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In this paper we use non-Gaussian hydrodynamics to study the magnetic response of a flux-line liquid in the
mixed state of a type-ll superconductor. Both the derivation of our model, which goes beyond conventional
Gaussian flux liquid hydrodynamics, and its relationship to other approaches used in the literature are dis-
cussed. We focus on the response to a transverse tilting field which is controlled by the tilt nmddtithe
flux array. We show that interaction effects can enhangeeven in infinitely thick clean materials. This
enhancement can be interpreted as the appearance of a disentangled flux-liquid fraction. In contrast to earlier
work, our theory incorporates the nonlocality of the intervortex interaction in the field direction. This nonlo-
cality is crucial for obtaining a nonvanishing renormalization of the tilt modulus in the thermodynamic limit of
thick samples[S0163-182¢09)00909-1]

I. INTRODUCTION without dissipation in the direction parallel to the flux
lines—in clean samples has been proposed some time ago by

The static and dynamic properties of magnetic flux lat-Feige’'man and collaboratofs.Early simulations provided
tices in type-Il superconductors have been the focus of muchupport for Feigel'man’s ided§;*8but more recent numeri-
theoretical and experimental work over the last ten y&ars. cal work indicates that the two transitions observed in earlier
Interest in this field was revived by the discovery of the high-work may have been the consequence of finite size
T. materials, where thermal fluctuations melt the Abrikosoveffects!®?° Recent numerical results support the scenario
flux lattice at temperatures and fields well below the meanhat the Abrikosov lattice melts directly into an entangled
field transition aH .,(T).>* The flux lattice melting is a first |iquid and no disentangled liquid phase exists in infinitely
order transition in clean samplsyith an associated jump in  thick sample$®~?! Open questions, however, remain con-
the bulk magngetization, and it has been observe¢erning the role of various approximations used in the dif-
experimentally’~* In conventional low-temperature type-Il ferent numerical models, particularly the range of the inter-
superconductors, the region of the phase diagram where thefgtex interaction.
r_nal fluctuations_are important is e_xt_remely small a_nd mean A ciosely related property of the vortex array that pro-
field theory provides a good description of the physics of th‘3\/ides a direct measure of longitudinal vortex correlations is

meked flx i replaces the Abrikosov Iatice over & large!™ Ut MOGLIUSCiq. It can be probed by measring the re-
q P 9€<honse of the flux array to a small additional magnetic field

region of the phase diagram. Understanding the properties 5P . - A
the flux liquid is therefore crucial for controlling the mag- ¢H. . applied perpendicularly to the external fietdl, re-
netic response of these materials. sponsible for the onset of the vortex state. Such a transverse
The conventional Abrikosov flux lattice is characterizedfield tilts the lines away from the direction of alignment with
by two broken symmetries. First, the translational symmetryHo. Correlated disorder induced, for instance, by aligned
is broken by the ordering of the magnetic flux lines in adamage tracks in the material can drivejL/to zero, yield-
triangular lattice in the plane perpendicular to the externalng a transverse Meissner effect, which has been proposed as
field. Secondly, the gauge symmetry along the field is brokeithe signature of the Bose glass ph&s# The role of corre-
by the alignment of the vortices with the external field. A lated disorder in enhancing longitudinal correlations in the
natural question then arises of whether these two symmetridisjuid phase has also been observed experimentally in mate-
are recovered simultaneously upon melting, or rather theyials with a single family of twin planes by using the dc flux
are recovered in succession at two different temperaturegransformer configuratioff These materials contain practi-
The latter scenario would allow for the appearance of a diseally no small-scale disorder, so that the macroscopic flux
entangled flux liquid phase where translational symmetry idiquid regions in the channels between twin planes are very
recovered, but the longitudinal gauge symmetry is still bro-clean. The experiments suggest that the enhancemenj of
ken. At a second transition temperature the disentangled fluiterpreted as the onset of a disentangled liquid phase, be a
liguid would then be replaced by an entangled flux liquidfinite-size effect that decreases with increasing sample
where the longitudinal gauge symmetry is also recoveredthickness> In thick samples, the experiments indicate that
Alternatively, if both symmetries are recovered simulta-the vortex lattice melting and the loss of longitudinal super-
neously, the Abrikosov lattice would melt directly into an conductivity coincide in clean materials. Even though a true
entangled flux liquid. The precise nature of such an enMeissner effect with vanishing d/, is not expected in infi-
tangled liquid remains an open questidihe existence of a nitely thick, clean samples, it is clear that interactions can
disentangled liquid phase, exhibiting longitudinal enhance the tilt modulus of clean flux liquids and suppress
superconductivity—the ability to support currents flowing the transverse response of the superconductor.

0163-1829/99/5®)/649918)/$15.00 PRB 59 6499 ©1999 The American Physical Society



6500 PANAYOTIS BENETATOS AND M. CRISTINA MARCHETTI PRB 59

In this paper we employ hydrodynamics to evaluate the Bé
renormalization of the tilt modulus of a clean flux liquid due C44=C44(q, =0,0,=0)= 4—2 I+ —=—5—| 149
to interactions. Our starting point is a long-wavelength hy- m 4mNTPNo

drodynamic free energy that includesn-Gaussiancou-
plings in the hydrodynamic fields. It therefore goes beyon
the Gaussian flux-line liquid hydrodynamic free energy dis
cussed before in the literatut®?’ We show that such a non-
Gaussian hydrodynamic free energy can either be writtert’ "> € o
down phenomenologically or it can be derived by using theb44 IS IN any case modn‘le?f._ -
mapping of the classical statistical mechanics of vortex lines, 1he {ilt modulus of dlux-line liquid cannot be evaluated
with nonlocal interactions onto the quantum statistical me-directly. Itis, however, expected that the bare ﬂl_JX'I'qu'd tilt
chanics of two-dimensionatharged bosons, introduced Modulus, denoted here h:;&(_qi ,dz), does not gsm‘er con-
some time ago by Feigel'man and collaboratr@ur cen- S|d§rably from that .of the lattice given in Eq.l). In fac;,
tral result is the expression for the renormalizeaie-vector- @ dl|rect coarse-graining of the microscopic intervortex inter-
dependentilt modulus given in Eq(1.7) below. This is a action yields a Gaussian long-wavelength free energy of an
perturbative result that extends earlier results by othefntangled f|UX-|In636|IQUId with a tilt modulus given precisely
author€®2%in two important ways. First, it incorporates both PY Ed.(1.1) above™ Interactions responsible for nonlineari-
the finite range and the nonlocality of the intervortex inter-Ues In thoe long-wavelength free energy will, however, renor-
action in the field direction. This nonlocality plays a crucial Malizeca.
role in controlling the tilt response. It is only when the non-  The renormalization o€, in flux-line liquids has been
locality is properly accounted for that a finite renormaliza-studied before by employing the analogy between the di-
tion of ¢, is obtained in a clean flux-line liquids of infinite rected vortex lines induced in a three-dimensional supercon-
thickness. In addition, our formalism allows us to evaluateductor by the external fieldH, and the imaginary-time
the full wave vector dependence of the renormalized tiltworld lines of two-dimensional bosoi43#The most severe
modulus—a result that was not discussed before in the litapproximation made in the form of this boson mapping in-
erature. troduced by Nelsof? is that the pairwise interaction be-
Before discussing our result in more detall, it is useful totween flux lines is approximated as local in the field direc-
make contact with already existing work. The tilt modulus oftion (z), i.e., only the interaction between vortex segments at
the Abrikosov lattice is easily calculated from the Ginzburg-equal heightz is considered. This corresponds to an instan-
Landau free energy for a superconductor in a field. It is distaneous pairwise interaction between the bosons. One of the
persive both in the longitudinal and in the in-plane directionsconsequences of this approximation is that it completely ne-
due to the nonlocal character of the intervortex interactiorglects the collective part of the tilt modulus. Hence in this
and it has a rather complicated expression, particularly fomodel c,, is given by the single-vortex part, which is in-
layered material. It naturally separates in the sum of twoversely proportional to the boson superfluid density
contributions

d’s generally dominated by the large collective contribution
_(BSZ/477). The second term inside the brackets in Eq4),

arising from the single-vortex contribution, would dominate
Iiny at very low vortex densities where the expression for

By, 1
Caa(01 ,0) = C4(02) +C34(01 ,0), (1.) C44= 4 42 pPn,; 15
with g, and g, wave vectors perpendicular and parallel to
the external field, respectively. The first term on the right
hand side of Eq(1.1) is the single vortex contribution, aris-
ing from the self-energy part of the tilt energy. Neglecting its
weak logarithmic dependence apg, it is given by*—3*

The superfluid phase of bosons & ng) corresponds to an
entangled liquid of magnetic flux lines witt,, given by Eq.
(1.2). A finite normal-fluid fraction of bosons of density,
=ny— N, corresponds to a disentangled fraction of flux lig-
uid and enhances the tilt modulus. A normal-fluid phase of
1.2 bosons withng=0 corresponds to a disentangled flux liquid

' with infinite tilt modulus and transverse Meissner effect.
whereny=Bo,/ ¢, is the average areal density of vortices, Tauber and NelsoiiTN) recently employed this boson map-
with By, the mean induction along the external field direc-Ping to evaluate the renormalization of, due to sample
tion and ¢=hc/2e the flux quantum, an@, is the single- thlcknessa, different boundary cqn_dmons and various types of
vortex tilt energy defined below. The second term in Eq_dlsorder? They found that for finite sample thickneg=or-
(1.1) is the contribution from intervortex interactions. It is r€SPonding to a nonzero boson temperatthere is a non-
strongly dispersive and in layered materials it is givenv@nishing normal-fluid component which suppressgs On

by~
Caa~Npé€y,

by32-3 the other hand, the normal-fluid density always vanishes for
infinitely thick samplegor vanishing boson temperatiirso
Bé 1 that the flux liquid is always entangled in this limit.
Ces(d,,09,)= = 7 5 (1.3 Feige'man and co-workef$incorporated the nonlocality
4 1+goh7 +afpih? of the intervortex interaction in the field direction in the bo-

~ son formalism. They showed that the statistical mechanics of
where X, =\, /(1—H/Hg)"? is the effective penetration yortex lines with nonlocal interactions maps onto that of
length in theab plane(the field is applied along the axis)  two-dimensionathargedbosons. This nonlocal mapping in-
andp is the anisotropy ratio. It is important to stress that thecorporates the collective part of the vortex tilt modulus. Lar-
long wavelength tilt modulus kin and Vinokuf® and later Geshkenbéfhused this nonlo-
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cal boson mapping to generalize the expressidnb phase. One of the main outcomes of our work is the devel-
obtained by TN. These authors proposed that the longepment of a transparent hydrodynamic framework that can
wavelength renormalized tilt modulus can be written inbe used to study the role of the nonlocality of the intervortex
terms of the superfluid density, of two-dimensional bosons interaction on the tilt response, both in clean materials and in

interacting with a gauge field as the presence of disorder of various geometries. Note that in
conventional, Gaussian hydrodynamics the effect of disorder
B3, 1 1.6 0N c44 cannot be detected.
Can=">— — . . i
4= 4732 pln, In Sec. Il we discuss the general form of the London free

energy used as the starting point to study the magnetic prop-
The superfluid density was evaluated perturbatively byerties of superconductors in the mixed state. The various
Feige'man and co-worket for the case where the repul- response functions of interest are also defined there. After
sive interaction among the bosons is infinitely long rangeddiscussing the response to a tilt field in Sec. I, we review
corresponding to a vortex liquid with, —<. These authors and contrast in Secs. IV and V, respectively, the results ob-
argued that in this limit a distinct disentangled flux liquid tained by conventional Gaussian hydrodynamics and by the
phase with diverging., exists in infinitely thick supercon- local boson mapping. After showing how hydrodynamics
ducting samples. can be derived from the boson model in Sec. VI, we intro-
The calculation of the interaction renormalization of theduce our non-Gaussian hydrodynamic model and discuss its
flux liquid tilt modulus via hydrodynamics described here relationship to previous work. Our results are discussed in
has the advantage that it naturally incorporates the nonlocaBec. VII. Finally, a rigorous derivation of the nonlocal, non-
ity of the intervortex interaction and it allows us to easily Gaussian hydrodynamics from the charged boson analogy is
treat the case of finita. The non-Gaussian hydrodynamics displayed in Appendix A, and the perturbative evaluation of
used as the starting point contains bare elastic constants thiéie renormalization ot,, from interactions is displayed in
are determined by the intervortex interaction. In particular Appendix B.
the bare tilt modulus is given by E¢l.1). The corrections to

C44 due to the nonlinearities are evaluated perturbatively. Our || MAGNETIC RESPONSE OF THE VORTEX ARRAY
main result is an expression for the wave vector-dependent

renormalized tilt modulus, given by High-T, superconductors are uniaxial, strongly type-lI|
B materials with very large values of the Ginzburg-Landau pa-
1 1 [ nge;  ny(q; ,q,) rameter k=\/¢. For applied fieldsH.;<H<H_,, their

' mixed state can be described in the London limit with a
17 Ginzburg-Landau Hamiltonian given by

wheren,(q, ,q,) has the rather complicated integral expres- 1 c2 [ ¢
H[0,A]= f (
r

— 1—
SR .0 a0 cla.a) Mo

2

sion given in Eq.(6.7) below. The corrections to the tilt d,0—A,
. . ; . 27 #

modulus incorporated in,, can be interpreted in terms of a

disentangled fraction of the flux liquid—hence a “normal- 2.9

fluid component.” When the nonlocality of the intervortex

interaction in the field direction is neglected, Ed.7) be-

+ ! VXA)?
Py ypt )71 -

Here thez direction has been chosen along the anisoti@py

comes identical to the result obtained byubar and Nelson gﬁ'égﬁ::;;#%iﬁogiiﬁto r.(:G ;eel;)l n;é%eiummat:gm\s/ﬁrn

[see Eq(3.33 of Ref. 28. In this case the long-wavelength . ponentueXx,y.. K |

Ca4 is Not renormalized in infinitely thick samples. tended in Eq(2.1). Latin |ndL|ceS| K- - TUNONTY OVerX
44 andy. The integralf, - - -=[dzfdr, - - - is over the volume

Our result, Eq(1.7), is also simply related to the Larkin-

Vinokur formula given in Eq(1.6). This is immediately seen f}.:LA of :hﬁ supgrcon(cjiuc’;‘or, with.theh thti)cklness inl the
by introducing a normal fluid fraction in Eq1.6) as n, irection of thec axis andA the area in thab plane. Also,

=ng—ns, and then expanding for small values of the normai™ x=\,./(1— H/H) Y% whereh,=\, =\, are the penetra-

fluid fraction, n,,/ny<1, to obtain tlon depths from supercurrents in thx—:b plane, while\,
=p\, is the penetration depth from supercurrents along the
1 1 Noey Ny, c axis, with p the anisotropy ratio arising from an effective
ViR o0 nl’ (1.9 mass tensor for the superconducting electropp
Caa Cq Caq 70 =(m,/m,)*?]. Finally, A is the total vector potential, with

B=V XA the internal field in the material, angy,=hc/2e is
the flux quantum. The corresponding Gibbs free energy func-
tional is

with 024 given by Eq.(1.4). This expression is formally iden-
tical to the long-wavelengthg( =0, q,=0) limit of our re-
sult.

We find that interaction effects in a clean flux liquid do 1
lead to a nonvanishing renormalization of the tilt modulus in f

> LY . . L 0,H]=H[6,A]— —| B-H, 2.2

the thermodynamic limit of thick samples. This correction is GOHI=HLO.A] 2.2
present only if the nonlocality of the intervortex interaction
is properly incorporated. The correction remains, howeverwhereH=V X A®is the applied external field.
small at all fields higher than about 1 T. Our results are The London free energy functional can be rewritten in
perturbative and cannot be used to infer quantitative concluterms of interacting vortex lines by introducing a “vortex
sions about the existence of a true disentangled flux liquidine density” vector defined as
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. 1 minimizing the Ginzburg-Landau free ener(®.8) for fixed
T(r)= EVX(VG)' 23 vortex configurationd (q) and it is given by
Here and below a hat is used, when needed, to distinguish B(q)=BY(q)+BM(q) (2.10

microscopic fluctuating quantities from average ones. We

will specifically consider situations where the magnetic f|eldwhereBV(q) is the part of the internal field due to the vor-
responsible for the onset of the vortex state is applied alontjces,

the z direction. Vortex line configurations are then conve- _ .

niently characterized by a set df single-valued functions  B}(q)=(1+U(q)),+U,.,(q) 0T (q)

r.(z), which specify the position of theth vortex line in the

Xy plane as it wanders along the axis. The three- 1 3 (XZ=X2)q?
dimensional position of each flux line is parametrized as B 1+32q7 *" pi V11+Mq +32q2 Pii(d.)
R,(2)=[r,(2),z] and the vortex density vector can be writ- £
ten as X ¢oT,(q), (2.1
N and BY(q) is the Meissner response of the material to a
2 —r(2)], (2.4 spatially inhomogeneous external field
wherer=(r, ,z). The vortex density vector can be written B (a)=[1+U(a)],H,(a)
asT(r)=(t,n), wheret is a two-dimensional vector describ-
ing the local tilt of flux lines away from the direction of the _ 1 [quzﬁ
~ ~ 1 v
external field anch is the areal density of vortices 1+15g? a
N (N2-3D)q?
Dy @y — +8,i8, —=35 =575 Pi
n(r) n§=:1 S[r —r,(2)], (2.5 WO N2 7 Reg ij(dL)
XH,(q). (2.12
2) 5,
t(r )—nzl [ri—ra(2)]. (2.6 In addition to the contributions given in E.10), there are

field fluctuations representing thermal deviations from the
The vortex density vector is also directly related to the su-solution of the London equation, which are neglected here.
perfluid velocity of the electrons in the superconductdr, By inserting Eqs(2.11) and(2.12 into Eq.(2.8), we obtain
=(¢ol2m)V 6—A, by the vortex free energy functional expressed entirely in terms
of vortex degrees of freedom

doT—B=V XV 2.7
The Cartesian components of the local supercurrent fare gT.Hl= 20 4 TV (DT, (—9)
=(c/4mX2)v$, (no summation ove intended here After
some manipulationgsee, for instance, Ref. 17 for the de- 1 @OV, (@ T.(—q)
tails) and neglecting spin wave fluctuations, one obtains bo * wy v
g, Hl=5—g 2 {{doT(@)—B,(a)] ——H (q)[1+U(q)]‘le(—q)],
N R (2.13
XU#V(Q)[¢OTV(_q)_BV(_q)]
. R where
+[B(a)|*~2H(q)-B(—q)}, (2.8 _
_ V(@)= Vo[ 1+ U(0)],5U 5(0)
with ~
Vo (\Z-XD)a?
(X2-xDaf =53 O b =55 =5 P |,
U,u.u(q):~ wv ™ Oui VJTZLZ IJ( q) |- 1+)\J-q 1+)\J-q TAAY
19 NZQT+NT

o are the Fourier components of the anisotropic intervortex

Here, g=(q,.,0,) and P{j(d,)=8;—0,q,; is the WO- interaction, withVy= ¢2/47. One important property of the
dimensional transverse projection operator, witly intervortex interaction is its nonlocality. In particular, the
=q, /ql The correspondmg longitudinal projection opera-nonlocality in thez direction, reflecting that flux-line ele-
tor is P,J(ql) Gij— P,J(qi) ments at different heights repel each other via a Yukawa-

In this paper, we will only consider magnetic field fluc- like potential, will play a very important role in the discus-
tuations due to fluctuations in the vortices’ degrees of freesion below.
dom. This London part of the field fluctuations is obtained by The Gibbs free energy of the vortex system is given by
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G(H,T)=—kgTIn Z(H,T), (2.15 where 5BM(q) is the Meissner response to the perturbation,
given by Eq.(2.12 with H(q)=6H(q). To linear order in
where the perturbing field, the vortex contribution can be expressed
in terms of correlation functions in the unperturbed ensemble
Z(H,T):f DT(r)e 9*eT 219

is the canonical partition function. The prime over the inte- <9X(Q>>H=<@X(q)>o+%<éx(®é¥(—Q>>85H Aa),
gral sign indicates that the integration must be performed (2.23
with the constraintV-B=0. The average local field in the '
superconductor is then given by where (- - - )¢ is the connected part of the correlator, i.e.,
(AB)®=(AB)—(A)(B). Finally, the corresponding linear
- oG response function defines the magnetic susceptibyit
B(r)=(B(r))=—4m SH(r)’ (2.17) of tﬁe material according to k PUBHCD

where the brackets denote a statistical average with Boltz- B (q)—(BY =47 +68,,]6H ().
mann We|ght~ qu—g/kBT]. M(q) < ,u,(q)>0 [ X,uv(q) ,U.V] V(q (224)
For a spatially homogeneous external field applied along

the z direction, H(r)=2H,, we obtain the familiar forth The components of the susceptibility tensor can also be ex-
' ’ pressed in terms of vortex density correlations
HO¢O

N 1 N .
Go(T,Ho)=—NL +o= 2 TV, (T (—0).
e am 204G T 018 Vo @V (— D T (),

2.2
For a uniform applied fieltH=ZzH,, the Meissner part of the (229
transverse local field given in E(R.12 vanishes. The local WhereT,,,(q) is the correlation function of the vortex den-
field in the superconductor is entirely due to the vortices andity vector
it is given by Eq.(2.11). From here on we will always refer R R
to the vortex system created by the homogeneous field T, (D)=(T (T, (—a))5- (2.26
=2HO and the local field is to be understood as the field
given by Eq.(2.17).

The focus of this paper is on the response of the vorte
array created by the external fieitHo to a small additional
spatially inhomogeneous external fielBH(r). The Gibbs 4 2 I\C 2\~ 1 -1
free energy functional in the presence of this perturbation (Tu(@Tu(a))0= (SokT)(V ™) eV
can be written as

Vio %
_ wy

The density vector correlation function can be expressed in
terms of derivatives of the partition function of the perturbed
)§ystem as

y 8%In Z(Hyz+ 8H,T)
oH,(q)sH,(q")

G(T,zHo+ 8H)=Go(T,Ho) + 6G(T,6H),  (2.19 SH=0

whereg, is given by Eq.(2.18 and the perturbation is (.27

1 where (\/*1),“, are the components of the inverse of the
5G(T 6H)=— — | BY. sH 292 interaction tenso(2.14).

G( ) 47TJ’r (220 The tensorT,, is block diagonal, withT ,,=(T;;,T,,).
The component,, is the density-density correlation func-
1(. tion or structure function of the vortices

=- EJ jS- 6A®X (2.21

;

T,4q)=S(q)=(n(q)5n(—q))o, (2.28

where 8n(q) =n(g) —neQ 8y, describes the fluctuation of
the local density field from its mean valag= B,/ ¢, with
Bg,~Hg the equilibrium value of the component of the
internal field. The in-plane paff; is the tilt-tilt autocorrela-

tor and it is the central quantity of interest here. It can be
written in terms of transverse and longitudinal components

The local fieldBY in Eqg. (2.2)) is the field in the absence of
the perturbationdH and is related to the vortex degrees of
freedom via EQ.(2.11). It does not include the Meissner
response to the perturbatidti. The supercurrent is defined
as|s= (c/4m)V x BV.

Below we will use(- - -), to denote a statistical average
over the unperturbed ensemble described gpy while
(- -)u will denote the average over the perturbed ensemble,
with free energy given by Eq2.19. The mean local field ) — L T
B" in the material in the presence of the perturbathcan Ti(@=TU@Pj(@)+Tr@P;(A). (229
be written as the sum of vortex and Meissner parts as The transverse part of the tilt autocorrelator determines the

. tilt modulus of the vortex array. The wave-vector-dependent
BH(q)=(BY(q))y+ 6BM(q), (2.22 tilt modulus is defined by
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nSkBT where the first term in the square brackets arises from the
T+(g)= I TR AR (2.30 Meissner part of the response. The long wavelength limit of
44919, the helicity modulus is
Finally, in order to make contact with the literature, it is o v
useful to write the perturbing field in terms of a vector po- lim Y M T -0
tential SH=V X SA®. The linear response to the vector po- 60 AQ)=7 keTq, 0 (4.,6:=0) ).
tential SA®"is then characterized by the helicity tendoy, , (3.3

which relates the induced current &%,
The vanishing  of IirquOTT(ql ,g,=0) vyields

jh(@)=—cY,(a)5AS(q), (23D limg _o47Y,Aq,)/q? =1, which corresponds to a perfect

rial by the perturbing vector potential, comprising of both theSuperconductivity. _
vortex and Meissner contributions. The helicity tensor can be W€ emphasize, however, that both of the perturbations

immediately related to the components of the susceptibilityust described simply probe the magnetic response of the
tensor superconductor, which is the true equilibrium test of super-

conductivity. In fact, the relevant response function in each
Y ,(01) = — €40€008060aX ep(0)- (2.32  caseltilt or helicity modulug is simply the transverse part of

. . ) the susceptibility tensor
Using Eq.(2.29, it can also be expressed in terms of the

correlations of the vortex density tensor. Yr(q)= pﬁ(qL)X”(q)_ (3.4)

1. TILTING FIELD The long wavelength tilt modulus is given by

In the remainder of this paper we focus on the response of
the vortex array to a spatially inhomogeneous fiéhd, (q) =1+47xlim xt(q, =04,), (3.5
applied perpendicularly to the direction bff, that tilts the Caa q,—0
flux lines away from thez direction. As discussed by Chen
and Teitel” we distinguish two types of perturbations. The
first is a tilt perturbation, corresponding to a tilting field
which is spatially homogeneous in thg plane and may be
modulated in the direction. The long wavelength response
to this tilt perturbation is determined by the long wavelength

tilt moduluscy, defined as In a flux-line lattice the transverse part of the tilt-tilt cor-
relator is non-analytic at small wave vectors and the different
— i ; order of limits of the two perturbations discussed above is
Cas qlleO qIJTOTT(QL /o). SE important. This is because the vortex array has a nonzero
long wavelength shear moduliegg. As a result, the flux

The order of the limits ¢, — O first, followed byq,—0) is  |attice exhibits longitudinal ~superconductivity, with
important here and reflects the physical situation of the relﬁmG| _oT1(q, ,9,=0)=0, and
evant experiment. The vanishing of the long wavelength tilt ™
modulus signals the onset of a transverse Meissner effect, ‘ 1
where the perturbing field is completely expelled from the lim y2"¢q, ,q,=0)=—-—, (3.7
material[as seen from Eq(2.25, the corresponding static q,—0 4
susceptibility equals-1/44r]. This occurs, for instance, in
vortex arrays pinned by columnar defects.

The second physical experiment of interest here is the*0 and
response to a tilting field 6q2105Hi(qi) which is spatially

N3V

and the component of the helicity modulus that controls lon-
gitudinal superconductivity is

lim Y,(q,)=— lim qx(q,.9,=0). (3.6
q,—0 q,—0

but no transverse Meissner effect, asqIZim)TT(q . =04,

2
homogeneous in thedirection and generates a shear pertur- lim Xlattice(q ~04,)=— i + VOnOI 3.8
bation of the vortex array. Such a field can be obtained from Gy 0 T o Am  Cy
a vector potentiabA®=z5A%(r ), which induces screen-
ing currents along the direction. In the literature, the re- In a flux-line liquid, in contrast, we find that the order of

sponse of the superconductor to such a shear perturbationlimits is not important and the flux array in general exhibits
often characterized by the corresponding component of theeither longitudinal superconductivity, nor perfect Meissner
helicity modulus[Y ,(q,)] defined in Eq.(2.31), which in  effect, as

turn is related to the transverse part of the tilt-tilt correlator

by lim x7"(q, =04,)
q,—0
2
ay Vo T+(9,,9,=0) 2
zz(qj_) At 1+qf7\§ kBT 1+qf)\§ = |lim Xl_;_qwd(qL -qZZO)_E-I— ORO, (3.9

(32) q, —0 Cy4
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where cff4 is the flux liquid tilt modulus, renormalized by Wherec‘l)l(q) andc24(q) are the bare compressional and tilt
interaction effects. We will see below, however, that interacimoduli of the flux liquid. The compressional modulus is
tions can yield a strong upward renormalizationcgf even  given by
in clean flux liquids.
0. (q)— BS, 1+93%p? s
IV. GAUSSIAN HYDRODYNAMICS 11ld 4 (1+q2Xf)(1+q§Xf+qi pZXf) ’ :

A useful framework for discussing the long wavelength tye pare tilt modulus is found to be to a good approximation
properties of qux—I|r_1e liquids that natu_rally mcorporates_all identical to the flux lattice tilt modulus given in Egs.
nonlocalities of the intervortex interaction is hydrodynamlcs,(l_ 1)—(1.3).35:36

where vortex fluctuations are described in terms of a few |, this Gaussian approximation, the probability of a fluc-
coarse-grained fields. By long wave]engths, We mean Waveyation is proportional to exp(Fs/ksT) and averages must
lengths large compared to the spacing between Qu&nes e carried out subject to the continuity constraint, Eg5).
in the z direction, and large compared to the intervortexThe correlation functions of the hydrodynamic fields are then
spacing in theab plane normal ta. immediately calculated and are given by

The coarse-grained hydrodynamic fields for a flux-line

liquid are the fluctuating areal density - A ngke T
(oM~ on(a)e=——5 5 —7. 48
) N C24(Q) Az + C1a(A AT
n(n=2, ol —ru(2)] (4.0 ,
B - ~ NokeTq,id;
it f (tH(—a)ysn(a))e= . (49
and a tilt field | coa@aZ+coya)al
N
- dr A A
= =221, —rn(2)]. 4.2 (=t (@)e=THAP](A)+ TUQP(dL),
n-1 dz (4.10
Here 5&)(r ) is a smeared-out two-dimensionélfunction  with
with a finite spatial extent of the order of the inverse of the
Brillouin zone boundarkg,= V4mn,. It is defined as 0 n(z,kBT
T =~ (4.1
2 1 s . Ca4(Q)
S5 =_ “iary 4.
6z(11) Aq S, © “3 and
We stress that these hydrodynamic fields differ from the mi- n2k qu
croscopic fields defined in Eq$2.5 and (2.6) as they are TE(q): o"B_ 1z ) (4.12
coarse-grained quantities obtained by averaging out the more o az+ciy(aa?

microscopic and rapidly varying degrees of freedom. . . .
: : L The long wavelength tilt modulus is determined by the trans-
A Gaussianhydrodynamic free energy containing terms ) .
Y Y %y 9 verse part of the tilt autocorrelator, according to Eg11).

guadratic in the deviations of the fields from their equilib- . : o ) X : )
rium values can be obtained by coarse-graining the microTo this Gaussian order it is then identically given by its bare

scopic energy of interacting vortices given in E@.18, value c,, given in Eq.(1.4)_. Ggussmn hydrodynamlcs doe_s
with the resuff® not allow for any renormalization of the tilt modulus, even in

the presence of disorder. This is because a disorder potential

. N couples to the flux-line areal density that, within a Gaussian

Fezﬁf [B(r—r")én"(r)snt(r') theory, is in turn decoupled from the transverse part of the
0T tilt field. In particular, this naive hydrodynamic theory does
+K(r=r")ir -, (4.4 not describe the possibility of a disentangled flux-line liquid,

with a tilt modulus enhanced by interaction or disorder. In

where snH(r)=n"(r)—n, andB(r) andK(r) are nonlocal other words, Gaussian hydrodynamics is by definition a
liquid elastic constants. The density and tilt fields are notheory ofentangledflux-line liquids.

independent quantities, but are related by a “continuity”

equation expressing the constraint that vortex lines cannot V. 2D BOSON MODEL

start or stop inside the sample ) . , .
Considerable progress in understanding the properties of

a,6nH+V . TH=0. (4. vortex-line arrays has been made by employing the formal
_ ‘ . _ . ~analogy between the classical statistical mechanics of di-
The Gaussian hydrodynamic free energy is rewritten in &ected lines in three dimensions and the quantum statistical

more familiar form by passing to Fourier space mechanics of two-dimensional bosons. The advantage of this
1 approach is that it can incorporate interaction effects ac-

E.— 0 SnH(a) |2+ 0 tHa)|2], counting for Iocz_;tllzanon or disentanglement (_)f the vqrtlces.

¢ 2n30 zq: [en@lon™ (@ "+ ol @I ()] The drawback is that this model, at least in its simplest

(4.6)  implementation employed by Nelson and co-workits®28
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neglects the nonlocality of the intervortex interaction. We L7 Boosor
will show below that the nonlocality of the interaction in the
field (2) direction plays a crucial role in controlling the tilt

modulus. In this section we briefly review the local version €1>m,
of the boson mapping employed by Nelson and
co-worker§*38 and the results obtained recently for the tilt kgT 1,
modulus by Taber and NelsoR® using this model.
Neglecting the nonlocality of the intervortex interaction, bo
the free energy functional of interacting vortex lines in a HOE_GIH,‘M

field H=Hoz+ 8H, given in Eq.(2.19 is approximated as

where Byosori= 1K Thoson IS the inverse temperature of the

bosons. The precise mapping of the grand canonical vortex-

line partition function onto the Feynman path integral in

imaginary timer of a gas of two-dimensional bosons re-
1 quires the introduction of a second quantized Hamiltonian

) > VL[|rn(z)—rm(z)|]] corresponding to Eq.(5.1) and is described in the

m#n literature?3®-%°Some care must be taken in dealing with the

dr,]?

dz

n=1

N~
Q({rn}1H):N|—<Hof_g_fl)+L| > %

" N dr tilting field SH, which introduces velocity-dependent terms
— _Of > SH, [r(2),2]==, (5.1 into the fictitious boson Lagrangian. One important differ-
Am)zi=1 dz ence between the flux-line array and the boson system is in
_ the boundary conditions in the fictitious time variabklérhe
wheree; = €, /p?, with €;= €olnx the effective line tension mapping of the free energfs.1) of vortex lines onto the
andey=(¢o/4m\ )2 a characteristic energy scale. The non-‘“action” of two-dimensional bosons is exact only when one
locality relating fields and vortex variables has been neimposes periodic boundary conditions for the flux lines in the
glected also in the last term of E¢.1). Two crucial ap- zdirection, i.e.yr,(L)=r,(0). Incontrast, the natural bound-
proximations have been made in rewriting the generahry condition for flux line would be free boundary condi-
intervortex energy given in Eq2.8) in the form(5.1). First,  tions, corresponding todf, /dz),-, =(dr,/dz),_o=0. As
the leading elastic term in the self-energy part of 18  shown by Taber and Nelsof? the choice of the boundary
has been linearized, according {d + (1/p?)(dr,/dz)°~1  conditions does affect the tilt modulus of a finite-thickness
+(1/2p?)(dr,,/dz)?. Secondly, the pair interaction among sample. We will not, however, discuss this here as we are
different flux lines has been replaced by an interactiorultimately interested in infinitely thick samples.

V, (r,) acting locally in each constaatplane, given by To complete the mapping, the grand canonical partition
function (5.1) is first rewritten in a coherent-state path inte-
¢(2) _ gral representation as
V, (r)=———5Kp(r, /\)), (5.2
ERLE 8772)\i o\t /g

= * —S[¢,4* ;hl/kgT
with Ky(x) a modified Bessel function. Of these approxima- ZolH) f Dyl 'Z)f Dyl 2)e '
tions the latter is the most severe, since it amounts to ne- 5.9
glecting theq, dependence of the elastic constants—an aPThe boson ©
proximation that strongly affects the tilt modulus, as we will
see below. Lettingg[{r,(2)},H]=uNL+F[{r.(2)} H],

action” in the imaginary-time path integral is

2
with w=H(po/dm) — €1= ¢o(Ho— H¢1)/4m a chemical po- .. :J . _(keD)_y
tential, the grand canonical partition function of the vortex SLyyih] r V| keTo 2e; Vimw|y
liquid can be written as
kgT . .
<4 N ) —zTh'(l,U Vioy—yV ., J*)
Zgr(H):NZOWeBLMNH Dr(z)e IntHkeT, €1
= . n=0
(5.3 1 ) )
——h2 g%+ | dr' V (r,—1"))
The integral in Eq.5.3) is over all vortex line configura- 26
tions. It has the form of a guantum-mechanical partition
function in the path integral representation for the world X|g(r, ,2) |3 g(r’, ,z)|21, (5.6)
lines of N particles of mas;, moving through imaginary

time z and interacting with the repulsive pair potential i .
V,(r,). The vortex model with this simplified interaction @ndh(r)=(¢o/4m)éH,(r). The complex fields) and ¢

can therefore be mapped onto a model of two-dimensiondorrespond to boson annihilation and creation operators in
(2D) massive bosons with instantaneous pairwise interactior"® sécond quantized Hamiltonian. It is convenient to rewrite
The mapping results in the following correspondences: ~ these fields in terms of an amplitude and a phase as

Ze T, (5.4 P(r, ,z)=n(r, ,2)e'%r 2. (5.7)
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The magnituden(r, ,z) of the field ¢ corresponds to the Where(---)s denotes an average over the Gaussian action
fluctuating local boson density. The phase fi¢ldetermines  (5.12. The correlation functions of the fluctuating fields are

the boson momentum density easily calculated within the Gaussian approximation, with
the result
o(r, ,2)=kgTnV, 6. (5.9 ~
. . . . ~ ~ nokBTqi/Gl
Upon inserting Eq(5.7) into Eq. (5.6), the action can be (6n(—q)on(q))g= (5.14
! , . ; 2 2 2!
written in terms of density and phase variables as d;+es(d.)/(kgT)
Anon (0~ ) Sh() % (519
R —Qq)on(q))c= , .
1 gy (KD (Vim? | (ksT)% ) o2+ ep(d,) (ke T)?
:J |kBTn(920+ poy ~ (VLQ)
r . & Fieala)Mnoet (T’
kgT h2 .. (0(—)6(q))c= PRSI (5.16
@ 61 where
+f dr' V, (r,—r')n(r,,2)n(r',,2) ¢, (5.9 es(d,) | nokeTQ?V,(q,) [keTq? 211
T = +| —= (5.17
where we have dropped surface terms that vanish for peri- ® €1 €1
odic boundary conditions. corresponds to the Bogoliubov spectrum of the two-
The ti_It—tiIt correlatorT;;(q) can be calculated using Eq. dimensional boson superfluid. The quartic term in the Bogo-
(2.27), with the result liubov spectrum arises from th&  n|? “kinetic” term in
the action. To this Gaussian order of approximation the tilt
T.( ):kBT 5:(R(Q)) modulus is dispersionless and simply the bare part of the
i ij N n=0 single-vortex contribution te,,, given by
kgT c2=c%=nge,, (5.18
_( ) 2 lepL]<n q- p) o o
Qél

as given in Eq(1.2). By comparing the correlation functions
~ , , given in Egs.(5.14—(5.16 to those of the hydrodynamic
X o(p)N(=a=p")6(P"))n-o. (5.10 fields given in Eqs(4.8—(4.10, we see that the results ob-
where the brackets denote an average over the full nonlinedained by these two methods agree with each other provided
action (5.9), evaluated ah=0. we drop the term of(’)(qj) in the Bogoliubov spectrum
To proceed, a standard approximation is to consider onlywhich is of higher order in the wave vector and therefore is
small fluctuations of the fields from their mean values. Let-consistently neglected in a long wavelength theoapd

ting make the identifications,(q, ,q,) =nge; andcdy(q, ,a,)

N N =n2V,(q,). The quantity that replaces the “Bogoliubov
n(ry,z)=no+én(ry,2), (31D gpectrum” in hydrodynamics is a characteristic inverse

and retaining only terms quadratic in the fields in the actionlength scalet; * that controls the decay of correlations along

the corresponding Gaussian action in zero tilting field isthe z direction, given by

given by
. e(q) | c1y(d, ,d,)
(ksT)2 (V, 6n)2 | —&hna)=a\ 5 (619
Sl 8n, 6;0]= |kBT5na 6+ o n B Cad(d. ,d2)
€1
Notice, however, that, in contrast to the boson spectrum, the
( sT)? B hy(V, 6)2 correlation lengthé, depends org,, not just onq, . This
2e; oL FL dependence arises from the nonlocality of the intervortex in-

teraction in the field direction and will have important con-

s . sequences on the renormalizationogf. Finally, we stress

+ fr, Vi(rp=r'pén(ry,z)én(r’, ,z) . that the hydrodynamic tilt field doest simply map onto the
* momentum density of two-dimensional bosons, which in

(5.12  turn is related to the boson phase variable by GcB). The
boson momentum density is to lowest order purely longitu-
dinal while the tilt field always has a transverse part.

2 Tauber and Nelson evaluated perturbatively the correc-
( y—Doe” No BT j+<nOkB ) a.i0.(6(a) 6(—a))e. tions toég:f14 arising from_terms beyond Ggussian in the.fr.ee
€ € energy?® These corrections can be obtained by factorizing
(5.13  the fourth order correlator on the right hand side of Eq.

To Gaussian order the tilt autocorrelator is given by
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(5.10 as a product of Gaussian correlators using Wick's 2

~ A 2kgTn N
theorent! For the long wavelength tilt modulus, these au- Zgr(H)=J DPDNDo exr{ ° Oj In[n(r)/ng]
thors obtained € r
Xefs’[ﬁ,ﬁ,H;h]/kBT, 6.1
1 1 ng €3
—=—1-—, (5.20  where
Cas  No€y No
.- . kgT)? (V n)?
where 5’[P,n,0;h]:”ikBTnaza+( o1)” (V.1
r 861 n
LkgT [ d’q, | q 2 (kgT) . .
g LKg J’ n I sl).
n,=—= - 5.2 +-—=—inV 6-[kgTP—h
"~ 8%, ) 2mylsiiLle(ai2gT]] 2 ;, "vefletPon]

is the normal-fluid density of the two-dimensional boson lig- + n [(ksTP)2—h?]
—— B -
2

uid. The long-wavelength tilt modulus can also be written as

€1
1 nS - L
R= z.s. , (5.22 +j, V, (rp—r’pn(ry,z)n(r va)]-
Cia Nger ry

6.2
wheren®=n,—n? is the boson superfluid density. As easily , . (_ _ )
seen from Eq(5.21) and discussed in TRE the normal-fluid ~ 'f We integrate ovei in Eq. (6.2, we return to the original
density is finite only for samples of finite thickneisscorre- ~ nonlinear action. Instead we integrate ovewhich only ap-
sponding to a nonzero boson temperature. In this case o§ars I!nearly in the new action. This integration results in a
obtains a renormalization of the tilt modulus due to finite- 9 functional, yielding
size effects. The sign of this correction is sensitive to the kTr2
choice of boundary conditior(¢he result for periodic bound- = _ ~ N B0 -
ary conditions is displayed hereThe normal fluid density Zg’(H)_f DnDPex;{ ‘€ frln[n(r)/no]
vanishes, however, fdt—o. The local boson model there-
fore predicts that the tilt modulus of an infinitely thick, clean
superconductor is unrenormalized and equals its bare value

Noe; . In other words, the flux-line liquid is always entangled
in the thermodynamic limit. (6.3
with

- n ~
IN+V, .- —[kgTP+h]
€1

Xe—EH[ﬁ,ﬁ;h]/kBT5

VI. NON-GAUSSIAN HYDRODYNAMICS T)2 CTIZ (V. A2
AND DISENTANGLED FLUX LIQUIDS R 1][( 81", (ke D7 (Vin)® 0
r

h2

2

Our goal in the remainder of this paper is to construct a €1 der n 261

non-Gaussiariully nonlocalhydrodynamic theory and use it
to evaluate the renormalization of the tilt modulus. As a first +j V. (r,—r’)n(r,,z)n(r’, ,z)] . (6.9
step in this direction, in this section we derive a non- 'y
Gaussian hydrodynamic free energy from theal boson |4 ghtaining Eq.(6.2) we have discretized the nonlinear ac-
action given in Eq.(5.9).' Of course, such a hydrodyne}mlc tion (5.9 in real space, according to
theory neglects interactions that are nonlocakiand will
mainly be used as a guide for constructing a more general
non-Gaussian nonlocal hydrodynamics in the next section. f f(r—vo 2 fi, (6.9
The non-Gaussian terms in the free energy renormalize the ' '
tilt modulus. When theRse corrections are evaluated perturbagith v, an elementary volumey,=e€,/(2kgTn2). This is
tively, the resultingcy, is identical to that obtained by the volume of a box with base area equal toyland height
Tauber and Nelson USing the boson forma”@ﬁthe main equa| to the Sing|e_vortex entang|ement |ength
goal of this section is to emphasize the relationship between
the boson formalism and hydrodynamics and to stress that ’;l
equivalent results can be obtained by either method. = T (6.6)

To derive the hydrodynamic free energy from the boson B1TO
action, we employ the method used by Kamien andThe term containing the logarithm of the fluctuating density
collaborator®’ for the formally analog problem of directed arises from the Jacobian of the functional integration over
polymers in a nematic solvent. We begin by eliminating thethe full nonlinear action. It represents the entropic “ideal
term [ (kgT)?/2¢,1n(V, 6)? in Eq. (5.9 in favor of a new gas” part of the flux liquid free energy.
vector field P, via a Hubbard-Stratonovich transformation, ~ Statistical averages have to be performed by integrating
with the result over the fields(r) andP(r) with the constraint provided by
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the 6 functional in Eq.(6.3). Comparison of Eq(6.3) to the  density gradient that is neglected in conventional hydrody-
hydrodynamic free energit.6) of a flux-line liquid with the  namics. We will retain this term here to make our compari-
constraint4.5) suggests a physical interpretation for the aux-son with the results of the boson theory more transparent.
iliary vector fieldP. The quantityn(kgTP+h)/e, takes the ~Also this term will be_ needed below to provide a large wave
place of the hydrodynamic tilt fieltt" introduced in the pre- vector cutoff to the integrals determining the renormalized

. . . ~ tilt modulus.
vious section. The difference between the vector fiéland The long wavelength part of the tilt-tilt autocorrelator can

the tilt field can be understood by noting that, as pointed ouf,,\y pe evaluated using the definition, E8.27). The non-

by Nelson and Le Doussal,the canonically conjugate mo- Gaussian terms in the local hydrodynamic free enéégyl)
mentum of the fictitious particle that corresponds tofitie .o separated out by writing

flux-line is p,=i[€,(dr,/dz)+h]. The vector fieldP can
then be interpreted as a sort of “velocity” field, while the tilt Fl'= F'(;+ SF', (6.12

field t" represents the canonically conjugate momentum der\ivhereF'G is given by Eq.(4.6), but with the values specified

sity. The two differ in the presence of an applied transverse, Egs.(6.10 for the elastic constants, and

field h that contributes to the single-vortex “canonical mo- ’

mentum.” Nel _on
The relationship between the effective acti§p and the SF'=— ﬁf 2. (6.13

hydrodynamic free energy of a tilted flux-line liquid is made oJr N

more transparent by performing and additional change ofhe tilt autocorrelator is then evaluated perturbatively in the

variable that replaces the fieRiby a tilt field defined as non-Gaussian paF' of the free energy. The perturbation
expansion is outlined in Appendix B. To leading order, we
. n(r) . obtain
t(r)= —=—[kgTP(r)+h(r)]. (6.7
€1 Tij () =TH(a)+ 8T;;(a), (6.14

The Jacobian of this transformation cancels the Jacobian %hereTﬂ-(q) is the bare part of the correlator, given by Egs.

the Hubbard-Stratonovich transformation used earlier and WE4 10-(4.12. The hydrodynamic limit of the correction

obtain STi;(q) is given by

2, (H)= | DhDte SHNEkeT 590+ ), (6.8 NokaT keT)2
)= | (99,0, (68 im o704 "00T 5, U
a,—0 €1 €1 LAqi .

with

’ 12
_ f2 (kBT)2 (VJ_I:I)Z_ % [eB(qL)/(kBT)]Z_q z

“r a0 (@) (keT) 2+ 52

(6.19

“ o~ 1
SH[nat;h]:er

This result is identical to that obtained byzer and Nelson
via the boson formalism. In particular, the long wavelength
tilt modulus defined according to E¢3.1) is found to be
given by Eq.(5.20, with

+fr, Vi(ro=r')n(r,2n(r',2) |

1

(6.9
The effective action of a tilted flux-line liquid given in Eq. 5 NokgT , [es(q,)/(keT)]?~q
(6.9) becomes formally identical to the corresponding non- Nn= 2LA L 2. A2’ (6.18
. . . a9z {[GB(QL)/(kBT)] +qz}
linear hydrodynamic free energy, provided we make the
identifications which becomes identical to E@5.21) in the limit of large
sample size.
n(r)—nH(r), (6.10
VII. TILT MODULUS FROM NONLOCAL,
t(r)y—t(r), NON-GAUSSIAN HYDRODYNAMICS
~ 0 As discussed in the Introduction, neglecting the interac-
No€1+Caq(Q), tion among vortex segments at different “heightg’has
) 0 severe effects on the flux liquid tilt modulus, namely, it com-
No“V. (1)< C1(a). pletely neglects its collective part, which is the largest con-

ftribution over a wide part of theH,T) phase diagram.
Hence our desire to develop a simple formalism for the cal-
culation of the tilt modulus of a flux-line liquid that incorpo-
IPAH TH. 7 — - rates such nonlocalities.

FIn" thhl=keTSuln, thl. .13 A generalization of the boson mapping that incorporates
The superscript indicates that only local interaction among thez nonlocality of the vortex interaction was proposed some
the vortices has been retained in this hydrodynamic free ertime ago by Feigel'man and collaboratdrsThe z nonlocal-
ergy. The free energf' contains the term quadratic in the ity yields a retarded interaction among the bosons that can be

The corresponding hydrodynamic free energy is nonlinea
but local inz, and it is given by
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handled by the introduction of a Chern-Simons gauge fieldtarded interaction written down by Feigel'man and collabo-

In the limit of infinite penetration deptih, considered by rators by successively eliminating nonhydrodynamic fields in

these authors, the flux-line array then maps onttharged favor of hydrodynamic fields via formal manipulations

superfluid. These authors argued that the charged boson syaialogous to those described in the previous section. This

tem possesses a normal-fluid phase at zero temperature, cderivation is outlined in Appendix A. The resulting free en-

responding to a thermodynamically distinct disentangled fluxergy differs from the phenomenological one given in Eqg.

liquid phase, with infinite tilt modulus and longitudinal su- (7.2) only in that it contains an additional term proportional

perconductivity. to density gradientssee Appendix A This term is usually
Nonlocality is incorporated in a natural way in hydrody- neglected in hydrodynamics because it is of higher order in

namics. Anonlinearhydrodynamic free energy that incorpo- the gradients. We will, however, retain it here as it provides

rates all nonlocalities of the intervortex interaction can bean intrinsic large wave vector cutoff to the integrals deter-

obtained phenomenologically by coarse graining of the miimining the renormalized tilt modulus. It can be incorporated

croscopic energy of the vortex liquid, following the methodsin the free energy of E(.7.2) by the replacement

described in Ref. 36. Care must be taken in handling the

self-interaction between segments of the same flux-line at

d|fferentz heights, which is responsible for the non—Gaussm_m Cgl(q)_,cfl’l(q) + (kBT)Zno(ﬁ/(‘lEl)- (7.3

terms in the hydrodynamic free energy. Such non-Gaussian

terms are neglected in the linearized theory, but as seen i is convenient for the following to separate out the non-

the previous section they control the renormalization of theGaussian part of the hydrodynamic free energy of @)

tilt modulus. The nonlinear hydrodynamic free energy ob-by letting

tained by such a procedure is given by

1
Fzz_néjrfr’[
spo L e[ t(r)]? 5ﬁ”<r>_

+—B(r—m’)5ﬁ“(r)5ﬁ“(r’)], (7.1) “2)e ng AM(n

F=Fg+ oF, (7.9
nge

ﬁH(rl) 5(r_r/)+Kc(r_r')]fH(r)fH(rf) whereFg is given by Eq.(4.6), and

(7.9

The tilt autocorrelator can be evaluated by treating the non-

where B(r) is the real space compressional modulus anch X )
: . : aussian part of the free ener(§.5 perturbatively. Some
K(r) is the collective part of the real space tilt modulus. Thedetails arepgiven in Appendix SX/%S dimensionlﬁss param-

first term in Eq.(7.1) arises from the self-energy part of the . . ;
interaction and it represents a sort of nonlinear “kinetic” e~ter that controls the expansiondfe/kgT is proportional to

contribution to the total energy of the flux-line array. To (_61/2k3T\/”—o)2=(|z/ao)2, with |, the entanglement length
make contact with conventional notation, it is convenient todiven in Eg.(6.6). Small values of,/a, correspond to an
rewrite the interaction part of the free energy in wave-vectoentangled flux-line liquid. The “kinetic” nonlinearities that

space are incorporated perturbatively stiffen the tilt modulus of the
line liquid, making it therefore less entangled.
1~ [t"(N]? 1 The nonlinearities embodied i#F yield corrections to all
F= if €= T 2n20 the correlation functions. Here, we only display the result for
ron(n) 0 the transverse part of the tilt-tilt correlator, that determines

R R the wave-vector-dependent tilt modulus. Using E2.30),
X > {e8(a) [t ()2 +c2y(q)|sn"(@)|?}, (7.2 the wave-vector-dependent tilt modulus is given by
q

where the bare compressional modutjs(q) and the col- 1 1 [ Noer  Nn(q, ,0,)
. . O . . = —_— s
P G T CRC M CCIT )
The non-Gaussian hydrodynamic free energy can also be 79
derived from the action of two-dimensional bosons with re-with

LS a't 1  Ngex(d,—q))? 1 ]
T LA (60 /246012 cSia)el(a—a') (0~ )2+ [£(a—q")] 2

+no”«slkBT (A-a' )3, —a" ) E9)] 2-[1—(a,-9' )29’ 3 a5(a,—q,)

, 7.
LA 7 cha@)cqa—a a2+ [£(a)] 2H(a,~ )+ [é(a—q")] 2 -9



PRB 59 NONLINEAR HYDRODYNAMICS AND TILT MODULUS OF . .. 6511

and The normal fluid density given in E@7.9) can be evalu-
ated explicitly for the case of an isotropic superconductor

'l (p=1) in the limit of infinite thickness I(— o). After in-

c%,(q) (7.8 serting in Eq(7.9 the expression for the nonlocal bare elas-
44 tic constants given in Eq$4.7) and(1.1)—(1.3), theq, inte-

The length scale,(q) differs from the one defined in Eq. gral in Eq.(7.9) can be evaluated. The resulting normal-fluid
(5.19 in that it contains an additional term arising from the fraction depends on the three length scales that characterize
coupling to the density gradient contained in our free energyhe system. These are the average intervortex spaging

and usually neglected in hydrodynamics. For simplicity, we—=1/,/n,  the ab plane London penetration depth , and

use, however, the same notation as in &q19. the single-vortex entanglement length. We have intro-
The IOng-WaVeIength t|lt mOdUIUS IS determ|ned by duced two dimensionless parameterS,

=Iimqﬁolim%%0nn(ql ,dz), given by

2 2. 2

(kgT)“noq
Cgl(Q)JFTL :
1

[éa)] %=

21, 2e;

keT q? Noe 1 u= =
n”:_LBA E 0 - [1— 00 ! > = \/;ao kgTV4ng

da cfa) @ aZHEAa)] o | .

and a dimensionless volume fraction of vortex lines
NoerkeT A  [&@]*-q 1
— " * —
2LA o7, [efd @) {a3+[&()] ) el (7.19

(7.9 The renormalized long-wavelength tilt modulus is written in

Equations(7.6)—(7.9) are the central result of this paper. terms of our dimensionless parameters as
If the z-nonlocality of the intervortex interaction is neglected

(7.10

*

in Eq. (7.7) by replacing the elastic constants on the right- i: i vy (7.12
hand side with the corresponding values used in the the local e, ¢ 1+v* ng ’
boson formalism, according to E¢.10, then Eq.(7.7) be- } L
comes identical to the result obtained by TN. In particular,@"d the normal fluid fraction is given by
the first term on the right hand side of Bg.9) is absent in N1 (=
the local boson model of TN, wher$,=nge;. The long- n—n= 20 dx{K(x|u,v*)+L(x|u,v*)}, (7.13
wavelength normal fluid density is then given by E§.21) 0 UJo
and vanishes fok — . where
|
2 * 2 *
K(xu0*) = XLL+(X+v*)(1L+x/u?) ]+ 2Z1Z,x(X+v*) , (7.14
VX+0*2125(Z1+ 25) [ VI+ X+ 0* (X+2125) +21Z5(21+ Z5) ]
|
X(Z2+22) obtained by F(laigel’mamzt.aI.15'43 Our Eq.(7.9 generalizes
L(x|u,v*)=v* RN (7.15  the result obtained by Feigel'man and co-workers to the case
2,25(21+ 25)(27~23) of finite penetration depth.
We stress that our calculation is perturbative and we have
with only evaluated the leading correction in perturbation theory.
As discussed above, the small parameter in the perturbation
1 theory is proportional tai?~ (I,/ap)2. In other words, the
7y = —=(1+x+(x/u)?+v* unperturbed state is an entangled flux liquid, with a very
' \/5 small value of thez-axis entanglement length and interac-

tions stiffen the vortices, enhancing the tilt modulus. We can
estimate the values of magnetic field and temperature where

) ) our perturbation theory breaks down as determined by the
These integrals have been evaluated numerically. The resulipot of the equation

ing normal-fluid fraction is shown in Fig. 1 as a function of
u for several values of the volume fractiori. We note that
the dependence ai* is rather weak, particularly for small v* n,
values ofu. T30 n—0=1- (7.17
For v* =0 (which can be interpreted as either the high
density limit or the infiniteN ;| case treated by Feigel’'man
and collaborator®) the normal-fluid density given in Eq. The solutionug(v*) of Eq. (7.17) defines a lineBpo(T) in
(7.13 reduces—up to an overall factor of 2—to the resultthe (H,T) phase diagram that can be interpreted as an esti-

{1+ (x/u)?—x—v* >+ 40*}1?)V2 (719
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FIG. 1. The normal-fluid fraction given by E¢7.13 as a func- FIG. 2. The solid line is the numerical solution of Eg.17). It
tion of u for five different values ob*. Notice the weak depen- defines the lineug(v*) in the (u,v*) parameter space where the
dence ofn,/ng onv* for small values ofu. perturbation expansion of the tilt autocorrelator breaks down. The

dashed line isi;(v*), wheren,/ny=1.

mate of the phase boundary between entangled and disen- . o
tangled liquid regions. FoB>Boo(T) the liquid is en Jecture that a nonperturbative generalization of our calcula-
. DO -

: : tion may indeed yield the expressidi.6) proposed b
tangled,_whﬂe_) forB <Bpo(T) the perturba_tlon theory break; Larkin a¥1d Vinoku)r/ for the ren%rmalicied)lo%g pWavelen)éth
down, signaling the appearance of a disentangled flux'Im%lt modulus, but with a normal-fluid fraction given by Eq
liquid. Of course, in order to interpret the regioB ' '

<Bpo(T) as a disentangled flux liquid tHp(T) line must 2 Corresponding to

lie in the molten region of theH,T) phase diagram. At high

density, v*<1 and Eg.(7.17 can be approximated as i: 1 (7.18

N, /no~1/*>1. Itis clear from Fig. 1 that the roots of this ey €O+ nger /(1—n,/ng)’ '
equation occur at large values ofi, where n,/ng

~(1/2)In(u). We then estimate that our perturbation theorywith n, given by Eq.(7.9). We stress that Eq7.18), which
breaks down forug(v*)~exp(2b*). Converting to field is simply a rewriting of the Larkin-Vinokur result, is purely a
and temperature, this corresponds  toBpo(T) conjecture in the context of our work. It is, however, inter-
~(Her/2InK)In(Hey o/ ks Tap2\Ink),  with  Hga=¢/  ©sting tol gxplore its consequences. According t(_) (Zd.8),
47r7\fln;<. Below this line,c,, is strongly renormalized up- the condition for the var.ushl.ng 0fd§4' corre_spondmg to the
ward by interactions and a large disentangled flux-line liquid®"Set of & macroscopic disentangled fluid fraction, would
fraction may appear. Conversely, at low density,>>1

and Eq.(7.17) becomes,,/ny~ 1. The solution of this equa-

tion depends weakly om*, as seen from Fig. 1, and is ﬂzl_ (7.19
approximately ug~2, corresponding toBpg(T)~(do/ No

47) (€, /kgT)?. This result coincides with the estimate ob-
tained by Feige'maret al,'® but it applies in a different
field regime. The solutiomy(v*) of Eq. (7.17) for general
values ofv* has been obtained numerically and is shown in
Fig. 2 as a solid line. For small* (high vortex-line density
Eq. (7.17) predicts that the perturbation theory breaks down

?atlr:/;eryolfa;%(zlx:igﬁi? of, in & region that is well beyond its theory strongly underestimates the stiffeningcgf from in-
Y. teractions. The linai;(v*) defines a second “disentangle-

We now wish to compare our perturbative result to the o . . -
nonperturbative expression fay, proposed by Larkin and ment line,” Bp, (T), in the (H,T) phase diagram. Assuming

Vinokur and given in Eq(1.6). As discussed in the Introduc- ul(v*)_~2~constant over the range of value.s of interest,
tion, if the Larkin-Vinokur formula is expanded for small We estimateBp,(T)~(¢o/4m)(e1/kgT)? Notice that the
values of the normal fluid fraction,/ng, the leading term field Bp1(T) [which coincides withBpo(T) at low vortex
has the form given in Eq1.8), which is identical to the long  densityl is of the order of the melting fiel@(T) of the
wavelength limit of our resul(7.6), provided we identifyn, ~ Vortex lattice. Using a Lindemann criterion for melting, this
in Eq. (1.8) with our perturbative expression for the normal- is found to beB(T)=[16c] ¢op?/(Inx)*(e;, /ksT)?], where
fluid density given in Eq(7.9). It is then tempting to con- ¢, is the Lindemann parameté&t.

The numerical solution of this equation, denoteduq(v*),

is shown in Fig. 2 as a dashed line. We note that the line
ug(v*), where the perturbation theory breaks down, and the
line u;(v*), where the conjectured nonperturbative form of

1/ck, vanishes, coincide at large', but diverge at smath* .

In this high density region it appears that the perturbation
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passing through this reentrant liquid phase, it could very well
be that this line is located either abovi& the lattice or
below (in the Meissner phasehe sketched position. The
disentanglement linBy;(T) is shown as dotted in Fig. 3 and
it is estimated to lie in the liquid phase. The existence of this
line is, however, just a conjecture in the context of our work,
as our results are strictly perturbative. In general we expect
the actual disentanglement line to lie between our perturba-
tive estimateBpo(T) and the conjecture@p(T). It could
therefore lie almost entirely in the solid phase, indicating that
a true thermodynamic disentangled liquid phase does not ex-
ist. This conclusion would appear to agree with the latest
results from simulations’=?* Further work beyond the naive
lowest order perturbation expansion discussed here is
needed, however, to settle this point.
One important outcome of our work is that the nonlocality
of the intervortex interaction in the field direction has impor-
: tant qualitative effects on the tilt modulus. In particular, it
always yields a finite—although often small—upward renor-
malization ofc,, even in infinitely thick samples. This renor-
FIG. 3. A sketch(not to scalgof the phase diagram showing the malization is absent in calculations based on the local boson
location of the “disentanglement” lines for the liquid discussed in mappingz_8 In fact, in the work of TN an important role is
the text. The dashed Iin8po(T), marks the breaking down of the played by the invariance of the flux-line interaction under an
perturbation expansion for the inverse tilt modulus; the dotted linegffine transformation or uniform tilkcorresponding to Gal-
BDl(T)l Corresponds ton/nozl and Signals the diVergence of the ilean invariance of a pure boson Sys‘bemandaﬂe has
conjectured form ofc%,, given in Eq.(7.18. The width of the

Lattice

¥
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|
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|
( .
| Abrikosov
1
¥
t
|
t
1
|
¥

|
1
i
1

Meissner Phase

a )y Y ! shown that the Galilean invariance implies that the superfluid

reentrant liquid phase is in reality much smaller than shown he“ﬂensity at the ground statd €0) of a superfluid equals the

and the lineBpo(T) may or may not pass through By(T) is the 44 density. The affine transformation invariance is not

melting fine.Hc,(T) marks the onset of a Meissner effect and is r'Otpresent in the more general intervortex free energy that al-

a sharp phase transition. Notice that the parBgi(T) which lies lows for pairwise interaction among vortex segments at dif-

within the lattice phase is not meant to represent any real transitiosaerent heightsz. This nonlocality breaks the “Galilean in-
hat: . - T S . . .

or crossover whatsoever variance” and vyields a tilt-tilt interaction which penalizes

Before discussing the location of the disentanglemen@ny misalignment of the flux lines, therefore favoring disen-

lines Bpo(T) andBp,(T) in the (H,T) phase diagram, we tanglement.

recall that the explicit evaluation of the integrals determining

the normal fluid density has been carried out for isotropic

superconductorsp(=1). To estimate the relevance of our
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cal of these materials. To justify this approximation, we not
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that for p>1 the collective part of the tilt modulus arising through Grants No. DMR-9730678 and DMR-9805818.
from the nonlocality of the vortex interaction in tlzedirec-
tion becomes less important relative to the vortex part. As it
is precisely this nonlocality that is responsible for a nonvan- APPENDIX A: DERIVATION OF NONLOCAL
ishing renormalization o€, in infinitely thick samples, we HYDRODYNAMICS. FROM THE PARTITION FUNCTION
expect that the results that we have obtained for the isotropic OF 2D CHARGED BOSONS
case will provide an upper bound for the size of the renor-
malization in anisotropic materials. A sketch of a phase dia-

Bpo(T) (dashed lingandBp4(T) (dotted ling is shown in

In this appendix we show that the nonlocal, non-Gaussian
gram showing the location of the disentanglement lineshydrodynamic free energy given in E.2) can be derived
Fig. 3. It is not drawn to scale.

by formal manipulations of the partition function of a two-
dimensional charged boson fluid. Feige'man and
Using parameter values of YBCO and BSCCO we havecollaborator$® have shown that the partition function of an

estimated that in both these materials at high fiel@s ( array of flux-lines described in the London approximation by
>1 T) theBpo(T) boundary defining the breaking down of the Ginzburg-Landau free energy of E(Q.18 can be
our perturbation theory lies well within the flux lattice phase.mapped onto that of a two-dimensional system of bosons
At low fields there is a possibility for a disentangled phase ininteracting via a massive vector potential. The nonlocality of
the reentrant liquid region. This region is, however, rathertthe intervortex interaction is incorporated via a gauge field
narrow, particularly in YBCO where it is expected to have athat mediates a retarded interaction among the bosons. The

width of the order of 1 G? For this reason, while we have coherent-state formulation of the boson problem yields the
drawn in Fig. 3 the “horizontal” part of th&p,(T) curve as  imaginary-time action
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X zp*[ha;riao— m(ﬁVﬁrial)z—/w U
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(Vxa)-A+ Q(VXA)Z . (A1)

i
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ZMLQ

The correspondence between vortex and boson variables is
summarized in Eq(5.4). The coupling constang corre-
sponds to the strength of the vortex interaction, according to

CRISTINA MARCHETTI

PRB 59
S.[n,P,aA]

—fﬁhd fd h2A|52+ﬁ 2, o

= o T r ﬁn %ai Inag

BV L p? :
+% ﬁ —,un+Vsr(n)+2—gz(Vl><al)

1 . i
+ =——[zx(d,a, —Vag) >+ ———
gt lPX (0 Vag e o e

K (VXQ)-A+ — (VXA)? noﬁzl n
(Vxa) At o—( )+7nn_o :

(A3)

with the constraint

~ n ~
0.+ V- (hP+ia)=0. (A4)

g% ¢§/(4w)~\f) andp is the anisotropy parameter that here The last term in the action in E4A3), logarithmic in the
allows for a different scalar and transverse interaction amongensity, is the Jacobian of the transformation. We then make
the bosonsA is the vector potential of the real magnetic a change of variables,

field (VXA=B), anda=(ag,a,) is a gauge field that me-

diates the noninstantaneous interaction among the bosons.

The boson chemical potential has to be determined so that

the equilibrium boson densitgg equals the vortex density
ng=no=B/¢,. Finally, V is a short range repulsiofon  and obtain
scale ¢) between the bosons. This action is based on the
gaugeV-A=0 andV,-a =0. The choice ofV,-a =0
instead ofV -a=0 reflects the assumption of nonrelativistic
velocities for the bosons, corresponding to small tilt of the
flux lines away from the direction?’ By rewriting the boson
fields in terms of an amplitude and a phase, as defined in Eq.
(5.7), we obtain

f:%(hﬁﬂai), (A5)

S[n,taA]

Bh mt2 . . -
= dr| dr, {——ia, -t+inag—un
0 2n
2

-~ hZ2(V,n)? p?
+Vsr(n)+% ﬁ

+——(V,Xa,)?
292( L Xa)

S[n,6,a,A]
Bh
:f drf dr,
0
h? (V. n)?

i
_l’_—
“ “ ~ 2w\
X{iANnd 0+inag+s———=—+Vg(n) g
8m (A6)
~ 2

n 2+ﬁAV0 n+ V,6)?
Zmai m”( )-a, —un Zmn( 10

1 - 2
+ 2—92[ZX (5Tai — Vao)]

1
(Vxa)-A+=——(VXA)?t,
8

with the constraint

+
an+Vv, -t=0. (A7)
2
+p—2(VL><aL)2+ iZ[EX(aTaL_VaO)]Z The Jacobian of this transformation cancels that of the pre-
29 29 vious one.
Finally, we define an effective actiaf" for the bosons
by integrating out both the vector potentia(r) and the

1
. o 2
(Vxa)- At e— (VXA gauge fielda(r),

(A2)

i
+—
2\/;7&9

The assumption of small fluctuations allows us to extend the J DADIDADaeSMaAl 59 A+ V| -f)
range of § from [ —ar, 7] to [ —oo,+00]. As described in

Sec. V, we now eliminate the phagein favor of a vector

field P via a Hubbard-Stratonovich transformation, to obtain (A8)

_ j prpte-SThil 55 A+ v, ).
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The prime over the integral sign on the left hand side of theu? nonlinear corrections to the tilt autocorrelator. By keeping
equation indicates that the integration o¥eanda has to be only terms up to fourth order in the fluctuations of the hy-
performed by taking into account the constraints imposed byrodynamic fields, the non-Gaussian part of the free energy
our choice of gauge. The vector potential and gauge field aris given by

most easily integrated out by rewriting the field part of the

action (A6) in Fourier space, with the result

. A Bh 6Ff~v— ti(g)t; on
Sgﬁ[n,t]:f de dr, Qz 2 (A)1i(0) n(— 01— )
0
e . .
mt 72 (V,n) = ti(gy)t;(g,) on
X[E_Mn-’_vsr(n)"__m % ] anﬂs q1%’q3 |(Ql) |(q2) (Q3)
1 g2 X 8N( =gy = 02— o). (B2)
50 | T(Q)|2
20 2
LHan+alph The tilt-tilt correlator is then evaluated in Fourier space per-
9 9282 turbatively in the non-Gaussian part of the free energy, with
— ﬁ|ﬁ(q)|2 , (A9) the result,
1L 1+q )\L
where t1(q) =q, Xt(q). By making use of the continuity . 1 . . .
constraint given in Eq(A7), we can write Ti(9,9")=Q 8+ q 0T () — kB—T<ti(Q)tj(Q’)5F>G
25 2 2 2"‘2
g )\L 2 q 1
2
1+q2)\2+qip2)\2| T(q)| q 1+ qz)\2| (q | Z(kBT <t (q)t (q ) 6F >G’ (BS)
g?x2 ,
—1+ 4 2022 |t(a) where(- - - )& denotes a cumulant average over the Gaussian
9 TAP ensemble with weight-exp(—Fg/kgT). The first term on the
2\2(1+g2pA\2) A right hand side of Eq(B3) is the Gaussian result given in
292 lpz ——=5-In(@)|2. Egs.(4.10—(4.12.
(1+g°ND)(1+gzA T +dTpNT) Using Wick’s theorem, the corrections arising from the

(A10) non-Gaussian part of the free energy are easily expressed in
. terms of the correlations in the Gaussian ensemble given in
Finally, if we replace the short range repulsigg,(n) by a  Eg. (4.8 —(4.12), with the result

short-wavelength cutoff and identify the boson densignd
momentum fieldt with the corresponding hydrodynamic

T T T ’ c
quantities for the vortices, we see that £A9) yields pre- Pi(au)(ti(at;(q )5F>G
cisely the nonlocal non-Gaussian hydrodynamic free energy
. . l ~
discussed in Sec. VI. =084 q. JdTUq) 72 i 5 2 {8n(ay)|®e
No a1
APPENDIX B: PERTURBATIVE CORRECTIONS TO THE (B4)

TILT MODULUS FROM NONLINEAR HYDRODYNAMICS

The wave-vector-dependent tilt modulus is defined ingnd
terms of the transverse part of the tilt-tilt correlator as in Eq.
(3.2). In the hydrodynamic approximation, the tilt-tilt cor-
relator can be written as PE(QL)G'(Q)H(Q')(5F)2>Ce

Ty (r,r’) ‘e

€7 1
o o =206414 d THD 2P (A)— & =
fDn(r)Dt(r)ti(r)tJ(r’)e*F’kBTﬁ(&ZnnLVL~t) Mo % &

’ X{<fi(ql)fj(_ql)>6<|5ﬁ(q_Ql)|2>G

f Dn(r)Di(r)e F*eTs(9,n+V, - 1) A ) ) .
+(ti(ay) on(—ay))s(tj(ar—q)én(g—ay))c}. (B5)

(B1)

whereF is the hydrodynamic free energy given in Eg.2). By substituting the expressions for the Gaussian correlators
The free energy can be written as the sum of a Gaussian pagiven in Egs.(4.8—(4.12), we obtain the following expres-
Fs and non-Gaussian correctiod@ as in Eq.(7.4). We  sion for the transverse part of the tilt autocorrelator to lowest
want to calculate up to lowest-order in the small parameteorder in the non-Gaussian terms
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ngkeT ngea(ksT)? 1 q'? 1 _ ngex(d,—qp)? 1
ca(@)  [ega]? LA [cdu@) a'2+[&(a)] 7% cd4a")cd(a—a") (a,—ay)?+[&(q—q)] 2

T+(q)=

Cnger(keT)? 1 (@-0')*(A 0" ) &(a)] 2= [1-(a:-9")1a' P aj(d;— a)
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