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Interplay between superconductivity and flux phase in thet-J model

E. Cappelluti and R. Zeyher
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

~Received 3 June 1998!

We study the phase diagram of thet-J model using a mean field type approximation within the Baym-
Kadanoff perturbation expansion for HubbardX operators. The line separating the normal state from ad-wave
flux or bond-order state starts near optimal doping atT50 and rises quickly with decreasing doping. The
transition temperatureTc for d-wave superconductivity increases monotonically in the overdoped region to-
wards optimal doping. Near optimal doping a strong competition between the twod-wave order parameters
sets in leading to a strong suppression ofTc in the underdoped region. Treating for simplicity the flux phase as
commensurate the superconducting and flux phases coexist in the underdoped region belowTc , whereas a pure
flux phase exists aboveTc with a pseudogap ofd-wave symmetry in the excitation spectrum. We also find that
incommensurate charge-density-wave ground states due to Coulomb interactions do not modify strongly the
above phase diagram near the superconducting phase, at least, as long as the latter exists at all.
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I. INTRODUCTION
It is widely accepted that the mechanism causing highTc

superconductivity in the cuprates is intimately related to
underlying properties of the normal state. However, th
exists presently no agreement on what an appropriate
correct description of the normal state is. One reason for
is that experiments indicate the presence of a whole var
of important fluctuations in the normal state. At low dopin
antiferromagnetic fluctuations dominate.1,2 The associated
quantum critical point, however, lies far apart from optim
doping so that the relevance of magnetic fluctuations
high-Tc superconductivity is not evident. Other fluctuatio
which have been considered to be relevant in the nor
state are associated with resonance-valence bonds,3–6 flux
phases,7–9 stripes,10,11or charge density waves.12,13The close
proximity of high-Tc superconductivity and structural phas
or crossovers also follows from the experimental observa
of a spingap or pseudogap ofd-wave symmetry in the under
doped regime of the cuprates.14–18 It is thus desirable to
study in more detail the phase diagram of models relevan
the cuprates and to identify instabilities, their symmetr
and their interactions.

The low-energy physics of the CuO2 layers of the cu-
prates is well described by thet-J model.3,19 In order to be
able to carry out systematic approximations the two s
degrees of freedom per site are often increased toN degrees
of freedom so that 1/N can be used as a small parameter.20,21

For our purposes it is convenient to consider two spin
grees of freedom as in the original model and to extend
number of orbitals per site from one toN/2. In this way the
symmetry group of the Hamiltonian of thet-J model is en-
larged from SU(2) to the symplectic group Sp(N/2). Based
on 1/N expansions it has been shown that this model p
sesses at largeN’s two intrinsic instabilities.22 The first
one23–25 is associated withd-wave superconductivity and i
obtained inO(1/N). The second one25–28 is related to a flux
or bond-order wave state ofd-wave symmetry and is ob
tained already in the leading orderO(1). Theinstability to-
wards superconductivity is found for all dopings; the cor
PRB 590163-1829/99/59~9!/6475~12!/$15.00
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sponding transition temperatureTc increases from the
overdoped side with decreasing doping. Near and below
timal doping the second instability sets in. It occurs in t
d-wave channel for the relevant region of parameters. B
its location and its symmetry fits well to the experimen
observations of ad-wave pseudogap in the underdoped
gion. It is thus of much interest to study these two intrins
instabilities of thet-J model in more detail and this is th
subject of this paper.

One obstacle for such a study is the fact that the t
instabilities occur in different orders of the 1/N expansion.
Whereas the transition between the normal and cha
density wave or flux states can be obtained by compa
O(1) contributions to the free energy the superconduct
part is ofO(1/N). Nevertheless, the calculation of the supe
conducting phase boundary is unique and involves o
Green’s functions of leading order in the 1/N expansion. The
position of the boundary in the phase diagram, on the ot
hand, depends on the value ofN. We will use the 1/N ex-
pansion in the sense that it allows to select a set of diagr
which are the leading ones at least at largeN’s. After this
selection has been made we putN52. The anomalous self
energy ofO(1/N) contains quite a number of terms. It ha
recently been shown that only thed-wave contributions are
important and that for this symmetry the retarded terms c
cel each other to a large extent. To simplify our treatment
will thus only keep instantaneous terms in thed-wave chan-
nel for the superconducting part.

In the following we will enforce the constraints of thet-J
model by usingX operators.21,29,30Such a formulation is not
more involved than the more familiar one using a slave
son formulation. It has, however, the advantage that all qu
tities such as the order parameters are gauge invariant in
sense of slave boson theory. The outline of the paper is
following. In Sec. II the formalism of our approach is intro
duced and in Sec. III we discuss the instability of the norm
state towards incommensurate and commensurate
phases, clarifying the range of validity of treatments whi
only take commensurate flux phases into account. The in
6475 ©1999 The American Physical Society
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play between superconductivity and flux phase is discus
in detail in Sec. IV. Finally we investigate in Sec. V the ro
of phase separation and the effect of Coulomb interaction
the phase diagram.

II. MEAN-FIELD EQUATIONS IN TERMS
OF X OPERATORS

Using X operators the Hamiltonian of our generalizedt-J
model has the form

H52 (
i j

p51•••N

ti j

N
Xi

p0Xj
0p1 (

i j
p,q51•••N

Ji j

4N
Xi

pqXj
qp

2 (
i j

p,q51•••N

Ji j

4N
Xi

ppXj
qq1 (

i j
p,q51•••N

Vi j

2N
Xi

ppXj
qq . ~1!

i and j run over the sites of a lattice. ForN52 the operators
Xi

pq are identical with the projection operatorsu i
p&^ i

qu, where
u i
p& denotes forp50 the empty state and forp51,2 singly

occupied states at sitei with spin up and down.t i j andJi j are
hopping and exchange constants, respectively, and both
assumed to act only between nearest neighbors. The last
in Eq. ~1! describes the Coulomb repulsion between el
trons.

The extension fromN52 degrees of freedom per site to
generalN is accomplished by introducing a flavor indexm
51, . . . ,N/2 which enumeratesN/2 copies of the original or-
bital. The indexp is then a composite indexp5(s,m),
wheres denotes a spin index, and can be chosen to run f
0 to N. The X operators are in general no longer projecti
operators but are assumed to obey still the commutation r

@Xi
pq ,Xj

rs#65d i j ~dqrXi
ps6dspXi

rq!. ~2!

The upper~lower! signs in Eq. ~2! hold for fermionlike
~bosonlike or of mixed nature! X operators. Per definition
fermionlike operators have the internal indicesp50,q.0 or
q50,p.0, bosonlike onesp5q50 or p,q.0. Moreover,
the diagonalX operators are assumed to obey the constr

Xi
001 (

p51•••N
Xi

pp5
N

2
. ~3!

In the usual caseN52 both Eqs.~2! and~3! are fulfilled, and
Eq. ~3! is just the completeness relation. For a generalN Eq.
~3! means that at mostN/2 electrons can occupy theN states
at sitei sinceXi

00 is a non-negative operator.30 Moreover, it
can be shown that the problem is completely specified if
assumes, in addition, that the diagonal operatorsXi

pp are pro-
jection operators forp.0, exactly as in the caseN52.30

Before proceeding we want to introduce the notation we w
use in the following. The index 1 inX(1) denotes all the
degrees of freedom~internal indicesp1 ,q1 , imaginary time
t1 , site indexi 1) of the X operator, so that

15S p1q1

1̄
D ,

where 1̄stands for 1̄5( i 1 ,t1).
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Following the Baym-Kadanoff formalism,31,21,29 we de-
fine the single particle nonequilibrium Green’s function
the presence of an external sourceK by

G~12!52^TSX~1!X~2!&/^S&, ~4!

S5T expF E d1K~1!X~1!G . ~5!

In Eqs. ~4! and ~5! T is the time ordering operator andKpq

the external source which is assumed to couple only
bosonlike operatorsXpq. *d1 means(p1 ,q1 ,i 1

*0
bdt1 where

b is the inverse temperature. It is convenient to introduc
normalized Green’s functiong such that Dyson’s equation
has the usual delta function on the right side29,32

E d2@G0
21~12!2S~12!#g~218!5d~1218!, ~6!

whereG0 is given by

G0
21~12!5d~122!

]

]t2
2d~ 1̄22̄!@K00~ 1̄!dq1q2

2Kq1q2~ 1̄!#

~7!

and

S~12!52E d3v~132!^X~3!&

1E d3d4d5v~134!g~45!g~52;3!. ~8!

The explicit expression for the functionv is

v~123!5d~t22t1!d~t32t1!$~ t i 1i 3
1Ji 1i 2

/2d i 1i 3
!

3@dq10dq20~12dp30!dp2p1
dq2p3

2dp10dp30~12dq30!dp2q3
dq1q1

#

1@ t i 1i 3
1~Ji 1i 2

/22Vi 1i 2
!d i 1i 3

#

3@dq10dq30~12dp30!dp20dq2q1
dp3p1

2dp10dp30~12dq30!dp2p1
dq20dq3q1

#%. ~9!

The square bracket on the right-hand side of Eq.~9! contains
two contributions: The first one describes the hopping o
hole between nearest neighbors with a spin-flip, the sec
one without a spin-flip.

The mean field approximation is usually defined as
approximation for the self-energyS in which S contains all
skeleton diagrams which are at most linear ing. This means
in our case that the vertexg should be approximated by th
contribution of zeroth order ing.33 Such an approximation
however, would violate Luttinger’s theorem for everyN.
Moreover, the relation between the number of particles a
site and the chemical potential would be not unique and
pend on the way one calculates it. One way to get rid of th
artifacts is to keep in the normal part ofS only those terms
which also are present in the large-N limit and then to put
N52. Another justification for such a procedure is the fo
lowing: The leading normal and anomalous parts ofS in Eq.
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~8! are ofO(1) andO(1/N), respectively, in the 1/N expan-
sion. The calculation of the superconducting transition te
perature involves in leading order only normal self-energ
of O(1), which, however, may already describe modula
phases. Calculations based on 1/N expansions thus sugge
that first one should solve theO(1) normal state problem in
leading order of the 1/N expansion which may already impl
the consideration of modulated phases. In a second step
solution is then used to solve the superconducting par
leading order in 1/N. It has been found that the mean-fie
expression for the anomalousS is in general quite a good
approximation for the totalO(1/N) contribution to the
anomalous self-energy. Taking this for granted one arri
exactly at the above procedure to calculateS.

Before working out the details of the above approxim
tion for S it is useful to summarize theO(1) results forS
andg in the normal, unmodulated phase. In leading order
the 1/N expansion the vertexg in the self-energy can be
approximated by the bare one, i.e., by

g~12;3!5d~ 1̄22̄!d~ 2̄23̄!

3@dp10dp20dp3q1
dq3q2

2dq10dq20dq3p1
dp3p2

#.

~10!

Also in leading order of the 1/N expansion the expectatio
value of bosonic operators can be calculated in the abs
of source field via

^Xpq~ 1̄!&5dpqgS 0q

1̄

q0

1̄1D . ~11!

Inserting Eq.~10! into Eq. ~8! the self-energy is frequenc
independent for zero source fields. Denoting it after a Fou
transform bye(k) we obtain forg

g~k,ivn!5
1

ivn2e~k!2l1m
, ~12!

with

e~k!5de0~k!1a~k!. ~13!

e0(k) is the free electron dispersione0(k)52t(k)/2, and
the dopingd, the functiona, and the shiftl are determined
by the following expressions:

n512d5
2

Nc
(

p
f Fe~p!1l2m

T G , ~14!

l5
1

Nc
(

p
t~p!h~p!2

1

2FJ~0!

2
2V~q→0!Gn, ~15!

a~k!52
1

2Nc
(

p
J~k1p!h~p!. ~16!

Nc is the total number of sites,f (x) the Fermi function
f (x)51/@exp(x)11#, and h(k)5 f @„e(k)1l2m…/T#. J(q)
is defined byJ(q)52J@cos(qx)1cos(qy)#, whereJ is the cou-
pling constantJi j for nearest neighbori , j . The long-range
Coulomb interactionVi j , written in the Fourier space, ha
the expression34
-
s
d
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-
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r

V~q!5
VC

2AA~qx ,qy!221
, ~17!

with A(qx ,qy)5c@cos(qx)1cos(qy)22#21. The constantc
has been estimated to be around 50. According to Eq.~17!
the long-range nature ofV implies that limq→0V(q)5`. In
equilibrium this infinite large constant is compensated by
lattice due to charge neutrality. For a nonequilibrium val
of the density this compensation no longer works. As a c
sequence, the isothermal compressibility, defined byk
5n2(]m/]n), becomes

k5k01
V~q→0!

2
n2.0, ~18!

where k0 means the compressibility without the Coulom
interaction. Whatever the value ofk0 is, the totalk is ac-
cording to Eq.~18! always positive preventing any phas
separation.

III. COMMENSURATE AND INCOMMENSURATE
FLUX PHASES

The expressions for normal state quantities derived ab
are valid as long as the doping is not too small, where
normal state is unstable with respect to other phases.23 In
particular, the instability towards bond-order states and fl
phases has been investigated as function of the couplingJ/t
~Refs. 7,27! and the temperatureT.6,28 In these works, the
new phases have been assumed to be commensurate w
commensurate modulation vectorQc5(p,p). ~We use here
the terms ‘‘commensurate’’ and ‘‘incommensurate’’ with r
spect to the lattice periodicity and not, as in Refs. 35,36 w
respect to the electronic filling.! On the other hand, numeri
cal studies35,36 as well as a zero temperature slave bos
calculation26 indicated that an incommensurate flux state c
be more stable than a commensurate one for a general
ing. In this section we study this problem in more det
within our approach, especially, also at finite temperature

The generalization of Dyson’s equation for the Gree
function g(k,ivn) to the nonperiodic case is

~ ivn1m!g~k,q,ivn!2
1

Nc
(

p
S~k,p!g~k2p,q2p,ivn!

5Ncd~q!, ~19!

where we have defined the Fourier transformation by

g~k,q,ivn!5(
i , j

g~ i , j ,ivn!eik•~Ri2Rj !1 iq•Rj . ~20!

Ri denotes the lattice vector to the sitei. The instability
towards an incommensurate state causes finite nontra
tional parts inS andg, which we write as

g~k,q,ivn!5g~k,ivn!Ncd~q!1dg~k,q,ivn!, ~21!

S~k,q!5S~k!Ncd~q!1f~k,q!. ~22!

In order to study the boundary of the incommensurate ph
it is sufficient to linearize Dyson’s equation with respect
the nontranslational parts, yielding
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dg~k,q,ivn!5g0~k,ivn!f~k,q!g0~k2q,ivn!. ~23!

From Eq.~8!, calculated at largeN’s, we obtain the relation
betweenf anddg:

f~k,q!5
1

Nc
(

p
B~k,q,p!T(

n
dg~p,q,ivn!eivn01

5
1

Nc
(

p
B~k,q,p!T(

n
g0~p,ivn!

3g0~p2q,ivn!f~p,q!. ~24!

The kernelB(k,q,p) can be written as a sum of separab
kernels:

B~k,q,p!5t~k2q!1t~p!1V~q!2
J~q!

2
2

J~k1p!

2

5 (
a51

6

Fa~k,q!Ga~p,q!, ~25!

where

FW ~k,q!5@ t~k2q!,1,J cos~kx!,J sin~kx!,

J cos~ky!,J sin~ky!#, ~26!

GW ~k,q!5F1,t~k!1V~q!2
J~q!

2
,2cos~kx!,

2sin~kx!,2cos~ky!,2sin~ky!G . ~27!

The general linearized solution of the nontranslational s
energy can then be written as

f~k,q!5(
a

f a~q!Fa~k,q!. ~28!

Inserting Eq.~28! in Eq. ~24!, we obtain the eigenvalue equa
tion

(
b

@dab2aab~q!# f b~q!50, ~29!

where the matrix elementsaab(q) in Eq. ~29! are defined by

aab~q!5
1

Nc
(

p
T (

n
Ga~p,q!Fb~p,q!

3g0~p,ivn!g0~p2q,ivn!. ~30!

The boundary of the incommensurate phase is determine
the first onset of a nontrivial solution of the homogeneo
system Eq.~29!. From a different point of view, such insta
bilities correspond to divergencies of the charge vertex.29,37

The particularqc where such divergencies occur determin
the incommensurability vector.

The undoped case has been studied in detail.7 Due to the
Fermi surface topology, all instabilities occur for a comme
surate wave vector, and the ground state can be describ
a (p,p) flux phase with fluxp per plaquette. In our frame
work, the flux state is characterized by an order param
f-

by
s

s

-
as

er

Eq. ~28! which is imaginary and the antisymmetric combin
tion of its third and fourth component, i.e.,

fFL~k,Qc!} i @cos~kx!2cos~ky!#. ~31!

Consequently, ad-wave gap is opened at half-filling of th
band. Another state of interest which, however, has a hig
energy atd50, is the so called ‘‘kite’’ phase, which is two
fold degenerate and described by the order param
fKI(k,Qc)} i @sin(kx)6sin(ky)#.

It has been argued that for a finite doping both the fl
plaquette and the instability or modulation vectorqc are
functions of the doping.35,36,26 In order to investigate this
question in more detail, we have studied instabilities of
normal state with respect to all possible order parameters
~28!, which can be constructed from the eigenvectors of
636 matrix in Eq.~29!. We found that the instability vecto
qc which can be restricted to the irreducible Brillouin zon
corresponding to 1/8 of the total Brillouin zone always lies
the (0,p)-(p,p) direction, going smoothly to (p,p) for
zero doping. Figure 1 shows the calculated phase diagra
the d-J plane at zero temperature. From now on we put
51 so that all energies such asJ are measured in units oft.
The dashed lines describe transitions to commensurate s
disregarding competing incommensurate states. ForJ,1
there is a transition between the normal state at large dop
to a commensurate flux state at low dopings. ForJ.1 the
normal state is with decreasing doping first unstable w
respect to the kite phase and the kite phase then with res
to a flux state. Allowing also for incommensurate states
solid line in Fig. 1 shows the boundary of the normal sta
with respect to an incommensurate flux state atJ,0.5 and
the kite phase atJ.0.5 where the exact transition point be
tween the two incommensurate states have been marke
an arrow. ForJ.0.5 there is probably another solid lin
describing a transition between an incommensurate kite
flux phase similar as in the commensurate case. Since
will confine ourselves in the following to the paramet
rangeJ,0.5 relevant for high-Tc superconductors we hav
not tried to calculate this additional phase boundary.

FIG. 1. Solid line: Zero-temperature boundary between norm
stateN and incommensurate flux state FL. The arrow marks a tr
sition between an incommensurate flux at low and an incomme
rate kite phase at high dopings. Dashed lines: Boundaries betw
normal stateN and a commensurate flux or kite state.
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Figure 2~a! characterizes the components of the order
rameter along the incommensurate boundary of Fig. 1.
labels 3,4,5,6 correspond toa53,4,5,6 inFa defined in Eq.
~26!. For dopings below;0.175 the order parameter isf
;cos(kx)2cos(ky) and thus hasd wave or, using the prope
point group classificationG3 symmetry. Strictly speaking,f
has also a small additional term}sin(ky) which may occur in
incommensurate but not in commensurate states. For dop
aboved;0.175 we havef}sin(kx) and thus an order param
eter with G5 symmetry. Writing the instability vector asqc

5(1,x)p the dependence of the valuex on the doping is
shown in Fig. 2~b!. qc approaches the commensurate wa
vector Qc at zero doping. With increasing doping it move
slowly away fromQc and exhibits a jump atd;0.175 where
the flux state is replaced by the kite state. For the experim
tal valueJ/t;0.3 only the flux phase is possible and is t
stable phase for dopings belowd;0.13.

Figure 3 shows the phase diagram in theT-d plane for
J50.3. The solid line describes again the incommensur
the broken line the commensurate state. The inset of
figure shows the temperature dependence of the quantityx of
the instability vectorqc5(1,x)p. For temperatures large
than ;0.014 qc coincides withQc so that the broken and
solid lines become identical. This behavior is caused by
thermal width of the Fermi function: though the gap in t
one-particle density opens not exactly at the chemical po
tial the thermal smearing around the Fermi surface is la
enough to lower the free energy by taking advantage of
high density of states corresponding to the half-filled case
the following we will assume that the flux state is comme
surate. This assumption simplifies considerably calculati
which also take superconducting states into account. On
other hand Fig. 3 suggests that this is not an unreason
approximation.

FIG. 2. ~a! Evolution of the eigenvector components@3,4,5,6
correspond to cos(kx), sin(kx), cos(ky), sin(ky), respectively#, along
the incommensurate boundary in Fig. 1.~b! Corresponding depen
dence of the instability vectorqc5(1,x)p.
-
e

gs

e
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e,
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n-
e
e
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IV. COMPETITION BETWEEN SUPERCONDUCTIVITY
AND FLUX PHASES

In this section we consider instabilities of the normal a
of the flux state with respect to superconductivity. Superc
ducting instabilities occur at most inO(1/N) of our 1/N
expansion. This means that it is sufficient to calculate
Green’s functions entering the linearized gap equation
superconductivity in the leading orderO(1). A detailed
study of the normal to superconducting transition show
that the usual mean field term dominated all the other c
tributions to the kernel of the gap equation. So we will ke
just this term and neglect all the other terms which are a
of O(1/N). Moreover, it was shown that the leading supe
conducting instability occurs in thed-wave-like G3 channel
so we will consider only ad-wave order parameter. With
respect to the order parameter matrixf we will keep the
component}cos(kx)2cos(ky) discussed in the last section
The usual charge-density wave order parameter is accor
to Eq.~28! connected to the columns 1 and 2 and the sum
3 and 5 and will be included in the next section. Finally, t
components}sin(kx) and }sin(ky) are associated with the
kite phase and do not play a role forJ,0.5 as shown in the
previous section.

In the presence of a commensurate flux phase and sin
superconductivity the operators of the following row vecto

c~k!5@X0s~k!,Xs̄0~2k!,X0s~k2Qc!,X
s̄0~k2Qc!#,

~32!

are coupled in the Green’s functions. We thus define a
34 matrix Green’s function

Ĝ~k!52^TSc†~k!c~k!&/^S&, ~33!

where c† is the hermitian conjugate ofc, i.e., a column
vector. k in Eq. ~33! denotes the four-component vectork
5(k,ivn). We also note that in the absence of magne
ground states the Green’s functionsĜ are spin independent

FIG. 3. Incommensurate~solid line! and commensurate~dashed
line! phase boundaries in theT-d plane. Inset: Evolution of the
instability vectorqc5(1,x)p as function ofT.
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which allows us to drop all spin indices. Going then over to normalized Green’s functions we write the 434 matrix ĝ(k) as

ĝ~k!5S g11~k! g12~k! g13~k! 0

g21~k! g22~k! 0 g24~k!

g13~k2qc! 0 g11~k2qc! g12~k2qc!

0 g24~k2qc! g21~k2qc! g22~k2qc!

D . ~34!

Here we used the fact that the matrix elementsg14,g23,g32,g41 of ĝ must vanish and the explicit expression~32! to connect
different matrix elements. We also used the four-component vectorqc5(Qc,0). Dyson’s equation becomes a 434 matrix
equation

@ ivnÎ 2Ŝ~k!#ĝ~k!5 Î . ~35!

The self-energy matrixŜ has the general form

Ŝ~k!5S S11~k! D12~k! if13~k! 0

D21~k! S22~k! 0 if24~k!

if13~k2Qc! 0 S11~k2Qc! D12~k2Qc!

0 if24~k2Qc! D21~k2Qc! S22~k2Qc!

D . ~36!
r

nt

th

re
nts

m-

ur

he
Explicit expressions for the elements ofŜ are obtained from
Eq. ~8!:

S i i ~k!5~21! i 11~12n!e0~k!2a i i ~k!1l i i 2m, ~37!

with

n5
2

Nc
(

p
T (

n
g11~p,ivn!eivn01

, ~38!

l i i 5
1

Nc
(

p
F t~p!2

J~q50!

2
1V~q→0!G

3T (
n

gii ~p,ivn!eivn01
, ~39!

a i i ~k!52
1

2Nc
(

p
J~k1p!T (

n
gii ~p,ivn!eivn01

,

~40!

and

D i j ~k!52
1

2Nc
(

p
@J~k1p!2Vd~k1p!#

3T (
n

gi j ~p,ivn!eivn01
, ~41!

if i j ~k!52
1

2Nc
(

p
J~k1p!T (

n
gi j ~p,ivn!eivn01

,

~42!

where Vd(k)52Vnn@cos(kx)1cos(ky)# is the nearest-
neighbor part of the Coulomb interaction. The wave vectok
is eitherk or k2Qc , so that Eqs.~37!–~42! determine all
matrix elements of the self-energy. In particular, all eleme

of Ŝ are independent of frequency in agreement with
s

e

notation in Eq.~36!. Equations~34! and ~36! determine all

elements ofĝ andŜ. It is easy to see that many of them a
actually not independent. Writing for the diagonal eleme
S i i (k)5e i i (k)1l i i 2m we havel5l i i and

e~k!5e11~k!52e22~k!52e11~k2Qc!5e22~k2Qc!.
~43!

Similarly, one obtains for the elements of the order para
eters

D~k!5D12~k!5D21~k!52D12~k2Qc!52D21~k2Qc!,
~44!

f~k!5f13~k!5f24~k!52f13~k2Qc!52f24~k2Qc!.
~45!

In Eq. ~44! we have used the fact thatD can be chosen to be
real.

Ŝ(k) can easily be diagonalized and one obtains fo
branches for the excitation spectrum:

ivn56E6~k!56A@j~k!6~m2l!#21D~k!2, ~46!

with

j~k!5A«~k!21f~k!2. ~47!

Equation ~35! can therefore easily be inverted and t
sum over frequencies in Eqs.~38!–~42! carried out. We ob-
tain the following set of self-consistent equations:

n511
2

Nc
( 8

p H j~p!2l1m

2E1~p!
tanhFE1~p!

2T G
2

j~p!1l2m

2E2~p!
tanhFE2~p!

2T G J , ~48!
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l5
1

Nc
( 8

p
t~p!h~p!2

1

2FJ~0!

2
2V~0!Gn, ~49!

a~k!52
1

2Nc
( 8

p
J~k1p!h~p!, ~50!

D~k!5
1

2Nc
( 8

p
@J~k1p!2Vd~k1p!#hD~p!, ~51!

f~k!5
1

2Nc
( 8

p
J~k1p!hf~p!, ~52!

where

h~k!52
«~k!

j~k! H j~k!2l1m

2E1~k!
tanhFE1~k!

2T G
1

j~k!1l2m

2E2~k!
tanhFE2~k!

2T G J , ~53!

hD~k!5H D~k!

2E1~k!
tanhFE1~k!

2T G1
D~k!

2E2~k!
tanhFE2~k!

2T G J ,

~54!

hf~k!5
f~k!

j~k! H j~k!2l1m

2E1~k!
tanhFE1~k!

2T G
1

j~k!1l2m

2E2~k!
tanhFE2~k!

2T G J , ~55!

and the prime on the summation indicates that the sum
restricted to the reduced Brillouin zone.

Equations~48!–~52!, together with Eqs.~53!–~55!, deter-
mine in a self-consistent way all the properties of the syst
Moreover, it is possible to construct the thermodynami
potential V(m,T) as that function which satisfies the e
tremal conditions

dV

da~k!
50,

dV

dD~k!
50,

dV

df~k!
50, ~56!

together with the conditions]V/]l50,2]V/]m5n. Per-
forming a Legendre transformation onV one obtains the
following expression for the free energyF(N,T):
is

.
l

F~N,T!5~m2l!~n21!

22T ( 8
k

H lnF2coshS E1~k!

2T
D G

1 lnF2coshS E2~k!

2T
D G J

1
1

2N c
2
( 8
k,p

J~k1p!h~k!h~p!

1
1

2N c
2
( 8
k,p

J~k1p!hf~k!hf~p!

1
1

2N c
2
( 8
k,p

@J~k1p!2Vd~k1p!#hD~k!hD~p!.

~57!

After having derived the system of equations for the ord
parameters we are going to analyze the phase diagram o
t-J model within our approach. We choose the genera
accepted valueJ50.3 using alwayst as the energy unit. An
estimate of the Coulomb repulsion between nearest neigh
sitesVnn may be more controversial. It seems reasonable
assume thatVnn is of the same order asJ, so we have chosen
the valueVnn50.5J. This particular choice means that th
contribution from density-density interactions in theJ and
Vnn terms cancel each other in thed-wave superconducting
channel, so that superconductivity is driven only
spin-exchange.24 The role played byVnn and the Coulomb
interaction in the phase diagram will be discussed in m
detail in the next section.

Figure 4 shows the instability line of the normal state w
respect tod-wave superconductivity~solid line! and com-
mensurate flux phase~dashed line! in the T-d plane assum-
ing that the two phases are uncoupled.Tc of the uncoupled
superconducting phase increases with decreasing dopind.

FIG. 4. Phase diagram of thet-J model for decoupledd-wave
superconducting~SC! and commensurate flux~FL! order param-
eters.
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This behavior is caused mainly by an increase of the den
of states with decreasingd due to the narrowing of the ban
and the decreasing distance of the Fermi energy from
Van Hove singularity at the middle of the band. The tran
tion temperatureTFL to the flux phase becomes nonzero
around d;0.13 and assumes very rapidly large value
wards lower dopings. Though this instability is caused
nesting properties of the quasi-two-dimensional Fermi s
face the dashed line in Fig. 4 indicates that it is much str
ger than the instability towards superconductivity. Bo
phases have order parameters ofd-wave symmetry, i.e.,
nodes along the@1,1# direction and maximum absolute va
ues along the@1,0# and @0,1# directions in k space. Both
phases thus try to reconstruct the Fermi surface ma
around theX andY points creating there a gap in the singl
particle excitation spectrum. In the case of superconducti
the gap opens always right at the Fermi energy and mo
with doping. In contrast to that the gap of the flux phase
fixed at the middle of the gap due to the assumed comm
surability. Nevertheless, there will be a large competit
between the two phases for not too large dopings. Figu
suggests that the flux phase is able to reconstruct also
tronic states further away from the Fermi surface compa
to the superconducting phase which affects mainly electro
states close to the Fermi energy.

Figure 5 shows the phase diagram of thet-J model if the
interaction between the flux and superconducting phase
taken into account. Ford.;0.13 only the superconductin
phase is stable at low temperatures. At aroundd50.13 the
flux phase order parameter becomes nonzero in the supe
ducting phase and a coexistence region exists of super
ductivity and flux phase. Because the two order parame
have the same symmetry and aim to reconstruct the s
parts of the Fermi surface the stronger of the two phases
to suppress the weaker one. SinceTFL.Tc for d,;0.13 the
superconducting phase is rapidly suppressed for decrea
dopings. As a result the solid line in Fig. 4 which increas
monotonously with decreasing doping tends rapidly to z
belowd;0.13 due to the interaction with the flux phase. T
maximum value forTc coincides rather accurately with th

FIG. 5. Phase diagram of thet-J model taking into account the
competition between superconductivity and commensurate
phase.
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onset of the flux phase atT50. Figure 6 shows the flux pe
plaquetteF in the interacting case as a function of dopin
for three different temperatures. The flux always assume
maximum value ofp at zero doping. With increasing dopin
or with increasing temperatureF decays rather fast. In the
coexistence region of superconductivity and flux phaseF is
small but nonzero.

Both Figs. 3 and 6 show that at low temperaturesT,
;0.01 an incommensurate flux state is more stable than
commensurate one. In an incommensurate flux state the
particle gap opens, similar to the case of superconducti
right at the Fermi energy. From this one might expect
even larger competition between flux and superconducti
phases and a more rapid quenching ofTc at low dopings than
in the case of a commensurate flux phase. We thus arriv
a natural way at some kind of scenario with a quantum cr
cal point. Omitting superconductivity the metallic state
large dopings passes at zero temperature with decrea
doping through a critical point into a nonmetallic flux sta
characterized by an order parameter withd-wave symmetry
and an incommensurate modulation vector. At finite te
peratures the long-range order of the flux state is destro
but there are still regions of small and large fluctuations
the flux order parameter. Allowing also for superconduct
ity the surroundings of the quantum critical point becom
superconducting with aTc which has a maximum at the criti
cal point and decays rapidly at larger or smaller dopin
One attractive feature of our phase diagram is the near c
cidence of critical point and maximalTc which is a neces-
sary consequence of the competition of flux and superc
ducting phases. This coincidence seems to be a gen
feature of high-Tc oxides and does not rely in our approa
on parameter choices or fine-tuning.

V. COULOMB INTERACTION AND INCOMMENSURATE
CHARGE-DENSITY-WAVE

We have seen in Sec. II that macroscopic phase separa
is impossible in the presence of long-range Coulomb forc
However, it is known that in such a situation the char
instability at q50 corresponding to phase separation

x
FIG. 6. The fluxF per plaquette as a function of doping fo

different temperatures.
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shifted to a finiteq, leading to an incommensurate charg
density-wave state.38 Commensurate~CDW! ~Ref. 13! or in-
commensurate charge-density-wave states~ICDW! ~Refs.
12,34! have been proposed to account for the metal-insul
transition at T50, the quantum critical point, and th
pseudogap features at finite temperatures in the underd
regime of high-Tc oxides. Though we have proposed a d
ferent candidate for the insulating state in the previous s
tion the t-J model may exhibit charge separation a
ICDW’s in addition to the discussed flux phase. Thus
phase digram in Fig. 5 may have to be modified. We the
fore study in the following possible CDW instabilities in
cluding in the Hamiltonian also the long-range Coulomb
teractionV(q) defined in Eq.~17!. For this we consider a
general ground state characterized in general by nonvan
ing order parameters ford-wave superconductivity and
commensurated-wave flux state. The corresponding Green
function and self-energies form 434 matrices as has bee
discussed in Sec. IV. On top of this ground state we all
for a small ICDW and check whether its amplitude can
nonzero. The procedure is similar to that used in Sec. III
an incommensurate flux state.

We write the Green’s function and the self-energy as

ĝ~k,q,ivn!5ĝ~k,ivn!Ncd~q!1dĝ~k,q,ivn!, ~58!

Ŝ~k,q!5Ŝ~k!Ncd~q!1f̂CDW~k,q!. ~59!

The first term on the right-hand sides of Eqs.~58! and ~59!
describe the state with superconductivity and commensu
flux phase, both withd-wave symmetry.f̂CDW and dĝ are

small nontranslational additions toŜ and ĝ due to the
ICDW. It is sufficient to linearize Dyson’s equation wit
respect to the nontranslational parts yielding

dĝ~k,q,ivn!5ĝ~k,ivn!f̂CDW~k,q!ĝ~k2q,ivn!. ~60!

Since we are dealing with a CDW instabilityf̂CDW(k,q) is
diagonal in the 434 space and can be written as a line
combination of the two 434 matrices:

t̂35S ŝ3 0̂

0̂ 2ŝ3
D , ~61!

t̂05S ŝ3 0̂

0̂ ŝ3
D , ~62!

whereŝ3 is the usual third Pauli matrix. Explicit calculation
of the diagonal elements of the self-energy using Eq.~8!
yield, similar as in Eq.~24!, the result
-

or

ed

c-

e
-

-

h-

e
r

te

r

f̂CDW~k,q!5 t̂3t~k2q!
1

Nc
( 8

p
T (

n
Tr@ t̂0•dĝ~p,q,ivn!#

1 t̂0

1

Nc
( 8

p
t~p!T (

n
Tr@ t̂3•dĝ~p,q,ivn!#

1 t̂0S 2
J~q!

2
1V~q! D 1

Nc
( 8

p
T

3(
n

Tr@ t̂3•dĝ~p,q,ivn!#

2 t̂3

1

2Nc
( 8

p
J~k1p!T

3(
n

@Trt̂3•dĝ~p,q,ivn!#. ~63!

Equation~63! can be written in the more compact form

f̂CDW~k,q!5
1

Nc
( 8

p
T (

n
(
a

F̂a~k,q!

3Tr@Ĝa~p,q!•dĝ~p,q,,ivn!#, ~64!

with the abbreviations

F̂~k,q!5F t~k2q!t̂3,t̂0,
J~k!

2
t̂3G , ~65!

Ĝ~k,q!5F t̂0,t~k!t̂31S V~q!2
J~q!

2 D t̂0,2
t~k!

4
t̂3G .

~66!

Similar to Sec. III, the solution of the ICDW order paramet
can be written as

f̂CDW~k,q!5(
a

f a~q!F̂a~k,q!. ~67!

Using Eq.~60! the expansion coefficientsf a satisfy the fol-
lowing system of three equations:

(
b

@dab2aab~q!# f b~q!50, ~68!

where the matrix elementsaab(q) are defined by

aab~q!5
1

Nc
( 8

p
T (

n
Tr@Ĝa~p,q!•ĝ0~p,ivn!

•F̂b~p,q!•ĝ0~p2q,ivn!#. ~69!

As usual the phase boundary is determined by the onse
the first nontrivial solution of the homogeneous system E
~68!. The particularqc where this occurs determines the i
commensurability vector of the ICDW.

Taking also ICDW’s into account the calculated pha
diagram is shown in Fig. 7 usingJ50.3 andVnn /J50.5. We
also used the long-range Coulomb potential Eq.~17! in the
calculation. We characterize its strength by its valueVnn
between nearest-neighbor sites. Fig. 7 should be comp
with Fig. 5 where the same parameter values have been
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but the Coulomb interaction was confined to nearest ne
bors. The curves forTc and TFL are very similar in both
cases. The region of the flux phase is now, however, s
into two regions. In one region at larger dopings only t
flux phase is stable; in the other one at lower dopings the
and the incommensurate charge density phase coexist
each other. At high temperatures the pure ICDW is stabl
lower dopings. The figure indicates that the ICDW has
important influence on theTc curve and, in particular, to its
maximum value at optimal doping. The latter is still dete
mined solely by the instability towards the flux phase
aroundd50.13.

Finally we discuss the dependence of the phase diag
on the Coulomb repulsion strengthVC , defined in Eq.~17!.
Similar to Fig. 7 we use instead ofVC the valueVnn , i.e., the
Coulomb potential between nearest neighbor sites, to cha
terize the strength of the Coulomb potential. ChangingVnn

we can distinguish between two extreme limits. In the c
of negligible Coulomb repulsion, i.e.,Vnn50, the attractive
charge-charge term of thet-J model becomes important. A
a result the superconducting region becomes large and w
out the flux phase as shown in the upper panel of Fig
Lowering the temperature from high values one crosses
solid line and enters the superconducting region. The ph
boundary between normal and flux phase in Fig. 5 lies n
within the superconducting region where according to
calculation this boundary no longer exists. This can be
derstood from the fact that the superconductivity order
rameter has already reconstructed the Fermi surface, e
cially near the pointsX and Y, so that an additional orde
parameter withd-wave symmetry cannot lower further th
free energy. At zero temperature the ground state is alw
superconducting in agreement with the arguments of Ref.
Exactly at zero doping the superconducting and the fl
phases become equivalent, again in agreement with prev
arguments. The isothermal compressibility diverges alo
the dot-dashed line in the upper panel of Fig. 8. This me
that on the left side of this line the normal and supercondu

FIG. 7. Phase diagram of thet-J model, considering also an
incommensurate charge-density-wave~ICDW!. The dashed line be
tween ICDW and ICDW1FL is purely indicative.
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ing states are unstable as homogeneous phases, and th
tem separates into two phases, one with zero and the o
with a high hole density.

IncreasingVnn from zero to finite values the supercon
ducting state is more and more suppressed whereas
boundary to the flux phase is unaffected. This is shown in
middle panel of Fig. 8 forVnn /J50.5 which is the same
diagram as Fig. 7. Moreover the superconducting reg
splits up into a pure superconducting part at larger dopi
and a region at lower dopings where the superconducting
the flux order parameters coexist. WhenVnn exceeds the
valueJ the total effective hole-hole interaction becomes
pulsive and superconductivity is totally suppressed. At
same time the instability of the flux phase with respect to
additional ICDW moves towards smaller dopings, i.e., t
region of the pure flux phase increases also on the cost o
coexistence region of flux and ICDW phases. This is illu
trated in the lower panel in Fig. 8. Figure 8 demonstrates
particular, two things: with increasingVnn the CDW insta-
bilities move monotonically to lower dopings. The positio
of these instabilities is in general far away from optimal do
ing and thus does not influence much the region where
perconductivity is the stable phase. ForVnn.0 optimal dop-
ing is more or less determined by the onset of the flux ph
at T50 and thus tied to this instability.

We are now in a position to make a comparison of o
results with those of other treatments. Reference 33 also
forces the constraint byX operators but does not find an
instability of the normal state with respect to a flux pha
Considering the caseN52 from the outset Ref. 33 uses
mean-field-like decoupling procedure which violates Lu
tinger’s theorem. For instance, the Fermi surface ford51/3
corresponds to half filling in theories where Luttinger’s the

FIG. 8. Evolution of the phase diagram forJ50.3 and different
Coulomb interaction strengths, characterized by the near
neighbor constantVnn . For Vnn50 the ICDW instability occurs at
qc50 corresponding to the divergence of the isothermal compr
ibility and the onset of phase separation~dot-dashed line!.
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rem is fulfilled. The absence of a flux phase instability of t
normal state as well as a finiteTc for superconductivity even
at J50 may be artifacts due this short-coming. Reference
calculates the expectation values of bosonic Hubbard op
tors and the Green’s functions with different perturbati
expansions finding also solutions for then(m) relation which
satisfy Luttinger’s theorem. The resultingTc(d) curves are
similar to ours but again flux phases and their competit
with superconductivity are missing. A basic inconsisten
problem inherent in simple decoupling schemes withX op-
erators can also be inferred from a comparison of Ref.
with Ref. 40: Calculating expectation values of bosonic Hu
bard operators from Green’s functions using the project
properties of Hubbard operators or from thermodynamic
lations yields differentn(m) relations. In contrast to that th
1/N expansion yields a uniquen(m) relation and also satis
fies Luttinger’s theorem. On the other hand we cannot
much about the convergence of the 1/N expansion in general
However, in the case of the density fluctuation spectrum
has been shown37 that the leading order in 1/N can already
account for most features found in the spectra calculated
exact diagonalizations forN52 for small systems and tha
the remaining discrepancies nearly vanish if next-to-lead
contributions are also taken into account.41

Finally we compare our results with treatments where
constraint is enforced using slave particles. One genera
sult of these approaches is39,22 that the staggered flux phas
is always unstable atT50 againstd-wave superconductivity
This agrees with our findings, see the upper panel of Fig
Fig. 4 of Ref. 6, and Fig. 1 of Ref. 8, if scaled to our val
J/t50.3, show at finite temperatures no or only a very sm
region at very small dopings where the flux phase is sta
In our case the flux phase is wiped out either by superc
ductivity or by phase separation as shown in the upper p
of Fig. 8. Taking also Coulomb interactions into account
prevent macroscopic phase separation we find that the
phase becomes stable above the superconducting p
yielding a maximalTc of d;0.12. This value is much large
than the valued;0.03 obtained in Ref. 8 and also closer
the experimental one ofd;0.15. The decrease ofTc with
decreasingd in the underdoped region is determined in Re
6,8 by the condensation temperature of the slave boson
ticles. Such a Bose condensation does not exist in our
proach. Instead the decrease ofTc in the underdoped region
is caused in the present approach by the competition of
two d-wave order parameters describing the flux and the
perconductivity phase. We also note that experimental d
have been interpreted in a phenomenological way as a c
petition of the superconducting and an unknown phase15 and
the resulting phase diagram is very similar to those of Fig
and 8. The leading order of the 1/N expansion is certainly
insufficient for a proper description of the undoped cased
50. It is now generally accepted that the obtain
resonance-valence bond instability is in this case somew
weaker than the instability towards long-range antiferrom
netism. The latter instability, however, can only be obtain
by taking higher order contributions of the 1/N expansion
into account.

VI. CONCLUSIONS

In this paper we have derived the phase diagram o
generalizedt-J model taking superconducting, flux, an
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charge density wave states into account. The investiga
was based on the leading expressions of a 1/N expansion
enforcing the constraints by means ofX operators. We found
a strong competition betweend-wave superconducting an
d-wave flux states. As a result the transition temperateTc for
superconductivity showed a maximum near a doping va
d5dc;0.13 for J/t50.3. This value is determined esse
tially by the onset of an~incommensurate! flux phase atdc .
To simplify the calculations we assumed the flux phase to
commensurate. We showed that this is correct forT/t
.0.01. Below this temperature the flux phase is incomm
surate which, if taken into account, would presumably n
change substantially our conclusions. We also studied
influence of long-range Coulomb forces on the phase d
gram. As a result incommensurate charge density waves
come stable or coexist with the flux phase at lower dopin
well separated from the superconducting region influenc
the latter at most in a marginal way.

Our results can be interpreted in terms of a quantum c
cal point scenario. Disregarding superconductivity the me
lic state at large dopingsd.dc passes to a nonmetallic, in
commensurate flux state withd-wave symmetry ford,dc .
Allowing also for superconductivityTc increases from the
overdoped and underdoped sides and shows a maxim
around dc . On the underdoped side the superconduct
phase coexist with the flux phase up toTc where a pure flux
state becomes the most stable state up to the normal sta
high temperatures. Two different proposals for the nonme
lic state in the quantum critical point scenario have be
made, namely an antiferromagnetic2 and an incommensurat
charge density wave state.12,34 In comparison with these
states we would like to point out three attractive features
our proposal for the nonmetallic state. The instability t
wards an incommensurate flux phase is a generic featur
the t-J model and is also present if second-nearest-neigh
hopping or Coulomb forces are additionally taken into a
count. ForJ/t,0.5 the flux phase hasd-wave symmetry, i.e.,
the same symmetry as the most stable superconducting s
Since the flux phase instability is much stronger than
superconducting oneTc is heavily suppressed by the flu
phase in the underdoped regime. As a necessary consequ
the maximum value forTc lies near the onset of the flu
phase atdc .

Finally, we would like to mention that one ingredient o
the usual critical point scenario is missing in our treatm
due to the approximations adopted by us. Within the criti
point scenario it is usually assumed that superconductivit
caused by the singular interaction between quasiparticles
diated by critical fluctuations related to the quantum critic
point. The completeO(1/N) contribution to the anomalou
self-energy contains, among many other contributions, als
part due to critical fluctuations. This can be seen, for
stance, from the divergence of the lowest eigenvalue of
static kernel of the gap equation near the critical doping~see
Fig. 1 of Ref. 25!. On the other hand, we considered in th
paper only the instantaneous contribution in the anomal
self-energy which already determinesTc to a large extent
according to Ref. 25. Inclusion of critical fluctuations wou
presumably enhanceTc somewhat but would not change ou
results in a serious way.
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