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A theory of critical fluctuations in extreme type-ll superconductors subjected to a finite but weak external
magnetic field is presented. It is shown that the standard Ginzburg-Landau representation of this problem can
be recast, with help of a mapping, as a theory of a new “superconductor,” in an effective magnetic field whose
overall value is zero, consisting of the original uniform field and a set of neutralizing unit fluxes attadtgd to
fluctuating vortex lines. The long-distance behavior of this theory is governed by a phase transition line in the
(H,T) plane,T4(H), along which the new “superconducting” order paramebdr) attains long-range order.
Physically, this phase transition arises through the proliferation, or “expansion,” of thermally generated
infinite vortex loops in the background of field-induced vortex lines. Simultaneously, the field-induced vortex
lines lose their effective line tension relative to the field direction. It is suggested that the critical behavior at
Te(H) belongs to the universality class of the anisotropic Higgs-Abelian gauge theory, with the original
magnetic field playing the role of “charge” in this fictitious “electrodynamics” and with the absence of
reflection symmetry alongl giving rise to dangerously irrelevant terms. At zero fieldr) and the familiar
superconducting order paramet(r) are equivalent, and the effective line tension of large loops and the
helicity modulus vanish simultaneously, B& T¢,. In a finite field, however, these two forms of “supercon-
ducting” order are not the same and the “superconducting” transition is generally split into two branches: the
helicity modulus typically vanishes at the vortex lattice melting lig(H), while the line tension and
associated® order disappear only alq(H). We expectTo(H)>T(H) at lower fields andTg(H)
=T,(H) for higher fields. Bothb andW¥ order are present in the Abrikosov vortex lattjde<T,,(H)] while
both are absent in the true normal stgfe>T4(H)]. The intermediat@-ordered phase, betwedi,(H) and
Te(H), contains preciself, field-induced vortices having a finite line tension relativeHaand could be
viewed as a “line liquid” in the long-wavelength limit. The consequences of this “gauge theory” scenario for
the critical behavior in high-temperature and other extreme type-1l superconductors are explored in detail, with
particular emphasis on the questions of three-dimensiéi¥abersus Landau level scaling, physical nature of
the vortex “line liquid” and the true normal stat@r vortex “gas”), and fluctuation thermodynamics and
transport. It is suggested that the empirically established “decoupling transition” may be associated with the
loss of integrity of field-induced vortex lines as their effective line tension disappe@gg Hf). A “minimal”
set of requirements for the theory of vortex lattice melting in the critical region is also proposed and discussed.
The mean-field-based description of the melting transition, containing only field-induced London vortices, is
shown to be in violation of such requirementS0163-18208)06441-§

[. INTRODUCTION In this paper, precise answers to these questions are pro-
vided within a theoretical framework which allows for a sys-
Recent intense activity in the area of superconductingematic solution to the problem of critical fluctuations in an
fluctuations has brought into sharp focus the following fun-extreme type-ll superconductor subjected to a finite, but
damental questions: What is the relationship between theeak magnetic field. This framework is built around the
Landau-level-baséd® and the three-dimensional3D) “gauge theory” scenario proposed earlfelwo main pre-
XY-based° descriptions of superconducting fluctuations in dictions follow from this scenario: first, there is a new tran-
a magnetic field? Can the mean-field-based London modelition line in theH-T phase diagranil,(H), along which a
containing only magnetic field-induced vortiéegescribe the thermally generated vortex loop “expansion” takes place,

vortex lattice melting transition in the region of strofaiti-  reminiscent of the zero-field transition. A, (H), well de-
cal) fluctuations? What is the nature of the normal phase anéined field-induced vortex lines are formed, havindirite
can it be usefully represented as a “line liquftiof field-  line tensionrelative to the field direction. Initially, these

induced vortices? What role is played at finite fields by therdines are in a liquid state and solidify only at some lower
mally generated vortex loops? which are responsible for temperaturel ,(H) (Fig. 1). This is different from Abrikos-
the zero-field transition in extreme type-Il superconductors®V's theory, where vortices and theéibrikosov) lattice are
Particular importance and urgency has been attached to thekemed simultaneously, &i.,(T); second, in contrast to the
questions following the ground-breaking experiméht$on 3D XY behavior at zero field, the description of the critical
the thermodynamics of vortex lattice melting transitibn behavior alongT,(H) requires the combination of a com-
which clearly indicate that the low-field end of the melting plex “superconducting” order parametdr associated with
line is entering the critical regime of high-temperature supervortex loopsand a fictitious gauge field5, describing fluc-
conductors. tuations in the background system of field-induced vortex
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can be ignored at sufficiently low temperatures, far below the
critical regime. Following the prescription proposed earlfer,
which seeks to conveniently isolate the background of field-
induced from thermally generated degrees of freedom, we
derive the following results: First, it is shown in Sec. Il that
the familiar and frequently used ‘“helium” or “London
model” of extreme type-ll superconductors, in which the
amplitude fluctuations are suppressed, allows for a direct
mapping of the original problem to that of a new “supercon-
ductor,” whose order parametap experiences an overall
magnetic field composed of the uniform external fieldénd
T the set ofNg neutralizing “fluxes™ attached to fluctuating
vortex lines. This mapping constitutes an explicit and trans-
FIG. 1. Proposedi-T phase diagram for the critical region of parent realization of the general connection proposed in Ref.
extreme t;;pe-llthsupéfrcon.ductors.. The hdaShed 'Irfigéonﬂdet”mt?s @& The “helium model” is then a candidate to, in addition to
crossover from the Gaussian regime, where amplitude fluctuatio i ; o e
are strong, to the critical 3 Y-like regime, where amplitude fluc- ngloij];irgjlrlgé \g);tg;slﬁltgﬁe (mﬁg g\]/o“rrt]gﬂg;[)),“:)):gfr:tsit:r?’

tuations are suppressed. W“h'.” the m'l.'ke critical regime, theﬁ transition in afinite field), the universality class of which is
London-type vortex loops and lines with tight cores are well defined

excitations. Along the temperature axis, this critical region isg?]fm.ed ”by ﬁ_r;;nlsotr_o_plc nggs-Abzllan gr?uge thfcfﬂ/ f
bounded by themean-field T. Along the field axis, the critical ysically, t I tran§|t|0n corresponds to the vanishing o
region is bounded b, (~Hy) Eq. (6). AboveH,, the physics of the effective line tension for very large thermally geqerated
the GL theory(1) is dominated by the formation of Landau levels vortex loops: E_‘th’_(H)' the energy-entropy balance in the
for Cooper pairgRefs. 16 and 19 The ® transition, or the vortex [1€€ energy shifts in favor of large loops and spontaneously
loop “expansion” transitionT4(H) and the vortex lattice melting created infinite vortex-antivortex paths proliferate across the
T.(H), occursimultaneouslyor H>H,~H,. This is afirst-order ~ System. The ensuing change in the topology of the vortex
transition from the Abrikosov vortex latticevS) directly to the ~ paths results in a thermodynamic liquid-gas phase transition,
normal state(N). Below H,, To(H) and T,(H) split into two  associated with a change in thélly symmetry of a vortex
separatetransitions and merge again only at the true zero-field susystem(Appendix A). Simultaneously, the field-induced vor-
perconducting transitiofii,, asH—0. ForH<H,, the transition at  tex lines lose their line tension relative to the field direction
To(H) is likely continuous while the vortex lattice melting transi- and the “line liquid” description breaks down. As our sec-
tion remains first order. The intermediate pha®g ,(belowT4(H) ond result, it is shown that the fictitious gauge theory passes
but aboveT ,(H), is not a superconducto{¥)=0), but it differs  a crucial test, allowing us to connect its “charge” to the
from the true normal statéN) by a new type of long-range order, original magnetic field. Third, we use this connection in Sec.
characterized by the “superconducting” order parametgr), |V to construct scaling functions for the critical thermody-
Egs. (2) and (4). Only N, field-induced vortex lines traverse the namics of extreme type-Il superconductors. Furthermore, the
system alpng the field direction in thiB-ordered s.tat.e,. while the  qych-debated difference between the X¥-like descrip-
average size of thermally geqerated vortex loops is flnlte._ I_n the trugion at low fields and the LL description appropriate at high
normal stateN), the & order is destroyed as numeroasditional  fjg|qs s closely linked here to the difference between the
vortex paths “expand” across the system in all directions. extreme “type-1I” and the extreme “type-I" behavior of the
gauge theorySec. Ill). Fourth, it is shown in Sec. V that a
lines. The magnetic field determines the ‘“charge” which vortex loop “expansion” leads to an abrupt drop in the co-
couples® and S. The physical picture arising from the efficient of theq? term in the helicity modulus, from which
“gauge theory” is remarkably detailed and compelling, andone can extract the thermodynamic exponeit ¢f the ®
so entirely distinct from the “standard” approachthat a  transition. Related criteria are also proposed which test for
concentrated effort should be directed at exploring its consethe presence or absence of an effective “diffusion” of vortex
guences. The main purpose of this paper is to provide ahnes along the field and demonstrate the close relation be-
explicit model for critical fluctuations, to examine its main tween the ‘©® order™ and viability of the vortex “line
ramifications in some detail, and to advance a set of specifitquid” 8 description. These predictions, based only on global
predictions which can help establish the value of the “gaugdopological properties of loops and lines, can be used to ef-
theory” description though experiments and numerical simuficiently identify the vortex loop “expansion” lind (H) in
lations. numerical simulations of the weakly frustrated 30¢ and
The essential feature of our description is that it containsrelated models. Fifth, assuming a widely used form of dy-
on equal footing,both the field-inducedvortex lines and namical scaling, the explicit expression for the fluctuation
thermally generated critical fluctuations of the superconducteonductivity o(T,H) is derived in Sec. VI in the vicinity of
ing order parametel’, associated primarily withvortex theTg(H) line. At Tg(H) there is an experimentally detect-
loops It is the latter that dominate the entropy in the critical able rapid onset of additional dissipation, caused by ther-
region? This is in fundamental contrast to other approachesnally expanding vortex loops whose size is reaching sample
which include only the field-induced vortices: the Landau boundaries. It is tempting to associate this onset gtH)
level (LL) description®1° (where other fluctuations become with what is empirically known as the “decoupling”
irrelevant at sufficiently high fieldsand the mean-field- transition?! although the physical origin of such additional
based picture of London vorticEswhere other fluctuations dissipation in our theory is entirely unrelated to any “decou-
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pling” of any “layers.”?* Instead, it signifies the loss of “fluxes” attached tos vortices: VX U=2mng(r), V-U=0,
integrity of field-induced vortex lines as their effective line whereng(r) is the flux density associated with a given con-
tension disappears @t,(H). At this point, one also expects figuration ofs vortices,{r;[s;]}:?°

a distinct change in the pinning properties of the liquid state:

there is no pinning in the true normal state abdygH) just No

as there is no pinning above,,. In this senseél ¢ (H) rep- ”s(r):Z cdri‘s(r_ri[si])1 €
resents an upper boundary for pinning and could be viewed

loosely as “renormalized’H,(T). Finally, in Sec. VII, itis  with £ denoting the line integral. The net value léf aver-
demonstrated that the vortex lattice melting transition in theaged over the systeranishes

critical region involvessimultaneousordering of the field- The superconductord) and(2) areequivalentwithin the
induced and thermally generated degrees of freedom andamiliar “helium model” of extreme type-Il behavior; they
thus cannot be faithfully represented by a mean-field-basedre just two different representations of the same physical
London modef, which includes only the former. Actually, as problem. To show this we recall the main features of the
the melting line tends toward, in the limit of vanishing  “helium model”:° the true transition temperatufie,, (Fig.
magnetic field, the entropy change involved in ordering ofl) is assumed to bsufficiently belonthe mean-fieldT for
thermally generated loops overwhelms the configurationahmplitude fluctuations to have effectively subsided. Around
entropy of the field-induced vortex lines. This provides directT.,, the relevant fluctuations are considered to be those of
theoretical support for the fundamental nature and signifiLondon-type vortex loops and lines with steric repulsion and
cance of the experiments by Zeldost al,'* Schiling  well defined, tight cores of siza<!. Consider now a single

et al,’? and Roulinet al,** and new numerical simulations configuration of these loops and lines. First, we extract the
of Nguyen and Sudb®:?* singular part ofVe(r) by solving two equation&/ XV ¢
=2an(r) andV-V¢=0, wheren(r) is defined by the same
Il. FROM GINZBURG-LANDAU THEORY expression as\, Eq. (3), but with the summation running
TO GAUGE THEORY overall vortex loops and lines. After this “vortex” part has

) o . o been extracted, the rest ¥f(r) is assumed to take the form
The starting point is the anisotropic Ginzburg-Landauwhich minimizesF for a given configuration of these line
(GL) theoryZ= [DWexp{— [d* FIT}, where singularities. We then integrate over all regul@spin-
wave”) fluctuations ine(r). Finally, all such distinct con-
+E|q,|4 figurations of vortex loops and lines are summed over to
2 ' produceZ (1). This same procedure is imposed &1r):
(1) first we extract the part ots phase,V ¢(r), due to vortex
loop and line singularities ib(r) and then determine the
rest of®(r) by minimizing 7', Eq.(2), for a given configu-
ration of these line defectand svortices. Again, we inte-
grate over all “spin-wave” fluctuations of relative to this

2

5 2ei
F=a|¥|?+ %l Vul| Vat ——Au| ¥

anda=ay(T—-T,), y,, andg are the GL coefficients. Free
(periodig boundary conditions are imposed in théL) di-

rection. The limitk—o is considered, which is particularly
appropriate for high-temperature superconduciéf3S's). given configuration of loops and lines. By direct comparison

In this limit, the external magnetic field =V XA, actsasa ¢ ynese “helium model” expressions obtained from ES.
constraint forcing every allowed configuration of the system 5, 5) it is evident that all configurations contributing to
to have the overall vorticitNg alongH (||z). The overall  the originalZ are reproduced i’ and have the same en-
vorticity alongH is defined as a line integrdldl- Vo/27,  ergy. However, some of these configurations are counted
where the contour of integration goes around the perimetemore than once i’. This overcounting of configurations in
of the system in they plane ande(r) is the phase off. 7’ relative toZ, given by (Ng+N_)!/Ng!N,! with N, be-
Ng , the number of elementary flux quantg, is given by  ing the number of vortex lines ib which traverse the
LZ/2m12, wherel=/c/2[e[H is the magnetic length. It is sample alongH, is a surface effect in 3D and should be
assumed that this constraint is enforcedNay vortex paths,  unimportant in the thermodynamic limiit, , Lj—. More-
meandering from one end of the system to another, atlg  over, within the conjectured>-ordered phaséFig. 1), the
In this paper, a method is introduced to enforce the conconfigurations withN,#0 are irrelevant in the thermody-

straintexplicitly, by considering alifferentpartition function  namic limit and there is no overcounting at all. We conclude
Z’=fD(I)in'\':‘bl(Dri[s]/Nq,!)exp{—fd?’r}"/T}, with that, within the “helium” model, the free energy evaluated

from Z' coincides with the free energy of the original prob-

B, . lem (1) and the two superconductors havdentical

+§|‘I’| : thermodynamicé’ Consequently, Eq(2) accomplishes a

straightforward and transparent reformulation of the original

2 : " . -

problem, in the spirit of Ref. 9, while avoiding more cum-
Z' describes the system ™, “shadow,” or s, vortices bersome gauge transformation method employed there.
{ri[s]} in thermal equilibrium with a complex field(r). More details on the “helium model” are presented in Ap-
Theses vortices sample arbitrary paths that origindermi-  pendix A.
natg atz=0 (z=L) and differ from the ones introduced in If we relax the above minimization condition on the am-
Ref. 9 by the full inclusion of “overhang” configurations. plitude of our order parametett and ® and permit weak
The effective magnetic fieltl’ experienced byp consists of amplitude fluctuations, we expect that the above close rela-
the uniform external fieldH and the collection of unit tion betweer¥, Eq.(1), andZ’, Eq.(2), still holds, as long as

2
P

) 2ei
VM'HU#‘F TA’U’

F' =a|®|?+ Yu



6452

ZLATKO TESANOVIC

PRB 59

the parameters of GL theory keep us in the extreme type-lpear in Eq.(4), but are unimportant at,(H). A detailed

limit. This requires theveragecore sizea to be smaller than

derivation of the “gauge theory'(4) is given in Appendix

the average spacing between vortex segments, so that vortgx ¢, |~ (1) are dimensionless and have a relatively weak
excitations remain well defined. It is precisely this same reH, T dependence in that portion of the critical region which
quirement that is invoked to justify the frequent use of thejs \well described by Eq(4).° A close relation betweek, |,

“helium model” to emulate fluctuation behavior of extreme

type-Il superconductors in zero field. It is natural to expectg|’

that, if such a requirement is satisfied at zero field,
remain so at low fields, such that!. Based on this, on the
equivalence of representatioif$) and (2) in the “helium

model” limit, and on our general expectation that the ex-
treme type-Il behavior with only weak amplitude fluctuations

is effectively equivalent to the “helium model,” for the rest
of this paper | consider Eq2) to be simply an alternative
formulation of the original problem. This new reformulation
(2) can now be used instead of Ed) to compute various
fluctuation properties and, most importantly, dstical be-
havior shouldcoincide with that of the original GL theory
2).

The advantage oZ’, Eq. (2), is that, by isolating the
background of field-induced degrees of freed@mwortices,

¢, and the components of the helicity modulus tensor of the
theory (1) is discussed later in the textee Sec. V and

it WiIIAppendix B. I' is the anisotropy af.,. SmallH-dependent

corrections to GL coefficients that also should appear in Eq.
(4) are ignored, since they are not important for our present
purposes.

The following assumptions have been used in going from
Eq. (2) to Eq.(4) (see also Appendix A

(i) The correlation lengthéy,, associated with the new
order parameterb, is not limited byl and can be much
longer than the original superconducting correlation length
&, associated with. Of course, this is the basic reason
why we are interested in the reformulatié®) in the first
place. Whenég>1,£,., this assumption enables us to drop
as irrelevant at long distances terms containing higher de-

it focuses our attention on the new “superconducting” orderrivatives and powers of from Eq. (4). Note, however, that
parameter®(r) and its spatial correlations, measured bysuch higher-order terms in E}), particularly those reflect-
(®(r)®@*(r')), where(---) denotes thermal average over ing the absence of up-down symmetry alng[(VxS)ﬁ

Z'. All excitations of®(r) arethermally generatedin the
following precise senseevery configuration ofb(r), con-
tributing a finite weight to Z in the thermodynamic limit,
has the overall vorticity alon¢fl equal to zeroln particular,

®(r) contains vortex loop excitations, whose “expansion”

across the system is the mechanism behindHked super-
conducting transitionFig. 2). By focusing on®, we can
fashion a theory of the stronglinteracting Wilson-Fisher
(3D XY) critical point, “perturbed” by a weak field.This
is precisely the opposite of the classic appro&aihere the
Gaussian theory in finite field is perturbed by weak inter-

and the likd, must be restored when discussing vortex lattice
melting and a possibility of a first-ordes transitior? (Sec.
VII and Appendix A. The gauge theory4) offers in this
case €4>1,&,) a direct access to the deeptpnperturba-
tive regime of the original GL theoryl), characterized by
&ll>1, whereé is theH=0 correlation length. In the oppo-
site casety<<I, we are in theperturbativeregime, &/l <1 of
the original theory. The long-wavelength expansion that led
from Eq. (2) to Eq. (4) is then not justified and the new
reformulation(2) is not particularly useful.

(i) The system(1) is not in its superconducting state in

action. Such an approach starts with the LL structure fromhe vicinity of the putatived transition. This assumption
the outset and its critical behavior is always dominated byfixes the form of the last two terms in E@) (see Sec. V and

the lowest LL?%1¢n the new formulatior{2) we had built in

Appendix B. Physically, it means that the systems¥or-

from the start our expectation that the weak field modifiesices contains configurations that wind from one end of a
zero-field CO!’]fIgUfathﬂS only by m_troducmg a low .denS|ty Samp|e to another in the directions é(y p|ane_ The pres-
of s vortex lines, the cores of which are well defined by ence of such windings allows a complete “screening” of an

virtue of strong amplitude correlations at the XY critical

arbitrary infinitesimal fielch(r) added toH and the helicity

point. This is a “low-field” approach by design and offers a modulus tensor vanishes aload of its principal axeqsee

better prospect of constructing the desired theory.

To extract such a theory from E) we must resort to
approximations. We construct the long wavelengthl)
limit of Eq. (2) by coarse-graining vorticity fluctuations pro-
duced bys vortices. The “hydrodynamic” vorticityV(r) is

Sec. V and Appendix B This assumption has a strong the-
oretical justificatiorf® It must be emphasized, however, that,
to my knowledge, there is no rigorous argument which could
rule out another possibility, that of the state right below the
® transition being an extremely anisotropic “superconduct-

defined as the coarse-grained version of the “microscopic’ing” liquid, containing no windings in they plane, with a

flux density Ang(r)=ng(r)—(2712) " 1z. Upon inserting
IDVE[V(r)—Ang(r)] in Eqg. (2), integrating overr;[s]},
and after introducing the fictitious vector potentilxX S
=27V, V-5=0, the effective long-wavelength theory be-
comes~ [ D® [ DSexp|— [ Fo/ T},

B K
Ferr=a|®[?+y,[D, @2+ Z|0|*+ =2 (VXS)E, (4)

whereD, =V ,+iS,, K, (T,H)=c,["*Tl, and K;(T,H)
=c|['TI. Higher powers and derivatives o¥ < S) ,, essen-

tial for the description of the vortex lattice melting, also ap-

finite helicity modulusalongthe field and zero perpendicular
to it. Indeed, some numerical studies are suggestive of this
second possibility®?* However, other numerical
simulations>3132as well as the available experimental data,
favor our original nonsuperconducting liquid assumption.
Both alternatives can be described within the framework of
the gauge theory, wittK, /K;— and potentially finite
“mass terms” belowT 4(H) added to Eq(4) in the extreme
anisotropy case. On general physical groufidshave cho-
sen to explore in this paper the case of finite anisotropy ratio
K, /K and vanishing mass terms but the reader should be
aware that the extreme anisotropy alternative remains a
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T<T,, i o

FIG. 2. (Color) A schematic representation of thE=0 transition in an extreme type-Il superconductor. The low-temperature Meissner
phase T<T.y) contains only finite vortex loops. In the high-temperature normal sEteT(,) these loops connect and “expand” across
the system, leading to a loss of phase coherence and finite dissipation. Two forms of superconducting order, deskriaed dyare
equivalent here. For clarity, the vortex paths are drawn smoother than they actually aiggear

_ U (a)
. a:j“i o o (@)
®)
< 0% 8
7387 fd 9 /-

J}\%} (b)
7 B C O/ :
/\x I (:)Q
\ O Q@

FIG. 3. (Color) Characteristic configurations of the systéan
below and(b) aboveT(H) [but always abovd ,(H)]. (a) Field- C:j O C:) O
induced vortices(depicted in blug wind all the way across the
system along the field direction but only undergo effective “diffu-
sion” in the transverse directioitb) After the loop “expansion” at FIG. 4. (Color) Characteristic configurations of the systéan
To(H) this effective transverse “diffusion” is destroyed, as field- below and(b) aboveT,(H) [but always belowT 4(H)]. (a) Field-
induced vortices can “hitch a ride” all the way across the system ininduced vorticegblue) execute small oscillations around their equi-
the xy plane by connecting to thermally generated infinite loopslibrium positions. Thermally generated vortex logpsd) are small
present in the true normal state. Note the presence of “vortex taand rare(b) Above the melting transition thermally generated loops
chyons” (depicted in reglwhich wind only in thexy plane. Again,  discontinuously grow larger and more numerous, although they still
for illustrative purposes, the vortex paths are drawn smoother tharemain of finite size. This discontinuous change in the state of the
they actually are neafq(H). loops accounts fof®)s#(P), at the simplest mean-field level.
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ossibility’> and would lead to results which, while similar paramagneticallyto the order parameter. In an extreme
possibility*® and Id lead t Its which, whil lar p gneticallyto th der p ter. | t
on a general level, differ in detaifé. type-Il superconductofl), thediamagnetiacoupling ofH to
_(_iii) There are two reI_evant length _scales controllin_g thew does not explicitly break the U(1) symmetry, which was
critical behavior:£q, which characterizegoth the spatial  spontaneously broken at the zero-field 3I¥ critical point.
correlations ofP andthe size of “overhangs™ in the system The high-temperature phageue normal statestill retains
fluctuations of the background field-induced vorticity. temperatures, either in a “simple” way, with acting as the
(|v);I'_he core effects can be ignored. Clearly, the “helium o ey parameter, as is the case in the “vortex solid” state, or
model |tself' is perfectly' well defined in the lima— 0. For. in a more subtle fashion, with assuming the role of the
a small but finite, there is a small correction to the core IlneneW order parameter. Similarly, the gauge the@ydiffers
energyEc—Ec+wcH-v, wherev=dr/ds is the “velocity from frequently used “dimensional reduction” approacfigs,

nd ~a?/12<1. Simi
of a‘\‘/ortex_ s?gment andlH/E. a /1°<1. Similarly, there where the behavior of Ed1) at finite fields is related to that
are “velocity”-dependent corrections to the short-range re- ' L : o

t zerofield but in afinite system, the size of which is set by

pulsion between vortex cores. Such terms are irrelevant sing . . ) . .
they result in higher-order derivatives in E@l). For ex- the magnetic length. A typical dimensional reduction

ample, it is easy to see that the correction to the core energy’ D ~2) approach leads to the superconducting correlation

cancels out for any finite vortex loop and can be factored outength which is limited byl, i.e., the “system size.” This
for s vortices. agreeswith the gauge theory scenafissince “electrody-
What is the physics behind gauge theoty) The external namics” (4) also prediCtSésc(H)"’l in the critical region
field has been eliminated from the gradient terms in @y. (see Sec. Y. However, a dimensional reduction approach
((H'Yy=0) but, of course, it has not vanished:ritappears also predicts thaall other correlations are limited by and,
through theH dependence d, . The gauge theor{4) can consequently, eliminates the possibility of any true thermo-
be viewed as fictitious, anisotropic “electrodynamics” with dynamic phase transition in the GL theofy). This is in
“magnetic permeability” uo=1/47T. The “vector poten- contradiction with the overwhelming experimental and nu-
tial” S is coupled to the“matter” field® via “electrical ~ merical evidence indicating some form of a “vortex liquid”
charge” to “vortex solid” transition at low temperatures. In sharp
contrast, gauge theofy) and the reformulatioi(2) are fully
~ three-dimensional theories, just like Ed.). They naturally
€= m“ VH. lead to two basic types of correlations that can extend over
' distances>| and produce phase transitighat low tempera-
The above “charge” an&, | describe the “polarizability”  tures (Fig. 1): those associated with positional order of
of the medium composed «f vortices and are directly re- vortices and the familiar superconducting order parameter
lated to the long-wavelength components of the helicityW (r) and those associated with the new “superconducting”
modulus tensofSec. V and Appendix B This picture em-  order paramete®d(r).
bodies the physical idea that the dominant effect of a weak The conjecturgthat connects the critical behavior of an
magnetic field in Eq(1), onceé, has saturated te-|, arises  extreme type-Il superconductét) to a fictitious supercon-
through the mutual “*screening” of large thermally generatedductor inzerofield (4), the “charge” of which is set by the
loops and the background of field-induced vorticity, at dis-original external fieldH, must pass the following test: the
tances>1. Such “screening” reduces the effective line ten- way H enters in .z must be consistent with its being a
sion of these large loops relative to its value at the0  relevant operator of scaling dimension 2 in the renormaliza-

("éL,”:O) transition. The strength of the “screening” is mea- tion group(RG) sense at the 3IXY critical point. This scal-

r 1/3

sured by the fictitious “Ginzburg parameter” of EG#), ing dimension is suggested by dimensional analydiel-
evant effects ofH enter through the dimensionless ratio

, Bl b 1 £2(H=0)/12xH£2(H=0)], is correct to two-loop ordet®

K~ C = - 2% = ) and is likely an exact property of the original GL thedfy
28pTeéeL 200 VH by virtue of gauge invariance. In addition, the scaling dimen-

sion appears independent of the nature of the zero-field criti-
cal point (i.e., whether it is 3DXY or Gaussian On the
other hand, as the “charge® is turned on in the gauge
theory (4), the RG analysis indicates that, first, the finite
charge anisotropye( #¢) is marginally irrelevanf®®*°and
second, the scaling dimension of “charge” at the 3¢
critical point is 1/2; i.e., the relevant dimensionless operator

where c=(cfc)™® and éo=(&3L, éo) ™ with fouy |
=Vv.,/asT. being the GL coherence lengthsb
=BlalT.£3, and g5=e’¢s, are the dimensionless quartic
coupling and “charge,” respectively. Ad — 0, the fictitious
“charge” vanishes and we recover the zero-field 30¥
critical point. ForH finite but weak, the “screening” is weak
(ks>1), indicating that the effects of finieare small com- T = )
pared to strong amplitude correlations produced by the quafS €Vés{€=0). The second statementesactto all orders
tic term in the GL theory(1). We have therefore manufac- in perturbative RG and is also independent on the nature of
tured a critical theory4) describing the strongly interacting the neutral critical point** Since, in Fo, EQ. (4), €%<1/
Wilson-Fisher (3DXY) critical point weakly “perturbed” o« \/H, this translates immediately to the scaling dimension
by a finite magnetic fieldfinite “charge”EL,||).35 of H bEing 2, as required. More generally, for diLnension
The gauge theory scenario is clearly different from whatD <4, e?x<|P~4 while the scaling dimension ok is
takes place in spin systems, where the external field couples—(D/2), again consistent with the scaling dimensiortof
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being 2. Note that in both formulations, Eq$) and(4), the  starting point an approach that is explicitly designed to deal

Corresponding relevant Opera’[(ﬂtand% (OCH1/4) are pro- with a hlgh-fleld behaVior, an example being the GL-LLL
tected against acquiring anomalous dimensions by the saniBeory:®? Note thatH,, within factors of order unityco-
symmetry, the gauge invariance. These results demonstraifecides with Hy,, the field below which the high-field,
the internal consistency of the coarse-graining proceduréandau-level-based description breaks down, due to strong
leading to Eq.(4) and strongly support the conjecttimat  LL mixing.® Since this criteriotf is derived from entirely
Fo captures the long-wavelengtbritical) behavior of Eqs.  different arguments, we briefly reproduce it here for com-

(2) and (1). In what follows, | promote this conjecture to a Pleteness. Going back to the GL theofy), we expand
fact and examine its consequences. W(r)==Zj-o¥;(r) in the set of LL manifolds¥;(r). Recast

in terms of dimensionless variables, the GL free energy func-

IIl. HIGH FIELDS VERSUS LOW FIELDS tional becomes

: b
Two key consequences for the physics of the present j d3r t+(2i + VW 24|V, |2+ — | w4
problem follow fromF.. First, the gauge theory E(4) has j§=:0 [t 2+ DRI+ 9] 2| NE
two distinct regimes of behavior: the weak “screening” )
limit (ks>1) corresponding to the extreme “type-1I” limit wheret=(T/T,)—1, h=H/H§2L(O), andb is defined below

of the fictitious “electrodynamics” and the strong “screen- Eq. (5). After rescaling® andr by b in such a way that the

ing” limit ( k;<<1) corresponding to the extreme “type-I" - X . .
; " i - . _ coefficients of quartic and gradient terms in Eg). are set to
behavior. The extreme “type-IlI" behavior of E¢4) is pre 1/2 and 1, respectively, the “mass term” far, becomes

cisely the low-field regime of the original theof§) which
exhibits the 3DXY-like critical fluctuations. In this low-field ¢ h
regime, the “screening” provided by the background of — +(2j+1)—.
field-induced vorticity is weak and the dominant fluctuations b2 b?
are still London-type vortex loops and lines. The core size ) . . .
remains small and well-defined, kept in check by strong améS we reduc'e'the f|eld-’l, . reg";” T
plitude correlations coming from the quartic term in Et), ~Tc), the mixing gf LLfS bdecome_s strong whew'b r?.e'
just as was the case at the zero-field 8¥ critical point. It S(o}r_nei SOmMe num ”er IO or ;}rlt'mlty_. V\lle_car:_ wev;/] t 'Sh as a
is in this sense£;>1) that we can think of a 3IXY critical hi ';'Zf Lllég Ifmzr'onl a(l)gg the i aX|§. t implies (tj at tte ¢
point weakly “perturbed” by a finite field® In the extreme 1Igh-Tield, L-andau fevel descriplion becomes inadequate tor
“type-I" limit, the situation is entirely different. There, the fields less than
'screening” is strong. ks<<1) anq the amplitude qucFua— HbNbZHsz(O)”GiHSzL(O), @)
tions ran rampant. It is not possible any longer to think of
relevant fluctuations in the gauge thed#y, nor in Eqs.(2)  where we have used a close relation betwbeand a con-
and (1), as being London-like vortices. Rather, amplitudeventional Ginzburg fluctuation parameter BiThe defini-
fluctuations are now of essential importance and individuation and meaning of Gi exhibit wide variations in the litera-
vortex cores are ill defined. In the gauge the6ty, the two  ture, but typically Gi-b2.'°® As advertisedH,~H,. The
regimes are separated by the conditiep~1. However, a same situation is encountered in 2D, except ridw~Hy
word of caution must be inserted here since, once we are iﬁbezL(O). Thefact that the criterion for the breakdown of
the “type-I” regime of Eq.(4), our original line of reasoning the Landau-level-based theory derived from the high-field
that led from Eq.(1) to the gauge theor4), via reformula-  side agrees with the region of validity of our 3RY-like
tion (2), is itself compromised and it is not clear whether approach derived from the opposite, low-field side is another
there is a useful connection between the extreme “type-I"argument in favor of the gauge theory scenario.
limit of (4) and our original problentl). Instead, we must While it is the GL theory(1l) that provides a realistic
return back to the beginnin@) and start from scratch. It is description of fluctuation behavior in extreme type-Il super-
natural to identify this extreme “type-I” behavior at high conductors, many numerical studies are performed on the 3D
fields, characterized by strong amplitude fluctuations, as th&Y model. The ultimate low-field critical behavior should be
regime in which the Landau level structure of the originalthe same and computational effort is much reduced. It is
GL theory (1) becomes important. The conditiors  therefore useful to discuss here the physical meaning of the
~0.412 ** separating “type-11" from “type-I” “electrody-  “high”- and “low”-field regimes in the context of the frus-
namics” in Eq.(4), translates to the criterion for the external trated 3DXY model. There is an immediate difference be-
magnetic field,H~Hg, telling us whetheH is “low” or tween this model and the GL theo(¥) regarding the high-
“high.” From Eq. (5) one gets field behavior. In the GL theory this regime is dominated by
Landau levels and is characterized by strong amplitude fluc-
[ c 2 214GL tuations. In contrast, in the 3IXY model, the amplitude
He= 0.16 bHc (0). ®  fluctuations are frozen at the “microscopic” level of a single
XY spin. As a result, there is no Landau level formation in
If H<Hg, then the field is “low” and the use of a 3D this model. Instead, the high-field behavior of a uniformly
XY-like description is justified. In the opposite limH frustrated 3DXY model, as one approaches the “mean-
>Hyg, the field is “high” and a 3DXY-like description falls  field” H,(0), isentirely determined by the pinning of field-
apart(Fig. 1). If this is the case, we must abandon our zero-induced vortices by the underlying lattice. We can think of
and low-field imagery of the “helium model” and use as a this situation, to some extent, as having the LL structure of
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Eq. (7) thoroughly “mixed” by a very strong external peri- phase transition is continuous and in the universality class of
odic potential. There is, however, a relationship between théne 3D XY model. The actual mechanism of the phase tran-
low-field critical behavior of the 3DXY model and GL sition is directly tied to the expansion of thermally generated
theory. It derives from our concept of “screening” of large vortex loops, as depicted in Fig. 2. In the ordered state below
thermally generated vortex loops by the background of fieldT | there is afinite average size for such loopa,, and
induced vorticity. In the weakly frustrated 3®Y model  configurations which contain infinite loops, “percolating’
such “screening” is measured by a parametgky, Which  from one end of the system to another, do not contribute to

is the XY model counterpart ok in the GL theory(5): the partition function in the thermodynamic limit. At dis-
tances much larger thaky , there is nothing to disturb the
fiT,H) 1 long-range correlations i@ (0)®* (r)): it is not possible to
K2 — - e (9) » N .
SXY fo \/ﬁ polarize” closed loops at such large distances and they

behave as bound “dipoles.” This is what enables the long-

wheref, measures the uniform frustration and is the fraction’@"9€ phase order that characterizes the superconducting
of the elementary flux quanturd, per plaquette, while state. AboveT.y, as more and more vortex segments are
fT(T,H) is the average density per plaquette of vortex andcreated by thermal excitation, the loops connect, in the sense
antiv’ortex segment$ H piercing thexy plane. Note that that now there is a finite contribution to the partition function

fT(T,H) includesall such vortex segments, not just thosefrom configurations hgv[ng i_nfinite loops, “pgrc_olating”
connected to infinite vortex loops. In order for the system toPCrOSS the system. This implies thip—c and it is now

be in the low-field critical regime of a weakly frustrated 3D possiblg to “polarize” the system of loops over arbitEary
XY model we needceyy>1 or fo<fT(T,H). large distances. Such infinite vortex loops act as “free

charges” and produce a “metallic screening” of small ex-
Ft_arnal magnetic fields, resulting in a vanishing of the helicity
modulus, as discussed in the next section. This picture of the
ﬁD XY phase transition as a vortex loop “expansion” has its
origins in the works by Onsagér** and Feynmaf® in the
context of superfluid heliurf® but should equally well apply

moderately anisotropic HTS system like optimally dopedto high-temperature superconductors with their short BCS

YBCO, uses G#0.01 andHsz(O)~160 T, leading toH cohere.nFe le”‘f“,hs an.d extremelly largé~ 109)'46

~1-2 T. This estimate is subject to an irksome uncertainty, AS finite e [finite H in Eq. (1)] is turned on in Eq(4) we
both intrinsic(due to our inability to theoretically determine @re facing a potentially dramatic change in this picture. In the
H. or H, with a precision better than within factors of order neutral-superfluid picture described previously, vortgx loops
unity) and extrinsiddue to difficulties in extracting precise have long range London-Biot-Savart interactions. Oade
values of the GL parameters entering Et), although the finite, these interactions are “screened” by the vector poten-
situation here is rapidly improvirt§y The estimates o, tial S and, at distances much longer than the “penetration
based on the fits of fluctuation thermodynamics to the GL-depth” )\socl/é, all the interactions are short ranged. The
LLL theory are in general agreement with the above value okimplest and best known example of this is just an ordinary
1-2 T(Ref. 1) and seem to give an upper lintit,<8 7> gperconductor ateroexternal field. There is the real elec-
Similar analyses, based on the fits to a low-field “30Y  yica| chargee, while Sturns into the ordinary Maxwell vec-

scaling,” generally produce results which seem consistenfo; notentialA. This charged-superfluid problem has been
with the 3D XY-like behavior to much higher fields, 14 T or stdied extensively, starting with Ref. 47, and is presently

even h|gheP:_6*43 An important difference between the two hought to have the following propertiésas already indi-
approaches is that, within the GL-LLL theory, not only the c5ted in Sec. II, the chargsis a relevant operator in the RG
scaling law but the scaling function and explicit expression%ense, with scaling dimension equal to 1/2. This immediately
for thermg(ilyllgr;amic quantities are known with considerablejesiapilizes the neutral-superfluid, zero-chargeX3Dcriti-
accurgcyl. 7 In the 3DXY approach only the scaling law ¢4 point. There are, however, two new critical points, char-
itself is known but the actual scaling function and, moreacterized byfinite charge. The behavior of strongly type-Ii
importantly, the physics behind it are not. The gauge theorynerconductorsi>1) is determined by the stable critical
scenario should help remedy this situation. point and describes theontinuousphase transition between
the normal state and the Meissner phase in real
IV. CRITICAL THERMODYNAMICS AND  ® TRANSITION superconductord: Another critical point istricritical and
: . _ unstable in one RG direction, in addition to temperature.
This brings us to the second important consequence Ofys tricritical point defines the transition between type-II
description(4), which has bearing on the nature of critical (small chargeand type-I(large chargebehavior and takes
behavior in the low-field i <Hy), gxtrgme “type-II” “”.“t _place fork~0.4//2.4! In a type-I superconductor, the phase
of the gauge thegry. The most significant property in thisyangition i expected to beiscontinuousas originally ar-
regime is that, fore small butfinite, there is a true thermo- gued in Ref. 47. In the type-Il regime, where the transition is
dynamic phase transition separating the high- and lowcontinuous, the universality class for the charged-superfluid
temperature phases of the theory, the “normal” and theappears to be the “inverted 3BY,” ***°or very “close” to
“Meissner” state, respectively. F@=0 this is the standard it*"°° (see Appendix A for further details
H=0 phase transition of Ginzburg-Landau theory. This What is the connection between these general properties

The actual value ofi¢ (or Hy) in high-temperature super-
conductors is of considerable importance. There are hume
ous estimates in the literature, based both on(Bgand on
the analysis of various experimentally measured quantities i
terms of either the GL-LLL theory or the so-called “30Y
scaling” (see Sec. Y. A direct estimate from Eq@8), in a
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of the charged-superfluid model and our problem? It stemare one and the same: the—0 limit of Eq. (1) coincides

from the gauge theory4). This theory looks just like the

with the N, — O limit in Eq. (2) and with thee—0 limit of

theory for a charged superfluid, except for the charge anisothe gauge theory4). At finite, but weak field, we are in the

?:40

ropy, which should be irrelevait:** The underlying phys-

“extreme type-Il” regime (xs>1) of the gauge theory4)

ics, of course, is very different. There is no fluctuating elec-3ng we expect that thé transition is continuous and imme-
trodynamic vector potential in our case, since we are in thjiately becomes “inverted.” The transition temperature

k— limit. Instead, our fictitious vector potentiéd de-

scribes the long-wavelength vorticity fluctuations in the

backgrounds vortex system and our “chargeé is the origi-
nal magnetic fielcH in disguise €2c\JH). Despite this dif-

Te(H) is gradually reduced as a function df[or, equiva-

lently, e in Eq. (4)], due primarily to the reduction in the
effective line tension of very largex1) vortex loops caused
by “screening” generated by the “medium” of the field-

ference in physical meaning, the long-distance behavior oinduced vorticity. At these low fields[4(H) can be evalu-
Eqg. (4) should still be closely related to the electrodynamicsated directly from Eq(4). As H increases, however, numer-
of a charged superfluid. In particular, we expect two differentous additional terms present in E@), but not included in

thermodynamic phases of Ed4): the high-temperature
phase with only short-range correlations (i (0)®* (r))

((®)=0) and the low-temperature phase,
(®(0)P*(r)) develops long-range ordef®)+0). The
“Meissner phase”(or the ®-ordered stateof Eq. (4) corre-
sponds to the state of the original GL theddy in which

the gauge theory4) on the grounds of their RG irrelevance
at long distancessl), start affectingl (H). Among such

in whichterms none are more important than short-distanek) (po-

sitional correlations which eventually lead $wvortex lattice
formation at low temperatures.
In general, theb transition and vortex lattice melting are

only N4, field-induced vortex lines cross the system from onetwo completely different phase transitions, with two different

end to another alongfl. All other vortex excitations form
either closed thermally generated loopdinfte size orfinite

order parameters, driven by two different mechanisms. One
is ag—0, another ag~ 1/ transition. They are not entirely

“overhang” configurations decorating field-induced lines asunrelated, however, since they arise in the same theory, Eq.
they make their way meandering from bottom to top of the(1) or (2). For instance, asdi—0, we must haveT4(H)

sample. These field-induced vortex lines, ©wortices in
reformulation(2), have a finite line tensiomelative to the
field direction and undergo effective “diffusion” along tlze
axis (this is discussed in greater detail in the next segtibm
the high-temperature, “normal metal” phase of E4), the

=T,,(H).%2 This is so because only in thie-ordered state do
s vortices in Eq.(2) have finite long-range interactions,
o |[(®)|2.%3 Without such long-range interactions thgortex
system would remain in a liquid state lds— 0.2 Similarly, in
the solid phases vortices form a lattice and cannot screen

@ order is destroyed by the expansion of thermally generatefhrge thermally generated vortex loops; ie.pbecomes ef-

vortex loops and “overhangs” decoratirg(field-induced

fectively zero even foH # 0. All vortex loops will then re-

vortices. We now have new, thermally generated infinitemain small and bound, just as they werekat0. This is

loops “percolating” all the way through the system in all
directions. These new infinite loops come tmp of the al-
ways present background Nf; svortices. This is the nature
of the ® transitior? in the gauge theory4) and in reformu-
lation (2). The @ transition is thefinite-field version of the
zero-field superconducting transitidrits thermodynamics,
however, belong to aifferent universality class: charged
superfluid(“inverted 3D XY" ) as opposed to neutral super-
fluid (3D XY) at H=0, with finite H playing the role of
finite charge €%« +/H) in the gauge theory4).

The ®-transition lineT4(H) plays a pivotal role in the
gauge theory scenario. Since, on general grodheg do

discussed in more detail in Sec. VII. The problem is that the
melting transition isalways first orderand thus, in principle,
we could haveT4(H)=T,(H) at some or eveall H. This
would mean that melting is so strongly discontinuous that it
always “jumps” over the intermediatep-ordered phase,
straight into the true normal state. Furthermore, dhéran-
sition itself could become first ord&at allH, due to danger-
ously irrelevant terms not included in E@f) but considered
in Appendix A. | know of no argument to rule out this pos-
sibility.

This being said, the most likely outcome is the one de-
picted in Fig. 1. At higher fields, as we approach the “type-

not expect any true criticality associated with the first-orden” regime of Eq. (4) [H~H,, Eq. (6)], the gauge theory

vortex lattice melting line in 3DT(H) is the only critical
line in theH-T phase diagram of the original GL theory Eq.

suggests that thé transition itselfconvertsto first-order. In
this situation, it seems justified to assume tfiag(H)

(1) and controls fluctuation thermodynamics and transport a&T,,(H), as shown in Fig. 1. For low field$]<H, where
weak magnetic fields. It decides the issues of relevance ahe melting transition becomeageaklyfirst order and Eq(4)

irrelevance of various terms that can be added.@point or

predicts a strong “type-II” behavior andontinuousd tran-

columnar disorder, true electromagnetic screening with finitesition, it is natural to expecto(H)>T,(H). At fixed low
k, etc) and provides a foundation on which one can build afield, as we increase the temperature in Figbdth the ef-
meaningful phenomenology of extreme type-ll supercon{ective strength of the Biot-Savart interaction betwee/or-

ductors. In this respectp(r), the new “superconducting”

tices (Sec. VI) and their effective “mass”(Sec. V) de-

order parameter characterizing the “line liquid” state, is crease As interactions and line tension go down, a natural

“more fundamental” than the origina¥ (r). This will now
be amply illustrated.

progression of thermodynamic phases follows: a s@\iori-
kosov lattice, a “massive” liquid (®-ordered phase or

To start building such a phenomenology, we first need &line liquid” ), and, finally, a “massless” gas of unbound

reasonable estimate d%,(H) (Fig. 1. It starts at the zero-
field superconducting transitiof,, where®(r) andW¥(r)

loops (a true normal staje A mean-field calculation, per-
formed in Ref. 9, indeed leads to such results. | propose here
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a simple criterion which summarizes the results of such calargument inside the 3XY critical region of GL theory. At
culations and can be used to determiigH) andT,(H) at  present, its form is not known. Note that Ed.2), while

low fields,H<Hq: the s vortex lattice melts when the aver- completely general, is written in a form which implicitly
age size of thermally generated loops,(T,H), reaches a suggests that the finite-field critical behavior is governed by
fractiond, of the average distance between field-indug®d the zero-field criticapoint as is frequently the case in spin
vortices: A(D(T,H):dm\/ﬂ(%‘/g)ml. dm~0.2-0.3 and systems.

A@(T,H)*A¢(T,0)~(§i§u)ll seem a reasonable estimate. In the gauge theorylscerjario, the situation is dif_ferent gnq
Here fL,H: gOL ,Oﬂlt| ~V are the true Superconducting correla- We can be more Sp_E(_:IfIC. First, a-S already emphaSIZed, within
tion lengths atH=0. This results in an expression for the this scenario the critical fluctuations are governed by a tran-

vortex lattice transition temperature in the critical region: ~Sition line and not a criticapoint” This means that we im-
mediately learn something about the functi¢én defined in

/ IR " Eq. (12): ¢ is nonanalytic along the ®-transition line
tm(h)=— P EELY: h34, (100 T4(H), Eq. (12). This line singularity should be explicitly
(dmv27) GL.L incorporated into the expression for the free energy. To de-

where the temperature is measured relative totthe zero-  vise such a new scaling function, based on the gauge theory
field superconducting transitiob= (T/T)— 1, hiis defined  scenario, we start by observing that we can eliminate the
below Eq.(7) and vy, was set to 2/3. The ratigy, /&a. “trivial” part of the charge anisotropy from Eq4) by res-
should be~1. As argued above, we expedt,~0.2—0.3. caling all lengths and fictitious vector potenti@lwith an
The @ transition, on the other hand, takes place when th&ppropriate superconducting correlation lengtt) in a way
size of thermally generated loops, fatite H, reaches the that makes theb-dependent part of Ed4) isotropic. This
sample dimensionsA 4(T,H)—o. This should take place rescaling procedure is a variation on the familiar rescaling of
along the line where the average loop size, fér=0, anisotropy at thed=0 transition. After the rescaling, the
A(T,0), becomes of the order of average distance betweefk-dependent part of Eq4) describes an isotropic supercon-
s vortices, i.e.,A¢(T,0)=dg \/ﬂ(gu/gl)ﬂ%, with dg~1. ductor with a correlation Iengtﬁz(gigu)m, while the cou-
This determines the vortex loop “expansion” line or pling constants in the last two terms become
Te(H):

Ko =Kl j=co (g /ED)MTI (13

3/2
! 3/2< fou h3/4, (1)  The following quantites appear in Eq(13: £,

(dg2m) ¥ a1 =&y It] 7 andé= (&2 &) YP=&t| " are the true diverging
with dg~1.5* Obviously, Tg(H)>T,(H) since d,<d . superconducting correlation lengths By, defined by the
Equations(10) and (11) are valid only in the limit of low eigenvalues of the helicity modulus tengsee Appendix B
fields, H<H,, Eq. (6). At higher fieldsH~Hs, To(H) and  Accordingly,I'=¢, /¢ is thetrue anisotropy ratio at théi
T(H) merge together and both vortex loop “expansion” =0 critical point (T¢,) and not the GL anisotropy,I'g,
and vortex lattice melting occuisimultaneouslywhen — =&ci,1 /€L - It now becomes clear whik, | have been
Ag(T,H) reaches- J27! from within the solid phaséFig. defined in Eq.(4) with th_e anisotropyl’ expllc_ltly factored_
1). The above expressions Eq40) and (11), with d,, and ~ Out: new resca_led coupling constants can simply be written
dg serving as numerical parameters, can be viewed as m:KLHZCL,HTI, where
“Lindemann criterion” for vortex loops and should provide
good estimates of ,(H) andT,(H). — _

| now proceed to further investigate the phase diagram = —; corresponds toH=T"?"H. (14
represented by Fig. 1 and Ed40) and(11). As the field is I
turned on in Eq.(1) we can immediately write down the —
scaling expression for the dimensionless singular part of th
free energyf, associated with critical fluctuations:

ttl)(h) =

is just the rescaled magnetic field appearing in the original
L theory(1) after the anisotropy at thel=0 critical point
has been rescaled out. Consequertly; describe thefun-
damentalanisotropy of the gauge theot¥), which is inher-
—) , (12) ent to theH#0 problem and is not associated with a
Hilt] “trivial” anisotropy at T.q.%%°’ The corresponding fictitious

wheret=(T/T,,)—1 andH, depends on material param- ~charges” associated wit|  are
eters. This expression is completely general and as such con-

veys little information. It is based only on the existence of ~ 1

the zero-fieldcritical point. The same expression can be writ- e (TH)=——"—= (15)
ten for spin systems or any other system exhibiting a critical

point which is then perturbed by a generalized “fieltP'In : : o
our case, thél=0 critical point is in the 3DXY universality The product of the above rescaling procedure is a fict

class and we should hawe= a,,. Furthermore, based on tious anisotropic electrodynamics with two “charges|
dimensional analysis and general physical arguments, it wa@nd €. As discussed in Sec. Il, the charge is a relevant
proposed in Ref. 37 that=2w,,. This result holds to two- operator at thed=0 (e=0) critical point, with scaling di-
loop order in the RGRef. 38 and is likely exact, as empha- mension equal to 1/2. We thus define two dimensionless
sized in Sec. ll.¢. (H/H,|t|*) is a universal function of its scaling variables

f:|t|27a¢t
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¢ 27 £ T IBH12 V. HELICITY MODULUS, LINE “DIFFUSION,”
Gl Ry (el LN (16  TOPOLOGICAL WINDINGS, AND PHYSICAL NATURE
oyl ¢o Ci |t]” OF @& ORDER

Note that dimensionless ratéil is common to both charges . | now turn to phy5|cal_ properties which allow a more
and(nontrivial) anisotropy is stored in, andc; . ¢, andc, . direct Ioo_k at actual configurations of loops and lines that

. =L It I" characterize the state of a superconductor above and below
however, are also functions @fl only. Therefore, there is To(H). A useful measure of a degree of superconducting
only a single relevant scaling variable, the dimensionlessy qer'is ag-dependent helicity modulus tens¥(g) whose
charge components are defined®as

¢ 2w HY _ O°F
qézl__: ¢—0§0F1/3 |t|,, ’ (17) YMV(Q)—VWW, (19)

whereu,v=Xx,y,z, Vis the total volumeF is the free energy
which is precisely the original scaling variableof the GL  of the GL theory(1), anda(r) is a small(infinitesima) vec-
theory (1), sinceé/l1 =, /1. The functionc, |(£/1) are dis-  tor potential added to the external The uniform compo-
cussed further in the next section and Appendix B. nent of the associated magnetic fiehdr) =V <a, vanishes.
We are now in a position to write down the scaling func- The above second derivative is evaluated indhe0 limit.
tion for the free energy within the gauge theory scenario, Y(q) measures the ability of a system to “screen” out
with the nonanalytic part associated with tletransition tiny external fields. In the superconducting phase

explicitly factored out: limg_oY(q) is finite and the system is said to exhibit a dif-
ferential Meissner effect. In theormalphase)Y (q) ~ g2 and
t—ty(h) vanishes in thg— 0 limit. Within our “helium model,” the
fs:|t—t¢(h)|2“Q£'S(W). (18 way Y is reduced to zero in the long-wavelength limit is
®

through proliferation ofnfinite vortex loops and lines which

, , >, go all the way across the system and can act as “free
Note thatte(h), defined in Eq.(11), also follows fromas  charges,” screening a weak external perturbation. In this in-

=\2mdy . dg is therefore a universal number of the GL yitive sense, we can think of a normal state as a vortex

theory (1), as isdy.*® Q5%(x) is a universal andegular  “metal,” while the superconducting state is a vortex “di-

function of its argument. The subscripts refer tox>0 (X electric,” with only vortex loops offinite size present as

<0), while the superscripte and S indicate the “vortex thermal excitations.

liquid” and “vortex solid” branches of(}, respectively. For To compute the helicity modulus of our original GL

example, belowT(H), we should use)®(x). In writing theory one adds an infinitesima), to A, in Eqg. (1). If we

down Eq.(18) | have assumed that the correlation lengthnow go to reformulatior2) and finally, through the coarse-

exponent of the gauge theomy;t~»,,~2/3 and that the graining procedure of Appendix A, end up with our fictitious

hyperscaling relation holds, resulting in~ ay . gauge theorya, appears as a small addition to the “vector
How do we evaluate the crossover functiix)? | alert  potential” S, in the secondgradienj term of Eq.(4). This

the reader to the following important point: the gauge theoryimplies that the long-wavelengtly&1/) form of the helic-

scenario explored in this paper allows one itoprinciple, ity modulus of the gauge theof¥) coincides with that of the

determine all the branches of the crossover funcfi§w) by  original GL theory(19). Using the gauge theori#) and ig-

using a combination of perturbation theory and RG technoring the anisotropy, we obtain thaglow T,(H) (see Ap-

niques. Such an analytic calculation is extremely laborioupendix B for detaily,

and far beyond the scope of this paper. A well-informed K2gt

reader will immediately realize that many aspects of this cal- q 4

culation are computationally extremely demanding, and ac- Y(a)=Kqg?~ T (S(a)-S(—a))=Kg*+0(q*.

tually havenot been accomplished in the published literature (20

SYE:‘” fqr th_e ordinant1=0 situation. Indeed, the technlca_l In the &-ordered state our fictitious gauge field is

ifficulties involved are of the same general nature. This,, A L .

. “‘massive,” i.e., exhibits a Meissner effect, and
however, does not detract from the main message of thlﬁ;m (S(q)- S(— ) |(®)| 2 goes to afinite value. The
section: the underlying physical picture of the gauge theory imGHIeO hqsics beqhind this is thgat thermall eneratéd vortex
scenario provides a systematic, conceptually straightforwar? P _pq)y h e th f_y_g 4d
way to compute thél#0 3D XY critical thermodynamics at oops ind(r) have an average size thatfisite and do not

: . . _contribute at all toY' (q) in theq— 0 limit. Furthermore, Eq.
;(r)uratshaem: :I%vit;fsznalytmal accuracy as is presently feaS|bIe(20) tells us that, if<, | arefinite, the®-ordered phase isot

Faced with such odds, | assume, for the purposes of thi superconductor and hasimite superconducting correlation
paper, thatQ(x) in Eq. (,18) is som’e unknoF\jvn universal ength, both perpendicular and parallel to the external field

crossover function, to be determined either from numericafSee Appendix B for detalls

simulationg® or_o!irectly from experiments. With the free en- §~K, IT~c,l, ff/f\r Ky /T~ (21)
ergy thus specified, we can proceed to evaluatesthgular

part of all thermodynamic functions, simply by taking requi- This result is easily understood: witH finite, there now
site derivatived? must beNy, field-induced vortex lines moving about in the

2
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sample. Unless thegg) vortices are pinned down, as hap- look at thedistribution of distinguishable vortex paths, ob-
pens in the vortex-solid phase, they will be available totained byrandomlyresolving all the crossings, and average
“screen” weak (infinitesima) external fields and the system over all distinct configurations. Such a distribution will be
is always a vortex “metal” with the “screening length” “diffusive,” with the average rms displacement given by
K/T. In particular, according to our assumptin, the sys- Eq.(23). We can use this effective “diffusion” constab,,
tem of field-induced vortex lines also contains windings inEq. (23), to define areffective“mass” in the elegant non-
the xy plane and such “screening,” although anisotropic, isrelativistic boson analogy of NelsénNote that the world
finite in all directions. BelowT4(H), wheres vortices are lines of such flux bosons doot correspond to(s) vortex
exclusively responsible for the vanishing JimyY ,(q), lines in individual configurations of an extreme type-Il su-
cL,H(qg) determine thel and|| “screening lengths” in thes ~ perconductor. This is clear since nonrelativistic bosons de-
vortex system, in units of magnetic length[Eq. (B9) in scribe strictly directedlines, i.e., contain no “overhang”
Appendix B). configurations as they advance from bottom to top of the
Above T4(H) the situation changes and thermally gener-System along the axis (the “time” axis in the boson anal-
ated vortex loops “expand” across the system. Obviously,0gy). Such “overhang” configurations, plus numerous vor-
the helicity modulus still vanishes, but now there is an abruptex loop excitations floating around, describe world lines of

drop in the coefficient of thg? term: “particle-antiparticle” creation processes and cannot be ac-
commodated within the nonrelativistic quantum boson anal-

K?2 FYGT ogy. Still, as long as we are in thie-ordered phase, it is only
Y(q)= ( K—Gm)qzz Kl1-C \/ﬁ)qz, (22)  the Ny, field-induced vortex lines that go all the way across

the system. We can then define effectivesystem ofNg,

where r(T,H)=[T—Te(H)]/Teo andC and G are numeri- flux bosons in the posqn analogy, with suitably adj:usted bare
cal constantsver is the thermodynamic exponent of the massmg and effective mterac_tlonsz so that itng-distance
Meissner transition in our fictitious electrodynamigs, and [>1 and >A4(T,H)] behavior faithfully emulates an ex-
Ve~ Py~ 2/3, as argued in Sec. IV. The second term in thefreme type-Il superconductéAppendix A). Above To(H),
above equation arises from Ij]m()(S(q)-S(—q)):G/gq,qz as |_nf|n|te tapgles of field-induced and _ther.mall_y generated
in Eq. (20), right aboveT ,(H). This implies that the original vortices proliferate across the 'sam.pleahl directions,Dg
superconducting correlations, measured (Hy(0)¥*(r)), —* (Ms—0) and we getyperdiffusion
remain finite in all directions omoth sides of Tg(H), but .
there is anonanalyticdrop in the superconducting correla- V(r2y~LP, p'~1. (24
tion length at thed transition, as thermally generated loops o ) . o
proliferate through the system and additional infinite vortices! Nis hyperdiffusion arises through processes depicted in Fig.
become “free charges” and available to screen. The newd: Where a vortex line winding along the field directisi
order parametetd(r), however,does attain a true long- Multaneouslwinds all the way in thecy plane by connect-
range order belowl o(H); i.e., ép—® asT—Te(H) from NG |tself. to thermally generated tangles, which are natgrally
above. It is unfortunately rather difficult to measure the Present in theb-disordered phase. In the 30Y model, this
correlations directly, by probing some suitably defined “he-implies that the distribution of transverse displacements of
licity modulus” associated with theb order. This would individual field-induced vortex paths is no longer “diffu-
require defining quantities which are configuration depenSive” and has rms displacement or higher moments limited
dent and highly nonlocal, a rather time-consuming proposi®nly by the system siz€24); more precisely, the distribution
tion in a typical numerical simulation of a 3RY or related ~ Of I acquires a power-law tail above,(H). Such wind-
model. ings in thexy plane are plainly in evidence in the recent
Still, the situation is far from hopeless. We can devisenumerical simulations of Nguyen and SudBesomewhat
another set of criteria that are relatively easy to implement irfibove their melting line. With such additionay windings
numerical simulations and yet allow for a rather intimatepresent with a finite weight in the partition function, the “ef-
look at thed® order and what precisely takes place as wefective mass”mg of nonrelativistic flux bosonssanishes
cross thed-transition line. BelowT(H), thermally gener-  since the vortex line tensiarelative to the field direction has
ated vortex loops are bound and field-induced vortices exgone to zero. Abové 4 (H), infinite vortex paths longer than
ecute an effective “diffusive” motion along the field direc- L (say ~L2, assumingL, =L;=L and a simple random
tion. An average transverse displacement of a single fieldwalk) crossing the system in all directions contairfirite
induced vortex line from the point where it startszat0 to fraction of all vortex segments: these are the “massless ex-
its ending point az=L, goes as citations.” In this respect, thé transition corresponds to the
restoration of “relativistic invariance” in a dual system of
1 quantum particles whose world lines are our original vortex
()~ Dy, p= 7 (23 |oops and lines. To wit, the ground state of such a quantum
system, containing only “vortex mattef® below T4 (H),
where Dy is the effective “diffusion” constant. This is explodes with “vortex matter,” “vortex antimatter,” and
shown in Fig. 3. The cutting and reconnecting of vortex lines‘vortex tachyons®? (Fig. 3), as the “vacuum” becomes
does not affect this diffusion process except by renormalizunstable atT4(H) to the spontaneous creation of “par-
ing Dg, as long as we are in thé-ordered phas® For ticles” (Appendix A).
example, in the 3DXY model, where the identification of an ~ The above connection between th& “order” and the
individual field-induced line is not unique, we should simply effective line tension of field-induce@) vortex lines reveals



PRB 59 EXTREME TYPE-Il SUPERCONDUCTORS IM. .. 6461

directly the physical content of the gauge thed#y and  and it is safe to assume thisd, <N, (T,H=0)L2"Y at some
permits us to construct a purely geometrical picture of&he temperaturdl slightly aboveT,,. In this case it is natural to
transition. To do so, consider once again the normal state &xpect that, in a finite field,

an extreme type-Il superconductor or a 3I¥ model atH

=0. AboveT,,, we can find vortex paths that go all the way Nyy=2n3 L1 A=ngL2+2n7 L1 %, (26)
from one end of a sample to another, in any direciibiy. ) . . o

2). If we work with periodic boundary conditions in all di- Whereng=Ng/L“=1/271* is the density of field-induced
rections, this statement means that we have some windind§) vortex lines andh; , ,(T,H) are “densities” of thermally
along thex, y, andz axes. To understand what is precisely generated vortex-antivortex windings. Note that nomj 2
meant by such windings, we wrap our system on a three# nq,+2n1 and nI’yaﬁ nI even in the isotropic case. There is
dimensional generalized torus, embedded in a foura finite “density” of infinite vortex(or antivortey winding
dimensional space—this is just a geometrical way of reprepaths in any direction. Equatidi26) describes how the nor-
senting periodic boundary conditions. Now, the number ofmal state of the systefi25) has changed after the application
windings along, say, thg& axis, N, is thetotal number of of a finite, but weak external field.

continuous vortex paths in the whole system that wind all On the opposite side of our imaginary circle, near its end
around the torus in thg direction,irrespectiveof their ori-  point atH=0 andT<T.y, the situation is completely dif-
entation, i.e., whether they are “vortex” or “antivortex” ferent. Now, the zero-field state is superconductorand
paths relative to the axis. Such paths are topologically dis- N, , ,=0. Any finite field, no matter how small, has a drastic
tinct from finite closed vortex loops: the latter can be con-effect. For very low fields, it is natural to expect that there
tinuously shrunk to a point while the former canngf, is  are no thermally generated infinite vortex loops and only
different from the winding numbew, : W, also counts all those windings associated with the field-induced vortex lines
the windings along thex axis but with a single “vortex” are present in the system:

path contributing+ 1 while an “antivortex” path counts as

—1. In the widely recognized vocabulary of the 20Y Nyey=0, N;=Ng=ngL?. (27)
model, NV, would correspond to the total number of vortices
plusantivortices in theyz plane, whilew, would be the total
number of vorticeaminusthe total number of antivortices.
Back in 3D, in the superconducting state beldyy, all ther-
mally generated vortices come in the form of finite closed
loops and both\,=0 and W,=0. Above Ty, W, must
remain equal to zero due to the “vortex neutrality” of the
GL theory(1) or the 3DXY model, butV, is now finite and
Ny<L1™U wherel is the linear size of the systefwe are
assuming-, =L =L) andu is the “anomalous” dimension
of such infinite paths. The same holds for the winding num
ber and the total number of windings along thandz axes,

This is just the(s) vortex lattice state in Fig. 1. Note that in
these general geometrical terms there is no difference be-
tween the(s) vortex lattice state and the “anisotropic super-
conducting liquid” of Feigel'maret al?° Due to the absence

of windings in thexy plane, both have a superconducting
response along the field direction; i.e., ffig(q) component

is finite in theq—0 limit. Also, in both casesy ) (q)
vanish axq— 0. The only difference is that it takes arbitrary
weak pinning to restore superconductivity in all directions in
the vortex lattice state. On this basis, | have assumed in the
‘phase diagram of Fig. 1 that such an “anisotropic supercon-
ducting liquid” phase is preempted by the first-order transi-

Wy(»=0 and/\/y(z)ocL““. This can be summarized as tion atT,(H).5
In our proposed phase diagram depicted in Fig. 1, the
Nyy,z=0 for T<T, intermediate®-ordered phase is inserted between the true
normal statg26) and the vortex lattice phag@7). What is
Nx,y,zzzn;(r,y,zl-1+u for T>Te, (25)  lts nature in simple geometrical terms used to describe the

other two phases in Eq$26) and (27)? In the ®-ordered

wheren] is the “density” in theyz plane of thermally gen- state all thermally generated vortex loops are bound and only
M U :

erated infinite vortex-antivortex winding paths traversing theN‘I> field-induced(s) vortex Ilnes_ 90 from one end _Of the

system along the axis and so on. In the isotropic caaé sample to another, alortd, resulting in preciselN, wind-

L ! ings along thez axis. However, thesgs) vortex lines are in a
=n;=n1. Of course, the presence of such windings in all 9 g )

Y : . . liquid state, characterized by some finite effective line ten-
directions is the reason why the material is not in the super-q y

X ) o sion 7 and they “diffuse” in thexy plane while winding
conducting St‘i‘te aboxﬁco. these |nf|n|§e vortex paths can alongH. This translates into aonvanishingotal number of
now move to “screen” weak external fields, driving the he- . =~ : i
s . U windings in thexy plane:
licity modulus to zero in the long-wavelength limit and pro-
ducing finite dissipation. _ 2p N — 2

As we turn on a finite field in Eq(1), we still have Nay=Tayb ™y Ne=No=ngL". 28
W,,y=0 butW,=N, and consequently, must be at least We expect p=1/2° 7, , are some finite quantities hav-
Ny in every configuration of the systetimagine now how ing dimension of(IengtW‘é/p and we use Eq(28) as their
the state of the system evolves along a small circle in thelefinition. Equation(28) describes the-ordered state using
H-T phase diagraniFig. 1), surroundingT.,. Our circular  a simple geometrical language of this section. The fact that
path starts ati =0 and at some temperatufeslightly above  \, ,#0 has nothing to do with the thermal “expansion” of
T, and evolves in the counter clockwise direction towardvortex loops; these are still all of finite size. Rather, it is due
its end point atH=0 and some temperature slighthelow to the lateral “diffusion” of field-induced lines, as they wind
Teo. Initially, we are very close to thél=0 normal state along thez axis. The field-induced vortices tend to form



6462 ZLATKO TESANOVIC PRB 59

infinite “clusters,” which manage to wind finite number of  sufficesto cause vanishing of the helicity modul(®0) and
times,./\/f(yy, along x(y) by winding infinitely many times, drivesW¥(r) to zero[i.e., (¥ (0)W*(r)) is short rangefl In
N;~L, along the field directioril now setp=1/2). We can contrast, the long-distance line tensi@n Eq. (29), is still
definea long-distance, effective “diffusion” constaf? and finite belowT4(H), the same as in the Meissner state of the
the associated line tensidghboth relative to the field direc- H=0 superconductai25). This statediffersfrom the normal

tion: state by the presence of long-rangeeorder, measured by
AL (®(0)P*(r)). It can be consideredomorphig in thelong
D, =Y T ~po1 (29 wavelength limitto a liquid (or solid, as shown in Fig.)lof
X,y ./VC ’ X,y X,y . " . . .. . .
z N¢ field-induced vortex lines with somfinite effective line

Defined in this fashionp and T are truly global quantities, te€nsion relative to the field direction and interacting via a
detached from complicated individual configurations of in-1ong range, London-Biot-Savart-type interactions, whose
teracting vortex loops and lines and dependent only on thetoverall strength is set by-[(®(r))|%.>° Only at some higher
modynamic state of the system as a whole. Indherdered temperaturel 4(H), does7 vanish and infinite vortex loops
state both are finite, while in the true normal stBte>c and  proliferate across the system. This signals the destruction of
T—0 for some clusters. Infinite vortex paths inside suchthe® order as the system finally makes transition to the true
clusters manage to wind in thdy) direction after only a normal state. Abov@ 4(H), both'¥ and® order are absent.
finite number of windings along the field. In this sendean  Consequently, th&rue normalstate of GL theory in a finite
serve as a probe for the presence or absence obthaler.  magnetic field 1) should not be viewed as a “line liquid” in
Again, in the®-ordered state of the 3IXY model, where the commonly accepted senSeThe general geometrical ar-
there is no unique identification of individual vortex paths guments of this section preclude such an identification and
due to their crossings, every configuration that contributes tgoint to a direct connection between the presefxsence
the thermodynamic limit has precisely, vortex lines going  of the ® order and our abilityinability) to emulate the long-
from bottom to top in every distinguishable assignment ofwavelength behavior of the syste(®) in terms of a conven-
such paths. All other vortex paths form finite closed loopstional “line liquid” (or a “line solid”) of field-induced vor-
Thedistribution of the total number of windings, obtained by tices. In the language of thenonrelativistic “boson
randomly resolving all the crossings, still satisfies E2§). analogy,” the mass of the bosomngnishesat T4(H) and
Once the system makes this phase transition to the normabich an analogy breaks down in the true normal state.
state (26) and thed order is lost, there is only a smooth  The above criteria, involving the helicity modulus and the
evolution. The “densities” of thermally generated windings number of windings for individual field-induced lines and for
Nxyz: as well as the way these windings are realized inthe whole system, allow one to clearly distinguish the high-
individual configurations of vortex loops and lines, canand the low-temperature states of the system in numerical
change considerably, depending on where we are ilthle  simulations and to establish whether they are separated by a
phase diagram relative t(H), but we do not expect to true thermodynamic phase transition or a sharp crossover.
cross any additional phase boundaries. Such a procedure should be superior to measurements of
The geometrical picture presented here, based only ofPecific heat which possesses at most nearly logarithmic sin-
global topological properties of loops and lines, gives a cleagularity and is severely limited by finite-size effects.
insight into two forms of “superconducting” order, de-
scribed by twodifferent order parameter? (r) and ®(r). VI. FLUCTUATION CONDUCTIVITY
The familiar superconducting order, measuredibfr), re-
flects the system’s ability to expel tiny external fields and is
manifested by a finite helicity modulus and the absence of o .
linear dissipation. This leads to the well-known spectaculafViy: While in principle a very useful probe of a degree of

experimental consequences and is naturally of great practicﬁpzercondl;%mg orldert, '3 ?Ot putLerC':fletrrr]noiynarlnlc qugntlty
importance. A more subtle form of “superconducting” or- and cannot be evaluated from the e¢ty unless ad-

der, associated with the new order paramabdr) intro- ditional assumptions are made concerning the time depen-
ence of the fluctuating superconducting order parameter.

duced in Ref. 9, describes the presence of finite line tensio o
at all length scales and is manifested by the suppression e adopt here a frequently U.Eed apd empirically successful
large thermally generated vortex loops in the partition func-2Ssumption of dyngmlcal _scall éwh'Ch. connects th? deF:ay
tion. At H=0, or in an infinitesimal field with only a single of spatial correlations with that of time correlations;,

~ ¢, where 74 is the relaxation time associated with the

field-induced line, % and ® are equivalent. The helicity . . . .
modulus and the effective line tension vanish simultaneouslyuPerconducting order parameter ars the dynamical criti-
cal exponent. At zero field, this assumption leads to an ex-

at a single superconducting transitio;=T.,. In a finite ) ) o
field, with a finite density of field-induced lines, the situation Pression for the fluctuation conductivity:
is different: the “superconducting” transition can now be oo £527D _gryy(D-2-2) (30)
viewed assplit into two branchesT,(H) and T4(H). At s¢ '

Tn(H) the standard superconducting order is lost as the vorwith z~ 1.5 from numerical simulatiorfs.For simplicity, we

tex lattice melts into a liquid of field-induced) vortex lines.  have suppressed anisotropy in the above expression. When a
Even though the total number of windings aloHgis still  finite external field is turned on, and we are inside the critical

locked atNg,, just like in the vortex lattice stat€27), the  region neafT.,, where& is very long, we can still write
effective “diffusion” of (s) vortex lines leads to windings in
the xy plane, A y=L?P, Eq. (28). This amount of winding ox[E(H#0)]?"27D, (31)

Electrical conductivity(or resistivity is a quantity easily
measured experimentally. Unfortunately, fluctuation conduc-
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Strictly speaking, the dynamical exponent could be differenence, from Eq(2). In thed-ordered phase, there is an effec-
in the finite-field case but | will ignore such a possibility. | tive long-range interaction betweés) vortex lines which, in
also concentrate on dissipative transport and do not considéneq<1/ limit, takes the London-Biot-Savart forhi.To see
Hall conductivity. Right belowT ,(H), the gauge theory4)  this, note that, in the&-ordered “Meissner” phase, our fic-
suggests thaf is finite in all directions and o<K/T~cl, titious “photon” is “massive;” i.e., the secondgradienj
as discussed in Appendix B. Abovi,(H), the screening term in Eq.(4) becomes

lengthA, defined in Appendix B by EqB9), drops abruptly

Eg. (21) and weassumehat the superconducting correlation n|(q>>|25f T 7’H|<q)>|25\2’ (34
length & does the same, where(®) is the order parameter associated with dher-
der. As seen in Sec. V, we expect that, as longd &3 is
cl T'GT F i ; i inti
3 occl( 1-G—|=cll 1=-C (32) finite, we can write some effective description of such a state
s¢ & JH in terms of a “line liquid” of field-induced vortices, in the

) i o _ sense of Nelsof.Long-distance physics can be described
This assumption seems perfectly justified on physicalyough fluctuations in the density and “currents” of vortex
grounds, since the drop in the screening length arises througwnes 5p(r) and [(r)=(iy.j.), respectively The connec-
appearance abovie,(H) of thermally generated infinite vor- tion \’Nitli‘)] our fictitious é(auyge potentiaIS(r.) Eq. (4), is
tex loops which lead to additional screening. It is natural toA endix A o
expect that these same loops suddenly increase dissipati(gnpp
and produce a non-analytic drop in the conductivity. VXS) 278 VXS ot 35

After restoring the anisotropy, the relative change in the ( )|—>2mop, )L —2m). (35
conductivity, 6o, , as one crosses over from theordered  If we now reexpress Eq(34) in terms of p andj we get
to the true normal state is precisely the long-distance part of the London-Biot-Savart

interaction between field-induced vortex lines:
O,-.— 0 TVGT

s, = E7 _(z42-D)C,—, (33 8p(a) Sp(— Q)+ (a)-[(—q)
H 2
V %

4wy (@) "
whereu=(L,[|), o, < - is the fluctuation conductivity be- o L i H _
low (above Tg(H), C, are constants depending on materialwhere the continuity conditio-j(q)=—qép(q) is as-
parameters, andgr~ vy, ~2/3. The vortex loop “expan- sumed. The anisotropy, suppressed in the above expression
sion” that takes place af,, leads to a nonanalytic increase for simplicity, can be straightforwardly restor8tiThis ex-

just what is obtained in the mean-field-based apprdauir,

with onecrucial difference The overall strength of the inter-
action is not given by the mean-fiekmplitudesquared of
the superconducting order parameter, but|b$)|%=ng,,

A theory of the vortex lattice melting in the critical region whereng, is the ®-superfluid density, whose physical mean-
is an elaborate subject and its detailed discussion will béng is apparent from reformulatiof2) and gauge theor{).
presented elsewhere. There are, however, several important The immediate consequence of Eg6) is that the melt-
consequences of the present gauge theory scenario that cang line T,,(H), goes intoTy, the true zero-field supercon-
cern the very nature of the melting transition. We thereforeducting transition, asl — 0. This result is strongly suggested
discuss here the “minimal” set of requirements that shouldby all available numerical simulations on the 30¥ model
be satisfied by any theory of melting consistent with theand arises naturally in the gauge theory scenario. For all its
gauge theory scenario. We should first observe that reformwpparent simplicity, this result is not trivial: the mean-field
lation (2) obviously has &s) vortex lattice as its ground state based theories of melting including only field-induced Lon-
at low temperatures, just as the original GL the@ty. The  don vortice$ naturally lead toT ,(H)—T., the mean-field
gauge theory4), however, doesiot, for the simple reason transition temperature, a$— 0.2>°° Furthermore, the expo-
that up to this point we were interested in theng- nentv has its mean-field value.;= 1/2 and isnot equal to
wavelengthq<<1/, behavior. Theb transition, for example, vyy~2/3. Therefore, the thermodynamics of the melting tran-
is clearly the q—0 transition. On this basis, we have sition resulting from such theories cannot satisfy theXep
dropped a large number of terms from Hd), by arguing  scaling properties of Sec. IV. This is a direct consequence of
that they are irrelevant at very long distances. The meltindgnoring those very degrees of freedgwortex loops which
transition, in contrast, is finite qtransition @~1/1), and it  are primarily responsible for moving the traercfield su-
requires additional terms and modifications to the coarseperconducting transition temperature frofip to T., and
graining procedure applied on the way from E8) to Eq.  changingvy to vy, in the first place. This is a serious flaw
(4). For instance, higher powers & particularly the odd and must be rectified in a proper theory of vortex lattice
ones, reflecting the up-down asymmetry aldfignanifestin ~ melting in the critical region.

Egs.(1) and(2), where, unimportant in the long-wavelength ~ As a first step, we attempt to remedy the situation by
limit, are essentiafor the transition to a nonuniforr(s) vor-  simply replacingpy hand the mean-field amplitude squared
tex lattice state. with the true superfluid density aerofield. This amounts to

This being so, the transition casts a long shadow on the installing |(®),_o|? instead of|(®)|? in Eqg. (36). With the
melting transition. This is clear from E@4) and, by infer- interaction fixed in this fashion, we can then proceed to ana-

. (36)

VIl. VORTEX LATTICE MELTING
IN THE CRITICAL REGION
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lyze the same, finitefield model of Ref. 7, still including freedom of thesuperconducting order parametéself and
only the field-induced vortices. This is equivalent to havingmust be part of any proper theory of melting.
Te(H)=To(H=0)=T,, as represented by the dashed ver- Second, at higher fields, the self-consistent solution for
tical line in Fig. 1. This procedure, arbitrary as it is within Pc (or ¥) and® leads to a rapid suppression B,(H) far

the framework of mean-field-based theories, seems to get (REIOW Teo and its subsequent merging withy(H) for

out of the above difficulties, since now evidenfly(H) 1~ Hz (Fig. 1. This exposes a large region of the phase
: - diagram where the Abrikosov vortex lattice melts directly
—Te for H—0 and the exponent takes its trueH=0

into the true normal state. In this cagé) =0, while (®)g
Value”’xy~2/3-_ ) might still be close to its mean-field value. Such a dramatic
However, things are not that simple: to understand whygitference in the nature of these two phases, with the solid
note that the above remedial procedure is in fadct but  being rather unremarkably mean-field-like and the liquid
only for asingle field-induced line. For dinite density of  right above the melting line exhibiting very strong fluctua-
lines, the physical state of thermally generated vortex loopsions even at rather low fields, with vortex lines windipgth
and other fluctuations described #(r), which controls the along the fieldandin the perpendicular directions, is evident
effective interaction between field-induced vortex linesin recent simulations by Nguyen and SudB8’ Note that
through|(®)|2 in Eq. (36), is itself strongly affected by in- such a situatiomever arises in mean-field-based theories
teractions with those same field-induced lines. The effectivd¥ith only field-induced vortice$ even after the application

coupling of t.hese two inte'rpenetrating systems, vortex loop <fq);):|£:r|e<r(r11)e>ij||gllz |?$§f?:|gei'n Elgc(e%;/v eASVZI(I?;lIJde dsiwlsggve
and lines in reformulation(2), must be solvedself- V, it does not appear possible to write an effective descrip-

consistentlyat finite H: this is precisely what is accom- o of the true normal state in terms of field-induced degrees
plished in the gauge theory scenarid) for the long-  of freedom only. For example, we could start again with our
wavelength <1/1) behavior. Clearly, a “minimal” theory remedial procedure and argue that, even though it fails for
of vortex lattice melting in the critical region must involve g<1/, it still describes the effective interaction of field-
both the positional order parameter of the vortex lattipg,  induced vortices fog~ 1/, which is what matters most at
(or the original?), and the new “superconducting” order T.(H). However, within such a “line liquid” description, |
parameterd. The coupled equations governing thé, i) do not see any simple way by which one could account for
dependence of these two order parameters must be solvélte part ofAS associated with an abrupt change in windings
simultaneously and self-consistently ndgi(H). Nyy acrossTp(H), Egs. (26) and (27). In this region of

An important physical feature is expected to emerge fromhigher fields, wherel,(H)=T,,(H), our gauge theory is
such a solutionthe formation of vortex lattice is a phase becoming less and less “type 11" and amplitude fluctuations
transition involving simultaneous ordering of both field- are becoming stronger in GL theory. It is likely that the
induced and thermally generated degrees of freeddms is  low-field description discussed here and LL theories now
illustrated with two qualitative points. First, at low fields have an equal chance of providing reliable theory of the
within the ®-ordered statéFig. 1), we can consider some melting transition: both routes, however, are certain to be
effective “line liquid” description(35). Right aboveT ,(H), most challenging.
in the liquid phase, the self-consistent solution giy€ds)
=(®), to be inserted in the effective interacticd6). Simi- ACKNOWLEDGMENTS
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H—0, thecritical fluctuationsgreatly enhanceAS over the

configurational entropy ofield-induced linesThis provides APPENDIX A: DERIVATION OF THE GAUGE THEORY
natural explanatichfor the excess entropy ak,(H) ob- o

served in low-field thermodynami¢&? It should be | present here a derivation of the gauge theGy An
stressed that this effect wifferent from the “microscopic ~ @bbreviated version is found in Ref. 9. For simplicity, | con-
entropy” contribution discussed by Hu and MacDorldld Sider the isotropic casg=y, =y

(see also Ref. )7 Such entropy arises from thelectronic Within the “helium model,”®® the partition function of
degrees of freedom and is reflected in thelependence of the superconductail) can be written as
our GL coefficientq1). This contribution is important in the 1 N(®@)
high-field, LL regime*®*°In the 3DXY critical region, how- 7 D
1SS A =D, .- s
ever, such & dependence is minor effect since it involves 2 ,\%,) 1;[ N(“’>!Iw1_:[1 X""[ ""]

T. and not the true transition temperaturg,. The entropy
contribution discussed here, arising from fhe&lependence % @x F,
of [(®)|? in Eq. (36) and(®)_#(®P)g, is due to degrees of ’
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) 3 2e |? given loop around,y,z directions.Finite closed loops cor-
Fo=x(¥| >ch NVe(r)——A respond tom,; =m,"=m, =0. Similarly, for free(periodig
N(®@) boundary conditions along the (x,y) direction, @
+ ED .=(m; ,_m;,0,0) denotes I00p§ that wind _in. tixe(y) direc-
% |2:1 f dsﬁ“ ({X'w[s'w]}) tion while @=(0,0;0,0;0,0 again denotes finite closed loops.
1 N(@ (o) In addition, there are vortetantivortey paths that traverse
the system fromz=0 to z=L, and “half-loops” which
+= . z
2% % Iszl Ia=1 ds'wf dsi,, originate and terminate at treame z=0 or z=L, surface.

JDx s, ] represents summation over all configurations of
X { V(1% [s 1-x [s 1) a given loop and ling,, consistent with its global topology.
e e C{x [si 1} in the first term ofF, signifies that the integral of
- the gradient energy over the system excludes well-defined
© V<12>(|XI [ss 1=-x [s D¢ core regions associated with a given configuration of loops
dSw ds , o enoe and lines. The second and third terms represent core contri-
N (A1)  butions: EM=E +Ep({x [s 1}) is a “single-particle”
where term, with E. and E,, corresponding to the core line and
bending energies, respectivelyg?}(|r—r’|) denotes “two-
VXA=H, V.-Vg(r)=0, particle” effects of core overlap. These “two-particle”
terms describe both the energy cost of core overlap and the
entropic effects of keeping vortex and antivortex segments
VxVe(n)=272 > f dx; &(r—x [s 1). (A2)  from annihilating each other. “Multiparticle” terms, arising
@ lo=1 /L from simultaneous overlap of more than two cores, can be
The partition function(A1) is a 3D counterpart of the neglegted i_n the extreme type-Il regime, where the average
familiar representation of thécontinuum 2D XY model in core sizea is small compared to th_e average separation be-
terms of its pointlike topological excitations, vortices and 'WEen vortex segments. Core contributions, g E,, and
antivortices. In 3D, the relevant excitations are loops and/6.4(Ir—1'|), can be computed in a specific microscopic
lines of vortices, classified by their global topology. Only Model of vortex line$*® Their precise form is not needed
vortex paths of unit vortex “charge” are considered sincefor our present purposes since we will return to the GL rep-
they are the important excitations in the critical region. Theresentation at the end of this appendix; it suffices to know
lattice regularization of Eq/AL) is a gas of nonintersecting that E. and E,, are finite and the “interaction”VZ)(|r
oriented paths on a lattice which are either closed or can start r'|) is short ranged, of ordex, and repulsive on average.
or end only on sample surfaces. The lattice spacing is set byithout loss of generality, we could seWEf{(|r—r’|)
the characteristic “bending length” of vortex lines. Each —V,8(r—r’').
individual step along a path takes a given energy to create With the uniform magnetic field present, the overall vor-
and can be either up or down along they, orzaxis. These tex “charge” neutrality demands that every configuration
steps represent vortex segments and have a long-range “diontain Ny, field-induced vortex paths going from=0 to
rectional” Coulomb interaction, operating only between thez=L,. This fact is used to observe that the low-temperature
steps going along the same axis. This is the lattice version aéxpansion oZ’, Eq. (2), in terms of topological defects of
the “Biot-Savart” interaction between vortex loops and lines the new order parametd¥(r) ands vortices, is the same as
of the continuum model. The background free energy, comeq. (A1) except for different prefactors: Mg+ Ny)! in Z
posed of the uniform condensation energy and “spin-wave versus 14! N,! in Z’, whereN, is the number of thermally
contributions, is not included explicitly. generated infinite vortex-antivortex paths which extend from
The summation in EqA1) runs over all distinct configu- z=0 toz=L,. This leads to a difference in entropy between
rations of vortex line excitations of arbitrary length and two representationd S~ TIN[(Ng+N,)!/Ng!N,!]. AS scales
shape. The index» denotes different classes of oriented gt most ag L, in contrast to the full entropy which goes as
loops and lines which are distinguished by their global topoI-LxLyLZ_ Consequently, in the thermodynamic limitS does
ogy. For example, for periodic boundary conditions, whennot affect the free energy per unit volume. In particular,
only closed loops are presenky=(m, ,m;",m;), where within the ®-ordered stateZ, Eq. (1), andZ’, Eq.(2), have

dx, dx
+ w

N(®@)

mxi’yyzzo,il,iz,... denote the winding numbers of a identical expansions:
. N(O) N
1 1 @ F,
Z:N(gzo —N(O)!Nq)!l!_:[l %Dbxlo[slo]il;[l Dbri[si]ex%_?),

2 NO Ng 1
+ > Ec| ds +2 ch ds+§f d3rf d3r " {[do(r) +dg(r)]
=1 =1

2e
V¢(r)+U—?A

Fo= AP | o
C

X[do(r")+ds(r) IV (Ir=r'[) +[no(r) +ns(r)]-[no(r ) +ng(r ) IVE([r—r'])}. (A3)
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Here{x,o[s,o]} denotefinite closed loops of arbitrary length describingvirtual particle-antiparticle creation and annihila-
and shape. Half-loops attachedze-0 andz=L, surfaces tion processes in the vacuum. This similarity can be ex-
are not included since they do not matter for the bulk therPloited further by using the particle-field duality to define the
modynamics. The symbaD, indicates that the “single- field theory versioff of Z(H=0), Eqgs.(A7) and (A6):
particle” bending energy| Eb({x|w[s|w]})] has been ab-

sorbed into the measure of the path integral. “Densities” and B 3| 2 2
“currents” dys andng are defined as f D\Pd(r)f DAd(r)exp| f d°r| my [l
N dx 1
- _0 _ +[(V=iAg)W4|2+ = go|¥yl*
{do.N}(r) |oz:1 f dso[ 1,ds|o] s(r—x s 1), ( ) Wal*+ 590/ Wl
M2
No dr; +i(VxA )2+ —2 A2 (A8)
{deng(n=2, d“‘*(l'd_g] s(r=rifs]), (A4) 292 @2
and ¥,4(r) is a field operator of these relativistic bosons. The
gradient term in the action has been rescaled into dimension-
V-Vo(r)=0, VXVe(r)y=2mny(r), less form so that short-range repulsion and dual charge as-
sume their canonical dimensiongys(r—r’')—ged(r—r'),
V-U(r)=0, VXU(r)=2mny(r). (A5)  [go]= (length~%, 20?2, [g3]= (length . V; has been

. ) ., _dropped since it is irrelevant in the long-wavelength limit. Its
To unde_rstand the problem at low f.|eldsz we first Con.s'deréffect on critical behavior can be incorporated into the bare
the H=0 situation. The superconductirilyleissney state is

. - _ values ofgy, g5, andm?, . Finally, the “bare mass” ofA4,
described by théd—0, Np—0 limit of Bq. (A3): My, is absent(ijn our pr\I(,)bIem My4=0). Finite M reflects
o 1 the presence of a gauge field minimally coupled to the origi-
nal, superconducting order parameter. For example, if the
nO—o NI condition k— is relaxed and the real electromagnetic
O screening is restored in E(L), M§—>,u0e2/7-r, wheree and
F,(0) mo are the real charge and magnetic permeability, respec-
X|1_—[1 %Dbxlo[slo](_ T ) tively.
o Expression(A8) forms the basis for our “dual” picture of
N(©) the 3D XY critical behavior. In this picture, we are viewing
_ 2 3 2 vortices as primary objects and their field operaby(r) as
Fu(0=x(¥| >ch Vel +|02=1 ECJ dS'O our order parameter, instead of the originla(r). We can
think of ¥(r) in Eq. (1) as being the field operator describ-

Z(H=0)=

1( 5 3, s (2) , ing creation and annihilation of Cooper pairs. In the GL
+ 5[ d rf d°r"{do(r)do(r" )V~ (Ir =r']) theory, withH=0 (1), Cooper pairs have only short-range
interactions and it suffices to keep only the quartic term,
+no(r)-no(r’)V(lz)(|r—r’|)}. (AB) describing the pointlike repulsion, since the rest is irrelevant

. . for the critical behavior. In contrast, thvertexexcitations of
The gra_ldlent terrr_l inF,(0) can be decoupled _by aual ¥ interact via long-range London-Biot-Savart forces,
gauge fieldAy(r), in the Coulomb gaug¥ - Aq=0: mediated by masslessMi=0) Ay, Eg. (A8). Next,
| W|2) we can convert our neutral GL theof§) into one with a
exr{— J'd3r|V¢(r)|2} finite real chargee by introducing the fluctuating vector
T ¢ potential A, as well as the electromagnetic field energy
(1/87upe?) (VX A)2. Now, it is the Cooper pairs that have
_)j DAd(r)ex;{J’ d3r( —ing- Ay long-range interactions, mediated Ay but the vortices in¥
interact only through short-range forces, due to the electro-
magnetic screening inducing a finitd 4= uqe?  in Eq.
(A8). Precisely in 3D, there is an exact duality, at least on a
lattice*® between the form of this interaction for vortices and
for Cooper pairs. This is what “inverted” stands for in the
whereef=872y(|¥|?)/T is a dual charge. Equatiori87)  “inverted 3D XY” model. In the dual language o, it is
and(A6) have the appearance of a path integral over trajecthe low-temperature Meissner phase of the original super-
tories of relativistic charged quantum particles in(8+1)-  conductor that is symmetric{(¥4)=0), while the high-
dimensional Euclidean space peing the imaginary tinje  temperature normal metal is the “broken symmetry” state of
coupled to the “electromagnetic” gauge potenti®d) and the dual theory (W4)#0). So there is an inversion of the
interacting via short-range “density-density” and “current- temperature axis. However, it is still the same symmetry
current” interactionsZ(H=0) describes theacuumstruc-  U(1) that is being broken and this implies that thermody-
ture of such “electrodynamics,” with our vortex loops cor- namicexponent should be the sames v,,, bothfor e=0
responding to world lines of relativistic quantum bosons andand for e+ 0. It is important to stress that the “inverted 3D

: (A7)

1
- _Z(VXAd)Z
2ey
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XY” behavior of a charged superfluid remaidiferentfrom vortices. The long-wavelength effective action of these col-
the 3DXY critical behavior of a neutral superfluid, described Iect|v2e modes is described by two coupling constang#ns
by Eg. (1) with H=0, since they are associated with two @ndCs, where, in this boson analogys, m, f‘i”dcs are the
different critical points. For example, the anomalous dimenSuperfluid density, mass, and speed of “sound,” respec-

sion exponentyy, of (W (0)W* (r)) will be differentin two tively. We could compute these quantities explicitly, by
casese=0 ande+0 starting sufficiently belowT 4(H). Here, however, we treat

Equation(A8) describes the “true vacuum” stat6) of a them as general parameters_ which characterl_ze the long-
Euclidean relativistic field theory. Particlantiparticle ex- wavelength fluctuat!ons afvortices ar_md vyhose u|t|mat9 val-.
o ) . ; ues can be determined through their direct connection with
citations are massivany~1/£4~1/Ay, where &, is the

dual lation | h ated wi dA the components of the helicity modulus tengSec. V and
ual correlation length associated withy and Ay measures  apnengix B. We assume that the effect of mutual contact
the typical loop size. The actual valuerof; reflects both the

interaction between loop arglvortex subsystems, measured

cost in energy and gain in entropy arising from large ther,y, some interaction streng¥,, can be fully included into

mally generated vortex loops in the original problem. As Weihese ultimate values ahg/ng and Cg’ as well as into a
approachT, from below, my—0, and we enter the “false

vacuum” state|f) of the theory(A8). Particle(antiparticle

excitations are now massless and infinite vortex paths proli
erate across the system, as depicted in Fig. 2. This “fals
vacuum” is just the normal metallic state. If we introduce

renormalized loop-loop contact interactidfy and the loop

fcore line energ{EC. This amounts to reexpressing the short-
[ange interaction in EqA3) as

the particle(antiparticlé number operatord\p 5, |0) is an Ef dPr{Vod3(r) +2V,8do(r) 8dg(r) +V,,di(n)},
eigenstate of Np,, Npl0)=0/0) and N,0)
=0/0). In contrast,|f) is not an eigenstate oNp », and Ec=Ec+Vo(dg(n), Es=Ec+Vo(do(r)), (A9)

contains a finite average number of(ant)particles,

fINo Al f)=No #0. Both|0) and|f), however, are eigen- while the_ core Iir)e energies of loops aadortices are also
(f[Np,alT)=Np 4 10) l ) - g renormalized to include the average “excluded volume” ef-

fect. Es and V,, will shortly be subsumed intans/ng and

) ) - . c§. We setV,—0 in Eqg. (A9) and proceed to derive the
state of Eq(A8) must still be an eigenstate dfp—N, but  ong_distance description of EGA3). Indeed, we find that
now the eigenvalue il . Starting from|0), such a ground  the |ong-range interactions lead to a major change in the
state|®) is naturally constructed by introducingy, massive  pehavior of the system oneeis finite: most importantly, the
particles into the true, stable vacuum. We then higeP)  long-range interactions between vortex loops are “screened”
=Ng|®) and NA|cp>:o|q)>_ On the other hand, starting by fluctuations of vortex lines. The amount of “screening”
from the “false vacuum”|f), the ground statfn) is formed  is determined byms/ng and cg. Once the critical behavior
by having additionaN; masslesgarticles added to an al- associated with this mutual “screening” has been under-
ready present finite average number of particle-antiparticletood, we reinstate the residual contact interaction between
pairs. [n) is not an eigenstate ofNp, and satisfies loop ands vortex subsystems and test for consistency. We
<n|NP,A|n>=Np,A¢0, where now Np—Nsx=Ng. At find, both within thee expansion and perturbative RG in

To(HJ, a phase transition takes place between these thXEd dimensionD =3, that such residual coupling is irrel-

. . evant for 3D <4; i.e., it does not lead to any new relevant
different types of ground stat¢d) and|n), driven by the , P .
change in 1) symmetry of the vortex system. terms in the effective action, apart from those already

We now return to Eq(A3). A finite density ofs vortices present. Our procedure Is therefore “exact” for long range
produces two main effects 6n the loop “expansion” as Weand self-consistent for short-range interactions between loop

approachTg4(H) from below. First, there is a long-range and Ime_subsyst_ems. . .
interaction between loops asd/ortices which will influence Th? f'ri[ step is tot c:ﬁc?uple the greffnt t.emé n e;q;)
the long-range correlations among the loops themselve Z us_,mg f.d’ dex%ep Ea4 nomoeno Ns N fg' (A3)
Second, there is a short-range effecs@brtices suppressing ns is defined above Ed4)]. Thes vortex part of Eq(A3)
certain configurations of large loops, through mutual Contacpecomes
interactions(an “excluded volume” effect Intuitively, one Ng
expects the long-range effect to be essential for the critical i H Dorifsi]
behavior at low fields. Furthermore, the short-range effect Ne!i= orE
should be weak since the total number of vortex segments No £ v
connected tcs vortices forms a tiny minority of all vortex ><exp{ _zl ?s ds— 2_[')|ff dBrd2(r)

i=

states of the total vorticity operatdl, — N, with eigenvalue
0, which ensuredlp=N, . ForH small but finite, the ground

segments. Based on these observations, we devise the fol-

lowing strategy: according to our basic assumptibh and

results of Sec. V, the system sfvortices belowT 4(H) can . 3

be viewed as equivalent, in the long-wavelength limit, to an _'f d°rAng(r)-Aq(r) (- (A10)
effective system ohonrelativistic2D quantum bosons in its

superfluid state, in the sense of NelsBriThe collective  This part is now reexpressed in termssofortex “density”
modes of such a system are its “density” and “current” and “current” fluctuations. Sufficiently belowTg(H),
fluctuations, which is precisely how the loops couplesto the overhangs are small asdvortex lines are almost fully
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directed. We can use a nonrelativistic boson analogy ofnhe AnslH Ang asymmetry of the original problerfA3).
Nelsor and replacefds~ fOZdz[1+ (dr,/d2)?], where Such hlgher ocher asymmetric terms are essential for a de-
scription of the melting transition but, as shown below, are
r,(z) (x,(z).,y,(z)), while _absorbmg the effect_ O.f small irrelre)zvant at thed trangition, provided the latter is continu-
overhangs into theéeftectlve mass)s~Es/T. ?lmllarlyl ous. Note that the above relatively simple dependence of Eq.
ds(r)—ng)(r)—2;8(r—ri(2)) andns, (r)—2i(dri/d2)8(r  (A13) on 5p andj holds only at distances . This is pre-
—ri(2)). We then introduce a field operator of these nonrelcisely what we are interested in as we approdgf(H).
ativistic bosons;W(r,z), replace the path integral in Eq. Equatlon(A13) captures an essential effect of a finite field on
(A10) with the functional integral oveW ¢ (periodic or free  the loop “expansion”: fluctuations of field-inducesivortex
boundary conditions give the same result in the thermodylines result in the “screening” of the “Biot-Savart” interac-
namic limit), and follow the standard proceddtdor deriv-  tion between the loops. This “screening” is manifested by
ing the “hydrodynamic” action ofs vortices? the phase Ad gaining a finite “mass, ”LV'HN” ImgcZ, ME~ng/m;,
@(r,z) and amplitude m(r,z) are introduced viaV¥, after integration ovedp andj. The effect of a finite mag-
=W Jexpled and me=|W2—(|¥?), where(|¥?) is netic field on the orlglnal probler(Q) is now stored in the
evaluated self-consistently. After integration oveg, the finite values ofMf and MY . As one attempts to create a

“hydrodynamic” action for the phase becomes small number of very Iarge loops in E¢A13), upon ap-
proachingT4(H) from below, their effective line tension
and mutual interactions will be essentially influenced by

f d? | 5 (Vjes—Ag))? such “screening.”
MsCq The importance of this mutual “screening” mechanism is

particularly apparent in the dual representati@®). The
action (A13) becomes

_AdL)2+("')]v (A11)

. Y0
3 2 2 _ 2, 2Y 4
where ( - -) denotes higher powers &¢,— A4 and higher f dr| | Pg|*+[(V—1Ag) Dg|*+ 7| Py
order derivatives. The “mean-field” part of the action is
absorbed into the background. The actigi1) is decoupled _ . . mgc? , Ms.,
using real fieldssp(r) andj(r) = (jy.J): F10pAg 1] -Agt 5= 0p™t 5
d 3 . g 1 2
— | Dép(r) | Dj(r)ex d°r| —idpAg—ij-AqL + W+ F(VxAd) (A14)
SF
2 . .
_ - MmCs , Ms., whele the meaning of the loop field operatbg(r), mg ,
+i6pVesti]-Vigs— 2n, op°— 2nd || (Al2) " andg, is evident in light of the discussion surrounding Eq.

o ) . (A8). For simplicity, | suppress the anisotropy in the second
which finally results in Eq(A3) expressed in terms of the (gradien term of Eq.(A14) which generically ariseieven if
true collective modes of the superfluidvortex system, its /=7, in Eq. (1)] from the interaction of loops witls vor-

“density” ép and “current” ffluctuations: tices. The finite mass of\y, generated by the integration
over §p and j, “cuts off” the long-range “Biot-Savart”

* N interactions present in zero fielgh8). This ‘“screening”
Z— %‘4 N(O)I |H % DX [si ]J D5P(r)J Dj(r) causes a decoupling of the dual gauge field and transforms
N 0

the critical behavior from a “charged,” EqA8), to a “neu-
tral,” Eq. (A14), dual superfluid. This is the invertddniso-
><J' DAy(r)exp —9S), tropic) 3D XY behavior of the dual theory, hinting at the
presence of masslesgauge field in theriginal “supercon-
NO) = 5 ducting” formulation (4), as discussed below E8).
3 . ) To investigate the critical behavior of EGA13) in more
S= E -|- dsi,+ | A% o= dG(r)+ing- Ag+idpAg detail, we generalize EqA14) to arbitrary dimensiorD.
Simultaneously, we restore in the action the residual Yart
. meCs mg . . Eq. (A9), of the contact interaction between loops andr-
+1)-Ag + T‘SPZJF ﬁJZJF W(6p,j) tex lines, i.e., the part not already incorporated into the val-
s s ues of coupling constants appearing in E&14):

2

1
+—(VXAy) ], (A13) f 4P

2 (| Mg ®gl*+1(,—1A,) Pyl

where the functional integral must be appended by the con-

tinuity condition V|‘5p+VJ_~j_)=0, which follows from the + Ego|¢'d|4+ gp|(I)d|2\]0+i\]MA,U~

integration overpg in Eq. (A12). W arises from the {- -) 2

terms in Eq.(A11) and contains powers higher than qua- 1 1

dratic in 8p and |, as well as assorted derivatives. In par- T =3, WA) + 5 F PR (Al15)
ticular, odd powers ofép are present, like- 8p3, reflecting “ 2qg
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Here g, denotesV, rescaled to its canonical dimension, N( )

=0,1,2,..,D—1,W(J,) is the generalization o(p,]),  Z(H)— o fj; Dpx, [ ]f DV r)f DA(r
andF,,=d,A,—d,A,. The functional integration runs over N“’) o N™o=1

fields®q, A, andJ, and includes a constraiaf, J“=0. The xexp —S),

integration overJ, generates a finite massl ,_ =M,

M,+o=M, for the dual gauge field,. The theory, how-

ever, retains gauge invariance implying that the combination N<0> £

q¢A, must be an RG invariant. This in turn sets the canoni- g_ j ds +J d3r

cal dimension ofg, to [g,]= (length®~2. Therefore, the |0 1 T

term gp|<I>d| Jo is |rrelevantW|th|n € expansion around the

upper critical dimensio =4. Similarly, all higher powers 2772KH ’ 272 KL

and derivatives of,, appearing in/ are irrelevant as well. + T I

For example, the canonlcal dimension of tﬂ@couplmg

constant |s(Iength)2D 3, The relevant couplings belo® . . .

=4 areg,, Qd, andM, . Due to finiteM , , A, decouples WhereV(r) describes long-distance>() fluctuatlons_of_s

and theg function for g, is the same as that ‘of the neutral Vortex “currents” ng(r), Egs.(A4) and (A5), and satisfies

(q4=0) complexd* theory. In this case the expansion is V-V=0. HereK; /T now play the role ofmcZ/ns and

expected to hold down to, and includB,=3, where the Ms/Nsin Eq. (A13) and fully include the effect of overhang

critical behavior of thed* theory should be that of én-  configurations asT—Tg(H). At present, we cannot com-

verted 3D XY model, in agreement with our earlier asser-pute K, , (T,H) (or E. andV,) from first principles. This

tion. The same conclusions can also be reached within theould require an analytic solution to the problem of large

perturbative RG in fixed dimensioDd =3. Hereg, is mar-  overhangs, something far beyond the scope of this paper.

ginal at the “engineering” level, the gauge field again de-However, if we start with the general forgi\17), we can

couples due to finité/ , , and we can compute the relevant determine various parameters appearing there by connecting

B functions at the one-loop order and to the leading order irthem self-consistently to directpumerically or experimen-

g,: tally) measurable physical quantities. For example,

Kj.(T,H) can be extracted from the components of the he-

° licity modulus tensorAppendix B or the fluctuation con-

Vo
>T 0(r)+|n0 Aq+iV-Ay

V2 + ! — (VX Ay)? (A17)
2e? ¢
d

-~ - d R -
Bo(90.9,)= dln—g(]o) =—go+C103 ductivity (Sgc. V). We shoqld therefore gonsider E17)
P a self-consistent, perturbative RG description of dhéran-
sition.
d@] We can now enforce the constraiit V=0 by introduc-
B(90.9,)= din(p) =C2000, - (A16)  ing a gauge field(r): 2mV—V xS, V-S=0. Alternatively,

we can integrate ovev, obtain the mass term foky, and

Whereéoyp(p) are the dimensionless running coupling con-then decouple it by introducing. The final result is

stants and’; , are (regularization-dependgmumerical con-

stants which ardoth positive,C; ,>0. At the (inverted 3D w

XY critical point§0=1lcl and thereforgs,>0, indicating Z(H)—

stability of our assumed,= 0 fixed point against residug|, NO—g N©

perturbation. The above results allow us to conclude that the

critical theory(A14) (with W=0) remains valid and that the Xf DS(r)f DA4(r)exp(—S),
effects ofV, can be included by a proper choice of relevant

couplings, as originally assumed. The presence of long-range

interactions between vortices, mediated Ay, is essential

for the validity of this argument. Note, however, thgf and 3

W terms (A13) are dangerously irrelevant operators since S= E ds +f d°r

they break the up-down symmetry: they could change the

critical behavior nonperturbatively or restore a first-order Vo i

transitior? in 3D. x[ﬁdg(r)Jrino-AdJr 5-(VX9)-Aqy
One step remains: a§—Tg(H), some overhangs at-

tached tos vortex lines become very large and we might

doubt the accuracy of the straightforward nonrelativistic bo- Ki (V>< S)H (V>< 92+ —(VXAd)

son analogy approximations below E@\10). However,

throughout thed-ordered state, the vortices remain “mas-

sive” and there should always exist a suitably defined quan-

tum system of nonrelativistic 2D bosons whose long “dis-

tance” (x,y) and “imaginary time” (z) behavior faithfully — This is just the vortex loop expansig¢A6) and (A7) of the

emulates that of vortices. We therefore expect that the Meissner phase of a “superconductor” described by an order

overall symmetryof Eq. (A13) remains preserved 8, (H). parameterd®(r) and coupled to the gauge fiel (V-S

This leads to a generalization of EgA13): =0). The GL functional of such a superconductor is

NO =

(A18)



6470 ZLATKO TESANOVIC PRB 59

2

~ ~ . Z% K &7
Ferr=a|@|?+7,|(V,,+i8,)@[*+ S| ®[*+ 7”(V><S)ﬁ X =CTé, X=CTg (B3)
K, ) &)= &0 t” 7 are the superconducting correlation lengths
+ T(sz)l* (A19) and(C is an unknown universal constant, intrinsic to the GL

theory(1). Note thate?y, /c? is just the perpendiculdpar-
which is precisely the gauge thea#). Note that® is a dual  allel) magnetic susceptibility.
of the loop field operato 4 (A14). Herew, B, andy,, are The components of the helicity modulus tensor in the
some suitably renormalized GL coefficients which can bdong-wavelength limit ¢—0) are uniquely determined by
determined phenomenologically. Note that we have now rex, . Conversely, the measurement of the long-wavelength

stored the anisotropy iy, arising both from the bare an- “tilt" and “compression” helicity moduli*® determines
isotropy[ v # v, in Eq. (1)] and the anisotropy induced by X1 In general, from definitioriB1), we find

the interaction of loops with the vortex background.
2

APPENDIX B: GAUGE THEORY gYMV(Q) = X€pap€pprdalp (B4)

AND THE HELICITY MODULUS
for the isotropic case, while for the anisotropic situatppn

Here we consider the connection betwéen; appearing £

in Eq. (4) and the helicity modulus tensaf(q). The con-
ventional definition of the components ¥ q) can be found

in Ref. 30 i

?Yil,v(q) = (XH - XL)EZaMEZBVqQQB+ X1 Ep(l/,lLEpﬁVQCKQB .
5°F (B5)

Ve——————. (B1)

da,(q) sa,(—q) . S .

€,py IS the Levi-Civitasymbol and summation over repeated

All quantities appearing in EqB1) are defined in Sec. V, indices is understood?/c? is factored out for later conve-
below Eq.(19). We will limit our attention to the isotropic nience.
case[y, =7y in Eq. (1)] whenever we consider thid #0 After this preliminary discussion, we go to the case of
situation. The anisotropic case with finite field requires farinterest, finiteH in Eq. (1), and limit our consideration to the
more extensive algebra and can be reconstructed by combiisotropic situationy, = ;. We introduce smak into Eq.(1)
ing the discussion below with illuminating presentation inand expand to second order WX a:
Ref. 30.

We first evaluateY (q) from the original GL theory(1) 3
and start with theH=0 (A=0) case. We consider the situ- F[H’an]:F[H’O]JFJ’ d°r
ation rightabove T,; so there is no superconducting long-
range order. After adding smadl to the gradient term, we
can expand the free energy up to second ordex. in

Y ,.(Q)=

2 2

e - 2 e - 2
X EXL(an)l_FEX”(an)H +---,

F[VXa]=F[O]+f d3r (B6)

whereF[H,0] is now the free energy of the GL theoty) at

e? e? finite field H anda=0. We are again focusing on the “nor-
X —XL(an)fﬂL ——x(VXa)Z|+---. mal,” i.e., notsuperconductingtate, in accordance with as-
c c sumption (i) of Sec. Il. The above expression looks very

(B2) much like Eq.(B2) but there are the following significant
differences: the expansion is anisotropﬁzﬁt}u, even
though our superconductor is isotropic. The reason for this is
finite field H along thez axis which reduces spherical sym-

This equation requires a brief explanati@ns the real elec-
tric charge anc is the real speed of light, appearing in Eq.

(1). Here F[O] is just the original free energy of the GL metry of theH=0 situation down to cylindrical. The finite
theory withH=0 anda=0. The full free energy with small  fie|q also breaks the “up-down” symmetry along thaxis.

a(r) is written as a functional o¥ xa only. This is required  Tpjs js manifested by the subleading corrections, denoted by
by the gauge invariance of El). Two additional terms, ihe ellipsis in Eq(B6), containing in generaddd powers of
proportzlonal to the perpendlc_ular and pa_rallel_components o xa (the leading such term is cubjcsuch terms were pro-
(VX&)% represent the leading corrections in powers andhjpited by symmetry in théi =0 case. Again, by combining
derivatives ofVXa. The subleading contributions are de- yefinition (B1) and Eq.(B6), we arrive at the expression for

noted by the ellipsis. These subleading terms are unimportagle |ong-wavelength limit of the helicity modulus:
in the long-wavelength limit.

X1 andy, are some functions of and are different from 9
each other in the anisotropic casg# y, , while y, = Y, (@)= X—X1) €ran€ +Y. e € ]
= x if the superconductor is isotropic. A&approached g2 M V=T XL €zan€apraln™ X1 Cpan€oprdads
from above, these functions take the following form: (B7)
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The components of the helicity modulus tensor for the«gauge field energy”KM[Vx(S—(e/c)a)]i in Eq. (4). We
finite field (isotropig case are determined EM,H which are now expand the free energy of the gauge theéry, to
some functions ol andH. It is tempting to conclude that second order ifV X a, following the same philosophy as in

Eq. (B6):

- - E&TH s s

X1 —CT§(T,H), X—=CT e TRy (B8) Ferl €. .6,V Xa]=Feq€. ,&,0]
where &, |(T,H) are now superconducting correlation 3 e? )
lengths at finite field. This result is plausible on physical +f d=r Z_CZICL(an)i
grounds, expressing the fact that, wkh# 0, the supercon-
ducting correlation lengths are now finite in the “liquid” e2
phase, limited by magnetic length and consequently the + —ZIC”(an)ﬁ +eee, (B12)
helicity moduli vanish in theg— limit. We are simply mak- 2¢c
ing the assumption that the same length that limits the ranggnere
of superconducting correlations appears in the coefficient of
the g term in the helicity modulus; this assumption is Kf I , ,
known to be correct for thel =0 case(B3). Unfortunately, | Kyj=Kep=—" lim f d3(r—r)e'ar=r
am unable to provide a mathematical proof that the conjec- q—0"
tured result(B8) is exact. Instead, defineperpendicular and X((VXS(N), (V' XS(r). ). (B13)

parallel “screening” lengths\, (T,H) and A(T,H) by _
The anisotropic charges, |(T,H) and coupling constants
- ~ A2(TH) K, j(T,H) are defined in Eqg15) and(4), respectively. The
XL =CTA(T,H),  x=CT ATH) B9 thermal averagé- - - ) is over the gauge theory defined by
the free energy functionaF.+, Eq. (4). Combining Egs.
Note that there is a one-to-one correspondence between thegel) and (B13), we get, as before
“screening” lengthsA, | and x, | and, in turn, between
A, | and the long-wavelength helicity modulB7). Since c?
A, are purely thermodynamic quantities, they satisfy scal- 5 Y u(Q) = (K= K1) €20,€25,9201 KL €pan€ppralp -
ing laws of Sec. 1V, just like the superconducting correlation

lengths: (B14)
Comparing this to the general expression for the helicity
AT H)=IRY (0f), & (TH)=IRE (ad), modulus of the GL theory at finite field, given by E®7),

(B10)  we conclude thay, j=K, | .

A very important point is thatbelow Tg(H) we have
K. =K. . This is a mathematical consequence of the fol-
lowing physical picturgSec. V). In the®-ordered statepnly

where the “dimensionless charge”qug(T,H =0)/
lcH/|t|"is our scaling variable of Eq17) and R} | and
Ri” are the scregning length and cgrrelati.on. length scalinghe field-induceds) vortex lines can “screen” the test vec-
functions, regpectl\A/er.zln thed —;O (q20—>0) I|m2|t, allthese 5 notentiala(r). All thermally generated vortex loops are
scaling functionsk' (dg) andR | (qp) go asqp. We now o finjte size and cannot contribute to the “screening” in the
make the followingassumptionaroundT4(H), the ratios long-wavelength limit, described by, | in Eq. (B12). This
implies that the new order parameteiis finite and therefore
_ _ (B11) ((VXS)iH), Eqg. (B13), vanishesin the long-wavelength
E(TH)  REQD §(TH) Rf(a2) limit, as ~q?/|(®P)|2. Therefore, we caruniquely fixthe
. . ~ coupling constantK, |(T,H) [and corresponding aniso-
are sc>2me unremarkab&nootmuncthns of the scaling vari- tropic chargesELH(T,H)] that enter the gauge theory de-
ableqo.zln partlcular, thg nonanalytlc drop in the coefficient geription (4), by connecting them directly to the components
of theq” term in the helicity modulus, which takes place asof the helicity modulus tensor right beloW,(H) [or, more
reflected as a nonanalytic decrease in the screening lengt $ |(T,H), introduced below Eq(4) and referred to at vari-

A, |(T,H), is manifested also in the superconducting correpys points in the main text, follow from the general expres-
lation lengths¢, |(T,H). This assumption, which appears sjon (B9):

justified physical grounds, was used in the discussion of fluc-

A(TH) RNG)  A(T,H)  RiNG))

tuation conductivity(Sec. V). o [R}(a3)]?
Finally, we are in position to discuss our anisotropic ¢, (T,H)=CR|(qdp), CH(T:H):C—RA( 2"
gauge theory of Eq(4). A small a added to the external 190 (B15

vector potentialA in the original GL theory(1) translates
into a small vector potentiale{c)a added to our fictitious WhereRf,"(qg) are the scaling functions introduced in Eq.
gauge fieldSin Eq. (4). Since we are integrating ov& itis  (B10) and are to be evaluated beloWg(H). The gauge
useful to define new gauge fie®l= S+ (e/c)a and integrate theory scenario predicts that tifiendamental anisotropya-
overS, in the partition function. The effect of this is to move tio ¢|/c, takes on a universal value alofig,(H).

(e/c)a from the covariant gradient tern1§)#®|2 to the Above Tg(H), in the true normal state, infinite vortex
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this appendix, connecting the properties of the gauge theory

screening.((VxS)i”) in Eqg. (B13) becomes finite and description(4) aroundT4(H) to the general long-distance

~1/£4 . This causes the nonanalytic drop in teterm of

form of the helicity modulus and screening lengths of the GL

the helicity modulus and the corresponding screening lengththeory at finite field(1), is not only physically transparent

(B9), just as discussed in Sec.[¥ee Eq.(21)].

and appealing but also exact, provided our assumptiors

The reader should note that the set of results presented {iv) (Sec. ) are satisfied.
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