type
materials with very large values of the Ginzburg-Landau
rameter k5l/j. For applied fieldsHc1!H!Hc2 , their
mixed state can be described in the London limit with
Ginzburg-Landau Hamiltonian given by

H@u,A#5
1

2Er
H c2

4pl̃m
2 S f0

2p
]mu2AmD 2

1
1

4p
~“3A!2J .

~2.1!

Here thez direction has been chosen along the anisotropy~c!
axis of the superconductor. Greek indicesm,n, . . . , runover
all Cartesian components (m5x,y,z) and summation is in-
tended in Eq.~2.1!. Latin indicesi , j ,k, . . . , runonly overx
andy. The integral* r•••[*0

Ldz*dr'••• is over the volume
V5LA of the superconductor, withL the thickness in the
direction of thec axis andA the area in theab plane. Also,
l̃m5lm /(12H/Hc2)1/2, wherelx5ly5l' are the penetra-
tion depths from supercurrents in theab plane, whilelz
5pl' is the penetration depth from supercurrents along
c axis, with p the anisotropy ratio arising from an effectiv
mass tensor for the superconducting electrons@p
5(mz /m')1/2#. Finally, A is the total vector potential, with
B5“3A the internal field in the material, andf05hc/2e is
the flux quantum. The corresponding Gibbs free energy fu
tional is

G@u,H#5H@u,A#2
1

4pEr
B•H, ~2.2!

whereH5“3Aext is the applied external field.
The London free energy functional can be rewritten

terms of interacting vortex lines by introducing a ‘‘vorte
line density’’ vector defined as
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T̂~r !5
1

2p
“3~“u!. ~2.3!

Here and below a hat is used, when needed, to disting
microscopic fluctuating quantities from average ones.
will specifically consider situations where the magnetic fie
responsible for the onset of the vortex state is applied al
the z direction. Vortex line configurations are then conv
niently characterized by a set ofN single-valued functions
rn(z), which specify the position of thenth vortex line in the
xy plane as it wanders along thez axis. The three-
dimensional position of each flux line is parametrized
Rn(z)5@rn(z),z# and the vortex density vector can be wr
ten as

T̂~r !5 (
n51

N
dRn~z!

dz
d~2!@r'2rn~z!#, ~2.4!

where r5(r' ,z). The vortex density vector can be writte
asT̂(r )5( t̂,n̂), wheret̂ is a two-dimensional vector describ
ing the local tilt of flux lines away from the direction of th
external field andn̂ is the areal density of vortices

n̂~r !5 (
n51

N

d~2!@r'2rn~z!#, ~2.5!

t̂~r !5 (
n51

N
drn~z!

dz
d~2!@r'2rn~z!#. ~2.6!

The vortex density vector is also directly related to the
perfluid velocity of the electrons in the superconductor,vs

5(f0/2p)“u2A, by

f0T̂2B̂5“3vs. ~2.7!

The Cartesian components of the local supercurrent arej m
s

5(c/4pl̃m
2 )vm

s ~no summation overm intended here!. After
some manipulations~see, for instance, Ref. 17 for the d
tails! and neglecting spin wave fluctuations, one obtains

G@ T̂,H#5
1

8pV (
q

$@f0T̂m~q!2B̂m~q!#

3Umn~q!@f0T̂n~2q!2B̂n~2q!#

1uB̂~q!u222H~q!•B̂~2q!%, ~2.8!

with

Umn~q!5
1

l̃'q2 F dmn2dm idn j

~ l̃z
22l̃'

2 !q'
2

l̃z
2q'

2 1l̃'
2 qz

2
Pi j

T ~q'!G .

~2.9!

Here, q5(q',qz) and Pi j
T (q')5d i j 2q̂' i q̂' j is the two-

dimensional transverse projection operator, withq̂'

5q' /q' . The corresponding longitudinal projection oper
tor is Pi j

L (q')5d i j 2Pi j
T (q').

In this paper, we will only consider magnetic field flu
tuations due to fluctuations in the vortices’ degrees of fr
dom. This London part of the field fluctuations is obtained
sh
e

g
-

s

-

-

-
y

minimizing the Ginzburg-Landau free energy~2.8! for fixed
vortex configurationsT̂(q) and it is given by

B̂~q!5B̂V~q!1B̂M~q! ~2.10!

whereB̂V(q) is the part of the internal field due to the vo
tices,

B̂m
V~q!5~11U~q!!ms

21Usn~q!f0T̂n~q!

5
1

11l̃'
2 q2F dmn2dm idn j

~ l̃z
22l̃'

2 !q'
2

11l̃'
2 qz

21l̃z
2q'

2
Pi j

T ~q'!G
3f0T̂n~q!, ~2.11!

and B̂M(q) is the Meissner response of the material to
spatially inhomogeneous external field

B̂m
M~q!5@11U~q!#mn

21Hn~q!

5
1

11l̃'
2 q2F l̃'

2 q2dmn

1dm idn j

~ l̃z
22l̃'

2 !q'
2

11l̃'
2 qz

21l̃z
2q'

2
Pi j

T ~q'!G
3Hn~q!. ~2.12!

In addition to the contributions given in Eq.~2.10!, there are
field fluctuations representing thermal deviations from
solution of the London equation, which are neglected he
By inserting Eqs.~2.11! and~2.12! into Eq. ~2.8!, we obtain
the vortex free energy functional expressed entirely in ter
of vortex degrees of freedom

G@ T̂,H#5
1

2V (
q

H T̂m~q!Vmn~q!T̂n~2q!

2
1

f0
Hm~q!Vmn~q!T̂n~2q!

2
1

4p
Hm~q!@11U~q!#mn

21Hn~2q!J ,

~2.13!

where

Vmn~q!5V0@11U~q!#ms
21Usn~q!

5
V0

11l̃'
2 q2F dmn2dm idn j

~ l̃z
22l̃'

2 !q'
2

11l̃'
2 qz

21l̃z
2q'

2
Pi j

T ~q'!G ,

~2.14!

are the Fourier components of the anisotropic intervor
interaction, withV05f0

2/4p. One important property of the
intervortex interaction is its nonlocality. In particular, th
nonlocality in thez direction, reflecting that flux-line ele
ments at differentz heights repel each other via a Yukaw
like potential, will play a very important role in the discus
sion below.

The Gibbs free energy of the vortex system is given b
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G~H,T!52kBT lnZ~H,T!, ~2.15!

where

Z~H,T!5E 8DT̂~r !e2G/kBT ~2.16!

is the canonical partition function. The prime over the in
gral sign indicates that the integration must be perform
with the constraint“•B̂50. The average local field in th
superconductor is then given by

B~r !5^B̂~r !&524p
dG

dH~r !
, ~2.17!

where the brackets denote a statistical average with Bo
mann weight;exp@2G/kBT#.

For a spatially homogeneous external field applied alo
the z direction,H(r )5 ẑH0 , we obtain the familiar form1

G0~ T̂,H0!52NL
H0f0

4p
1

1

2V (
q

T̂m~q!Vmn~q!T̂n~2q!.

~2.18!

For a uniform applied fieldH5 ẑH0 , the Meissner part of the
transverse local field given in Eq.~2.12! vanishes. The loca
field in the superconductor is entirely due to the vortices a
it is given by Eq.~2.11!. From here on we will always refe
to the vortex system created by the homogeneous fielH
5 ẑH0 and the local field is to be understood as the fi
given by Eq.~2.11!.

The focus of this paper is on the response of the vor
array created by the external fieldẑH0 to a small additional
spatially inhomogeneous external fielddH(r ). The Gibbs
free energy functional in the presence of this perturbat
can be written as

G~ T̂,ẑH01dH!5G0~ T̂,H0!1dG~ T̂,dH!, ~2.19!

whereG0 is given by Eq.~2.18! and the perturbation is

dG~ T̂,dH!52
1

4pEr
B̂V

•dH ~2.20!

52
1

cEr
ĵ s
•dAext. ~2.21!

The local fieldB̂V in Eq. ~2.21! is the field in the absence o
the perturbationdH and is related to the vortex degrees
freedom via Eq.~2.11!. It does not include the Meissne
response to the perturbationdH. The supercurrent is define
as ĵ s5(c/4p)“3B̂V.

Below we will use^•••&0 to denote a statistical averag
over the unperturbed ensemble described byG0 , while
^•••&H will denote the average over the perturbed ensem
with free energy given by Eq.~2.19!. The mean local field
BH in the material in the presence of the perturbationdH can
be written as the sum of vortex and Meissner parts as

BH~q!5^B̂V~q!&H1dBM~q!, ~2.22!
-
d

z-

g

d

x

n

e,

wheredBM(q) is the Meissner response to the perturbatio
given by Eq.~2.12! with H(q)5dH(q). To linear order in
the perturbing field, the vortex contribution can be expres
in terms of correlation functions in the unperturbed ensem
as

^B̂m
V~q!&H5^B̂m

V~q!&01
b

4p
^B̂m

V~q!B̂n
V~2q!&0

cdHn~q!,

~2.23!

where ^•••&c is the connected part of the correlator, i.e
^AB&c5^AB&2^A&^B&. Finally, the corresponding linea
response function defines the magnetic susceptibilityx i j (q)
of the material according to

Bm
H~q!2^B̂m

V~q!&05@4pxmn~q!1dmn#dHn~q!.
~2.24!

The components of the susceptibility tensor can also be
pressed in terms of vortex density correlations

4pxmn~q!52
Vmn

V0
1

f0
2

kBTV0
2

Vms~q!Vnl~2q!Tsl~q!,

~2.25!

whereTmn(q) is the correlation function of the vortex den
sity vector

Tmn~q!5^T̂m~q!T̂n~2q!&0
c . ~2.26!

The density vector correlation function can be expressed
terms of derivatives of the partition function of the perturb
system as

^T̂m~q!T̂n~q8!&0
c5~f0kBT!2~V21!mk~V21!nl

3Fd2 lnZ~H0ẑ1dH,T!

dHk~q!dHl~q8!
G

dH50

,

~2.27!

where (V21)mn are the components of the inverse of t
interaction tensor~2.14!.

The tensorTmn is block diagonal, withTmn5(Ti j ,Tzz).
The componentTzz is the density-density correlation func
tion or structure function of the vortices

Tzz~q!5S~q!5^dn̂~q!dn̂~2q!&0 , ~2.28!

where dn̂(q)5n̂(q)2n0Vdq,0 describes the fluctuation o
the local density field from its mean valuen05B0z /f0 , with
B0z'H0 the equilibrium value of thez component of the
internal field. The in-plane partTi j is the tilt-tilt autocorrela-
tor and it is the central quantity of interest here. It can
written in terms of transverse and longitudinal compone
as

Ti j ~q!5TL~q!Pi j
L ~q'!1TT~q!Pi j

T ~q'!. ~2.29!

The transverse part of the tilt autocorrelator determines
tilt modulus of the vortex array. The wave-vector-depend
tilt modulus is defined by
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TT~q!5
n0

2kBT

c44~q' ,qz!
. ~2.30!

Finally, in order to make contact with the literature, it
useful to write the perturbing field in terms of a vector p
tentialdH5“3dAext. The linear response to the vector p
tentialdAext is then characterized by the helicity tensorYmn ,
which relates the induced current todAext,

j m
H~q!52cYmn~q!dAn

ext~q!, ~2.31!

where jH is the total screening current induced in the ma
rial by the perturbing vector potential, comprising of both t
vortex and Meissner contributions. The helicity tensor can
immediately related to the components of the susceptib
tensor

Ymn~q'!52emsjenabqsqaxjb~q!. ~2.32!

Using Eq. ~2.25!, it can also be expressed in terms of t
correlations of the vortex density tensor.

III. TILTING FIELD

In the remainder of this paper we focus on the respons
the vortex array to a spatially inhomogeneous fielddH'(q)
applied perpendicularly to the direction ofH0 that tilts the
flux lines away from thez direction. As discussed by Che
and Teitel,17 we distinguish two types of perturbations. Th
first is a tilt perturbation, corresponding to a tilting fie
which is spatially homogeneous in thexy plane and may be
modulated in thez direction. The long wavelength respon
to this tilt perturbation is determined by the long waveleng
tilt modulusc44 defined as

n0
2kBT

c44
5 lim

qz→0
lim

q'→0
TT~q' ,qz!. ~3.1!

The order of the limits (q'→0 first, followed byqz→0) is
important here and reflects the physical situation of the
evant experiment. The vanishing of the long wavelength
modulus signals the onset of a transverse Meissner ef
where the perturbing field is completely expelled from t
material @as seen from Eq.~2.25!, the corresponding stati
susceptibility equals21/4p#. This occurs, for instance, in
vortex arrays pinned by columnar defects.

The second physical experiment of interest here is
response to a tilting fieldLdqz,0

dH'(q') which is spatially
homogeneous in thez direction and generates a shear pert
bation of the vortex array. Such a field can be obtained fr
a vector potentialdAext5 ẑdAz

ext(r'), which induces screen
ing currents along thez direction. In the literature, the re
sponse of the superconductor to such a shear perturbati
often characterized by the corresponding component of
helicity modulus@Yzz(q')# defined in Eq.~2.31!, which in
turn is related to the transverse part of the tilt-tilt correla
by

Yzz~q'!5
1

4p

q'
2

11q'
2 l̃z

2F12
V0

kBT

TT~q' ,qz50!

11q'
2 l̃z

2 G ,

~3.2!
-

e
y

of

l-
lt
ct,

e

-

is
e

r

where the first term in the square brackets arises from
Meissner part of the response. The long wavelength limi
the helicity modulus is

lim
q'→0

Yzz~q'!5
q'

2

4pF12
V0

kBT
lim

q'→0
TT~q' ,qz50!G .

~3.3!

The vanishing of limq'→0TT(q' ,qz50) yields

limq'→04pYzz(q')/q'
2 51, which corresponds to a perfec

Meissner response in thez direction and signals longitudina
superconductivity.

We emphasize, however, that both of the perturbati
just described simply probe the magnetic response of
superconductor, which is the true equilibrium test of sup
conductivity. In fact, the relevant response function in ea
case~tilt or helicity modulus! is simply the transverse part o
the susceptibility tensor

xT~q!5Pi j
T ~q'!x i j ~q!. ~3.4!

The long wavelength tilt modulus is given by

n0
2V0

c44
5114p lim

qz→0
xT~q'50,qz!, ~3.5!

and the component of the helicity modulus that controls lo
gitudinal superconductivity is

lim
q'→0

Yzz~q'!52 lim
q'→0

q'
2 xT~q' ,qz50!. ~3.6!

In a flux-line lattice the transverse part of the tilt-tilt cor
relator is non-analytic at small wave vectors and the differ
order of limits of the two perturbations discussed above
important. This is because the vortex array has a nonz
long wavelength shear modulusc66. As a result, the flux
lattice exhibits longitudinal superconductivity, wit
limq'→0TT(q' ,qz50)50, and

lim
q'→0

xT
lattice~q' ,qz50!52

1

4p
, ~3.7!

but no transverse Meissner effect, as limqz→0TT(q'50,qz)

Þ0 and

lim
qz→0

xT
lattice~q'50,qz!52

1

4p
1

V0n0
2

c44
. ~3.8!

In a flux-line liquid, in contrast, we find that the order o
limits is not important and the flux array in general exhib
neither longitudinal superconductivity, nor perfect Meissn
effect, as

lim
qz→0

xT
liquid~q'50,qz!

5 lim
q'→0

xT
liquid~q' ,qz50!2

1

4p
1

V0n0
2

c44
R

, ~3.9!
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where c44
R is the flux liquid tilt modulus, renormalized b

interaction effects. We will see below, however, that inter
tions can yield a strong upward renormalization ofc44 even
in clean flux liquids.

IV. GAUSSIAN HYDRODYNAMICS

A useful framework for discussing the long waveleng
properties of flux-line liquids that naturally incorporates
nonlocalities of the intervortex interaction is hydrodynami
where vortex fluctuations are described in terms of a f
coarse-grained fields. By long wavelengths, we mean wa
lengths large compared to the spacing between CuO2 planes
in the ẑ direction, and large compared to the intervort
spacing in theab plane normal toẑ.

The coarse-grained hydrodynamic fields for a flux-li
liquid are the fluctuating areal density

n̂H~r !5 (
n51

N

dBZ
~2!@r'2rn~z!# ~4.1!

and a tilt field

t̂H~r !5 (
n51

N
drn

dz
dBZ

~2!@r'2rn~z!#. ~4.2!

Here dBZ
(2)(r') is a smeared-out two-dimensionald function

with a finite spatial extent of the order of the inverse of t
Brillouin zone boundarykBZ5A4pn0. It is defined as

dBZ
~2!~r'!5

1

A (
q'<kBZ

e2 iq'•r'. ~4.3!

We stress that these hydrodynamic fields differ from the
croscopic fields defined in Eqs.~2.5! and ~2.6! as they are
coarse-grained quantities obtained by averaging out the m
microscopic and rapidly varying degrees of freedom.

A Gaussianhydrodynamic free energy containing term
quadratic in the deviations of the fields from their equili
rium values can be obtained by coarse-graining the mic
scopic energy of interacting vortices given in Eq.~2.18!,
with the result36

FG5
1

2n0
2E

r
E

r8
@B~r2r 8!dn̂H~r !dn̂H~r 8!

1K~r2r 8! t̂H~r !• t̂H~r 8!#, ~4.4!

wheredn̂H(r )5n̂H(r )2n0 andB(r ) andK(r ) are nonlocal
liquid elastic constants. The density and tilt fields are
independent quantities, but are related by a ‘‘continuit
equation expressing the constraint that vortex lines can
start or stop inside the sample

]zdn̂H1“'• t̂H50. ~4.5!

The Gaussian hydrodynamic free energy is rewritten in
more familiar form by passing to Fourier space

FG5
1

2n0
2V (

q
@c11

0 ~q!udn̂H~q!u21c44
0 ~q!u t̂H~q!u2#,

~4.6!
-

l
,
w
e-

i-

re

-

t
’
ot

a

wherec11
0 (q) andc44

0 (q) are the bare compressional and t
moduli of the flux liquid. The compressional modulus
given by

c11
0 ~q!5

B0z
2

4p

11q2l̃'
2 p2

~11q2l̃'
2 !~11qz

2l̃'
2 1q'

2 p2l̃'
2 !

. ~4.7!

The bare tilt modulus is found to be to a good approximat
identical to the flux lattice tilt modulus given in Eqs
~1.1!–~1.3!.35,36

In this Gaussian approximation, the probability of a flu
tuation is proportional to exp(2FG /kBT) and averages mus
be carried out subject to the continuity constraint, Eq.~4.5!.
The correlation functions of the hydrodynamic fields are th
immediately calculated and are given by

^dn̂H~2q!dn̂H~q!&G5
n0

2kBTq'
2

c44
0 ~q!qz

21c11
0 ~q!q'

2
, ~4.8!

^ t̂ i
H~2q!dn̂H~q!&G5

n0
2kBTq' iqz

c44
0 ~q!qz

21c11
0 ~q!q'

2
, ~4.9!

^ t̂ i
H~2q! t̂ j

H~q!&G5TT
0~q!Pi j

T ~q'!1TL
0~q!Pi j

L ~q'!,
~4.10!

with

TT
0~q!5

n0
2kBT

c44
0 ~q!

~4.11!

and

TL
0~q!5

n0
2kBTqz

2

c44
0 ~q!qz

21c11
0 ~q!q'

2
. ~4.12!

The long wavelength tilt modulus is determined by the tra
verse part of the tilt autocorrelator, according to Eq.~4.11!.
To this Gaussian order it is then identically given by its ba
value c44

0 given in Eq.~1.4!. Gaussian hydrodynamics doe
not allow for any renormalization of the tilt modulus, even
the presence of disorder. This is because a disorder pote
couples to the flux-line areal density that, within a Gauss
theory, is in turn decoupled from the transverse part of
tilt field. In particular, this naive hydrodynamic theory do
not describe the possibility of a disentangled flux-line liqu
with a tilt modulus enhanced by interaction or disorder.
other words, Gaussian hydrodynamics is by definition
theory ofentangledflux-line liquids.

V. 2D BOSON MODEL

Considerable progress in understanding the propertie
vortex-line arrays has been made by employing the form
analogy between the classical statistical mechanics of
rected lines in three dimensions and the quantum statis
mechanics of two-dimensional bosons. The advantage of
approach is that it can incorporate interaction effects
counting for localization or disentanglement of the vortice
The drawback is that this model, at least in its simpl
implementation employed by Nelson and co-workers,3,4,38,28
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neglects the nonlocality of the intervortex interaction. W
will show below that the nonlocality of the interaction in th
field ~z! direction plays a crucial role in controlling the ti
modulus. In this section we briefly review the local versi
of the boson mapping employed by Nelson a
co-workers3,4,38 and the results obtained recently for the t
modulus by Ta¨uber and Nelson28 using this model.

Neglecting the nonlocality of the intervortex interactio
the free energy functional of interacting vortex lines in
field H5H0ẑ1dH' given in Eq.~2.19! is approximated as

G~$rn%,H!5NLS H0

f0

4p
2e1D1E

z
H (

n51

N
ẽ1

2 Fdrn

dz G2

1
1

2 (
m5” n

V'@ urn~z!2rm~z!u#J
2

f0

4pEz
(
n51

N

dH'@rn~z!,z#
drn

dz
, ~5.1!

where ẽ15e1 /p2, with e15e0lnk the effective line tension
ande05(f0/4pl̃')2 a characteristic energy scale. The no
locality relating fields and vortex variables has been
glected also in the last term of Eq.~5.1!. Two crucial ap-
proximations have been made in rewriting the gene
intervortex energy given in Eq.~2.8! in the form~5.1!. First,
the leading elastic term in the self-energy part of Eq.~2.8!
has been linearized, according toA11(1/p2)(drn /dz)2'1
1(1/2p2)(drn /dz)2. Secondly, the pair interaction amon
different flux lines has been replaced by an interact
V'(r') acting locally in each constant-z plane, given by

V'~r'!5
f0

2

8p2l̃'
2

K0~r' /l̃'!, ~5.2!

with K0(x) a modified Bessel function. Of these approxim
tions the latter is the most severe, since it amounts to
glecting theqz dependence of the elastic constants—an
proximation that strongly affects the tilt modulus, as we w
see below. LettingG@$rn(z)%,H#5mNL1FN@$rn(z)%,H#,
with m5H0(f0/4p)2e15f0(H02Hc1)/4p a chemical po-
tential, the grand canonical partition function of the vort
liquid can be written as

Zgr~H!5 (
N50

`
1

N!
ebLmN)

n50

N E Drn~z!e2FN~H!/kBT.

~5.3!

The integral in Eq.~5.3! is over all vortex line configura-
tions. It has the form of a quantum-mechanical partiti
function in the path integral representation for the wo
lines of N particles of massẽ1 , moving through imaginary
time z and interacting with the repulsive pair potenti
V'(r'). The vortex model with this simplified interactio
can therefore be mapped onto a model of two-dimensio
~2D! massive bosons with instantaneous pairwise interact
The mapping results in the following correspondences:

z↔t, ~5.4!
-
-

l

n

-
e-
-

l

al
n.

L↔\bboson,

ẽ1↔m,

kBT↔\,

H0

f0

4p
2e1↔m,

where bboson51/kBTboson is the inverse temperature of th
bosons. The precise mapping of the grand canonical vor
line partition function onto the Feynman path integral
imaginary timet of a gas of two-dimensional bosons r
quires the introduction of a second quantized Hamilton
corresponding to Eq.~5.1! and is described in the
literature.4,38–40Some care must be taken in dealing with t
tilting field dH' which introduces velocity-dependent term
into the fictitious boson Lagrangian. One important diffe
ence between the flux-line array and the boson system i
the boundary conditions in the fictitious time variablez. The
mapping of the free energy~5.1! of vortex lines onto the
‘‘action’’ of two-dimensional bosons is exact only when on
imposes periodic boundary conditions for the flux lines in t
z direction, i.e.,rn(L)5rn(0). In contrast, the natural bound
ary condition for flux line would be free boundary cond
tions, corresponding to (drn /dz)z5L5(drn /dz)z5050. As
shown by Ta¨uber and Nelson,28 the choice of the boundary
conditions does affect the tilt modulus of a finite-thickne
sample. We will not, however, discuss this here as we
ultimately interested in infinitely thick samples.

To complete the mapping, the grand canonical partit
function ~5.1! is first rewritten in a coherent-state path int
gral representation as

Zgr~H!5E Dc~r' ,z!E Dc* ~r' ,z!e2S[c,c* ;h]/kBT.

~5.5!

The boson ‘‘action’’ in the imaginary-time path integral is

S@c,c* ;h#5E
r
Fc* S kBT]z2

~kBT!2

2ẽ1

¹'
2 2m D c

2
kBT

2ẽ1

h•~c*“'c2c“'c* !

2
1

2ẽ1

h2ucu21E dr 8'V'~r'2r 8'!

3uc~r' ,z!u2uc~r 8' ,z!u2G , ~5.6!

and h(r )5(f0/4p)dH'(r ). The complex fieldsc and c*
correspond to boson annihilation and creation operator
the second quantized Hamiltonian. It is convenient to rew
these fields in terms of an amplitude and a phase as

c~r' ,z!5An̂~r' ,z!eiu~r' ,z!. ~5.7!
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The magnituden̂(r' ,z) of the field c corresponds to the
fluctuating local boson density. The phase fieldu determines
the boson momentum density

g~r' ,z!5kBTn̂“'u. ~5.8!

Upon inserting Eq.~5.7! into Eq. ~5.6!, the action can be
written in terms of density and phase variables as

S@ n̂,u;h#

5E
r
H ikBTn̂]zu1

~kBT!2

8ẽ1

~“'n̂!2

n̂
1

~kBT!2

2ẽ1

n̂~“'u!2

2
kBT

ẽ1

i n̂h•“'u2
h2

2ẽ1

n̂2mn̂

1E dr 8'V'~r'2r 8'!n̂~r' ,z!n̂~r 8' ,z!J , ~5.9!

where we have dropped surface terms that vanish for p
odic boundary conditions.

The tilt-tilt correlatorTi j (q) can be calculated using Eq
~2.27!, with the result

Ti j ~q!5
kBT

ẽ1

d i j ^n̂~q!&h50

2S kBT

Vẽ1
D 2

(
p,p8

p' i p' j8 ^n̂~q2p!

3u~p!n̂~2q2p8!u~p8!&h50 , ~5.10!

where the brackets denote an average over the full nonli
action ~5.9!, evaluated ath50.

To proceed, a standard approximation is to consider o
small fluctuations of the fields from their mean values. L
ting

n̂~r' ,z!5n01dn̂~r' ,z!, ~5.11!

and retaining only terms quadratic in the fields in the acti
the corresponding Gaussian action in zero tilting field
given by

SG@dn̂,u;0#5E
r
H ikBTdn̂]zu1

~kBT!2

8ẽ1

~“'dn̂!2

n

1
~kBT!2

2ẽ1

n0~“'u!2

1E
r8'

V'~r'2r 8'!dn̂~r' ,z!dn̂~r 8' ,z!J .

~5.12!

To Gaussian order the tilt autocorrelator is given by

Ti j
0 ~q!5

n0kBT

ẽ1

d i j 1S n0kBT

ẽ1
D 2

q' iq' j^u~q'!u~2q'!&G ,

~5.13!
ri-

ar

ly
-

,
s

where^•••&G denotes an average over the Gaussian ac
~5.12!. The correlation functions of the fluctuating fields a
easily calculated within the Gaussian approximation, w
the result

^dn̂~2q!dn̂~q!&G5
n0kBTq'

2 / ẽ1

qz
21eB~q'!2/~kBT!2

, ~5.14!

^u~2q!dn̂~q!&G5
qz

qz
21eB~q'!2/~kBT!2

, ~5.15!

^u~2q!u~q!&G5
e 1̃eB~q'!2/@n0q'

2 ~kBT!2#

qz
21eB~q'!2/~kBT!2

, ~5.16!

where

eB~q'!

kBT
5Fn0kBTq'

2 V'~q'!

ẽ1

1S kBTq'
2

2ẽ1
D 2G 1/2

~5.17!

corresponds to the Bogoliubov spectrum of the tw
dimensional boson superfluid. The quartic term in the Bo
liubov spectrum arises from theu“'n̂u2 ‘‘kinetic’’ term in
the action. To this Gaussian order of approximation the
modulus is dispersionless and simply the bare part of
single-vortex contribution toc44, given by

c44
0 5c44

v05n0ẽ1 , ~5.18!

as given in Eq.~1.2!. By comparing the correlation function
given in Eqs.~5.14!–~5.16! to those of the hydrodynamic
fields given in Eqs.~4.8!–~4.10!, we see that the results ob
tained by these two methods agree with each other prov
we drop the term ofO(q'

4 ) in the Bogoliubov spectrum
~which is of higher order in the wave vector and therefore
consistently neglected in a long wavelength theory! and
make the identificationsc44

0 (q' ,qz)5n0ẽ1 and c11
0 (q' ,qz)

5n0
2V'(q'). The quantity that replaces the ‘‘Bogoliubo

spectrum’’ in hydrodynamics is a characteristic inver
length scalejz

21 that controls the decay of correlations alon
the z direction, given by

Fe~q'!

kBT G1/2

→jz
21~q' ,qz!5q'Ac11

0 ~q' ,qz!

c44
0 ~q' ,qz!

. ~5.19!

Notice, however, that, in contrast to the boson spectrum,
correlation lengthjz depends onqz , not just onq' . This
dependence arises from the nonlocality of the intervortex
teraction in the field direction and will have important co
sequences on the renormalization ofc44. Finally, we stress
that the hydrodynamic tilt field doesnot simply map onto the
momentum density of two-dimensional bosons, which
turn is related to the boson phase variable by Eq.~5.8!. The
boson momentum density is to lowest order purely longi
dinal while the tilt field always has a transverse part.

Täuber and Nelson evaluated perturbatively the corr
tions toc44

v arising from terms beyond Gaussian in the fr
energy.28 These corrections can be obtained by factoriz
the fourth order correlator on the right hand side of E
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~5.10! as a product of Gaussian correlators using Wic
theorem.41 For the long wavelength tilt modulus, these a
thors obtained

1

c44
vR

5
1

n0ẽ1
F12

nn
B

n0
G , ~5.20!

where

nn
B5

LkBT

8ẽ1
E d2q'

~2p!2F q'

sinh@LeB~q'!/2kBT#G
2

~5.21!

is the normal-fluid density of the two-dimensional boson l
uid. The long-wavelength tilt modulus can also be written

1

c44
vR

5
ns

B

n0
2ẽ1

, ~5.22!

wherens
B5n02nn

B is the boson superfluid density. As eas
seen from Eq.~5.21! and discussed in TN,28 the normal-fluid
density is finite only for samples of finite thicknessL, corre-
sponding to a nonzero boson temperature. In this case
obtains a renormalization of the tilt modulus due to fini
size effects. The sign of this correction is sensitive to
choice of boundary conditions~the result for periodic bound
ary conditions is displayed here!. The normal fluid density
vanishes, however, forL→`. The local boson model there
fore predicts that the tilt modulus of an infinitely thick, clea
superconductor is unrenormalized and equals its bare v
n0ẽ1 . In other words, the flux-line liquid is always entangle
in the thermodynamic limit.

VI. NON-GAUSSIAN HYDRODYNAMICS
AND DISENTANGLED FLUX LIQUIDS

Our goal in the remainder of this paper is to construc
non-Gaussianfully nonlocalhydrodynamic theory and use
to evaluate the renormalization of the tilt modulus. As a fi
step in this direction, in this section we derive a no
Gaussian hydrodynamic free energy from thelocal boson
action given in Eq.~5.9!. Of course, such a hydrodynam
theory neglects interactions that are nonlocal inz and will
mainly be used as a guide for constructing a more gen
non-Gaussian nonlocal hydrodynamics in the next sect
The non-Gaussian terms in the free energy renormalize
tilt modulus. When these corrections are evaluated pertu
tively, the resultingc44

R is identical to that obtained by
Täuber and Nelson using the boson formalism.28 The main
goal of this section is to emphasize the relationship betw
the boson formalism and hydrodynamics and to stress
equivalent results can be obtained by either method.

To derive the hydrodynamic free energy from the bos
action, we employ the method used by Kamien a
collaborators42 for the formally analog problem of directe
polymers in a nematic solvent. We begin by eliminating t
term @(kBT)2/2ẽ1#n̂(“'u)2 in Eq. ~5.9! in favor of a new
vector field P, via a Hubbard-Stratonovich transformatio
with the result
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Zgr~H!5E DP̂Dn̂Du expF2kBTn0
2

ẽ1
E

r
ln@ n̂~r !/n0#G

3e2S8[ P̂,n̂,u;h]/kBT, ~6.1!

where

S8@P̂,n̂,u;h#5E
r
H ikBTn̂]zu1

~kBT!2

8ẽ1

~“'n̂!2

n̂

1
~kBT!

ẽ1

i n̂“'u•@kBTP̂2h#

1
n̂

2ẽ1

@~kBTP̂!22h2#

1E
r8'

V'~r'2r 8'!n̂~r' ,z!n̂~r 8' ,z!J .

~6.2!

If we integrate overP̂ in Eq. ~6.2!, we return to the original
nonlinear action. Instead we integrate overu which only ap-
pears linearly in the new action. This integration results i
d functional, yielding

Z̃gr~H!5E Dn̂DP̂expF2kBTn0
2

ẽ1
E

r
ln@ n̂~r !/n0#G

3e2S̃H[ n̂,P̂;h]/kBTdS ]zn̂1“'•

n

ẽ1

@kBTP̂1h# D ,

~6.3!

with

S̃H@ n̂,P̂;h#5
1

2Er
H ~kBT!2

ẽ1

n̂P̂21
~kBT!2

4ẽ1

~“'n̂!2

n̂
2

n̂

2ẽ1

h2

1E
r8'

V'~r'2r 8'!n̂~r' ,z!n̂~r 8' ,z!J . ~6.4!

In obtaining Eq.~6.2! we have discretized the nonlinear a
tion ~5.9! in real space, according to

E
r

f ~r !→v0 (
i

f i , ~6.5!

with v0 an elementary volume,v05e 1̃/(2kBTn0
2). This is

the volume of a box with base area equal to 1/n0 and height
equal to the single-vortex entanglement length

l z5
ẽ1

2kBTn0
. ~6.6!

The term containing the logarithm of the fluctuating dens
arises from the Jacobian of the functional integration o
the full nonlinear action. It represents the entropic ‘‘ide
gas’’ part of the flux liquid free energy.

Statistical averages have to be performed by integra
over the fieldsn̂(r ) andP̂(r ) with the constraint provided by
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the d functional in Eq.~6.3!. Comparison of Eq.~6.3! to the
hydrodynamic free energy~4.6! of a flux-line liquid with the
constraint~4.5! suggests a physical interpretation for the au
iliary vector field P̂. The quantityn̂(kBTP̂1h)/ ẽ1 takes the
place of the hydrodynamic tilt fieldt̂H introduced in the pre-
vious section. The difference between the vector fieldP̂ and
the tilt field can be understood by noting that, as pointed
by Nelson and Le Doussal,38 the canonically conjugate mo
mentum of the fictitious particle that corresponds to thenth
flux-line is pn5 i @ ẽ1(drn /dz)1h#. The vector fieldP̂ can
then be interpreted as a sort of ‘‘velocity’’ field, while the ti
field t̂H represents the canonically conjugate momentum d
sity. The two differ in the presence of an applied transve
field h that contributes to the single-vortex ‘‘canonical m
mentum.’’

The relationship between the effective actionS̃H and the
hydrodynamic free energy of a tilted flux-line liquid is mad
more transparent by performing and additional change
variable that replaces the fieldP̂ by a tilt field defined as

t̂~r !5
n̂~r !

ẽ1

@kBTP̂~r !1h~r !#. ~6.7!

The Jacobian of this transformation cancels the Jacobia
the Hubbard-Stratonovich transformation used earlier and
obtain

Zgr~H!5E Dn̂Dt̂e2SH[ n̂, t̂;h]/kBTd~]zn̂1“'• t̂!, ~6.8!

with

SH@ n̂, t̂;h#5
1

2kBTEr
F ẽ1

t̂2

n̂
1

~kBT!2

4ẽ1

~“'n̂!2

n̂
2h•t

1E
r8'

V'~r'2r 8'!n̂~r' ,z!n̂~r 8' ,z!G .

~6.9!

The effective action of a tilted flux-line liquid given in Eq
~6.9! becomes formally identical to the corresponding no
linear hydrodynamic free energy, provided we make
identifications

n̂~r !↔n̂H~r !, ~6.10!

t̂~r !↔ t̂H~r !,

n0ẽ1↔c44
0 ~q!,

n0
2V'~q'!↔c11

0 ~q!.

The corresponding hydrodynamic free energy is nonline
but local inz, and it is given by

Fl@ n̂H, t̂H;h#5kBTSH@ n̂, t̂;h#. ~6.11!

The superscriptl indicates that only local interaction amon
the vortices has been retained in this hydrodynamic free
ergy. The free energyFl contains the term quadratic in th
-

t

n-
e

f

of
e

-
e

r,

n-

density gradient that is neglected in conventional hydro
namics. We will retain this term here to make our compa
son with the results of the boson theory more transpar
Also this term will be needed below to provide a large wa
vector cutoff to the integrals determining the renormaliz
tilt modulus.

The long wavelength part of the tilt-tilt autocorrelator ca
now be evaluated using the definition, Eq.~2.27!. The non-
Gaussian terms in the local hydrodynamic free energy~6.11!
are separated out by writing

Fl5FG
l 1dFl , ~6.12!

whereFG
l is given by Eq.~4.6!, but with the values specified

in Eqs.~6.10! for the elastic constants, and

dFl52
ẽ1

2n0
E

r
t̂2

dn̂

n̂
. ~6.13!

The tilt autocorrelator is then evaluated perturbatively in
non-Gaussian partdFl of the free energy. The perturbatio
expansion is outlined in Appendix B. To leading order, w
obtain

Ti j ~q!5Ti j
0 ~q!1dTi j ~q!, ~6.14!

whereTi j
0 (q) is the bare part of the correlator, given by Eq

~4.10!–~4.12!. The hydrodynamic limit of the correction
dTi j (q) is given by

lim
qz→0

dTi j ~0,qz!5
n0kBT

e 1̃

d i j 2
~kBT!2

e 1̃
2LA

(
q'8 ,qz8

qi8qj8

3
@eB~q'8 !/~kBT!#22q8z

2

$@eB~q'8 !/~kBT!#21q8z
2%2

. ~6.15!

This result is identical to that obtained by Ta¨uber and Nelson
via the boson formalism. In particular, the long waveleng
tilt modulus defined according to Eq.~3.1! is found to be
given by Eq.~5.20!, with

nn
B5

n0kBT

2LA (
q' ,qz

q'
2

@eB~q'!/~kBT!#22qz
2

$@eB~q'!/~kBT!#21qz
2%2

, ~6.16!

which becomes identical to Eq.~5.21! in the limit of large
sample size.

VII. TILT MODULUS FROM NONLOCAL,
NON-GAUSSIAN HYDRODYNAMICS

As discussed in the Introduction, neglecting the inter
tion among vortex segments at different ‘‘heights’’z has
severe effects on the flux liquid tilt modulus, namely, it com
pletely neglects its collective part, which is the largest co
tribution over a wide part of the (H,T) phase diagram.
Hence our desire to develop a simple formalism for the c
culation of the tilt modulus of a flux-line liquid that incorpo
rates such nonlocalities.

A generalization of the boson mapping that incorpora
thez nonlocality of the vortex interaction was proposed so
time ago by Feigel’man and collaborators.15 The z nonlocal-
ity yields a retarded interaction among the bosons that ca
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handled by the introduction of a Chern-Simons gauge fie
In the limit of infinite penetration depthl' considered by
these authors, the flux-line array then maps onto acharged
superfluid. These authors argued that the charged boson
tem possesses a normal-fluid phase at zero temperature
responding to a thermodynamically distinct disentangled fl
liquid phase, with infinite tilt modulus and longitudinal su
perconductivity.

Nonlocality is incorporated in a natural way in hydrod
namics. Anonlinearhydrodynamic free energy that incorpo
rates all nonlocalities of the intervortex interaction can
obtained phenomenologically by coarse graining of the
croscopic energy of the vortex liquid, following the metho
described in Ref. 36. Care must be taken in handling
self-interaction between segments of the same flux-line
differentz heights, which is responsible for the non-Gauss
terms in the hydrodynamic free energy. Such non-Gaus
terms are neglected in the linearized theory, but as see
the previous section they control the renormalization of
tilt modulus. The nonlinear hydrodynamic free energy o
tained by such a procedure is given by

F5
1

2n0
2Er

E
r8
H F n0

2ẽ1

n̂H~r !
d~r2r 8!1Kc~r2r 8!G t̂H~r ! t̂H~r 8!

1B~r2r 8!dn̂H~r !dn̂H~r 8!J , ~7.1!

where B(r ) is the real space compressional modulus a
Kc(r ) is the collective part of the real space tilt modulus. T
first term in Eq.~7.1! arises from the self-energy part of th
interaction and it represents a sort of nonlinear ‘‘kineti
contribution to the total energy of the flux-line array. T
make contact with conventional notation, it is convenient
rewrite the interaction part of the free energy in wave-vec
space

F5
1

2Er
ẽ1

@ t̂H~r !#2

n̂H~r !
1

1

2n0
2V

3(
q

$c44
c0~q!u t̂H~q!u21c11

0 ~q!udn̂H~q!u2%, ~7.2!

where the bare compressional modulusc11
0 (q) and the col-

lective part of the bare tilt modulusc44
c0(q) are given in Eqs.

~4.7! and ~1.3!, respectively.
The non-Gaussian hydrodynamic free energy can also

derived from the action of two-dimensional bosons with
.

ys-
or-
x

e
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-

tarded interaction written down by Feigel’man and collab
rators by successively eliminating nonhydrodynamic fields
favor of hydrodynamic fields via formal manipulation
analogous to those described in the previous section. T
derivation is outlined in Appendix A. The resulting free e
ergy differs from the phenomenological one given in E
~7.2! only in that it contains an additional term proportion
to density gradients~see Appendix A!. This term is usually
neglected in hydrodynamics because it is of higher orde
the gradients. We will, however, retain it here as it provid
an intrinsic large wave vector cutoff to the integrals det
mining the renormalized tilt modulus. It can be incorporat
in the free energy of Eq.~7.2! by the replacement

c11
0 ~q!→c11

0 ~q!1~kBT!2n0q'
2 /~4ẽ1!. ~7.3!

It is convenient for the following to separate out the no
Gaussian part of the hydrodynamic free energy of Eq.~7.2!
by letting

F5FG1dF, ~7.4!

whereFG is given by Eq.~4.6!, and

dF52
1

2Er

ẽ1@ t̂H~r !#2

n0

dn̂H~r !

n̂H~r !
. ~7.5!

The tilt autocorrelator can be evaluated by treating the n
Gaussian part of the free energy~7.5! perturbatively. Some
details are given in Appendix B. The dimensionless para
eter that controls the expansion indF/kBT is proportional to
( ẽ1/2kBTAn0)25( l z /a0)2, with l z the entanglement length
given in Eq.~6.6!. Small values ofl z /a0 correspond to an
entangled flux-line liquid. The ‘‘kinetic’’ nonlinearities tha
are incorporated perturbatively stiffen the tilt modulus of t
line liquid, making it therefore less entangled.

The nonlinearities embodied indF yield corrections to all
the correlation functions. Here, we only display the result
the transverse part of the tilt-tilt correlator, that determin
the wave-vector-dependent tilt modulus. Using Eq.~2.30!,
the wave-vector-dependent tilt modulus is given by

1

c44
R ~q' ,qz!

5
1

c44
0 ~q' ,qz!

F12
n0ẽ1

c44
0 ~q' ,qz!

nn~q' ,qz!

n0
G ,

~7.6!

with
nn~q' ,qz!5
kBT

LA (
q'8 ,qz8

H q8'
2

c44
0 ~q8!

1

q8z
21@jz~q8!#22

2
n0ẽ1~q'2q'8 !2

c44
0 ~q8!c44

0 ~q2q8!

1

~qz2qz8!21@jz~q2q8!#22J

1
n0ẽ1kBT

LA (
q'8 ,qz8

~ q̂'•q̂8'!2~q'2q8'!2@jz~q8!#222@12~ q̂'•q̂8'!2#q8'
2 qz8~qz82qz!

c44
0 ~q8!c44

0 ~q2q8!$q8z
21@jz~q8!#22%$~qz2qz8!21@jz~q2q8!#22%

, ~7.7!
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and

@jz~q!#225
q'

2

c44
0 ~q!

F c11
0 ~q!1

~kBT!2n0q'
2

4ẽ1
G . ~7.8!

The length scalejz(q) differs from the one defined in Eq
~5.19! in that it contains an additional term arising from th
coupling to the density gradient contained in our free ene
and usually neglected in hydrodynamics. For simplicity,
use, however, the same notation as in Eq.~5.19!.

The long-wavelength tilt modulus is determined bynn
5 limqz→0limq'→0nn(q' ,qz), given by

nn5
kBT

LA (
q' ,qz

q'
2

c44
0 ~q!

F12
n0ẽ1

c44
0 ~q!

G 1

qz
21@jz~q!#22

1
n0ẽ1kBT

2LA (
q' ,qz

q'
2

@c44
0 ~q!#2

@jz~q!#222qz
2

$qz
21@jz~q!#22%2

.

~7.9!

Equations~7.6!–~7.9! are the central result of this pape
If the z-nonlocality of the intervortex interaction is neglecte
in Eq. ~7.7! by replacing the elastic constants on the rig
hand side with the corresponding values used in the the l
boson formalism, according to Eq.~6.10!, then Eq.~7.7! be-
comes identical to the result obtained by TN. In particul
the first term on the right hand side of Eq.~7.9! is absent in
the local boson model of TN, wherec44

0 5n0ẽ1 . The long-
wavelength normal fluid density is then given by Eq.~5.21!
and vanishes forL→`.
su
of

ll

gh
n
.
ul
y

-
al

,

The normal fluid density given in Eq.~7.9! can be evalu-
ated explicitly for the case of an isotropic superconduc
(p51) in the limit of infinite thickness (L→`). After in-
serting in Eq.~7.9! the expression for the nonlocal bare ela
tic constants given in Eqs.~4.7! and~1.1!–~1.3!, theqz inte-
gral in Eq.~7.9! can be evaluated. The resulting normal-flu
fraction depends on the three length scales that charact
the system. These are the average intervortex spacinga0

51/An0, the ab plane London penetration depthl̃' , and
the single-vortex entanglement lengthl z . We have intro-
duced two dimensionless parameters,

u5
2l z

Apa0

5
2ẽ1

kBTA4pn0

~7.10!

and a dimensionless volume fraction of vortex lines

v* 5
1

4pn0l̃'
2

. ~7.11!

The renormalized long-wavelength tilt modulus is written
terms of our dimensionless parameters as

1

c44
R

5
1

c44
0 F12

v*

11v*
nn

n0
G ~7.12!

and the normal fluid fraction is given by

nn

n0
5

1

2uE0

`

dx$K~xuu,v* !1L~xuu,v* !%, ~7.13!

where
K~xuu,v* !5
x2@11~x1v* !~11x/u2!#12z1z2x~x1v* !

Ax1v* z1z2~z11z2!@A11x1v* ~x1z1z2!1z1z2~z11z2!#
, ~7.14!
ase

ave
ry.
tion

ry

an
ere
the

sti-
L~xuu,v* !5v*
x~z1

21z2
2!

z1z2~z11z2!~z1
22z2

2!
, ~7.15!

with

z1,25
1

A2
„11x1~x/u!21v*

6$@11~x/u!22x2v* #214v* %1/2
…

1/2. ~7.16!

These integrals have been evaluated numerically. The re
ing normal-fluid fraction is shown in Fig. 1 as a function
u for several values of the volume fractionv* . We note that
the dependence onv* is rather weak, particularly for sma
values ofu.

For v* 50 ~which can be interpreted as either the hi
density limit or the infinitel' case treated by Feigel’ma
and collaborators,15! the normal-fluid density given in Eq
~7.13! reduces—up to an overall factor of 2—to the res
lt-

t

obtained by Feigel’manet al.15,43 Our Eq. ~7.9! generalizes
the result obtained by Feigel’man and co-workers to the c
of finite penetration depth.

We stress that our calculation is perturbative and we h
only evaluated the leading correction in perturbation theo
As discussed above, the small parameter in the perturba
theory is proportional tou2;( l z /a0)2. In other words, the
unperturbed state is an entangled flux liquid, with a ve
small value of thez-axis entanglement lengthl z and interac-
tions stiffen the vortices, enhancing the tilt modulus. We c
estimate the values of magnetic field and temperature wh
our perturbation theory breaks down as determined by
root of the equation

v*

11v*
nn

n0
51. ~7.17!

The solutionu0(v* ) of Eq. ~7.17! defines a lineBD0(T) in
the (H,T) phase diagram that can be interpreted as an e
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mate of the phase boundary between entangled and d
tangled liquid regions. ForB.BD0(T) the liquid is en-
tangled, while forB,BD0(T) the perturbation theory break
down, signaling the appearance of a disentangled flux-
liquid. Of course, in order to interpret the regionB
,BD0(T) as a disentangled flux liquid theBD0(T) line must
lie in the molten region of the (H,T) phase diagram. At high
density, v* !1 and Eq. ~7.17! can be approximated a
nn /n0;1/v* @1. It is clear from Fig. 1 that the roots of thi
equation occur at large values ofu, where nn /n0
;(1/2)ln(u). We then estimate that our perturbation theo
breaks down foru0(v* );exp(2/v* ). Converting to field
and temperature, this corresponds toBD0(T)
;(Hc1/2lnk)ln(Hc1f0 /pkBT4p2Alnk), with Hc15f0/
4pl̃'

2 lnk. Below this line,c44 is strongly renormalized up
ward by interactions and a large disentangled flux-line liq
fraction may appear. Conversely, at low density,v* ..1
and Eq.~7.17! becomesnn /n0;1. The solution of this equa
tion depends weakly onv* , as seen from Fig. 1, and i
approximately u0;2, corresponding to BD0(T);(f0/
4p)( ẽ1 /kBT)2. This result coincides with the estimate o
tained by Feigel’manet al.,15 but it applies in a different
field regime. The solutionu0(v* ) of Eq. ~7.17! for general
values ofv* has been obtained numerically and is shown
Fig. 2 as a solid line. For smallv* ~high vortex-line density!
Eq. ~7.17! predicts that the perturbation theory breaks do
at very large values ofu, in a region that is well beyond its
range of applicability.

We now wish to compare our perturbative result to t
nonperturbative expression forc44 proposed by Larkin and
Vinokur and given in Eq.~1.6!. As discussed in the Introduc
tion, if the Larkin-Vinokur formula is expanded for sma
values of the normal fluid fractionnn /n0 , the leading term
has the form given in Eq.~1.8!, which is identical to the long
wavelength limit of our result~7.6!, provided we identifynn
in Eq. ~1.8! with our perturbative expression for the norma
fluid density given in Eq.~7.9!. It is then tempting to con-

FIG. 1. The normal-fluid fraction given by Eq.~7.13! as a func-
tion of u for five different values ofv* . Notice the weak depen
dence ofnn /n0 on v* for small values ofu.
en-

e

d

n

jecture that a nonperturbative generalization of our calcu
tion may indeed yield the expression~1.6! proposed by
Larkin and Vinokur for the renormalized long waveleng
tilt modulus, but with a normal-fluid fraction given by Eq
~7.9!, corresponding to

1

c44
R

5
1

c44
c01n0ẽ1 /~12nn /n0!

, ~7.18!

with nn given by Eq.~7.9!. We stress that Eq.~7.18!, which
is simply a rewriting of the Larkin-Vinokur result, is purely
conjecture in the context of our work. It is, however, inte
esting to explore its consequences. According to Eq.~7.18!,
the condition for the vanishing of 1/c44

R , corresponding to the
onset of a macroscopic disentangled fluid fraction, wo
read

nn

n0
51. ~7.19!

The numerical solution of this equation, denoted byu1(v* ),
is shown in Fig. 2 as a dashed line. We note that the
u0(v* ), where the perturbation theory breaks down, and
line u1(v* ), where the conjectured nonperturbative form
1/c44

R vanishes, coincide at largev* , but diverge at smallv* .
In this high density region it appears that the perturbat
theory strongly underestimates the stiffening ofc44 from in-
teractions. The lineu1(v* ) defines a second ‘‘disentangle
ment line,’’ BD1(T), in the (H,T) phase diagram. Assumin
u1(v* );2;constant over the range ofv* values of interest,
we estimateBD1(T);(f0/4p)( ẽ1 /kBT)2. Notice that the
field BD1(T) @which coincides withBD0(T) at low vortex
density# is of the order of the melting fieldBm(T) of the
vortex lattice. Using a Lindemann criterion for melting, th
is found to beBm(T)5@16cL

4f0p2/(lnk)2(ẽ1 /kBT)2#, where
cL is the Lindemann parameter.44

FIG. 2. The solid line is the numerical solution of Eq.~7.17!. It
defines the lineu0(v* ) in the (u,v* ) parameter space where th
perturbation expansion of the tilt autocorrelator breaks down. T
dashed line isu1(v* ), wherenn /n051.
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Before discussing the location of the disentanglem
lines BD0(T) and BD1(T) in the (H,T) phase diagram, we
recall that the explicit evaluation of the integrals determin
the normal fluid density has been carried out for isotro
superconductors (p51). To estimate the relevance of ou
result to the anisotropic CuO2 materials, we have used th
above estimate for the boundary between disentangled
entangled liquid regions and inserted parameter values t
cal of these materials. To justify this approximation, we n
that for p@1 the collective part of the tilt modulus arisin
from the nonlocality of the vortex interaction in thez direc-
tion becomes less important relative to the vortex part. A
is precisely this nonlocality that is responsible for a nonv
ishing renormalization ofc44 in infinitely thick samples, we
expect that the results that we have obtained for the isotr
case will provide an upper bound for the size of the ren
malization in anisotropic materials. A sketch of a phase d
gram showing the location of the disentanglement lin
BD0(T) ~dashed line! andBD1(T) ~dotted line! is shown in
Fig. 3. It is not drawn to scale.

Using parameter values of YBCO and BSCCO we ha
estimated that in both these materials at high fieldsB
.1 T) theBD0(T) boundary defining the breaking down o
our perturbation theory lies well within the flux lattice phas
At low fields there is a possibility for a disentangled phase
the reentrant liquid region. This region is, however, rath
narrow, particularly in YBCO where it is expected to have
width of the order of 1 G.45 For this reason, while we hav
drawn in Fig. 3 the ‘‘horizontal’’ part of theBD0(T) curve as

FIG. 3. A sketch~not to scale! of the phase diagram showing th
location of the ‘‘disentanglement’’ lines for the liquid discussed
the text. The dashed line,BD0(T), marks the breaking down of th
perturbation expansion for the inverse tilt modulus; the dotted l
BD1(T), corresponds tonn /n051 and signals the divergence of th
conjectured form ofc44

R , given in Eq. ~7.18!. The width of the
reentrant liquid phase is in reality much smaller than shown h
and the lineBD0(T) may or may not pass through it.Bm(T) is the
melting line.Hc2(T) marks the onset of a Meissner effect and is n
a sharp phase transition. Notice that the part ofBD0(T) which lies
within the lattice phase is not meant to represent any real trans
or crossover whatsoever.
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passing through this reentrant liquid phase, it could very w
be that this line is located either above~in the lattice! or
below ~in the Meissner phase! the sketched position. The
disentanglement lineBD1(T) is shown as dotted in Fig. 3 an
it is estimated to lie in the liquid phase. The existence of t
line is, however, just a conjecture in the context of our wo
as our results are strictly perturbative. In general we exp
the actual disentanglement line to lie between our pertur
tive estimateBD0(T) and the conjecturedBD1(T). It could
therefore lie almost entirely in the solid phase, indicating t
a true thermodynamic disentangled liquid phase does not
ist. This conclusion would appear to agree with the lat
results from simulations.19–21Further work beyond the naive
lowest order perturbation expansion discussed here
needed, however, to settle this point.

One important outcome of our work is that the nonlocal
of the intervortex interaction in the field direction has impo
tant qualitative effects on the tilt modulus. In particular,
always yields a finite—although often small—upward ren
malization ofc44 even in infinitely thick samples. This renor
malization is absent in calculations based on the local bo
mapping.28 In fact, in the work of TN an important role is
played by the invariance of the flux-line interaction under
affine transformation or uniform tilt~corresponding to Gal-
ilean invariance of a pure boson system!. Landau46 has
shown that the Galilean invariance implies that the superfl
density at the ground state (T50) of a superfluid equals the
total density. The affine transformation invariance is n
present in the more general intervortex free energy that
lows for pairwise interaction among vortex segments at d
ferent heightsz. This nonlocality breaks the ‘‘Galilean in
variance’’ and yields a tilt-tilt interaction which penalize
any misalignment of the flux lines, therefore favoring dise
tanglement.
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APPENDIX A: DERIVATION OF NONLOCAL
HYDRODYNAMICS FROM THE PARTITION FUNCTION

OF 2D CHARGED BOSONS

In this appendix we show that the nonlocal, non-Gauss
hydrodynamic free energy given in Eq.~7.2! can be derived
by formal manipulations of the partition function of a two
dimensional charged boson fluid. Feigel’man a
collaborators15 have shown that the partition function of a
array of flux-lines described in the London approximation
the Ginzburg-Landau free energy of Eq.~2.18! can be
mapped onto that of a two-dimensional system of bos
interacting via a massive vector potential. The nonlocality
the intervortex interaction is incorporated via a gauge fi
that mediates a retarded interaction among the bosons.
coherent-state formulation of the boson problem yields
imaginary-time action
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Sc@c,c* ,a,A#

5E
0

b\

dtE dr'

3H c* F\]t1 ia02
1

2m
~\“'1 ia'!22mGc

1Vsr~cc* !1
p2

2g2
~“'3a'!2

1
1

2g2 @ ẑ3~]ta'2“a0!#2

1
i

2Apl̃'g
~“3a!•A1

1

8p
~“3A!2J . ~A1!

The correspondence between vortex and boson variabl
summarized in Eq.~5.4!. The coupling constantg corre-
sponds to the strength of the vortex interaction, accordin
g2↔f0

2/(4pl̃'
2 ) andp is the anisotropy parameter that he

allows for a different scalar and transverse interaction am
the bosons.A is the vector potential of the real magnet
field (“3A5B), anda5(a0 ,a') is a gauge field that me
diates the noninstantaneous interaction among the bos
The boson chemical potentialm has to be determined so th
the equilibrium boson densitynB equals the vortex densit
nB5n05B/f0 . Finally, Vsr is a short range repulsion~on
scale j) between the bosons. This action is based on
gauge“•A50 and“'•a'50. The choice of“'•a'50
instead of“•a50 reflects the assumption of nonrelativist
velocities for the bosons, corresponding to small tilt of t
flux lines away from thez direction.47 By rewriting the boson
fields in terms of an amplitude and a phase, as defined in
~5.7!, we obtain

Sc@ n̂,u,a,A#

5E
0

b\

dtE dr'

3H i\n̂]tu1 i n̂a01
\2

8m

~“'n̂!2

n̂
1Vsr~ n̂!

1
n̂

2m
a'

2 1
\

m
n̂~“u!•a'2mn̂1

\2

2m
n~“'u!2

1
p2

2g2
~“'3a'!21

1

2g2 @ ẑ3~]ta'2“a0!#2

1
i

2Apl̃'g
~“3a!•A1

1

8p
~“3A!2J . ~A2!

The assumption of small fluctuations allows us to extend
range ofu from @2p,p# to @2`,1`#. As described in
Sec. V, we now eliminate the phaseu in favor of a vector
field P̂ via a Hubbard-Stratonovich transformation, to obta
is

to

g

ns.

e

q.

e

S̃c8@ n̂,P̂,a,A#

5E
0

b\

dtE dr'H \2

2m
n̂P̂21

n̂

2m
a'

2 1 i n̂a0

1
\2

2m

~“'n̂!2

n̂
2mn̂1Vsr~ n̂!1

p2

2g2
~“'3a'!2

1
1

2g2 @ ẑ3~]ta'2“a0!#21
i

2Apl̃'g

3~“3a!•A1
1

8p
~“3A!21

n0\2

m
lnS n̂

n0
D J ,

~A3!

with the constraint

]tn̂1“'•

n̂

m
~\P̂1 ia'!50. ~A4!

The last term in the action in Eq.~A3!, logarithmic in the
density, is the Jacobian of the transformation. We then m
a change of variables,

t̂5
n̂

m
~\P̂1 ia'!, ~A5!

and obtain

Sc8@ n̂, t̂,a,A#

5E
0

b\

dtE dr'H mt̂2

2n̂
2 ia'• t̂1 i n̂a02mn̂

1Vsr~ n̂!1
\2

8m

~“'n̂!2

n̂
1

p2

2g2
~“'3a'!2

1
1

2g2 @ ẑ3~]ta'2“a0!#2

1
i

2Apl̃'g
~“3a!•A1

1

8p
~“3A!2J ,

~A6!

with the constraint

]tn̂1“'• t̂50. ~A7!

The Jacobian of this transformation cancels that of the p
vious one.

Finally, we define an effective actionS c
eff for the bosons

by integrating out both the vector potentialA(r ) and the
gauge fielda(r ),

E 8Dn̂Dt̂DADae2Sc8[ n̂, t̂,a,A]d~]tn̂1“'• t̂!

5E Dn̂Dt̂e2S c
eff[ n̂, t̂]d~]tn̂1“'• t̂!. ~A8!
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The prime over the integral sign on the left hand side of
equation indicates that the integration overA anda has to be
performed by taking into account the constraints imposed
our choice of gauge. The vector potential and gauge field
most easily integrated out by rewriting the field part of t
action ~A6! in Fourier space, with the result

S c
eff@ n̂, t̂#5E

0

b\

dtE dr'

3H mt̂2

2n̂
2mn̂1Vsr~ n̂!1

\2

8m

~“'n̂!2

n̂
J

1
1

2V (
q

H g2l̃'
2

11qz
2l̃'

2 1q'
2 p2l̃'

2
u t̂T~q!u2

1
q2

q'
2

g2l̃'
2

11q2l̃'
2

un̂~q!u2J , ~A9!

where t̂T(q)5q̂'3 t̂(q). By making use of the continuity
constraint given in Eq.~A7!, we can write

g2l̃'
2

11qz
2l̃'

2 1q'
2 p2l̃'

2
u t̂T~q!u21

q2

q'
2

g2l̃'
2

11q2l̃'
2

un̂~q!u2

5
g2l̃'

2

11qz
21q'

2 p2l̃'
2

u t̂~q!u2

1
g2l2~11q2p2l̃'

2 !

~11q2l̃'
2 !~11qz

2l̃'
2 1q'

2 p2l̃'
2 !

un̂~q!u2.

~A10!

Finally, if we replace the short range repulsionVsr(n̂) by a
short-wavelength cutoff and identify the boson densityn̂ and
momentum field t̂ with the corresponding hydrodynam
quantities for the vortices, we see that Eq.~A9! yields pre-
cisely the nonlocal non-Gaussian hydrodynamic free ene
discussed in Sec. VI.

APPENDIX B: PERTURBATIVE CORRECTIONS TO THE
TILT MODULUS FROM NONLINEAR HYDRODYNAMICS

The wave-vector-dependent tilt modulus is defined
terms of the transverse part of the tilt-tilt correlator as in E
~3.1!. In the hydrodynamic approximation, the tilt-tilt co
relator can be written as

Ti j ~r ,r 8!

5

E Dn̂~r !Dt̂~r ! t̂ i~r ! t̂ j~r 8!e2F/kBTd~]zn̂1“'• t̂!

E Dn̂~r !Dt̂~r !e2F/kBTd~]zn̂1“'• t̂!
,

~B1!

whereF is the hydrodynamic free energy given in Eq.~7.2!.
The free energy can be written as the sum of a Gaussian
FG and non-Gaussian correctionsdF as in Eq.~7.4!. We
want to calculate up to lowest-order in the small parame
e

y
re

y

.

art

r

u2 nonlinear corrections to the tilt autocorrelator. By keepi
only terms up to fourth order in the fluctuations of the h
drodynamic fields, the non-Gaussian part of the free ene
is given by

dF'2
ẽ1

2n0
2V2 (

q1 ,q2

t̂ i~q1! t̂ i~q2!dn̂~2q12q2!

1
ẽ1

2n0
3V3 (

q1 ,q2 ,q3

t̂ i~q1! t̂ i~q2!dn̂~q3!

3dn̂~2q12q22q3!. ~B2!

The tilt-tilt correlator is then evaluated in Fourier space p
turbatively in the non-Gaussian part of the free energy, w
the result,

Ti j ~q,q8!5Vdq1q8,0Ti j
0 ~q!2

1

kBT
^ t̂ i~q! t̂ j~q8!dF&G

c

1
1

2~kBT!2
^ t̂ i~q! t̂ j~q8!~dF !2&G

c , ~B3!

where^•••&G
c denotes a cumulant average over the Gauss

ensemble with weight;exp(2FG /kBT). The first term on the
right hand side of Eq.~B3! is the Gaussian result given i
Eqs.~4.10!–~4.12!.

Using Wick’s theorem, the corrections arising from th
non-Gaussian part of the free energy are easily expresse
terms of the correlations in the Gaussian ensemble give
Eq. ~4.8!–~4.12!, with the result

Pi j
T ~q'!^ t̂ i~q! t̂ j~q8!dF&G

c

5Vdq1q8,0@TT
0~q!#2

ẽ1

n0
3

1

V (
q1

^udn̂~q1!u2&G

~B4!

and

Pi j
T ~q'!^ t̂ i~q! t̂ j~q8!~dF !2&G

c

52Vdq1q8,0@TT
0~q!#2Pi j

T ~q'!
ẽ1

2

n0
4

1

V (
q1

3$^ t̂ i~q1! t̂ j~2q1!&G^udn̂~q2q1!u2&G

1^ t̂ i~q1!dn̂~2q1!&G^ t̂ j~q12q!dn̂~q2q1!&G%. ~B5!

By substituting the expressions for the Gaussian correla
given in Eqs.~4.8!–~4.12!, we obtain the following expres
sion for the transverse part of the tilt autocorrelator to low
order in the non-Gaussian terms
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