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Interplay between superconductivity and flux phase in thet-J model
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We study the phase diagram of thed model using a mean field type approximation within the Baym-
Kadanoff perturbation expansion for Hubbataperators. The line separating the normal state fralwave
flux or bond-order state starts near optimal dopindgrat0 and rises quickly with decreasing doping. The
transition temperatur&, for d-wave superconductivity increases monotonically in the overdoped region to-
wards optimal doping. Near optimal doping a strong competition between the-twave order parameters
sets in leading to a strong suppressio gin the underdoped region. Treating for simplicity the flux phase as
commensurate the superconducting and flux phases coexist in the underdoped regioh.belbwreas a pure
flux phase exists abovE, with a pseudogap al-wave symmetry in the excitation spectrum. We also find that
incommensurate charge-density-wave ground states due to Coulomb interactions do not modify strongly the
above phase diagram near the superconducting phase, at least, as long as the latter exists at all.
[S0163-182609)01609-4

I. INTRODUCTION sponding transition temperatur&, increases from the

It is widely accepted that the mechanism causing High- overdoped side with decreasing doping. Near and below op-
superconductivity in the cuprates is intimately related to theimal doping the second instability sets in. It occurs in the
underlying properties of the normal state. However, theral-wave channel for the relevant region of parameters. Both
exists presently no agreement on what an appropriate arits location and its symmetry fits well to the experimental
correct description of the normal state is. One reason for thisbservations of al-wave pseudogap in the underdoped re-
is that experiments indicate the presence of a whole varietgion. It is thus of much interest to study these two intrinsic
of important fluctuations in the normal state. At low dopingsinstabilities of thet-J model in more detail and this is the
antiferromagnetic fluctuations domindté.The associated subject of this paper.
guantum critical point, however, lies far apart from optimal One obstacle for such a study is the fact that the two
doping so that the relevance of magnetic fluctuations foinstabilities occur in different orders of theNL/expansion.
high-T. superconductivity is not evident. Other fluctuations Whereas the transition between the normal and charge-
which have been considered to be relevant in the normalensity wave or flux states can be obtained by comparing
state are associated with resonance-valence bbfidejx ~ O(1) contributions to the free energy the superconducting
phases; ?stripest®!*or charge density wave$:*The close  part is of O(1/N). Nevertheless, the calculation of the super-
proximity of high-T. superconductivity and structural phasesconducting phase boundary is unique and involves only
or crossovers also follows from the experimental observatioiGreen’s functions of leading order in theNLéxpansion. The
of a spingap or pseudogap @fwave symmetry in the under- position of the boundary in the phase diagram, on the other
doped regime of the cuprat¥s'® It is thus desirable to hand, depends on the value Nf We will use the IN ex-
study in more detail the phase diagram of models relevant tpansion in the sense that it allows to select a set of diagrams
the cuprates and to identify instabilities, their symmetrieswhich are the leading ones at least at laNjs. After this
and their interactions. selection has been made we P#=2. The anomalous self-

The low-energy physics of the CyQayers of the cu- energy ofO(1/N) contains quite a number of terms. It has
prates is well described by ttte] model®*? In order to be  recently been shown that only tiiewave contributions are
able to carry out systematic approximations the two spirimportant and that for this symmetry the retarded terms can-
degrees of freedom per site are often increased diegrees cel each other to a large extent. To simplify our treatment we
of freedom so that N can be used as a small paraméfé®:  will thus only keep instantaneous terms in theave chan-
For our purposes it is convenient to consider two spin denel for the superconducting part.
grees of freedom as in the original model and to extend the In the following we will enforce the constraints of thel
number of orbitals per site from one /2. In this way the model by usingX operator$>2°*°Such a formulation is not
symmetry group of the Hamiltonian of thieJ model is en-  more involved than the more familiar one using a slave bo-
larged from SU(2) to the symplectic group 3{3@). Based son formulation. It has, however, the advantage that all quan-
on 1N expansions it has been shown that this model postities such as the order parameters are gauge invariant in the
sesses at larg®’s two intrinsic instabilities’? The first  sense of slave boson theory. The outline of the paper is the
one€”>~% s associated witl-wave superconductivity and is following. In Sec. Il the formalism of our approach is intro-
obtained inO(1/N). The second orfé28is related to a flux  duced and in Sec. Ill we discuss the instability of the normal
or bond-order wave state @Fwave symmetry and is ob- state towards incommensurate and commensurate flux
tained already in the leading ordéx(1). Theinstability to-  phases, clarifying the range of validity of treatments which
wards superconductivity is found for all dopings; the corre-only take commensurate flux phases into account. The inter-
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play between superconductivity and flux phase is discussed Following the Baym-Kadanoff formalisit;?**°we de-
in detail in Sec. IV. Finally we investigate in Sec. V the role fine the single particle nonequilibrium Green's function in
of phase separation and the effect of Coulomb interaction othe presence of an external souiCdy

the phase diagram.
G(12)=—(TSX1)X(2))/(S), (4)

Il. MEAN-FIELD EQUATIONS IN TERMS
OF X OPERATORS S=TeXF“ d1K(1)X(1)} (5)

Using X operators the Hamiltonian of our generalized

model has the form In Egs.(4) and(5) T is the time ordering operator an¢P®

the external source which is assumed to couple only to
bosonlike operatorxP9. [d1 meanszpl,ql,ilfgdrl where

Gij ypoyo ij

H=- X X P+ % an <X B is the inverse temperature. It is convenient to introduce a
p=1---N p,g=1---N normalized Green’s functiog such that Dyson’s equation
3 Ve has the usual delta function on the right $itfé

= 2 I X S ()

pg-1-N pa-1-N f d2[Gy Y12 -3(12)]g(21)=8(1-1"),  (6)

i andj run over the sites of a lattice. Fdf=2 the operators
XP9 are identical with the projection operatdf$({'|, where
[Py denotes fop=0 the empty state and fqr=1,2 singly 9 o o o
occupied states at sitevith spin up and dowrt;; andJ; are  Gg *(12=&8(1-2) ool 2)[K®(1) 8y,q,— KH192(1)]
hopping and exchange constants, respectively, and both are 72 @
assumed to act only between nearest neighbors. The last term
in Eq. (1) describes the Coulomb repulsion between elecand

whereG, is given by

trons.
The extension fronN=2 degrees of freedom per site to a _ f
generalN is accomplished by introducing a flavor indgx 2(19)= d3u(132(X(3))

=1,...N/2 which enumerateN/2 copies of the original or-
bital. The indexp is then a composite indep=(o,u), +f d3d4d5v(134g(45)y(52;3).  (8)
whereo denotes a spin index, and can be chosen to run from
0 toN. The X operators are in general no longer projectionThe explicit expression for the functianis
operators but are assumed to obey still the commutation rules
[Xipq,xjrs]iz 5ij(§qrxipsi 5prirq). 2 v(123)=6(7,—711) 8(73 7'1){(t|1|3+'J|1|2/25|1|3)

X[ 84.004.0(1— y.0) 8p.p. O
The upper(lower signs in Eq.(2) hold for fermionlike [ 9a109a,0( p0) Opp1 O3

(bosonlike or of mixed natujeX operators. Per definition, — 5p105p30(1_ 5q30) 5p2q35q1q1]
fermionlike operators have the internal indiges 0,g>0 or
g=0,p>0, bosonlike onep=q=0 or p,q>0. Moreover, +[tili3+(Jilizlz—viliz)éilis]

the diagonalX operators are assumed to obey the constraint
X[ 84,004,0(1~ 6p;0) 8p,004,q, 9

N
00 PP—__
X P=12~- N X, 2° ©) N 5”105’330( 1- 5‘130) 5p2p15q205q3q1]}- ©

P3P

The square bracket on the right-hand side of @ycontains
two contributions: The first one describes the hopping of a
hole between nearest neighbors with a spin-flip, the second

In the usual casBl=2 both Eqs(2) and(3) are fulfilled, and

Eq. (3) is just the completeness relation. For a genbir&q.

(3) means that at mo$4/2 electrons can occupy th¢ states : D

A 00 : . .~ one without a spin-flip.

at sitei sinceX™ is a non-negative operatdtMoreover, it h fiel T I f.

can be shown that the problem is completely specified if one The mean fie d approximation Is usually de mgd as an
in addition. that the di | aBRsa approximation for the self-energy in which 3 contains all

assumes, in addition, that the diagonal oper re prg%' skeleton diagrams which are at most lineagirThis means

jection operators fop>0, exactly as in the casN=2.

Bef di infrod h . _”in our case that the vertex should be approximated by the
elore proceeding we wan_t to mtro_ucet e notation we Will .o i tion of zeroth order ig.3® Such an approximation,
use in the following. The index 1 iX(1) denotes all the

; I . . ) however, would violate Luttinger's theorem for evelN:
degrees of freedortinternal indicesp, gy, imaginary time  \1,reqver, the relation between the number of particles at a
71, site indexi,) of the X operator, so that site and the chemical potential would be not unique and de-
pend on the way one calculates it. One way to get rid of these
1= ( pfl) artifacts is to keep in the normal part Bf only those terms
1/’ which also are present in the largelimit and then to put
. . N=2. Another justification for such a procedure is the fol-
where 1stands for & (i1, 7). lowing: The leading normal and anomalous part&df Eqg.
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(8) are of O(1) andO(1/N), respectively, in the N expan- Ve
sion. The calculation of the superconducting transition tem- (q)= e 17)
perature involves in leading order only normal self-energies 2VA(0x,qy) "1

of O(1), which, however, may already describe modulated,ii, A(Gy,Gy) = c[ cos@,) +cos@,)—2]—1. The constant
phases. Calculations based oM Jéxpansions thus suggest pas peen esytimated to be arouynd 50. According to(Ed.
that first one should solve th@(1) normal state problem in o long-range nature of implies that lim_oV/(q)=2. In
leading order of the N expansion which may already imply equilibrium this infinite large constant is compensated by the
the consideration of modulated phases. In a second step thgtice due to charge neutrality. For a nonequilibrium value
solution is then used to solve the superconducting part iR the density this compensation no longer works. As a con-

leading order in M. It has been found that the mean-field sequence, the isothermal compressibility, defined Ay
expression for the anomalods is in general quite a good =n%(dulon), becomes

approximation for the totalO(1/N) contribution to the

anomalous self-energy. Taking this for granted one arrives V(q—0) ,

exactly at the above procedure to calculzte K=KoT Tn >0, (18)
Before working out the details of the above approxima-

tion for 3, it is useful to summarize th®(1) results for> where kg means the compressibility without the Coulomb

andg in the normal, unmodulated phase. In leading order ofnteraction. Whatever the value @, is, the totalx is ac-

the 1N expansion the vertew in the self-energy can be cording to Eq.(18) always positive preventing any phase

approximated by the bare one, i.e., by separation.

¥(12;3)=8(1—2)8(2—3) Ill. COMMENSURATE AND INCOMMENSURATE

FLUX PHASES
X[5p105p205p3q15q3q2_ 5q105q205q3p15p3p2]- ) . .
The expressions for normal state quantities derived above
(10 are valid as long as the doping is not too small, where the

Also in leading order of the W expansion the expectation hormal state is unstable with respect to other ph&sés.

value of bosonic operators can be calculated in the absendgrticular, the instability towards bond-order states and flux
of source field via phases has been investigated as function of the coupling

(Refs. 7,27 and the temperatur&.®?® In these works, the
— 0g q0 new phases have been assumed to be commensurate with a
(XPY(1)) = 5pq9( 1 T+>' 1D commensurate modulation vectQg= (7, 7). (We use here
the terms “commensurate” and “incommensurate” with re-
Inserting Eq.(10) into Eq. (8) the self-energy is frequency spect to the lattice periodicity and not, as in Refs. 35,36 with
independent for zero source fields. Denoting it after a Fouriefespect to the electronic fillingOn the other hand, numeri-
transform bye(k) we obtain forg cal studie® as well as a zero temperature slave boson
calculatior?® indicated that an incommensurate flux state can

g(K,iwy) =+ 1 (12) be more stable than a commensurate one for a general dop-
Y wop—e(k) At ing. In this section we study this problem in more detail
with within our approach, especially, also at finite temperatures.
The generalization of Dyson’s equation for the Green’s
(k)= Seg(K) + a(Kk). (13)  functiong(k,iwy) to the nonperiodic case is

eo(k) is the free electron dispersiogy(k) = —t(k)/2, and _ _ 1 :
the dopings, the functiona, and the shiftx are determined ~ (1@nt #)9(K,0,iwn) = N, % 2(k,p)g(k=p.q=p,iwy)
by the following expressions:

=N¢48(0a), (19

2 €p)tA—u , : .
n=1-— 5=N— E f — T | (14  where we have defined the Fourier transformation by
c p

J(0)

1 1 9k iwy) =2, g(i,j,iwy)ek R-Rp+aR (20
>\=N—§ t(p)ﬂ(p)—E[T—V(q—ﬂ) Y

n, (15

R; denotes the lattice vector to the siteThe instability
1 towards an incommensurate state causes finite nontransla-
a(k)=—=— > J(k+p)n(p). (16)  tional parts in% andg, which we write as

2N “p
N. is the total number of sitesf(x) the Fermi function 9(k, Qi @n) =g(k,iwn)NeS(Q) +dg(K, gyl wn),  (21)

f(x)=11expk)+1], and n(k)=f[(e(k) + N —u)/T]. J(q) _

is defined byd(q) =2J[ cos(y) +cosgy)], whered is the cou- 2 (k,q) =% (k)Nca(q) + ¢(k,q). (22)

pling constant);; for nearest neighbor,j. The long-range In order to study the boundary of the incommensurate phase,
Coulomb interactionV;; , written in the Fourier space, has it is sufficient to linearize Dyson’s equation with respect to
the expressiott the nontranslational parts, yielding
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89(k,q,i wn) =go(k,iwy) d(k,q)go(k—0,i wn). (23 0.3
From Eq.(8), calculated at largé&l’s, we obtain the relation
betweeng and 5g:
1 _ o ot © 0.2 -_‘_—_-;
¢(k,0) =5 2 B(K.APT 59(p.a.iwp)e*n o -
c p n =
1 15
== 2 B(k,q,p) T go(p.iwy) ® o1 ]
N¢ “p n
X Go(P—0.iwn) #(p,0q). (24
The kerneB(k,q,p) can be written as a sum of separable 0.0
kernels: 0.0 0.5 1jo 15 2.0
J(q) J(k+p) e
B(k,q,p)=t(k—q)+t(p)+V(qQ)— ——— FIG. 1. Solid line: Zero-temperature boundary between normal
2 2 stateN and incommensurate flux state FL. The arrow marks a tran-
6 sition between an incommensurate flux at low and an incommensu-
— E F,(K,0)G.(p,q) (25) rate kite phase at high dopings. Dashed lines: Boundaries between
a=1 O Tl normal stateN and a commensurate flux or kite state.
where

Eq. (28) which is imaginary and the antisymmetric combina-

If(k,q)z[t(k—q),l,J cogk,). I sin(k,). tion of its third and fourth component, i.e.,

Jcogk,),Jsin(k,)], (26) #rL(k,Qc) >i[ cog k) —cogky)]. (31)
Consequently, a-wave gap is opened at half-filling of the
é(k o)=| Lt(k)+V(q)— ﬂ —cogk,) band. Another state of interest which, however, has a higher
’ ’ 2 x> energy at6=0, is the so called “kite” phase, which is two-

fold degenerate and described by the order parameter

—si - —si : éri(K,Qc)*i[sin(k) xsin(ky)].
sin(ke,), = cosiy). = sintky) @0 It has been argued tr(!(;t for a finite doping both the flux
The general linearized solution of the nontranslational selfPlaquette and the 'n,St%bg'L'% or modulation vecty are
energy can then be written as functlpnslof the doplr@.* “®In order .to |_nvest|gqte this
question in more detail, we have studied instabilities of the
normal state with respect to all possible order parameters Eq.
Bk, a)=2, f(AF4(k,q). (28)  (28), which can be constructed from the eigenvectors of the
¢ 6X 6 matrix in Eq.(29). We found that the instability vector
Inserting Eq(28) in Eq. (24), we obtain the eigenvalue equa- g, which can be restricted to the irreducible Brillouin zone
tion corresponding to 1/8 of the total Brillouin zone always lies in
the (Og)-(a,7) direction, going smoothly to #,7) for
_ _ zero doping. Figure 1 shows the calculated phase diagram in
% [0ap~aap(@1T5(0)=0, (29 the 8-J plane at zero temperature. From now on we put
, , , =1 so that all energies such dsre measured in units of
where the matrix elements, 5(q) in Eq. (29) are defined by  the gashed lines describe transitions to commensurate states
1 disregarding competing incommensurate states. Joi
a"‘B(Q):N_ E T E G.(P,a)F 4(p,q) there is a transition between the normal stf';\te at large dopings
c P n to a commensurate flux state at low dopings. Forl the
. . normal state is with decreasing doping first unstable with
X Go(P,1@n)Go(P=q,Twn). (30 respect to the kite phase and the kite phase then with respect
The boundary of the incommensurate phase is determined kg a flux state. Allowing also for incommensurate states the
the first onset of a nontrivial solution of the homogeneoussolid line in Fig. 1 shows the boundary of the normal state
system Eq(29). From a different point of view, such insta- with respect to an incommensurate flux state) t0.5 and
bilities correspond to divergencies of the charge vefléX. the kite phase al>0.5 where the exact transition point be-
The particularg, where such divergencies occur determinestween the two incommensurate states have been marked by
the incommensurability vector. an arrow. ForJ>0.5 there is probably another solid line
The undoped case has been studied in déile to the  describing a transition between an incommensurate kite and
Fermi surface topology, all instabilities occur for a commen-flux phase similar as in the commensurate case. Since we
surate wave vector, and the ground state can be described w#l confine ourselves in the following to the parameter
a (m,m) flux phase with fluxz per plagquette. In our frame- rangeJ<0.5 relevant for highF. superconductors we have
work, the flux state is characterized by an order parametarot tried to calculate this additional phase boundary.
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T T 0.04 r T
10} .
5 4
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g 1 .
g 05f 0.03 ] 1
g =
£ .
% 0.0 ] o FL
on =
B 6 S 0.02 .
-05 | g 1.0
3 (@ =
1.0 5 4
’0
. (b) 0.01 .
*
*e
09 | ¢ . . - J=0.3
» - e,
. o 0.00
. %00, 0.0 1 dobing § 0.3
0, opin
sl =03 . ooe | ping
. Q”
. \ % FIG. 3. Incommensuratesolid line) and commensurat@ashed
0.0 0.1 . 0.2 03 line) phase boundaries in thE-é plane. Inset: Evolution of the
doping 8 instability vectorg.= (1) as function ofT.

FIG. 2. (a) Evolution of the eigenvector componeri3,4,5,6
correspond to cok), sinf,), cosk,), sink,), respectively, along
the incommensurate boundary in Fig.(lh) Corresponding depen-
dence of the instability vectag.=(1x) . In this section we consider instabilities of the normal and

of the flux state with respect to superconductivity. Supercon-

Figure 2a) characterizes the components of the order paducting instabilities occur at most i@(1/N) of our 1N
rameter along the incommensurate boundary of Fig. 1. Th&XPansion. This means that it is sufficient to calculate the
labels 3,4,5,6 correspond te=3,4,5,6 inF,, defined in Eq. Green’s functions entering the linearized gap equation for

(26). For dopings below~0.175 the order parameter i superconductivity in the leading ordéd(1). A detailed

~ cosk)—cosk,) and thus hasl wave or, using the proper study of the normal to superconducting transition showed
Y. ! i i -

point group classificatioll ; symmetry. Strictly speakingp that the usual mean field term dominated all the other con

h | Il additional t . hich . tributions to the kernel of the gap equation. So we will keep
as also a small additional tewsink,) which may occur in just this term and neglect all the other terms which are also

incommensurate but not in commensurate states. For dopin % O(1/N). Moreover, it was shown that the leading super-
aboves~0.175 we havep=sin(,) and thus an order param-  q,cting instability occurs in thé-wave-like I'y channel

eter withI's symmetry. Writing the instability vector & 5o we will consider only al-wave order parameter. With

=(1x)7 the dependence of the valueon the doping is respect to the order parameter matgxwe will keep the

shown in Fig. 2b). q. approaches the commensurate wavecomponentscosk,)—cosk,) discussed in the last section.

vector Q. at zero doping. With increasing doping it moves The usual charge-density wave order parameter is according

slowly away fromQ, and exhibits a jump ag~0.175 where  to Eq.(28) connected to the columns 1 and 2 and the sum of

the flux state is replaced by the kite state. For the experimer8 and 5 and will be included in the next section. Finally, the

tal valueJ/t~0.3 only the flux phase is possible and is thecomponentsxsin(,) and =sin(,) are associated with the

stable phase for dopings belaf-0.13. kite phase and do not play a role 0.5 as shown in the
Figure 3 shows the phase diagram in fheS plane for  previous section.

J=0.3. The solid line describes again the incommensurate, In the presence of a commensurate flux phase and singlet

the broken line the commensurate state. The inset of th@uperconductivity the operators of the following row vector:

figure shows the temperature dependence of the quamtity

the instability vectorq.=(1x)w. For temperatures larger — —

than ~0.014 q. coincides withQ, so that the broken and  #(K)=[X%7(k),X"°(—k),X**(k—Q¢),X"%(k—Qc)],

solid lines become identical. This behavior is caused by the (32

thermal width of the Fermi function: though the gap in the

one-particle density opens not exactly at the chemical potengre coupled in the Green’s functions. We thus define a 4

tial the thermal smearing around the Fermi surface is largec 4 matrix Green’s function

enough to lower the free energy by taking advantage of the

high density of states corresponding to the half-filled case. In G(K) = — (TSt (k) p(K))(S), (33

the following we will assume that the flux state is commen-

surate. This assumption simplifies considerably calculationwhere ' is the hermitian conjugate of, i.e., a column

which also take superconducting states into account. On théector. k in Eq. (33) denotes the four-component vector

other hand Fig. 3 suggests that this is not an unreasonabfe(k,iw,). We also note that in the absence of magnetic

approximation. ground states the Green’s functioBsare spin independent

IV. COMPETITION BETWEEN SUPERCONDUCTIVITY
AND FLUX PHASES
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which allows us to drop all spin indices. Going then over to normalized Green’s functions we write<t419,frmrix§1(k) as

g11(k) g12(K) 913(k) 0
~ 921(kK) 922(K) 0 924(K)
k)= 34
o(k) 913(k—dc) 0 g1:(k—dc)  g1aAk—0c) 59
0 9o4k—=0c)  9x(k—0ac) goak—0qc)

Here we used the fact that the matrix elememits g,3,93,,0941 0f g must vanish and the explicit expressi8®) to connect
different matrix elements. We also used the four-component vegte(Q.,0). Dyson’s equation becomes a4 matrix

equation
[0l — 2 (k) ]a(k)=1. (35)
The self-energy matrig, has the general form
2 15(k) Aqk) i p13(k) 0
$0° g o $uecQ) Antect (39
0 i h24(k=Qc)  Ap(k—=Qc) ZAk—Qc)

Explicit expressions for the elements Bfare obtained from
Eq. (8):

3k =(=1)"" 1-n)eo(k) — a;i(K)+Njj—p, (37)

with
2 ) -
"= 2 T2 Gulpiane?, (38)
_1 J(9=0)
Ni=R, 2 U5+ V(E=0)
XT3 gi(piwge (39
1 _ -
@i(k)= = 5 2 Ak+P)T 2 gi(piwpe ™,
(40)
and
1
Aij(k)== 5 2 [3(k+p)=Vy(k+p)]
c p
XT 2 gy(piwge, (4D)

1 w0t
bij (k) == o % IkAPTS gy(piwge®”,
(42)
nearest-

where Vy(k)=2V,[cosk)+cosk)] is the

neighbor part of the Coulomb interaction. The wave vektor

is eitherk or k—Q,., so that Eqs(37)—(42) determine all

matrix elements of the self-energy. In particular, all elements
of X are independent of frequency in agreement with the

notation in Eq.(36). Equations(34) and (36) determine all

elements ofy and3. It is easy to see that many of them are
actually not independent. Writing for the diagonal elements
Eii (k) = €jj (k) + )\ii — M we have\ = )\ii and

(k)= €11(k) = — €o(k) = — €13(k=Qc) = €22k = Qo).
(43

Similarly, one obtains for the elements of the order param-
eters

A(K)=A1xK)=Ap(K)=—A1(k—=Q¢) = —A(k—Q,),
(44)

D (K)= p13(K) = os(K) = — p15(K—Qc) = — doa(k—Qc).
(45

In Eg. (44) we have used the fact thAtcan be chosen to be
real.

i(k) can easily be diagonalized and one obtains four
branches for the excitation spectrum:

fop=2E.(k)==\[E&K) =(u—N)]*+AK)? (46)
with

E(k)=Ve(k)*+ ¢(k)?.

Equation (35) can therefore easily be inverted and the

sum over frequencies in Eq&8)—(42) carried out. We ob-
tain the following set of self-consistent equations:

”:“N%;' [f(p)—hwtam{&(p)

(47)

2E.(p) 2T

EpP) A E_(P)
2E_(p) 2T ||’

(48)
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B 1 , 1 \](0) V(0 49 0.04 T T
A—N—} P 7(p)— 5~ —V(O|n, (49 N
— SC
0.03 F ‘\\ .
= J=0.3
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d)(k)ZZ_NC " I(k+p) 74(p), (52 FIG. 4. Phase diagram of ttteJ model for decoupled-wave
superconductingSC) and commensurate flugFL) order param-
eters.
where
F(N,T)=(u—MN)(n—-1)
, E. (k)
2T In| 2
o S0 A r{a(k) 2" °°S< 2T>
&l 2E.(k) 2T T V(E(k))H
§K)+N—p  [E_(K) +In| 2cos
TTE W) *{ 2T “ 3 2T
1
T g " I(k+p) (k) 7(p)
AW [EL0]. AR TE(K) 2Nz kP
=128 M 21 | T2E_ @M 2T || L
=4 +—— 3" 3(k+P) ny(K) 74(P)
2N g kP
1 ’
" (K[ ERK)—A+p  [Ei(K) +—2k2 [I(k+p)—Vg(k+p)]7a(k) 7a(p).
70 =g | 28 (0 A 2T 2N¢ P

LA [E-(0) 5 57
2E_(k) 2T ' After having derived the system of equations for the order
parameters we are going to analyze the phase diagram of the
t-J model within our approach. We choose the generally
and the prime on the summation indicates that the sum igccepted valud= 0.3 using always as the energy unit. An
restricted to the reduced Brillouin zone. estimate of the Coulomb repulsion between nearest neighbor
Equations(48)—(52), together with Eqs(53)—(55), deter-  sitesV,,, may be more controversial. It seems reasonable to
mine in a self-consistent way all the properties of the systemassume that,,, is of the same order ak so we have chosen
Moreover, it is possible to construct the thermodynamicakhe valueV,,=0.5]. This particular choice means that the
potential 2 (u«,T) as that function which satisfies the ex- contribution from density-density interactions in tdeand
tremal conditions V., terms cancel each other in tldewave superconducting
channel, so that superconductivity is driven only by
spin-exchangé* The role played by, and the Coulomb
50 6Q) 6Q) interaction in the phase diagram will be discussed in more
Sa) 9 =0, =0, (56 getail in the next section.
Sa(k) SA (k) Sp(k) etal € next sectio
Figure 4 shows the instability line of the normal state with
respect tod-wave superconductivitysolid line and com-
together with the conditiongQ/ox=0,—90Q/du=n. Per- mensurate flux phas@lashed lingin the T-§ plane assum-
forming a Legendre transformation did one obtains the ing that the two phases are uncoupléd.of the uncoupled
following expression for the free enerdgy(N,T): superconducting phase increases with decreasing daping
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FIG. 5. Phase diagram of thie] model taking into account the FIG. 6. The fluxd per plaquette as a function of doping for
competition between superconductivity and commensurate fluxifferent temperatures.
phase.

onset of the flux phase @&=0. Figure 6 shows the flux per

This behavior is caused mainly by an increase of the densitplaquetted in the interacting case as a function of doping
of states with decreasing due to the narrowing of the band for three different temperatures. The flux always assumes its
and the decreasing distance of the Fermi energy from th&laximum value ofr at zero doping. With increasing doping
Van Hove singularity at the middle of the band. The transi-Or With increasing temperatu® decays rather fast. In the
tion temperatureTr, to the flux phase becomes nonzero atcoexistence region of superconductivity and flux phéses
around §~0.13 and assumes very rapidly large value to-small but nonzero.
wards lower dopings. Though this instability is caused by Both Figs. 3 and 6 show that at low temperatutes
nesting properties of the quasi-two-dimensionaj Fermi Sur:"0.0l an incommensurate flux state is more stable than the
face the dashed line in Fig. 4 indicates that it is much stroncommensurate one. In an incommensurate flux state the one-
ger than the instability towards superconductivity. Bothparticle gap opens, similar to the case of superconductivity
phases have order parameters dsfvave symmetry, i.e., right at the Fermi energy. From this one might expect an
nodes along thél,1] direction and maximum absolute val- €ven larger competition between flux and superconductivity
ues along thg1,0] and [0,1] directions ink space. Both phases and a more rapid quenching gt low dopings than
phases thus try to reconstruct the Fermi surface mainljn the case of a commensurate flux phase. We thus arrive in
around theX andY points creating there a gap in the single- & natural way at some kind of scenario with a quantum criti-
particle excitation spectrum. In the case of superconductivitgal point. Omitting superconductivity the metallic state at
the gap opens always right at the Fermi energy and movearge dopings passes at zero temperature with decreasing
with doping. In contrast to that the gap of the flux phase isdoping through a critical point into a nonmetallic flux state
fixed at the middle of the gap due to the assumed commereharacterized by an order parameter witvave symmetry
surability. Nevertheless, there will be a large competitionand an incommensurate modulation vector. At finite tem-
between the two phases for not too large dopings. Figure Reratures the long-range order of the flux state is destroyed
suggests that the flux phase is able to reconstruct also elelut there are still regions of small and large fluctuations in
tronic states further away from the Fermi surface compare¢he flux order parameter. Allowing also for superconductiv-
to the superconducting phase which affects mainly electronigy the surroundings of the quantum critical point becomes
states close to the Fermi energy. superconducting with @, which has a maximum at the criti-
Figure 5 shows the phase diagram of thkmodel if the ~ cal point and decays rapidly at larger or smaller dopings.
interaction between the flux and superconducting phases fgne attractive feature of our phase diagram is the near coin-
taken into account. Fa6>~0.13 only the superconducting cidence of critical point and maximdl. which is a neces-
phase is stable at low temperatures. At arodre0.13 the  sary consequence of the competition of flux and supercon-
flux phase order parameter becomes nonzero in the supercoficting phases. This coincidence seems to be a generic
ducting phase and a coexistence region exists of supercofgature of high¥. oxides and does not rely in our approach
ductivity and flux phase. Because the two order parameter@n parameter choices or fine-tuning.
have the same symmetry and aim to reconstruct the same
parts of the Fermi surface the stronger of the two phases €S ~5ULOMB INTERACTION AND INCOMMENSURATE
to suppress the weaker one. Sifigg> T for §<~0.13 the CHARGE-DENSITY-WAVE
superconducting phase is rapidly suppressed for decreasing
dopings. As a result the solid line in Fig. 4 which increases We have seen in Sec. Il that macroscopic phase separation
monotonously with decreasing doping tends rapidly to zerds impossible in the presence of long-range Coulomb forces.
below 6~0.13 due to the interaction with the flux phase. TheHowever, it is known that in such a situation the charge
maximum value forfT. coincides rather accurately with the instability at g=0 corresponding to phase separation is
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shifted to a finiteq, leading to an incommensurate charge- . - 1 , ~ A )
density-wave staté® CommensuratéCDW) (Ref. 13 orin-  %cow(k,Q)= Tst(k_CI)N—C Z T ; Tr{70- 69(p,0,iwn)]
commensurate charge-density-wave stat@DW) (Refs.

12,34 have been proposed to account for the metal-insulator .1 , ~ - )
transition at T=0, the quantum critical point, and the 7o 24 t(p)T En: Tr{73-69(p.q,iwn)]
pseudogap features at finite temperatures in the underdoped ¢

regime of highT. oxides. Though we have proposed a dif- - J(q) 1 ,

ferent candidate for the insulating state in the previous sec- 7'o( - T+V(Q))N—C 2 T

tion the t-J model may exhibit charge separation and
ICDW'’s in addition to the discussed flux phase. Thus the A o~ ,
phase digram in Fig. 5 may have to be modified. We there- X; Tr{73-69(p,q,iwn)]

fore study in the following possible CDW instabilities in-

cluding in the Hamiltonian also the long-range Coulomb in- ~ 1 ,

teractionV(q) defined in Eq.(17). For this we consider a _732_NC Zt I(k+p)T

general ground state characterized in general by nonvanish-

ing order parameters fod-wave superconductivity and a A .

commensuratd-wave flux state. The corresponding Green’s X; [Tr7s-59(p, i wn)]. (63
function and self-energies form>44 matrices as has been ) ) )

discussed in Sec. IV. On top of this ground state we allowEduation(63) can be written in the more compact form
for a small ICDW and check whether its amplitude can be 1

nonzero. The procedure is similar to that used in Sec. Il for deow(K,q) =~ 2’, T > F.KQ)

an incommensurate flux state. Nc n a

We write the Green’s function and the self-energy as A - ]
XTI Gu(p,a)- 59(p.0..iwn)], (64

- _ . R _ with the abbreviations
9(k,qiwn)=g(k,iwn)Nc8(q) +59(k,q,iwn),  (58)

R ~ ~ J(k)~
F(k,q)= t(k—Q)TsvTo’TTs , (65
S (k@) =2 (K)Ne8(@) + deow(K.9). (59) W@t
G(k,q)=| 7o,t(k) T3+ V(Q)—T> ;'o,—T;a -
The first term on the right-hand sides of E¢58) and (59) (66)

describe the state \_N'th superconductmfy and com[nensuratgimilar to Sec. lll, the solution of the ICDW order parameter
flux phase, both wittd-wave symmetry¢cpw and 6g are

V can be written as
small nontranslational additions t& and g due to the
ICDW. It is sufficient to linearize Dyson’s equation with
respect to the nontranslational parts yielding

&cnw<k,q>=§ fo(@F o(K,Q). (67)

Using Eq.(60) the expansion coefficients, satisfy the fol-

~ . A - - . lowing system of three equations:
59(K,0,i0n) =g(K,iwn) eow(k,D)G(k—0iwp). (60) 9y g

) 2 [8.p—a,5(0)]f (@) =0, (69)
Since we are dealing with a CDW instabilitycpw(k.q) is A

diagonal in the &4 space and can be written as a linearywhere the matrix elements, 5(q) are defined by
combination of the two X4 matrices:

1 , A .
Bap() = 2 T; T G(p,9) - Go(P,i @)

. o O ‘ )
73:( 3 ) (6D ‘Fg(p,d)-go(P—0,iw,)]. (69)

As usual the phase boundary is determined by the onset of
the first nontrivial solution of the homogeneous system Eq.
- 0 (68). The particulamg, where this occurs determines the in-
( ) , (62  commensurability vector of the ICDW.
Taking also ICDW's into account the calculated phase
diagram is shown in Fig. 7 usin=0.3 andVv,,,/J=0.5. We
A also used the long-range Coulomb potential Bdg) in the
whereas is the usual third Pauli matrix. Explicit calculations calculation. We characterize its strength by its valg,
of the diagonal elements of the self-energy using B). between nearest-neighbor sites. Fig. 7 should be compared
yield, similar as in Eq(24), the result with Fig. 5 where the same parameter values have been used
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FIG. 8. Evolution of the phase diagram fd+ 0.3 and different
but the Coulomb interaction was confined to nearest neighCoulomb interaction strengths, characterized by the nearest-
bors. The curves foff, and Tg_ are very similar in both neighbor constari,,,. ForV,,=0 the ICDW instability occurs at
cases. The region of the flux phase is now, however, Splif‘fo corresponding to the divergencg of the isothgrmal compress-
into two regions. In one region at larger dopings only the!Pity and the onset of phase separatiaivt-dashed ling
flux phase is stable; in the other one at lower dopings the flux
and the incommensurate charge density phase coexist with
each other. At high temperatures the pure ICDW is stable dfid states are unstable as homogeneous phases, and the sys-
lower dopings. The figure indicates that the ICDW has nd€M Separates into two phases, one with zero and the other
important influence on th&, curve and, in particular, to its With @ high hole density.

maximum value at optimal doping. The latter is still deter- NcreasingVy, from zero to finite values the supercon-
mined solely by the instability towards the flux phase athCtIng state s more anq more suppres.se_d Whefe?‘s the
arounds=0.13. boundary to the flux phase is unaffected. This is shown in the

Finally we discuss the dependence of the phase diagramiddle panel of Fig. 8 fotV,,/J=0.5 which is the same

. . . diagram as Fig. 7. Moreover the superconducting region
on the Coulomb repulsion strength., defined in Eq(17). h . : X
Similar to Fig. 7 we use instead bf; the valuev,,,, i.e., the splits up into a pure superconducting part at larger dopings

: . ! and a region at lower dopings where the superconducting and
Coulomb potential between nearest neighbor sites, to charai:ﬁe flux order parameters coexist. Whef, exceeds the
. n

terize the strength of the Coulomb potential. Chandfig  \4jye J the total effective hole-hole interaction becomes re-
we can distinguish between two extreme limits. In the casgy|sive and superconductivity is totally suppressed. At the
of negligible Coulomb repulsion, i.eV,,=0, the attractive same time the instability of the flux phase with respect to an
charge-charge term of thteJ model becomes important. As additional ICDW moves towards smaller dopings, i.e., the
a result the superconducting region becomes large and wipeggion of the pure flux phase increases also on the cost of the
out the flux phase as shown in the upper panel of Fig. 8coexistence region of flux and ICDW phases. This is illus-
Lowering the temperature from high values one crosses thetated in the lower panel in Fig. 8. Figure 8 demonstrates, in
solid line and enters the superconducting region. The phaggarticular, two things: with increasing,,, the CDW insta-
boundary between normal and flux phase in Fig. 5 lies nowbilities move monotonically to lower dopings. The position
within the superconducting region where according to theof these instabilities is in general far away from optimal dop-
calculation this boundary no longer exists. This can be uning and thus does not influence much the region where su-
derstood from the fact that the superconductivity order paperconductivity is the stable phase. Rgy;,>0 optimal dop-
rameter has already reconstructed the Fermi surface, espieég is more or less determined by the onset of the flux phase
cially near the pointsX and Y, so that an additional order atT=0 and thus tied to this instability.

parameter withd-wave symmetry cannot lower further the = We are now in a position to make a comparison of our
free energy. At zero temperature the ground state is alwayesults with those of other treatments. Reference 33 also en-
superconducting in agreement with the arguments of Ref. 39orces the constraint bX operators but does not find any
Exactly at zero doping the superconducting and the flwinstability of the normal state with respect to a flux phase.
phases become equivalent, again in agreement with previo@®onsidering the cas’l=2 from the outset Ref. 33 uses a
arguments. The isothermal compressibility diverges alongnean-field-like decoupling procedure which violates Lut-
the dot-dashed line in the upper panel of Fig. 8. This meantinger’s theorem. For instance, the Fermi surfacederl/3

that on the left side of this line the normal and superconducteorresponds to half filling in theories where Luttinger’s theo-
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rem is fulfilled. The absence of a flux phase instability of thecharge density wave states into account. The investigation
normal state as well as a finilg for superconductivity even was based on the leading expressions of M &xpansion
atJ=0 may be artifacts due this short-coming. Reference 4@nforcing the constraints by meansXbperators. We found
calculates the expectation values of bosonic Hubbard operg; strong competition betweedrwave superconducting and

tors and the Green’s functions with different perturbationd_WaVe flux states. As a result the transition tempeTatéor
expansions finding also solutions for théu) relation which superconductivity showed a maximum near a doping value

satisfy Luttinger's theorem. The resulting(o) curves are 6= 6.~0.13 for J/t=0.3. This value is determined essen-

similar to ours but again flux phases and their competition. v by th £ arfi | h
with superconductivity are missing. A basic inconsistencyti@ly by the onset of atincommensuragefiux phase aw. .

problem inherent in simple decoupling schemes witop- 10 Simplify the calculations we assumed the flux phase to be
erators can also be inferred from a comparison of Ref. 33ommensurate. We showed that this is correct Tdt

with Ref. 40: Calculating expectation values of bosonic Hub->0.01. Below this temperature the flux phase is incommen-

bard operators from Green’s functions using the projectiorsurate which, if taken into account, would presumably not

properties of Hubbard operators or from thermodynamic rechange substantially our conclusions. We also studied the
lations yields different(u) relations. In contrast to that the influence of long-range Coulomb forces on the phase dia-
1/N expansion yields a unique(.) relation and also satis- gram. As a result incommensurate charge density waves be-

fies Luttinger's theorem. On the other hand we cannot sayome stable or coexist with the flux phase at lower dopings

much about the convergence of thélExpansion in general. - o senarated from the superconducting region influencing
However, in the case of the density fluctuation spectrum 'tthe latter at most in a marginal way

has been showh that the leading order in i can already o it be int ted in t ¢ ; i
account for most features found in the spectra calculated by ur results can be interpreted in terms ot a quantum critl-
exact diagonalizations foN=2 for small systems and that cal point scenario. Disregarding superconductivity the metal-

the remaining discrepancies nearly vanish if next-to-leadindiC State at large dopingé>J. passes to a nonmetallic, in-
contributions are also taken into accofht. commensurate flux state withwave symmetry for6<é .
Finally we compare our results with treatments where theAllowing also for superconductivityl . increases from the
constraint is enforced using slave particles. One general resverdoped and underdoped sides and shows a maximum
sult of these approaches’{s® that the staggered flux phase around 6,. On the underdoped side the superconducting
is always unstable dt=0 against-wave superconductivity. phase coexist with the flux phase upTipwhere a pure flux
This agrees with our findings, see the upper panel of Fig. 85516 hecomes the most stable state up to the normal state at
Fig. 4 of Ref. 6, and_ Fig. 1 of Ref. 8, if scaled to our value high temperatures. Two different proposals for the nonmetal-
J/t=0.3, show at finite temperatures no or only a very smal"giate i the guantum critical point scenario have been

region at very small doping_s Where the flgx phase is Stablemade, namely an antiferromagnétand an incommensurate
In our case the flux phase is wiped out either by supercon;

ductivi by Bh . h in th charge density wave stat®>* In comparison with these
uctivity or by phase separation as shown in the upper pangl,es we would like to point out three attractive features of

of Fig. 8. Taking also Coulomb interactions into account togur proposal for the nonmetallic state. The instability to-

prevent macroscopic phase separation we find tha.t the ﬂu\?\(/ards an incommensurate flux phase is a generic feature of
p_h?j_e becom_es ﬁ_tab;ea agolvze TtE'e sulper_conducr:]ulng phaﬁﬁ%t—\] model and is also present if second-nearest-neighbor
YIelding a maximall ¢ of o=9.1z. This value IS much larger hopping or Coulomb forces are additionally taken into ac-
than the values~0.03 obtained in Ref. 8 and also closer to ., \nt Eorl/t<0.5 the flux phase hatwave symmetry, i.e.

the experimental one 0§~0.15. The decrease Gic With 5 same symmetry as the most stable superconducting state.
decreasing’ in the underdoped region is determined in RefS.gjnce the flux phase instability is much stronger than the
6,8 by the condensation temperature of the slave boson paéhperconducting ond@, is heavily suppressed by the flux

ticles. Such a Bose condensatiqn does not exist in our al[b'hase in the underdoped regime. As a necessary consequence
proach. In§tead the decreaseTgfin the underdopeq TegION 4he maximum value fofT, lies near the onset of the flux
is caused in the present approach by the competition of thﬁhase at

e

two d-wave order parameters describing the flux and the U= g “\e would like to mention that one ingredient of
perconductl_wty phase._We also note that _experlmental datf’ne usual critical point scenario is missing in our treatment
have been interpreted in a phenomenological way as a comye to the approximations adopted by us. Within the critical
petition OT the supercpnductlng and an _unknown p??aaaq oint scenario it is usually assumed that superconductivity is
the resulting pha_se diagram is very similar _to those of I_:lgs. aused by the singular interaction between quasiparticles me-
and 8. The leading order of theNl/expansion is certainly - giateq py critical fluctuations related to the quantum critical
'”S“ﬁ'c'ef“ for a proper description of the undoped Cé_‘c’e point. The completéD(1/N) contribution to the anomalous
=0. It is now generallly acp_eptgd_ th"’.‘t the Obtaln‘E’dself-energy contains, among many other contributions, also a
resonance-valence bond instability is in this case somewhzi;)tart due to critical fluctuations. This can be seen. for in-
weaker than the instability towards long-range antiferromag-stance’ from the divergence of the lowest eigenvalue of the

netism_. The_ latter instability, however, can only be Ob_tai”edstatic kernel of the gap equation near the critical dofise

by taking higher order contributions of theNL/expansion  rjg 1 of Ref. 25. On the other hand, we considered in this

Into account. paper only the instantaneous contribution in the anomalous

self-energy which already determin@s to a large extent

according to Ref. 25. Inclusion of critical fluctuations would
In this paper we have derived the phase diagram of @resumably enhanck, somewhat but would not change our

generalizedt-J model taking superconducting, flux, and results in a serious way.

VI. CONCLUSIONS
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