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Extreme type-II superconductors in a magnetic field: A theory of critical fluctuations
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A theory of critical fluctuations in extreme type-II superconductors subjected to a finite but weak external
magnetic field is presented. It is shown that the standard Ginzburg-Landau representation of this problem can
be recast, with help of a mapping, as a theory of a new ‘‘superconductor,’’ in an effective magnetic field whose
overall value is zero, consisting of the original uniform field and a set of neutralizing unit fluxes attached toNF

fluctuating vortex lines. The long-distance behavior of this theory is governed by a phase transition line in the
(H,T) plane,TF(H), along which the new ‘‘superconducting’’ order parameterF(r ) attains long-range order.
Physically, this phase transition arises through the proliferation, or ‘‘expansion,’’ of thermally generated
infinite vortex loops in the background of field-induced vortex lines. Simultaneously, the field-induced vortex
lines lose their effective line tension relative to the field direction. It is suggested that the critical behavior at
TF(H) belongs to the universality class of the anisotropic Higgs-Abelian gauge theory, with the original
magnetic field playing the role of ‘‘charge’’ in this fictitious ‘‘electrodynamics’’ and with the absence of
reflection symmetry alongH giving rise to dangerously irrelevant terms. At zero field,F(r ) and the familiar
superconducting order parameterC(r ) are equivalent, and the effective line tension of large loops and the
helicity modulus vanish simultaneously, atT5Tc0 . In a finite field, however, these two forms of ‘‘supercon-
ducting’’ order are not the same and the ‘‘superconducting’’ transition is generally split into two branches: the
helicity modulus typically vanishes at the vortex lattice melting lineTm(H), while the line tension and
associatedF order disappear only atTF(H). We expectTF(H).Tm(H) at lower fields andTF(H)
5Tm(H) for higher fields. BothF andC order are present in the Abrikosov vortex lattice@T,Tm(H)# while
both are absent in the true normal state@T.TF(H)#. The intermediateF-ordered phase, betweenTm(H) and
TF(H), contains preciselyNF field-induced vortices having a finite line tension relative toH and could be
viewed as a ‘‘line liquid’’ in the long-wavelength limit. The consequences of this ‘‘gauge theory’’ scenario for
the critical behavior in high-temperature and other extreme type-II superconductors are explored in detail, with
particular emphasis on the questions of three-dimensionalXY versus Landau level scaling, physical nature of
the vortex ‘‘line liquid’’ and the true normal state~or vortex ‘‘gas’’!, and fluctuation thermodynamics and
transport. It is suggested that the empirically established ‘‘decoupling transition’’ may be associated with the
loss of integrity of field-induced vortex lines as their effective line tension disappears atTF(H). A ‘‘minimal’’
set of requirements for the theory of vortex lattice melting in the critical region is also proposed and discussed.
The mean-field-based description of the melting transition, containing only field-induced London vortices, is
shown to be in violation of such requirements.@S0163-1829~98!06441-8#
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I. INTRODUCTION

Recent intense activity in the area of superconduct
fluctuations has brought into sharp focus the following fu
damental questions: What is the relationship between
Landau-level-based1–3 and the three-dimensional~3D!
XY-based4–6 descriptions of superconducting fluctuations
a magnetic field? Can the mean-field-based London mo
containing only magnetic field-induced vortices7 describe the
vortex lattice melting transition in the region of strong~criti-
cal! fluctuations? What is the nature of the normal phase
can it be usefully represented as a ‘‘line liquid’’8 of field-
induced vortices? What role is played at finite fields by th
mally generated vortex loops,9,10 which are responsible fo
the zero-field transition in extreme type-II superconducto
Particular importance and urgency has been attached to t
questions following the ground-breaking experiments11–13on
the thermodynamics of vortex lattice melting transition14

which clearly indicate that the low-field end of the meltin
line is entering the critical regime of high-temperature sup
conductors.
PRB 590163-1829/99/59~9!/6449~26!/$15.00
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In this paper, precise answers to these questions are
vided within a theoretical framework which allows for a sy
tematic solution to the problem of critical fluctuations in a
extreme type-II superconductor subjected to a finite,
weak magnetic field. This framework is built around th
‘‘gauge theory’’ scenario proposed earlier.9 Two main pre-
dictions follow from this scenario: first, there is a new tra
sition line in theH-T phase diagram,TF(H), along which a
thermally generated vortex loop ‘‘expansion’’ takes plac
reminiscent of the zero-field transition. AtTF(H), well de-
fined field-induced vortex lines are formed, having afinite
line tension relative to the field direction. Initially, these
lines are in a liquid state and solidify only at some low
temperatureTm(H) ~Fig. 1!. This is different from Abrikos-
ov’s theory, where vortices and their~Abrikosov! lattice are
formed simultaneously, atHc2(T); second, in contrast to the
3D XY behavior at zero field, the description of the critic
behavior alongTF(H) requires the combination of a com
plex ‘‘superconducting’’ order parameterF associated with
vortex loopsand a fictitious gauge fieldS, describing fluc-
tuations in the background system of field-induced vor
6449 ©1999 The American Physical Society
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6450 PRB 59ZLATKO TES̆ANOVIĆ
lines. The magnetic field determines the ‘‘charge’’ whi
couples F and S. The physical picture arising from th
‘‘gauge theory’’ is remarkably detailed and compelling, a
so entirely distinct from the ‘‘standard’’ approach15 that a
concentrated effort should be directed at exploring its con
quences. The main purpose of this paper is to provide
explicit model for critical fluctuations, to examine its ma
ramifications in some detail, and to advance a set of spe
predictions which can help establish the value of the ‘‘gau
theory’’ description though experiments and numerical sim
lations.

The essential feature of our description is that it conta
on equal footing,both the field-inducedvortex lines and
thermally generated critical fluctuations of the supercondu
ing order parameterC, associated primarily withvortex
loops. It is the latter that dominate the entropy in the critic
region.9 This is in fundamental contrast to other approach
which includeonly the field-induced vortices: the Landa
level ~LL ! description16–19 ~where other fluctuations becom
irrelevant at sufficiently high fields! and the mean-field-
based picture of London vortices15 ~where other fluctuations

FIG. 1. ProposedH-T phase diagram for the critical region o
extreme type-II superconductors. The dashed region denot
crossover from the Gaussian regime, where amplitude fluctuat
are strong, to the critical 3DXY-like regime, where amplitude fluc
tuations are suppressed. Within the 3DXY-like critical regime, the
London-type vortex loops and lines with tight cores are well defin
excitations. Along the temperature axis, this critical region
bounded by themean-field Tc . Along the field axis, the critical
region is bounded byHs (;Hb) Eq. ~6!. AboveHs , the physics of
the GL theory~1! is dominated by the formation of Landau leve
for Cooper pairs~Refs. 16 and 19!. TheF transition, or the vortex
loop ‘‘expansion’’ transitionTF(H) and the vortex lattice melting
Tm(H), occursimultaneouslyfor H.HZ;Hs . This is afirst-order
transition from the Abrikosov vortex lattice~VS! directly to the
normal state~N!. Below HZ , TF(H) and Tm(H) split into two
separatetransitions and merge again only at the true zero-field
perconducting transitionTc0 asH→0. ForH!Hs , the transition at
TF(H) is likely continuous, while the vortex lattice melting transi
tion remains first order. The intermediate phase (F), belowTF(H)
but aboveTm(H), is not a superconductor (^C&50), but it differs
from the true normal state~N! by a new type of long-range orde
characterized by the ‘‘superconducting’’ order parameterF(r ),
Eqs. ~2! and ~4!. Only NF field-induced vortex lines traverse th
system along the field direction in thisF-ordered state, while the
average size of thermally generated vortex loops is finite. In the
normal state~N!, the F order is destroyed as numerousadditional
vortex paths ‘‘expand’’ across the system in all directions.
e-
n

fic
e
-

s,

t-

l
s

can be ignored at sufficiently low temperatures, far below
critical regime!. Following the prescription proposed earlier9

which seeks to conveniently isolate the background of fie
induced from thermally generated degrees of freedom,
derive the following results: First, it is shown in Sec. II th
the familiar and frequently used ‘‘helium’’ or ‘‘London
model’’ of extreme type-II superconductors, in which th
amplitude fluctuations are suppressed, allows for a dir
mapping of the original problem to that of a new ‘‘superco
ductor,’’ whose order parameterF experiences an overa
magnetic field composed of the uniform external fieldH and
the set ofNF neutralizing ‘‘fluxes’’ attached to fluctuating
vortex lines. This mapping constitutes an explicit and tra
parent realization of the general connection proposed in R
9. The ‘‘helium model’’ is then a candidate to, in addition
the familiar vortex lattice melting lineTm(H), exhibit the
conjectured ‘‘F transition’’ ~or the vortex loop ‘‘expansion’’
transition in afinite field!, the universality class of which is
defined by an anisotropic Higgs-Abelian gauge theory.9,20

Physically, thisF transition corresponds to the vanishing
the effective line tension for very large thermally genera
vortex loops: atTF(H), the energy-entropy balance in th
free energy shifts in favor of large loops and spontaneou
created infinite vortex-antivortex paths proliferate across
system. The ensuing change in the topology of the vor
paths results in a thermodynamic liquid-gas phase transit
associated with a change in the U~1! symmetry of a vortex
system~Appendix A!. Simultaneously, the field-induced vo
tex lines lose their line tension relative to the field directi
and the ‘‘line liquid’’ description breaks down. As our se
ond result, it is shown that the fictitious gauge theory pas
a crucial test, allowing us to connect its ‘‘charge’’ to th
original magnetic field. Third, we use this connection in S
IV to construct scaling functions for the critical thermod
namics of extreme type-II superconductors. Furthermore,
much-debated difference between the 3DXY-like descrip-
tion at low fields and the LL description appropriate at hi
fields is closely linked here to the difference between
extreme ‘‘type-II’’ and the extreme ‘‘type-I’’ behavior of the
gauge theory~Sec. III!. Fourth, it is shown in Sec. V that a
vortex loop ‘‘expansion’’ leads to an abrupt drop in the c
efficient of theq2 term in the helicity modulus, from which
one can extract the thermodynamic exponent (n) of the F
transition. Related criteria are also proposed which test
the presence or absence of an effective ‘‘diffusion’’ of vort
lines along the field and demonstrate the close relation
tween the ‘‘F order’’9 and viability of the vortex ‘‘line
liquid’’ 8 description. These predictions, based only on glo
topological properties of loops and lines, can be used to
ficiently identify the vortex loop ‘‘expansion’’ lineTF(H) in
numerical simulations of the weakly frustrated 3DXY and
related models. Fifth, assuming a widely used form of d
namical scaling, the explicit expression for the fluctuati
conductivitys(T,H) is derived in Sec. VI in the vicinity of
theTF(H) line. At TF(H) there is an experimentally detec
able rapid onset of additional dissipation, caused by th
mally expanding vortex loops whose size is reaching sam
boundaries. It is tempting to associate this onset atTF(H)
with what is empirically known as the ‘‘decoupling’
transition,21 although the physical origin of such addition
dissipation in our theory is entirely unrelated to any ‘‘deco
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PRB 59 6451EXTREME TYPE-II SUPERCONDUCTORS INA . . .
pling’’ of any ‘‘layers.’’ 22 Instead, it signifies the loss o
integrity of field-induced vortex lines as their effective lin
tension disappears atTF(H). At this point, one also expect
a distinct change in the pinning properties of the liquid sta
there is no pinning in the true normal state aboveTF(H) just
as there is no pinning aboveTc0 . In this senseTF(H) rep-
resents an upper boundary for pinning and could be view
loosely as ‘‘renormalized’’Hc2(T). Finally, in Sec. VII, it is
demonstrated that the vortex lattice melting transition in
critical region involvessimultaneousordering of the field-
induced and thermally generated degrees of freedom a
thus cannot be faithfully represented by a mean-field-ba
London model,7 which includes only the former. Actually, a
the melting line tends towardTc0 in the limit of vanishing
magnetic field, the entropy change involved in ordering
thermally generated loops overwhelms the configuratio
entropy of the field-induced vortex lines. This provides dire
theoretical support for the fundamental nature and sign
cance of the experiments by Zeldovet al.,11 Schilling
et al.,12 and Roulinet al.,13 and new numerical simulation
of Nguyen and Sudbø.23,24

II. FROM GINZBURG-LANDAU THEORY
TO GAUGE THEORY

The starting point is the anisotropic Ginzburg-Land
~GL! theoryZ5*DCexp$2*d3rF/T%, where

F5auCu21 (
m5i ,'

gmUS ¹m1
2ei

c
AmDCU2

1
b

2
uCu4,

~1!

anda5a0(T2Tc), gm , andb are the GL coefficients. Fre
~periodic! boundary conditions are imposed in thei (') di-
rection. The limitk→` is considered, which is particularl
appropriate for high-temperature superconductors~HTS’s!.
In this limit, the external magnetic fieldH5¹3A' acts as a
constraint, forcing every allowed configuration of the syste
to have the overall vorticityNF along H (i ẑ). The overall
vorticity along H is defined as a line integral*dl•¹w/2p,
where the contour of integration goes around the perim
of the system in thexy plane andw(r ) is the phase ofC.
NF , the number of elementary flux quantaf0 , is given by
L'

2 /2p l 2, where l 5Ac/2ueuH is the magnetic length. It is
assumed that this constraint is enforced byNF vortex paths,
meandering from one end of the system to another, alongH.9

In this paper, a method is introduced to enforce the c
straintexplicitly, by considering adifferentpartition function
Z85*DF*) i 51

NF (Dr i@s#/NF!)exp$2*d3rF8/T%, with

F85auFu21gmUS ¹m1 iUm1
2ei

c
AmDFU2

1
b

2
uFu4.

~2!

Z8 describes the system ofNF ‘‘shadow,’’ or s, vortices
$r i@s#% in thermal equilibrium with a complex fieldF(r ).
Theses vortices sample arbitrary paths that originate~termi-
nate! at z50 (z5L i) and differ from the ones introduced i
Ref. 9 by the full inclusion of ‘‘overhang’’ configurations
The effective magnetic fieldH8 experienced byF consists of
the uniform external fieldH and the collection of unit
:
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‘‘fluxes’’ attached tos vortices:¹3U52pns(r ), ¹•U50,
wherens(r ) is the flux density associated with a given co
figuration ofs vortices,$r i@si #%:

25

ns~r !5(
i

NF E
L
dr id~r2r i@si # !, ~3!

with L denoting the line integral. The net value ofH8 aver-
aged over the systemvanishes.

The superconductors~1! and~2! areequivalentwithin the
familiar ‘‘helium model’’ of extreme type-II behavior; they
are just two different representations of the same phys
problem. To show this we recall the main features of t
‘‘helium model’’:26 the true transition temperatureTc0 ~Fig.
1! is assumed to besufficiently belowthe mean-fieldTc for
amplitude fluctuations to have effectively subsided. Arou
Tc0 , the relevant fluctuations are considered to be those
London-type vortex loops and lines with steric repulsion a
well defined, tight cores of sizea! l . Consider now a single
configuration of these loops and lines. First, we extract
singular part of¹w(r ) by solving two equations¹3¹w
52pn(r ) and¹•¹w50, wheren(r ) is defined by the same
expression asns, Eq. ~3!, but with the summation running
over all vortex loops and lines. After this ‘‘vortex’’ part ha
been extracted, the rest ofC(r ) is assumed to take the form
which minimizesF for a given configuration of these lin
singularities. We then integrate over all regular~‘‘spin-
wave’’! fluctuations inw(r ). Finally, all such distinct con-
figurations of vortex loops and lines are summed over
produceZ ~1!. This same procedure is imposed onF(r ):
first we extract the part ofits phase,¹f(r ), due to vortex
loop and line singularities inF(r ) and then determine the
rest ofF(r ) by minimizingF8, Eq. ~2!, for a given configu-
ration of these line defectsand svortices. Again, we inte-
grate over all ‘‘spin-wave’’ fluctuations off relative to this
given configuration of loops and lines. By direct comparis
of these ‘‘helium model’’ expressions obtained from Eqs.~1!
and ~2!, it is evident that all configurations contributing t
the originalZ are reproduced inZ8 and have the same en
ergy. However, some of these configurations are coun
more than once inZ8. This overcounting of configurations in
Z8 relative toZ, given by (NF1Na)!/NF!Na! with Na be-
ing the number of vortex lines inF which traverse the
sample alongH, is a surface effect in 3D and should b
unimportant in the thermodynamic limitL' , L i→`. More-
over, within the conjecturedF-ordered phase~Fig. 1!, the
configurations withNaÞ0 are irrelevant in the thermody
namic limit and there is no overcounting at all. We conclu
that, within the ‘‘helium’’ model, the free energy evaluate
from Z8 coincides with the free energy of the original pro
lem ~1! and the two superconductors haveidentical
thermodynamics.27 Consequently, Eq.~2! accomplishes a
straightforward and transparent reformulation of the origi
problem, in the spirit of Ref. 9, while avoiding more cum
bersome gauge transformation method employed the25

More details on the ‘‘helium model’’ are presented in A
pendix A.

If we relax the above minimization condition on the am
plitude of our order parametersC and F and permit weak
amplitude fluctuations, we expect that the above close r
tion betweenZ, Eq.~1!, andZ8, Eq.~2!, still holds, as long as
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6452 PRB 59ZLATKO TES̆ANOVIĆ
the parameters of GL theory keep us in the extreme typ
limit. This requires theaveragecore sizea to be smaller than
the average spacing between vortex segments, so that v
excitations remain well defined. It is precisely this same
quirement that is invoked to justify the frequent use of t
‘‘helium model’’ to emulate fluctuation behavior of extrem
type-II superconductors in zero field. It is natural to exp
that, if such a requirement is satisfied at zero field, it w
remain so at low fields, such thata! l . Based on this, on the
equivalence of representations~1! and ~2! in the ‘‘helium
model’’ limit, and on our general expectation that the e
treme type-II behavior with only weak amplitude fluctuatio
is effectively equivalent to the ‘‘helium model,’’ for the res
of this paper I consider Eq.~2! to be simply an alternative
formulation of the original problem. This new reformulatio
~2! can now be used instead of Eq.~1! to compute various
fluctuation properties and, most importantly, itscritical be-
havior shouldcoincidewith that of the original GL theory
~1!.

The advantage ofZ8, Eq. ~2!, is that, by isolating the
background of field-induced degrees of freedom~s vortices!,
it focuses our attention on the new ‘‘superconducting’’ ord
parameterF(r ) and its spatial correlations, measured
^F(r )F* (r 8)&, where ^•••& denotes thermal average ov
Z8. All excitations ofF(r ) are thermally generated, in the
following precise sense:every configuration ofF(r ), con-
tributing a finite weight to Z8 in the thermodynamic limit,
has the overall vorticity alongH equal to zero. In particular,
F(r ) contains vortex loop excitations, whose ‘‘expansion
across the system is the mechanism behind theH50 super-
conducting transition~Fig. 2!. By focusing onF, we can
fashion a theory of the stronglyinteracting Wilson-Fisher
(3D XY) critical point, ‘‘perturbed’’ by a weak field.9 This
is precisely the opposite of the classic approach,28 where the
Gaussian theory in afinite field is perturbed by weak inter
action. Such an approach starts with the LL structure fr
the outset and its critical behavior is always dominated
the lowest LL.28,16In the new formulation~2! we had built in
from the start our expectation that the weak field modifi
zero-field configurations only by introducing a low dens
of s vortex lines, the cores of which are well defined
virtue of strong amplitude correlations at the 3DXY critical
point. This is a ‘‘low-field’’ approach by design and offers
better prospect of constructing the desired theory.

To extract such a theory from Eq.~2! we must resort to
approximations. We construct the long wavelength (@ l )
limit of Eq. ~2! by coarse-graining vorticity fluctuations pro
duced bys vortices. The ‘‘hydrodynamic’’ vorticityV(r ) is
defined as the coarse-grained version of the ‘‘microscop
flux density Dns(r )5ns(r )2(2p l 2)21z. Upon inserting
*DVd@V(r )2Dns(r )# in Eq. ~2!, integrating over$r i@s#%,
and after introducing the fictitious vector potential¹3S
52pV, ¹•S50, the effective long-wavelength theory b
comes;*DF*DSexp$2*d3rFeff /T%,

Feff5auFu21gmuDmFu21
b

2
uFu41

Km

2
~¹3S!m

2 , ~4!

where Dm5¹m1 iSm , K'(T,H)5c'G21Tl, and K i(T,H)
5ciGTl. Higher powers and derivatives of (¹3S)m , essen-
tial for the description of the vortex lattice melting, also a
II
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pear in Eq.~4!, but are unimportant atTF(H). A detailed
derivation of the ‘‘gauge theory’’~4! is given in Appendix
A. c',i;O(1) are dimensionless and have a relatively we
H,T dependence in that portion of the critical region whi
is well described by Eq.~4!.9 A close relation betweenK',i ,
c',i and the components of the helicity modulus tensor of
GL theory ~1! is discussed later in the text~see Sec. V and
Appendix B!. G is the anisotropy atTc0 . SmallH-dependent
corrections to GL coefficients that also should appear in
~4! are ignored, since they are not important for our pres
purposes.

The following assumptions have been used in going fr
Eq. ~2! to Eq. ~4! ~see also Appendix A!.

~i! The correlation lengthjF , associated with the new
order parameterF, is not limited by l and can be much
longer than the original superconducting correlation len
jsc associated withC. Of course, this is the basic reaso
why we are interested in the reformulation~2! in the first
place. WhenjF@ l ,jsc, this assumption enables us to dro
as irrelevant9 at long distances terms containing higher d
rivatives and powers ofS from Eq. ~4!. Note, however, that
such higher-order terms in Eq.~4!, particularly those reflect-
ing the absence of up-down symmetry alongH @(¹3S) i

3

and the like#, must be restored when discussing vortex latt
melting and a possibility of a first-orderf transition9 ~Sec.
VII and Appendix A!. The gauge theory~4! offers in this
case (jF@ l ,jsc) a direct access to the deeplynonperturba-
tive regime of the original GL theory~1!, characterized by
j/ l @1, wherej is theH50 correlation length. In the oppo
site casejF! l , we are in theperturbativeregime,j/ l !1 of
the original theory. The long-wavelength expansion that
from Eq. ~2! to Eq. ~4! is then not justified and the new
reformulation~2! is not particularly useful.

~ii ! The system~1! is not in its superconducting state i
the vicinity of the putativeF transition. This assumption
fixes the form of the last two terms in Eq.~4! ~see Sec. V and
Appendix B!. Physically, it means that the system ofs vor-
tices contains configurations that wind from one end o
sample to another in the' directions (xy plane!. The pres-
ence of such windings allows a complete ‘‘screening’’ of
arbitrary infinitesimal fieldh(r ) added toH and the helicity
modulus tensor vanishes alongall of its principal axes~see
Sec. V and Appendix B!. This assumption has a strong th
oretical justification.29 It must be emphasized, however, tha
to my knowledge, there is no rigorous argument which co
rule out another possibility, that of the state right below t
F transition being an extremely anisotropic ‘‘supercondu
ing’’ liquid, containing no windings in thexy plane, with a
finite helicity modulusalong the field and zero perpendicula
to it. Indeed, some numerical studies are suggestive of
second possibility.30,24 However, other numerica
simulations,23,31,32as well as the available experimental da
favor our original nonsuperconducting liquid assumptio
Both alternatives can be described within the framework
the gauge theory, withK' /K i→` and potentially finite
‘‘mass terms’’ belowTf(H) added to Eq.~4! in the extreme
anisotropy case. On general physical grounds,29 I have cho-
sen to explore in this paper the case of finite anisotropy r
K' /K i and vanishing mass terms but the reader should
aware that the extreme anisotropy alternative remain
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FIG. 2. ~Color! A schematic representation of theH50 transition in an extreme type-II superconductor. The low-temperature Meis
phase (T,Tc0) contains only finite vortex loops. In the high-temperature normal state (T.Tc0) these loops connect and ‘‘expand’’ acro
the system, leading to a loss of phase coherence and finite dissipation. Two forms of superconducting order, described byC and F, are
equivalent here. For clarity, the vortex paths are drawn smoother than they actually are nearTc0 .
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FIG. 3. ~Color! Characteristic configurations of the system~a!
below and~b! aboveTF(H) @but always aboveTm(H)]. ~a! Field-
induced vortices~depicted in blue! wind all the way across the
system along the field direction but only undergo effective ‘‘diff
sion’’ in the transverse direction.~b! After the loop ‘‘expansion’’ at
TF(H) this effective transverse ‘‘diffusion’’ is destroyed, as fiel
induced vortices can ‘‘hitch a ride’’ all the way across the system
the xy plane by connecting to thermally generated infinite loo
present in the true normal state. Note the presence of ‘‘vortex
chyons’’ ~depicted in red! which wind only in thexy plane. Again,
for illustrative purposes, the vortex paths are drawn smoother
they actually are nearTF(H).
n
s
a-

n

FIG. 4. ~Color! Characteristic configurations of the system~a!
below and~b! aboveTm(H) @but always belowTF(H)]. ~a! Field-
induced vortices~blue! execute small oscillations around their equ
librium positions. Thermally generated vortex loops~red! are small
and rare.~b! Above the melting transition thermally generated loo
discontinuously grow larger and more numerous, although they
remain of finite size. This discontinuous change in the state of
loops accounts for̂F&SÞ^F&L at the simplest mean-field level.



r

th

th

m

ne

re
in

er
ou

th

-
it

ea

ed
is
n-

a-

ic

ua
-

g

a
pl

e

as

w

, or

,
t
y

tion

ch

o-

u-
’’
p

ver

ter
g’’

n

e
a
za-

io

n-
riti-

te

tor

e of

ion
on

6454 PRB 59ZLATKO TES̆ANOVIĆ
possibility33 and would lead to results which, while simila
on a general level, differ in details.34

~iii ! There are two relevant length scales controlling
critical behavior:jF , which characterizesboth the spatial
correlations ofF and the size of ‘‘overhangs’’ in the system
of s vortices, andl , which characterizes the long-waveleng
fluctuations of the background field-induced vorticity.

~iv! The core effects can be ignored. Clearly, the ‘‘heliu
model’’ itself is perfectly well defined in the limita→0. For
a small but finite, there is a small correction to the core li
energyEc→Ec1wcH•v, wherev5dr /ds is the ‘‘velocity’’
of a vortex segment andwcH/Ec;a2/ l 2!1. Similarly, there
are ‘‘velocity’’-dependent corrections to the short-range
pulsion between vortex cores. Such terms are irrelevant s
they result in higher-order derivatives in Eq.~4!. For ex-
ample, it is easy to see that the correction to the core en
cancels out for any finite vortex loop and can be factored
for s vortices.

What is the physics behind gauge theory~4!? The external
field has been eliminated from the gradient terms in Eq.~4!
(^H8&50) but, of course, it has not vanished: itreappears
through theH dependence ofK',i . The gauge theory~4! can
be viewed as fictitious, anisotropic ‘‘electrodynamics’’ wi
‘‘magnetic permeability’’ m051/4pT. The ‘‘vector poten-
tial’’ S is coupled to the‘‘matter’’ fieldF via ‘‘electrical
charge’’

ẽ',i
2 5

G1/3

c',il
}AH.

The above ‘‘charge’’ andK',i describe the ‘‘polarizability’’
of the medium composed ofs vortices and are directly re
lated to the long-wavelength components of the helic
modulus tensor~Sec. V and Appendix B!. This picture em-
bodies the physical idea that the dominant effect of a w
magnetic field in Eq.~1!, oncejsc has saturated to; l , arises
through the mutual ‘‘screening’’ of large thermally generat
loops and the background of field-induced vorticity, at d
tances@ l . Such ‘‘screening’’ reduces the effective line te
sion of these large loops relative to its value at theH50
(ẽ',i50) transition. The strength of the ‘‘screening’’ is me
sured by the fictitious ‘‘Ginzburg parameter’’ of Eq.~4!,

ks
2;c

b l

2a0
2TcjGL

4
5

b

2q0
2
}

1

AH
, ~5!

where c5(c'
2 ci)

1/3 and jGL5(jGL'
2 jGLi)

1/3, with jGL',i
5Ag',i /a0Tc being the GL coherence lengths.b
5b/a0

2TcjGL
3 and q0

25ẽ2jGL are the dimensionless quart
coupling and ‘‘charge,’’ respectively. AsH→0, the fictitious
‘‘charge’’ vanishes and we recover the zero-field 3DXY
critical point. ForH finite but weak, the ‘‘screening’’ is weak
(ks@1), indicating that the effects of finiteẽ are small com-
pared to strong amplitude correlations produced by the q
tic term in the GL theory~1!. We have therefore manufac
tured a critical theory~4! describing the strongly interactin
Wilson-Fisher (3DXY) critical point weakly ‘‘perturbed’’
by a finite magnetic field~finite ‘‘charge’’ ẽ',i).

35

The gauge theory scenario is clearly different from wh
takes place in spin systems, where the external field cou
e

-
ce

gy
t

y

k

-

r-

t
es

paramagnetically to the order parameter. In an extrem
type-II superconductor~1!, thediamagneticcoupling ofH to
C does not explicitly break the U(1) symmetry, which w
spontaneously broken at the zero-field 3DXY critical point.
The high-temperature phase~true normal state! still retains
the full U(1) symmetry. This symmetry can be broken at lo
temperatures, either in a ‘‘simple’’ way, withC acting as the
order parameter, as is the case in the ‘‘vortex solid’’ state
in a more subtle fashion, withF assuming the role of the
new order parameter. Similarly, the gauge theory~4! differs
from frequently used ‘‘dimensional reduction’’ approaches36

where the behavior of Eq.~1! at finite fields is related to tha
at zerofield but in afinite system, the size of which is set b
the magnetic lengthl . A typical dimensional reduction (D
→D22) approach leads to the superconducting correla
length which is limited byl , i.e., the ‘‘system size.’’ This
agreeswith the gauge theory scenario,9 since ‘‘electrody-
namics’’ ~4! also predictsjsc(H); l in the critical region
~see Sec. V!. However, a dimensional reduction approa
also predicts thatall other correlations are limited byl and,
consequently, eliminates the possibility of any true therm
dynamic phase transition in the GL theory~1!. This is in
contradiction with the overwhelming experimental and n
merical evidence indicating some form of a ‘‘vortex liquid
to ‘‘vortex solid’’ transition at low temperatures. In shar
contrast, gauge theory~4! and the reformulation~2! are fully
three-dimensional theories, just like Eq.~1!. They naturally
lead to two basic types of correlations that can extend o
distances@ l and produce phase transition~s! at low tempera-
tures ~Fig. 1!: those associated with positional order ofs
vortices and the familiar superconducting order parame
C(r ) and those associated with the new ‘‘superconductin
order parameterF(r ).

The conjecture9 that connects the critical behavior of a
extreme type-II superconductor~1! to a fictitious supercon-
ductor inzerofield ~4!, the ‘‘charge’’ of which is set by the
original external fieldH, must pass the following test: th
way H enters inFeff must be consistent with its being
relevant operator of scaling dimension 2 in the renormali
tion group~RG! sense at the 3DXY critical point. This scal-
ing dimension is suggested by dimensional analysis37 @rel-
evant effects ofH enter through the dimensionless rat
jsc

2 (H50)/l 2}Hjsc
2 (H50)], is correct to two-loop order,38

and is likely an exact property of the original GL theory~1!
by virtue of gauge invariance. In addition, the scaling dime
sion appears independent of the nature of the zero-field c
cal point ~i.e., whether it is 3DXY or Gaussian!. On the
other hand, as the ‘‘charge’’ẽ is turned on in the gauge
theory ~4!, the RG analysis indicates that, first, the fini
charge anisotropy (ẽ'Þẽi) is marginally irrelevant,39,40 and
second, the scaling dimension of ‘‘charge’’ at the 3DXY
critical point is 1/2; i.e., the relevant dimensionless opera

is ẽAjsc(ẽ50). The second statement isexactto all orders
in perturbative RG and is also independent on the natur
the neutral critical point.41 Since, inFeff , Eq. ~4!, ẽ2}1/l
}AH, this translates immediately to the scaling dimens
of H being 2, as required. More generally, for dimensi
D,4, ẽ2} l D24, while the scaling dimension ofẽ is
22(D/2), again consistent with the scaling dimension ofH
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being 2. Note that in both formulations, Eqs.~1! and~4!, the
corresponding relevant operatorsH and ẽ (}H1/4) are pro-
tected against acquiring anomalous dimensions by the s
symmetry, the gauge invariance. These results demons
the internal consistency of the coarse-graining proced
leading to Eq.~4! and strongly support the conjecture9 that
Feff captures the long-wavelength~critical! behavior of Eqs.
~2! and ~1!. In what follows, I promote this conjecture to
fact and examine its consequences.

III. HIGH FIELDS VERSUS LOW FIELDS

Two key consequences for the physics of the pres
problem follow fromFeff . First, the gauge theory Eq.~4! has
two distinct regimes of behavior: the weak ‘‘screening
limit ( ks@1) corresponding to the extreme ‘‘type-II’’ limi
of the fictitious ‘‘electrodynamics’’ and the strong ‘‘scree
ing’’ limit ( ks!1) corresponding to the extreme ‘‘type-I
behavior. The extreme ‘‘type-II’’ behavior of Eq.~4! is pre-
cisely the low-field regime of the original theory~1! which
exhibits the 3DXY-like critical fluctuations. In this low-field
regime, the ‘‘screening’’ provided by the background
field-induced vorticity is weak and the dominant fluctuatio
are still London-type vortex loops and lines. The core siza
remains small and well-defined, kept in check by strong a
plitude correlations coming from the quartic term in Eq.~1!,
just as was the case at the zero-field 3DXY critical point. It
is in this sense (ks@1) that we can think of a 3DXY critical
point weakly ‘‘perturbed’’ by a finite field.35 In the extreme
‘‘type-I’’ limit, the situation is entirely different. There, the
‘‘screening’’ is strong (ks!1) and the amplitude fluctua
tions ran rampant. It is not possible any longer to think
relevant fluctuations in the gauge theory~4!, nor in Eqs.~2!
and ~1!, as being London-like vortices. Rather, amplitu
fluctuations are now of essential importance and individ
vortex cores are ill defined. In the gauge theory~4!, the two
regimes are separated by the conditionks;1. However, a
word of caution must be inserted here since, once we ar
the ‘‘type-I’’ regime of Eq.~4!, our original line of reasoning
that led from Eq.~1! to the gauge theory~4!, via reformula-
tion ~2!, is itself compromised and it is not clear wheth
there is a useful connection between the extreme ‘‘type
limit of ~4! and our original problem~1!. Instead, we mus
return back to the beginning~1! and start from scratch. It is
natural to identify this extreme ‘‘type-I’’ behavior at hig
fields, characterized by strong amplitude fluctuations, as
regime in which the Landau level structure of the origin
GL theory ~1! becomes important. The conditionks

;0.4/A2,41 separating ‘‘type-II’’ from ‘‘type-I’’ ‘‘electrody-
namics’’ in Eq.~4!, translates to the criterion for the extern
magnetic field,H;Hs , telling us whetherH is ‘‘low’’ or
‘‘high.’’ From Eq. ~5! one gets

Hs>S c

0.16D
2

b2Hc2
GL~0!. ~6!

If H!Hs , then the field is ‘‘low’’ and the use of a 3D
XY-like description is justified. In the opposite limitH
@Hs , the field is ‘‘high’’ and a 3DXY-like description falls
apart~Fig. 1!. If this is the case, we must abandon our ze
and low-field imagery of the ‘‘helium model’’ and use as
e
ate
re

nt

-

f

l

in

’’

e
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starting point an approach that is explicitly designed to d
with a high-field behavior, an example being the GL-LL
theory.16,19 Note thatHs , within factors of order unity,co-
incides with Hb , the field below which the high-field
Landau-level-based description breaks down, due to str
LL mixing.16 Since this criterion16 is derived from entirely
different arguments, we briefly reproduce it here for co
pleteness. Going back to the GL theory~1!, we expand
C(r )5( j 50C j (r ) in the set of LL manifolds,C j (r ). Recast
in terms of dimensionless variables, the GL free energy fu
tional becomes

E d3r H (
j 50

@ t1~2 j 11!h#uC j u21u¹ iC j u21
b

2
uCu4J ,

~7!

wheret5(T/Tc)21, h5H/Hc2
GL(0), andb is defined below

Eq. ~5!. After rescalingC andr by b in such a way that the
coefficients of quartic and gradient terms in Eq.~7! are set to
1/2 and 1, respectively, the ‘‘mass term’’ forC j becomes

t

b2
1~2 j 11!

h

b2
.

As we reduce the fieldH, for T in the critical region (T
'Tc), the mixing of LL’s becomes strong whenh/b2 be-
comes some number of order unity. We can view this a
‘‘Ginzburg criterion’’ along theH axis. It implies that the
high-field, Landau level description becomes inadequate
fields less than

Hb;b2Hc2
GL~0!;GiHc2

GL~0!, ~8!

where we have used a close relation betweenb and a con-
ventional Ginzburg fluctuation parameter Gi.16 The defini-
tion and meaning of Gi exhibit wide variations in the liter
ture, but typically Gi;b2.15 As advertised,Hb;Hs . The
same situation is encountered in 2D, except nowHs;Hb

;bHc2
GL(0). Thefact that the criterion for the breakdown o

the Landau-level-based theory derived from the high-fi
side agrees with the region of validity of our 3DXY-like
approach derived from the opposite, low-field side is anot
argument in favor of the gauge theory scenario.

While it is the GL theory~1! that provides a realistic
description of fluctuation behavior in extreme type-II sup
conductors, many numerical studies are performed on the
XY model. The ultimate low-field critical behavior should b
the same and computational effort is much reduced. I
therefore useful to discuss here the physical meaning of
‘‘high’’- and ‘‘low’’-field regimes in the context of the frus-
trated 3DXY model. There is an immediate difference b
tween this model and the GL theory~1! regarding the high-
field behavior. In the GL theory this regime is dominated
Landau levels and is characterized by strong amplitude fl
tuations. In contrast, in the 3DXY model, the amplitude
fluctuations are frozen at the ‘‘microscopic’’ level of a sing
XY spin. As a result, there is no Landau level formation
this model. Instead, the high-field behavior of a uniform
frustrated 3DXY model, as one approaches the ‘‘mea
field’’ Hc2(0), isentirely determined by the pinning of field
induced vortices by the underlying lattice. We can think
this situation, to some extent, as having the LL structure
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Eq. ~7! thoroughly ‘‘mixed’’ by a very strong external peri
odic potential. There is, however, a relationship between
low-field critical behavior of the 3DXY model and GL
theory. It derives from our concept of ‘‘screening’’ of larg
thermally generated vortex loops by the background of fie
induced vorticity. In the weakly frustrated 3DXY model
such ‘‘screening’’ is measured by a parameterksXY, which
is theXY model counterpart ofks in the GL theory~5!:

ksXY
2 ;Af T~T,H !

f F

}
1

AH
, ~9!

wheref F measures the uniform frustration and is the fract
of the elementary flux quantumf0 per plaquette, while
f T(T,H) is the average density per plaquette of vortex a
antivortex segmentsi H piercing thexy plane. Note that
f T(T,H) includesall such vortex segments, not just tho
connected to infinite vortex loops. In order for the system
be in the low-field critical regime of a weakly frustrated 3
XY model we needksXY@1 or f F! f T(T,H).

The actual value ofHs ~or Hb) in high-temperature super
conductors is of considerable importance. There are num
ous estimates in the literature, based both on Eq.~8! and on
the analysis of various experimentally measured quantitie
terms of either the GL-LLL theory or the so-called ‘‘3DXY
scaling’’ ~see Sec. IV!. A direct estimate from Eq.~8!, in a
moderately anisotropic HTS system like optimally dop
YBCO, uses Gi'0.01 andHc2

GL(0)'160 T, leading toHs

;1 – 2 T. This estimate is subject to an irksome uncertain
both intrinsic~due to our inability to theoretically determin
Hs or Hb with a precision better than within factors of ord
unity! and extrinsic@due to difficulties in extracting precis
values of the GL parameters entering Eq.~1!, although the
situation here is rapidly improving1#. The estimates ofHb
based on the fits of fluctuation thermodynamics to the G
LLL theory are in general agreement with the above value
1–2 T ~Ref. 1! and seem to give an upper limitHb,8 T.42

Similar analyses, based on the fits to a low-field ‘‘3DXY
scaling,’’ generally produce results which seem consist
with the 3DXY-like behavior to much higher fields, 14 T o
even higher.5,6,43 An important difference between the tw
approaches is that, within the GL-LLL theory, not only th
scaling law but the scaling function and explicit expressio
for thermodynamic quantities are known with considera
accuracy.16,1,19 In the 3DXY approach only the scaling law
itself is known but the actual scaling function and, mo
importantly, the physics behind it are not. The gauge the
scenario should help remedy this situation.

IV. CRITICAL THERMODYNAMICS AND F TRANSITION

This brings us to the second important consequence
description~4!, which has bearing on the nature of critic
behavior in the low-field (H!Hs), extreme ‘‘type-II’’ limit
of the gauge theory. The most significant property in t
regime is that, forẽ small butfinite, there is a true thermo
dynamic phase transition separating the high- and lo
temperature phases of the theory, the ‘‘normal’’ and
‘‘Meissner’’ state, respectively. Forẽ50 this is the standard
H50 phase transition of Ginzburg-Landau theory. Th
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phase transition is continuous and in the universality clas
the 3DXY model. The actual mechanism of the phase tr
sition is directly tied to the expansion of thermally genera
vortex loops, as depicted in Fig. 2. In the ordered state be
Tc0 , there is afinite average size for such loops,LF , and
configurations which contain infinite loops, ‘‘percolating
from one end of the system to another, do not contribute
the partition function in the thermodynamic limit. At dis
tances much larger thanLF , there is nothing to disturb the
long-range correlations in̂F(0)F* (r )&: it is not possible to
‘‘polarize’’ closed loops at such large distances and th
behave as bound ‘‘dipoles.’’ This is what enables the lon
range phase order that characterizes the supercondu
state. AboveTc0 , as more and more vortex segments a
created by thermal excitation, the loops connect, in the se
that now there is a finite contribution to the partition functio
from configurations having infinite loops, ‘‘percolating
across the system. This implies thatLF→` and it is now
possible to ‘‘polarize’’ the system of loops over arbitra
large distances. Such infinite vortex loops act as ‘‘fr
charges’’ and produce a ‘‘metallic screening’’ of small e
ternal magnetic fields, resulting in a vanishing of the helic
modulus, as discussed in the next section. This picture of
3D XY phase transition as a vortex loop ‘‘expansion’’ has
origins in the works by Onsager23,44 and Feynman,45 in the
context of superfluid helium,20 but should equally well apply
to high-temperature superconductors with their short B
coherence lengths and extremely largek (;100).46

As finite ẽ @finite H in Eq. ~1!# is turned on in Eq.~4! we
are facing a potentially dramatic change in this picture. In
neutral-superfluid picture described previously, vortex loo
have long range London-Biot-Savart interactions. Onceẽ is
finite, these interactions are ‘‘screened’’ by the vector pot
tial S and, at distances much longer than the ‘‘penetrat
depth’’ ls}1/ẽ, all the interactions are short ranged. T
simplest and best known example of this is just an ordin
superconductor atzeroexternal field. Thereẽ is the real elec-
trical chargee, while S turns into the ordinary Maxwell vec
tor potentialA. This charged-superfluid problem has be
studied extensively, starting with Ref. 47, and is presen
thought to have the following properties:41 as already indi-
cated in Sec. II, the chargee is a relevant operator in the RG
sense, with scaling dimension equal to 1/2. This immedia
destabilizes the neutral-superfluid, zero-charge 3DXY criti-
cal point. There are, however, two new critical points, ch
acterized byfinite charge. The behavior of strongly type-
superconductors (k@1) is determined by the stable critica
point and describes thecontinuousphase transition betwee
the normal state and the Meissner phase in r
superconductors.41 Another critical point istricritical and
unstable in one RG direction, in addition to temperatu
This tricritical point defines the transition between type
~small charge! and type-I~large charge! behavior and takes
place fork;0.4/A2.41 In a type-I superconductor, the phas
transition is expected to bediscontinuous, as originally ar-
gued in Ref. 47. In the type-II regime, where the transition
continuous, the universality class for the charged-superfl
appears to be the ‘‘inverted 3DXY,’’ 48,49or very ‘‘close’’ to
it41,50 ~see Appendix A for further details!.

What is the connection between these general prope
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of the charged-superfluid model and our problem? It ste
from the gauge theory~4!. This theory looks just like the
theory for a charged superfluid, except for the charge ani
ropy, which should be irrelevant.39,40 The underlying phys-
ics, of course, is very different. There is no fluctuating ele
trodynamic vector potential in our case, since we are in
k→` limit. Instead, our fictitious vector potentialS de-
scribes the long-wavelength vorticity fluctuations in t

backgrounds vortex system and our ‘‘charge’’ẽ is the origi-

nal magnetic fieldH in disguise (ẽ 2}AH). Despite this dif-
ference in physical meaning, the long-distance behavio
Eq. ~4! should still be closely related to the electrodynam
of a charged superfluid. In particular, we expect two differ
thermodynamic phases of Eq.~4!: the high-temperature
phase with only short-range correlations in^F(0)F* (r )&
(^F&50) and the low-temperature phase, in whi
^F(0)F* (r )& develops long-range order (^F&Þ0). The
‘‘Meissner phase’’~or theF-ordered state! of Eq. ~4! corre-
sponds to the state of the original GL theory~1! in which
only NF field-induced vortex lines cross the system from o
end to another alongH. All other vortex excitations form
either closed thermally generated loops offinite size orfinite
‘‘overhang’’ configurations decorating field-induced lines
they make their way meandering from bottom to top of t
sample. These field-induced vortex lines, ors vortices in
reformulation~2!, have a finite line tensionrelative to the
field direction and undergo effective ‘‘diffusion’’ along thez
axis ~this is discussed in greater detail in the next section!. In
the high-temperature, ‘‘normal metal’’ phase of Eq.~4!, the
F order is destroyed by the expansion of thermally genera
vortex loops and ‘‘overhangs’’ decoratings ~field-induced!
vortices. We now have new, thermally generated infin
loops ‘‘percolating’’ all the way through the system in a
directions. These new infinite loops come ontop of the al-
ways present background ofNF s vortices. This is the nature
of the F transition9 in the gauge theory~4! and in reformu-
lation ~2!. The F transition is thefinite-field version of the
zero-field superconducting transition.9 Its thermodynamics,
however, belong to adifferent universality class: charge
superfluid~‘‘inverted 3D XY’’ ! as opposed to neutral supe
fluid (3D XY) at H50, with finite H playing the role of
finite charge (ẽ2}AH) in the gauge theory~4!.

The F-transition lineTF(H) plays a pivotal role in the
gauge theory scenario. Since, on general grounds,51 we do
not expect any true criticality associated with the first-ord
vortex lattice melting line in 3D,TF(H) is theonly critical
line in theH-T phase diagram of the original GL theory E
~1! and controls fluctuation thermodynamics and transpor
weak magnetic fields. It decides the issues of relevanc
irrelevance of various terms that can be added to~1! ~point or
columnar disorder, true electromagnetic screening with fin
k, etc.! and provides a foundation on which one can build
meaningful phenomenology of extreme type-II superc
ductors. In this respect,F(r ), the new ‘‘superconducting’’
order parameter characterizing the ‘‘line liquid’’ state,
‘‘more fundamental’’ than the originalC(r ). This will now
be amply illustrated.

To start building such a phenomenology, we first nee
reasonable estimate ofTF(H) ~Fig. 1!. It starts at the zero-
field superconducting transitionTc0 , whereF(r ) andC(r )
s
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are one and the same: theH→0 limit of Eq. ~1! coincides

with the NF→0 limit in Eq. ~2! and with theẽ→0 limit of
the gauge theory~4!. At finite, but weak field, we are in the
‘‘extreme type-II’’ regime (ks@1) of the gauge theory~4!
and we expect that theF transition is continuous and imme
diately becomes ‘‘inverted.’’ The transition temperatu
TF(H) is gradually reduced as a function ofH @or, equiva-

lently, ẽ in Eq. ~4!#, due primarily to the reduction in the
effective line tension of very large (@ l ) vortex loops caused
by ‘‘screening’’ generated by the ‘‘medium’’ of the field
induced vorticity. At these low fields,TF(H) can be evalu-
ated directly from Eq.~4!. As H increases, however, nume
ous additional terms present in Eq.~2!, but not included in
the gauge theory~4! on the grounds of their RG irrelevanc
at long distances (@ l ), start affectingTF(H). Among such
terms none are more important than short-distance (; l ) po-
sitional correlations which eventually lead tos vortex lattice
formation at low temperatures.

In general, theF transition and vortex lattice melting ar
two completely different phase transitions, with two differe
order parameters, driven by two different mechanisms. O
is a q→0, another aq;1/l transition. They are not entirely
unrelated, however, since they arise in the same theory,
~1! or ~2!. For instance, asH→0, we must haveTF(H)
>Tm(H).52 This is so because only in theF-ordered state do
s vortices in Eq. ~2! have finite long-range interactions
}u^F&u2.53 Without such long-range interactions thes vortex
system would remain in a liquid state asH→0.8 Similarly, in
the solid phase,s vortices form a lattice and cannot scree
large thermally generated vortex loops; i.e.,ẽ becomes ef-
fectively zero even forHÞ0. All vortex loops will then re-
main small and bound, just as they were atH50. This is
discussed in more detail in Sec. VII. The problem is that
melting transition isalways first orderand thus, in principle,
we could haveTF(H)5Tm(H) at some or evenall H . This
would mean that melting is so strongly discontinuous tha
always ‘‘jumps’’ over the intermediate,F-ordered phase
straight into the true normal state. Furthermore, theF tran-
sition itself could become first order9 at all H, due to danger-
ously irrelevant terms not included in Eq.~4! but considered
in Appendix A. I know of no argument to rule out this po
sibility.

This being said, the most likely outcome is the one d
picted in Fig. 1. At higher fields, as we approach the ‘‘typ
I’’ regime of Eq. ~4! @H;Hs, Eq. ~6!#, the gauge theory
suggests that theF transition itselfconvertsto first-order. In
this situation, it seems justified to assume thatTF(H)
5Tm(H), as shown in Fig. 1. For low fields,H!Hs , where
the melting transition becomesweaklyfirst order and Eq.~4!
predicts a strong ‘‘type-II’’ behavior andcontinuousF tran-
sition, it is natural to expectTF(H).Tm(H). At fixed low
field, as we increase the temperature in Fig. 1,both the ef-
fective strength of the Biot-Savart interaction betweens vor-
tices ~Sec. VII! and their effective ‘‘mass’’~Sec. V! de-
crease. As interactions and line tension go down, a natu
progression of thermodynamic phases follows: a solid~Abri-
kosov lattice!, a ‘‘massive’’ liquid (F-ordered phase o
‘‘line liquid’’ !, and, finally, a ‘‘massless’’ gas of unboun
loops ~a true normal state!. A mean-field calculation, per
formed in Ref. 9, indeed leads to such results. I propose h
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a simple criterion which summarizes the results of such
culations and can be used to determineTF(H) andTm(H) at
low fields,H!Hs : the s vortex lattice melts when the ave
age size of thermally generated loops,LF(T,H), reaches a
fractiondm of the average distance between field-induced(s)
vortices: LF(T,H)5dmA2p(j i /j')1/3l . dm;0.2– 0.3 and
LF(T,H)'LF(T,0);(j'

2 j i)
1/3 seem a reasonable estima

Here j',i5j0',0iutu2n are the true superconducting correl
tion lengths atH50. This results in an expression for th
vortex lattice transition temperature in the critical region:

tm~h!52
1

~dmA2p!3/2S j0'

jGL,'
D 3/2

h3/4, ~10!

where the temperature is measured relative to thetrue zero-
field superconducting transition,t5(T/Tc0)21, h is defined
below Eq.~7! and nxy was set to 2/3. The ratioj0' /jGL,'
should be;1. As argued above, we expectdm;0.2– 0.3.
The F transition, on the other hand, takes place when
size of thermally generated loops, atfinite H, reaches the
sample dimensions,LF(T,H)→`. This should take place
along the line where the average loop size, forH50,
LF(T,0), becomes of the order of average distance betw
s vortices, i.e.,LF(T,0)5dFA2p(j i /j')1/3l , with dF;1.
This determines the vortex loop ‘‘expansion’’ line o
TF(H):

tF~h!52
1

~dFA2p!3/2S j0'

jGL,'
D 3/2

h3/4, ~11!

with dF;1.54 Obviously, TF(H).Tm(H) since dm,dF .
Equations~10! and ~11! are valid only in the limit of low
fields,H!Hs, Eq. ~6!. At higher fieldsH;Hs , TF(H) and
Tm(H) merge together and both vortex loop ‘‘expansion
and vortex lattice melting occursimultaneously when
LF(T,H) reaches;A2p l from within the solid phase~Fig.
1!. The above expressions Eqs.~10! and ~11!, with dm and
dF serving as numerical parameters, can be viewed a
‘‘Lindemann criterion’’ for vortex loops and should provid
good estimates ofTF(H) andTm(H).

I now proceed to further investigate the phase diagr
represented by Fig. 1 and Eqs.~10! and ~11!. As the field is
turned on in Eq.~1! we can immediately write down th
scaling expression for the dimensionless singular part of
free energy,f , associated with critical fluctuations:

f 5utu22af6S H

HkutuD
D , ~12!

where t5(T/Tc0)21 and Hk depends on material param
eters. This expression is completely general and as such
veys little information. It is based only on the existence
thezero-fieldcritical point. The same expression can be wr
ten for spin systems or any other system exhibiting a crit
point which is then perturbed by a generalized ‘‘field.’’55 In
our case, theH50 critical point is in the 3DXY universality
class and we should havea5axy . Furthermore, based o
dimensional analysis and general physical arguments, it
proposed in Ref. 37 thatD52nxy . This result holds to two-
loop order in the RG~Ref. 38! and is likely exact, as empha
sized in Sec. II.f6(H/HkutuD) is a universal function of its
l-

.
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argument inside the 3DXY critical region of GL theory. At
present, its form is not known. Note that Eq.~12!, while
completely general, is written in a form which implicitl
suggests that the finite-field critical behavior is governed
the zero-field criticalpoint, as is frequently the case in spi
systems.

In the gauge theory scenario, the situation is different a
we can be more specific. First, as already emphasized, w
this scenario the critical fluctuations are governed by a tr
sition line and not a criticalpoint.9 This means that we im-
mediately learn something about the functionf6 defined in
Eq. ~12!: f6 is nonanalytic along the F-transition line
TF(H), Eq. ~11!. This line singularity should be explicitly
incorporated into the expression for the free energy. To
vise such a new scaling function, based on the gauge th
scenario, we start by observing that we can eliminate
‘‘trivial’’ part of the charge anisotropy from Eq.~4! by res-
caling all lengths and fictitious vector potentialS with an
appropriate superconducting correlation lengthj',i in a way
that makes theF-dependent part of Eq.~4! isotropic. This
rescaling procedure is a variation on the familiar rescaling
anisotropy at theH50 transition. After the rescaling, th
F-dependent part of Eq.~4! describes an isotropic superco
ductor with a correlation lengthj5(j'

2 j i)
1/3, while the cou-

pling constants in the last two terms become

K',i→K',i8 5c',i~j i /j'!1/3Tl. ~13!

The following quantities appear in Eq.~13!: j',i
5j0',iutu2n andj5(j'

2 j i)
1/35j0utu2n are the true diverging

superconducting correlation lengths atTc0 , defined by the
eigenvalues of the helicity modulus tensor~see Appendix B!.
Accordingly, G5j' /j i is the true anisotropy ratio at theH
50 critical point (Tc0) and not the GL anisotropy,GGL
5jGL,' /jGL,i . It now becomes clear whyK',i have been
defined in Eq.~4! with the anisotropyG explicitly factored
out: new rescaled coupling constants can simply be writ
as:K',i8 5c',iT l̄ , where

l̄ 5
l

G1/3
corresponds toH̄5G2/3H. ~14!

H̄ is just the rescaled magnetic field appearing in the origi
GL theory~1! after the anisotropy at theH50 critical point
has been rescaled out. Consequently,c',i describe thefun-
damentalanisotropy of the gauge theory~4!, which is inher-
ent to the HÞ0 problem and is not associated with
‘‘trivial’’ anisotropy at Tc0 .56,57The corresponding fictitious
‘‘charges’’ associated withK',i8 are

ẽ',i
2 ~T,H !5

1

c',i~T,H ! l̄
. ~15!

The product of the above rescaling procedure is a fi
tious anisotropic electrodynamics with two ‘‘charges’’ẽ'

and ẽi . As discussed in Sec. II, the charge is a relev
operator at theH50 (ẽ50) critical point, with scaling di-
mension equal to 1/2. We thus define two dimensionl
scaling variables
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ẽ',i
2 j5

j

c',i l̄
5A2p

f0

j0G1/3

c',i

H1/2

utun
. ~16!

Note that dimensionless ratioj/ l̄ is common to both charge
and~nontrivial! anisotropy is stored inc' andci . c' andci ,
however, are also functions ofj/ l̄ only. Therefore, there is
only a single relevant scaling variable, the dimensionle
charge

q0
25

j

l̄
5A2p

f0
j0G1/3

H1/2

utun
, ~17!

which is precisely the original scaling variable37 of the GL
theory~1!, sincej/ l̄ 5j' / l . The functionsc',i(j/ l̄ ) are dis-
cussed further in the next section and Appendix B.

We are now in a position to write down the scaling fun
tion for the free energy within the gauge theory scena
with the nonanalytic part associated with theF transition
explicitly factored out:

f s5ut2tF~h!u22aV6
L,SS t2tF~h!

utF~h!u D . ~18!

Note thattF(h), defined in Eq.~11!, also follows fromq0
2

5A2pdF . dF is therefore a universal number of the G
theory ~1!, as isdm .58 V6

L,S(x) is a universal andregular
function of its argument. The subscripts6 refer tox.0 (x
,0), while the superscriptsL and S indicate the ‘‘vortex
liquid’’ and ‘‘vortex solid’’ branches ofV, respectively. For
example, belowTm(H), we should useV2

S (x). In writing
down Eq. ~18! I have assumed that the correlation leng
exponent of the gauge theorynGT;nxy;2/3 and that the
hyperscaling relation holds, resulting ina;axy .

How do we evaluate the crossover functionV(x)? I alert
the reader to the following important point: the gauge the
scenario explored in this paper allows one to,in principle,
determine all the branches of the crossover functionV(x) by
using a combination of perturbation theory and RG te
niques. Such an analytic calculation is extremely laborio
and far beyond the scope of this paper. A well-inform
reader will immediately realize that many aspects of this c
culation are computationally extremely demanding, and
tually havenot been accomplished in the published literatu
even for the ordinaryH50 situation. Indeed, the technica
difficulties involved are of the same general nature. Th
however, does not detract from the main message of
section: the underlying physical picture of the gauge the
scenario provides a systematic, conceptually straightforw
way to compute theHÞ0 3D XY critical thermodynamics a
the same levelof analytical accuracy as is presently feasib
for the H50 case.

Faced with such odds, I assume, for the purposes of
paper, thatV(x) in Eq. ~18! is some unknown universa
crossover function, to be determined either from numer
simulations23 or directly from experiments. With the free en
ergy thus specified, we can proceed to evaluate thesingular
part of all thermodynamic functions, simply by taking requ
site derivatives.43
,
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V. HELICITY MODULUS, LINE ‘‘DIFFUSION,’’
TOPOLOGICAL WINDINGS, AND PHYSICAL NATURE

OF F ORDER

I now turn to physical properties which allow a mo
direct look at actual configurations of loops and lines th
characterize the state of a superconductor above and b
TF(H). A useful measure of a degree of superconduct
order is aq-dependent helicity modulus tensorY(q) whose
components are defined as30

Ymn~q!5V
d2F

dan~q!dam~2q!
, ~19!

wherem,n5x,y,z, V is the total volume,F is the free energy
of the GL theory~1!, anda(r ) is a small~infinitesimal! vec-
tor potential added to the externalA. The uniform compo-
nent of the associated magnetic field,h(r )5¹3a, vanishes.
The above second derivative is evaluated in thea→0 limit.

Y(q) measures the ability of a system to ‘‘screen’’ o
tiny external fields. In the superconducting phase
limq→0Y(q) is finite and the system is said to exhibit a d
ferential Meissner effect. In thenormalphase,Y(q);q2 and
vanishes in theq→0 limit. Within our ‘‘helium model,’’ the
way Y is reduced to zero in the long-wavelength limit
through proliferation ofinfinite vortex loops and lines which
go all the way across the system and can act as ‘‘f
charges,’’ screening a weak external perturbation. In this
tuitive sense, we can think of a normal state as a vor
‘‘metal,’’ while the superconducting state is a vortex ‘‘d
electric,’’ with only vortex loops offinite size present as
thermal excitations.

To compute the helicity modulus of our original G
theory one adds an infinitesimalam to Am in Eq. ~1!. If we
now go to reformulation~2! and finally, through the coarse
graining procedure of Appendix A, end up with our fictitiou
gauge theory,am appears as a small addition to the ‘‘vect
potential’’ Sm in the second~gradient! term of Eq.~4!. This
implies that the long-wavelength (q!1/l ) form of the helic-
ity modulus of the gauge theory~4! coincides with that of the
original GL theory~19!. Using the gauge theory~4! and ig-
noring the anisotropy, we obtain that,below TF(H) ~see Ap-
pendix B for details!,

Y~q!5Kq22
K2q4

T
^S~q!•S~2q!&5Kq21O~q4!.

~20!

In the F-ordered state our fictitious gauge field
‘‘massive,’’ i.e., exhibits a Meissner effect, an
limq→0^S(q)•S(2q)&}u^F&u22 goes to afinite value. The
simple physics behind this is that thermally generated vor
loops inF(r ) have an average size that isfinite and do not
contribute at all toY(q) in theq→0 limit. Furthermore, Eq.
~20! tells us that, ifK',i arefinite, theF-ordered phase isnot
a superconductor and has afinite superconducting correlation
length, both perpendicular and parallel to the external fi
~see Appendix B for details!,

j i;K' /T;c'l , j'
2 /j i;K i /T;cil . ~21!

This result is easily understood: withH finite, there now
must beNF field-induced vortex lines moving about in th
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sample. Unless these~s! vortices are pinned down, as ha
pens in the vortex-solid phase, they will be available
‘‘screen’’ weak~infinitesimal! external fields and the system
is always a vortex ‘‘metal’’ with the ‘‘screening length’
K/T. In particular, according to our assumption~ii !, the sys-
tem of field-induced vortex lines also contains windings
the xy plane and such ‘‘screening,’’ although anisotropic,
finite in all directions. BelowTF(H), wheres vortices are
exclusively responsible for the vanishing limq→0Ym(q),
c',i(q0

2) determine the' andi ‘‘screening lengths’’ in thes
vortex system, in units of magnetic lengthl @Eq. ~B9! in
Appendix B#.

AboveTF(H) the situation changes and thermally gen
ated vortex loops ‘‘expand’’ across the system. Obvious
the helicity modulus still vanishes, but now there is an abr
drop in the coefficient of theq2 term:

Y~q!5S K2G
K2

TjF
Dq25KS 12C

tnGT

AH
D q2, ~22!

wheret(T,H)5@T2TF(H)#/Tc0 andC andG are numeri-
cal constants.nGT is the thermodynamic exponent of th
Meissner transition in our fictitious electrodynamics~4!, and
nGT;nxy;2/3, as argued in Sec. IV. The second term in
above equation arises from limq→0^S(q)•S(2q)&5G/jFq2

in Eq. ~20!, right aboveTF(H). This implies that the origina
superconducting correlations, measured by^C(0)C* (r )&,
remain finite in all directions onboth sides ofTF(H), but
there is anonanalyticdrop in the superconducting correla
tion length at theF transition, as thermally generated loo
proliferate through the system and additional infinite vortic
become ‘‘free charges’’ and available to screen. The n
order parameterF(r ), however,does attain a true long-
range order belowTF(H); i.e., jF→` asT→TF(H) from
above. It is unfortunately rather difficult to measure theF
correlations directly, by probing some suitably defined ‘‘h
licity modulus’’ associated with theF order. This would
require defining quantities which are configuration dep
dent and highly nonlocal, a rather time-consuming propo
tion in a typical numerical simulation of a 3DXY or related
model.

Still, the situation is far from hopeless. We can dev
another set of criteria that are relatively easy to implemen
numerical simulations and yet allow for a rather intima
look at theF order and what precisely takes place as
cross theF-transition line. BelowTF(H), thermally gener-
ated vortex loops are bound and field-induced vortices
ecute an effective ‘‘diffusive’’ motion along the field direc
tion. An average transverse displacement of a single fi
induced vortex line from the point where it starts atz50 to
its ending point atz5Lz goes as

A^r'
2 &;ADsLz

p , p>
1

2
, ~23!

where Ds is the effective ‘‘diffusion’’ constant. This is
shown in Fig. 3. The cutting and reconnecting of vortex lin
does not affect this diffusion process except by renorma
ing Ds , as long as we are in theF-ordered phase.59 For
example, in the 3DXY model, where the identification of a
individual field-induced line is not unique, we should simp
-
,
t

e

s
w
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-
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e

x-

d-

s
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look at thedistribution of distinguishable vortex paths, ob
tained byrandomlyresolving all the crossings, and avera
over all distinct configurations. Such a distribution will b
‘‘diffusive,’’ with the average rms displacement given b
Eq. ~23!. We can use this effective ‘‘diffusion’’ constantDs ,
Eq. ~23!, to define aneffective‘‘mass’’ in the elegant non-
relativistic boson analogy of Nelson.8 Note that the world
lines of such flux bosons donot correspond to~s! vortex
lines in individual configurations of an extreme type-II s
perconductor. This is clear since nonrelativistic bosons
scribe strictly directed lines, i.e., contain no ‘‘overhang’’
configurations as they advance from bottom to top of
system along thez axis ~the ‘‘time’’ axis in the boson anal-
ogy!. Such ‘‘overhang’’ configurations, plus numerous vo
tex loop excitations floating around, describe world lines
‘‘particle-antiparticle’’ creation processes and cannot be
commodated within the nonrelativistic quantum boson an
ogy. Still, as long as we are in theF-ordered phase, it is only
the NF field-induced vortex lines that go all the way acro
the system. We can then define aneffectivesystem ofNF

flux bosons in the boson analogy, with suitably adjusted b
massms and effective interactions, so that itslong-distance
@@ l and @LF(T,H)# behavior faithfully emulates an ex
treme type-II superconductor~Appendix A!. AboveTF(H),
as infinite tangles of field-induced and thermally genera
vortices proliferate across the sample inall directions,Ds
→` (ms→0) and we gethyperdiffusion

A^r'
2 &;Lz

p8, p8;1. ~24!

This hyperdiffusion arises through processes depicted in
3, where a vortex line winding along the field directionsi-
multaneouslywinds all the way in thexy plane by connect-
ing itself to thermally generated tangles, which are natura
present in theF-disordered phase. In the 3DXY model, this
implies that the distribution of transverse displacements
individual field-induced vortex paths is no longer ‘‘diffu
sive’’ and has rms displacement or higher moments limi
only by the system size~24!; more precisely, the distribution
of r'

2 acquires a power-law tail aboveTF(H). Such wind-
ings in thexy plane are plainly in evidence in the rece
numerical simulations of Nguyen and Sudbø,23 somewhat
above their melting line. With such additionalxy windings
present with a finite weight in the partition function, the ‘‘e
fective mass’’ ms of nonrelativistic flux bosonsvanishes
since the vortex line tensionrelative to the field direction has
gone to zero. AboveTF(H), infinite vortex paths longer than
L ~say ;L2, assumingL'5L i5L and a simple random
walk! crossing the system in all directions contain afinite
fraction of all vortex segments: these are the ‘‘massless
citations.’’ In this respect, theF transition corresponds to th
restoration of ‘‘relativistic invariance’’ in a dual system o
quantum particles whose world lines are our original vor
loops and lines. To wit, the ground state of such a quan
system, containing only ‘‘vortex matter’’60 below TF(H),
explodes with ‘‘vortex matter,’’ ‘‘vortex antimatter,’’ and
‘‘vortex tachyons’’61 ~Fig. 3!, as the ‘‘vacuum’’ becomes
unstable atTF(H) to the spontaneous creation of ‘‘pa
ticles’’ ~Appendix A!.

The above connection between the ‘‘F order’’ and the
effective line tension of field-induced(s) vortex lines reveals
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directly the physical content of the gauge theory~4! and
permits us to construct a purely geometrical picture of theF
transition. To do so, consider once again the normal stat
an extreme type-II superconductor or a 3DXY model atH
50. AboveTc0 , we can find vortex paths that go all the wa
from one end of a sample to another, in any direction~Fig.
2!. If we work with periodic boundary conditions in all di
rections, this statement means that we have some wind
along thex, y, andz axes. To understand what is precise
meant by such windings, we wrap our system on a thr
dimensional generalized torus, embedded in a fo
dimensional space—this is just a geometrical way of rep
senting periodic boundary conditions. Now, the number
windings along, say, thex axis,Nx , is the total number of
continuous vortex paths in the whole system that wind
around the torus in thex direction, irrespectiveof their ori-
entation, i.e., whether they are ‘‘vortex’’ or ‘‘antivortex’
paths relative to thex axis. Such paths are topologically di
tinct from finite closed vortex loops: the latter can be co
tinuously shrunk to a point while the former cannot.Nx is
different from the winding numberWx : Wx also counts all
the windings along thex axis but with a single ‘‘vortex’’
path contributing11 while an ‘‘antivortex’’ path counts as
21. In the widely recognized vocabulary of the 2DXY
model,Nx would correspond to the total number of vortic
plusantivortices in theyz plane, whileWx would be the total
number of vorticesminus the total number of antivortices
Back in 3D, in the superconducting state belowTc0 , all ther-
mally generated vortices come in the form of finite clos
loops and bothNx50 and Wx50. Above Tc0 , Wx must
remain equal to zero due to the ‘‘vortex neutrality’’ of th
GL theory~1! or the 3DXY model, butNx is now finite and
N x}L11u, whereL is the linear size of the system~we are
assumingL'5L i5L) andu is the ‘‘anomalous’’ dimension
of such infinite paths. The same holds for the winding nu
ber and the total number of windings along they andz axes,
Wy(z)50 andNy(z)}L11u. This can be summarized as

Nx,y,z50 for T,Tc0 ,

Nx,y,z52nx,y,z
T L11u for T.Tc0 , ~25!

wherenx
T is the ‘‘density’’ in theyz plane of thermally gen-

erated infinite vortex-antivortex winding paths traversing
system along thex axis and so on. In the isotropic casenx

T

5ny
T5nz

T . Of course, the presence of such windings in
directions is the reason why the material is not in the sup
conducting state aboveTc0 : these infinite vortex paths ca
now move to ‘‘screen’’ weak external fields, driving the h
licity modulus to zero in the long-wavelength limit and pr
ducing finite dissipation.

As we turn on a finite field in Eq.~1!, we still have
Wx(y)50 but Wz5NF and consequentlyNz must be at leas
NF in every configuration of the system.9 Imagine now how
the state of the system evolves along a small circle in
H-T phase diagram~Fig. 1!, surroundingTc0 . Our circular
path starts atH50 and at some temperatureT slightly above
Tc0 , and evolves in the counter clockwise direction towa
its end point atH50 and some temperature slightlybelow
Tc0 . Initially, we are very close to theH50 normal state
of
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f
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e
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e

and it is safe to assume thatNF!Nz(T,H50)L22u at some
temperatureT slightly aboveTc0 . In this case it is natural to
expect that, in a finite field,

Nx,y52nx,y
T L11u', Nz5nFL212nz

TL11ui, ~26!

where nF5NF /L251/2p l 2 is the density of field-induced
(s) vortex lines andnx,y,z

T (T,H) are ‘‘densities’’ of thermally
generated vortex-antivortex windings. Note that now 2nx,y

T

ÞnF12nz
T andnx,y

T Þnz
T even in the isotropic case. There

a finite ‘‘density’’ of infinite vortex ~or antivortex! winding
paths in any direction. Equation~26! describes how the nor
mal state of the system~25! has changed after the applicatio
of a finite, but weak external field.

On the opposite side of our imaginary circle, near its e
point at H50 andT,Tc0 , the situation is completely dif-
ferent. Now, the zero-field state is asuperconductorand
Nx,y,z50. Any finite field, no matter how small, has a dras
effect. For very low fields, it is natural to expect that the
are no thermally generated infinite vortex loops and o
those windings associated with the field-induced vortex lin
are present in the system:

Nx,y50, Nz5NF5nFL2. ~27!

This is just the(s) vortex lattice state in Fig. 1. Note that i
these general geometrical terms there is no difference
tween the(s) vortex lattice state and the ‘‘anisotropic supe
conducting liquid’’ of Feigel’manet al.29 Due to the absence
of windings in thexy plane, both have a superconductin
response along the field direction; i.e., theYzz(q) component
is finite in the q→0 limit. Also, in both cases,Yxx(yy)(q)
vanish asq→0. The only difference is that it takes arbitrar
weak pinning to restore superconductivity in all directions
the vortex lattice state. On this basis, I have assumed in
phase diagram of Fig. 1 that such an ‘‘anisotropic superc
ducting liquid’’ phase is preempted by the first-order tran
tion at Tm(H).62

In our proposed phase diagram depicted in Fig. 1,
intermediateF-ordered phase is inserted between the t
normal state~26! and the vortex lattice phase~27!. What is
its nature in simple geometrical terms used to describe
other two phases in Eqs.~26! and ~27!? In the F-ordered
state all thermally generated vortex loops are bound and o
NF field-induced(s) vortex lines go from one end of th
sample to another, alongH, resulting in preciselyNF wind-
ings along thez axis. However, these(s) vortex lines are in a
liquid state, characterized by some finite effective line te
sion T and they ‘‘diffuse’’ in the xy plane while winding
alongH. This translates into anonvanishingtotal number of
windings in thexy plane:

Nx,y5Ix,yL
2p, Nz5NF5nFL2. ~28!

We expect 1.p>1/2.59 Ix,y are some finite quantities hav
ing dimension of~length!22p and we use Eq.~28! as their
definition. Equation~28! describes theF-ordered state using
a simple geometrical language of this section. The fact t
Nx,yÞ0 has nothing to do with the thermal ‘‘expansion’’ o
vortex loops; these are still all of finite size. Rather, it is d
to the lateral ‘‘diffusion’’ of field-induced lines, as they win
along thez axis. The field-induced vortices tend to form
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infinite ‘‘clusters,’’ which manage to wind afinite number of
times,Nx,y

c , along x~y! by winding infinitely many times,
Nz

c;L, along the field direction~I now setp51/2!. We can
definea long-distance, effective ‘‘diffusion’’ constantD and
the associated line tensionT both relative to the field direc
tion:

Dx,y 5
Nx,y

c L

Nz
c , Tx,y;Dx,y

21. ~29!

Defined in this fashion,D andT are truly global quantities
detached from complicated individual configurations of
teracting vortex loops and lines and dependent only on t
modynamic state of the system as a whole. In theF-ordered
state both are finite, while in the true normal stateD→` and
T→0 for some clusters. Infinite vortex paths inside su
clusters manage to wind in thex~y! direction after only a
finite number of windings along the field. In this sense,T can
serve as a probe for the presence or absence of theF order.
Again, in theF-ordered state of the 3DXY model, where
there is no unique identification of individual vortex pat
due to their crossings, every configuration that contribute
the thermodynamic limit has preciselyNF vortex lines going
from bottom to top in every distinguishable assignment
such paths. All other vortex paths form finite closed loo
Thedistributionof the total number of windings, obtained b
randomly resolving all the crossings, still satisfies Eq.~28!.

Once the system makes this phase transition to the no
state ~26! and theF order is lost, there is only a smoot
evolution. The ‘‘densities’’ of thermally generated winding
nx,y,z

T , as well as the way these windings are realized
individual configurations of vortex loops and lines, c
change considerably, depending on where we are in theH-T
phase diagram relative toTF(H), but we do not expect to
cross any additional phase boundaries.

The geometrical picture presented here, based only
global topological properties of loops and lines, gives a cl
insight into two forms of ‘‘superconducting’’ order, de
scribed by twodifferent order parametersC(r ) and F(r ).
The familiar superconducting order, measured byC(r ), re-
flects the system’s ability to expel tiny external fields and
manifested by a finite helicity modulus and the absence
linear dissipation. This leads to the well-known spectacu
experimental consequences and is naturally of great prac
importance. A more subtle form of ‘‘superconducting’’ o
der, associated with the new order parameterF(r ) intro-
duced in Ref. 9, describes the presence of finite line ten
at all length scales and is manifested by the suppressio
large thermally generated vortex loops in the partition fu
tion. At H50, or in an infinitesimal field with only a single
field-induced line,C and F are equivalent. The helicity
modulus and the effective line tension vanish simultaneou
at a single superconducting transition,T5Tc0 . In a finite
field, with a finite density of field-induced lines, the situatio
is different: the ‘‘superconducting’’ transition can now b
viewed assplit into two branchesTm(H) and TF(H). At
Tm(H) the standard superconducting order is lost as the
tex lattice melts into a liquid of field-induced(s) vortex lines.
Even though the total number of windings alongH is still
locked atNF , just like in the vortex lattice state~27!, the
effective ‘‘diffusion’’ of (s) vortex lines leads to windings in
the xy plane,Nx,y}L2p, Eq. ~28!. This amount of winding
-
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sufficesto cause vanishing of the helicity modulus~20! and
drivesC(r ) to zero@i.e., ^C(0)C* (r )& is short ranged#. In
contrast, the long-distance line tensionT, Eq. ~29!, is still
finite belowTF(H), the same as in the Meissner state of t
H50 superconductor~25!. This statediffers from the normal
state by the presence of long-rangeF order, measured by
^F(0)F* (r )&. It can be consideredisomorphic, in the long
wavelength limit, to a liquid ~or solid, as shown in Fig. 1! of
NF field-induced vortex lines with somefinite effective line
tension relative to the field direction and interacting via
long range, London-Biot-Savart-type interactions, who
overall strength is set by;u^F(r )&u2.53 Only at some higher
temperatureTF(H), doesT vanish and infinite vortex loops
proliferate across the system. This signals the destructio
theF order as the system finally makes transition to the t
normal state. AboveTF(H), bothC andF order are absent
Consequently, thetrue normalstate of GL theory in a finite
magnetic field~1! should not be viewed as a ‘‘line liquid’’ in
the commonly accepted sense.15 The general geometrical ar
guments of this section preclude such an identification
point to a direct connection between the presence~absence!
of theF order and our ability~inability! to emulate the long-
wavelength behavior of the system~1! in terms of a conven-
tional ‘‘line liquid’’ ~or a ‘‘line solid’’ ! of field-induced vor-
tices. In the language of thenonrelativistic ‘‘boson
analogy,’’ the mass of the bosonsvanishesat TF(H) and
such an analogy breaks down in the true normal state.

The above criteria, involving the helicity modulus and t
number of windings for individual field-induced lines and f
the whole system, allow one to clearly distinguish the hig
and the low-temperature states of the system in numer
simulations and to establish whether they are separated
true thermodynamic phase transition or a sharp crosso
Such a procedure should be superior to measurement
specific heat which possesses at most nearly logarithmic
gularity and is severely limited by finite-size effects.

VI. FLUCTUATION CONDUCTIVITY

Electrical conductivity~or resistivity! is a quantity easily
measured experimentally. Unfortunately, fluctuation cond
tivity, while in principle a very useful probe of a degree
superconducting order, is not purely thermodynamic quan
and cannot be evaluated from the GL theory~1! unless ad-
ditional assumptions are made concerning the time dep
dence of the fluctuating superconducting order parame
We adopt here a frequently used and empirically succes
assumption of dynamical scaling,37 which connects the deca
of spatial correlations with that of time correlations:tsc

;jsc
z , wheretsc is the relaxation time associated with th

superconducting order parameter andz is the dynamical criti-
cal exponent. At zero field, this assumption leads to an
pression for the fluctuation conductivity:

s}jsc
z122D;tnxy~D222z!, ~30!

with z;1.5 from numerical simulations.63 For simplicity, we
have suppressed anisotropy in the above expression. Wh
finite external field is turned on, and we are inside the criti
region nearTc0 , wherejsc is very long, we can still write

s}@jsc~HÞ0!#z122D. ~31!
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Strictly speaking, the dynamical exponent could be differ
in the finite-field case but I will ignore such a possibility.
also concentrate on dissipative transport and do not cons
Hall conductivity. Right belowTF(H), the gauge theory~4!
suggests thatjsc is finite in all directions andjsc}K/T;cl,
as discussed in Appendix B. AboveTF(H), the screening
lengthL, defined in Appendix B by Eq.~B9!, drops abruptly
Eq. ~21! and weassumethat the superconducting correlatio
lengthjsc does the same,

jsc}clS 12G
cl

jF
D5clS 12C

tnGT

AH
D . ~32!

This assumption seems perfectly justified on physi
grounds, since the drop in the screening length arises thro
appearance aboveTF(H) of thermally generated infinite vor
tex loops which lead to additional screening. It is natural
expect that these same loops suddenly increase dissip
and produce a non-analytic drop in the conductivity.

After restoring the anisotropy, the relative change in
conductivity,dsm , as one crosses over from theF-ordered
to the true normal state is

dsm5
sm,,2sm,.

sm,,

5~z122D !Cm

tnGT

AH
, ~33!

wherem5(',i), sm,,,. is the fluctuation conductivity be
low ~above! TF(H), Cm are constants depending on mater
parameters, andnGT;nxy;2/3. The vortex loop ‘‘expan-
sion’’ that takes place atTF leads to a nonanalytic increas
in dissipation and a corresponding drop in conductivity.

VII. VORTEX LATTICE MELTING
IN THE CRITICAL REGION

A theory of the vortex lattice melting in the critical regio
is an elaborate subject and its detailed discussion will
presented elsewhere. There are, however, several impo
consequences of the present gauge theory scenario that
cern the very nature of the melting transition. We theref
discuss here the ‘‘minimal’’ set of requirements that sho
be satisfied by any theory of melting consistent with t
gauge theory scenario. We should first observe that refor
lation ~2! obviously has a(s) vortex lattice as its ground stat
at low temperatures, just as the original GL theory~1!. The
gauge theory~4!, however, doesnot, for the simple reason
that up to this point we were interested in thelong-
wavelength, q!1/l , behavior. TheF transition, for example,
is clearly the q→0 transition. On this basis, we hav
dropped a large number of terms from Eq.~4!, by arguing
that they are irrelevant at very long distances. The melt
transition, in contrast, is afinite q transition (q;1/l ), and it
requires additional terms and modifications to the coa
graining procedure applied on the way from Eq.~2! to Eq.
~4!. For instance, higher powers ofS, particularly the odd
ones, reflecting the up-down asymmetry alongH manifest in
Eqs.~1! and~2!, where, unimportant in the long-waveleng
limit, are essentialfor the transition to a nonuniform(s) vor-
tex lattice state.

This being so, theF transition casts a long shadow on th
melting transition. This is clear from Eq.~4! and, by infer-
t
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ence, from Eq.~2!. In theF-ordered phase, there is an effe
tive long-range interaction between(s) vortex lines which, in
theq!1/l limit, takes the London-Biot-Savart form.15 To see
this, note that, in theF-ordered ‘‘Meissner’’ phase, our fic
titious ‘‘photon’’ is ‘‘massive;’’ i.e., the second~gradient!
term in Eq.~4! becomes

g'u^F&u2S'
2 1g iu^F&u2Si

2, ~34!

where^F& is the order parameter associated with theF or-
der. As seen in Sec. V, we expect that, as long as^F& is
finite, we can write some effective description of such a st
in terms of a ‘‘line liquid’’ of field-induced vortices, in the
sense of Nelson.8 Long-distance physics can be describ
through fluctuations in the density and ‘‘currents’’ of vorte
lines, dr(r ) and jW(r )5( j x , j y), respectively.8 The connec-
tion with our fictitious ‘‘gauge’’ potentialS(r ), Eq. ~4!, is
~Appendix A!

~¹3S! i→2pdr, ~¹3S!'→2p jW. ~35!

If we now reexpress Eq.~34! in terms ofdr and jW we get
precisely the long-distance part of the London-Biot-Sav
interaction between field-induced vortex lines:

4p2gu^F&u2(
q

dr~q!dr~2q!1 jW~q!• jW~2q!

q'
2 1qi

2
, ~36!

where the continuity conditionqW • jW(q)52qidr(q) is as-
sumed. The anisotropy, suppressed in the above expres
for simplicity, can be straightforwardly restored.64 This ex-
pression~36! for the effective interaction at long-distances
just what is obtained in the mean-field-based approach,7 but
with onecrucial difference. The overall strength of the inter
action is not given by the mean-fieldamplitudesquared of
the superconducting order parameter, but byu^F&u2}nF ,
wherenF is theF-superfluid density, whose physical mea
ing is apparent from reformulation~2! and gauge theory~4!.

The immediate consequence of Eq.~36! is that the melt-
ing line Tm(H), goes intoTc0 , the true zero-field supercon
ducting transition, asH→0. This result is strongly suggeste
by all available numerical simulations on the 3DXY model
and arises naturally in the gauge theory scenario. For al
apparent simplicity, this result is not trivial: the mean-fie
based theories of melting including only field-induced Lo
don vortices7 naturally lead toTm(H)→Tc , the mean-field
transition temperature, asH→0.65,66 Furthermore, the expo
nentn has its mean-field valuenmf51/2 and isnot equal to
nxy;2/3. Therefore, the thermodynamics of the melting tra
sition resulting from such theories cannot satisfy the 3DXY
scaling properties of Sec. IV. This is a direct consequenc
ignoring those very degrees of freedom~vortex loops! which
are primarily responsible for moving the truezero-field su-
perconducting transition temperature fromTc to Tc0 and
changingnmf to nxy in the first place. This is a serious flaw
and must be rectified in a proper theory of vortex latti
melting in the critical region.

As a first step, we attempt to remedy the situation
simply replacing,by hand, the mean-field amplitude square
with the true superfluid density atzerofield. This amounts to
installing u^F&H50u2 instead ofu^F&u2 in Eq. ~36!. With the
interaction fixed in this fashion, we can then proceed to a
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lyze the same, finite-field model of Ref. 7, still including
only the field-induced vortices. This is equivalent to havi
TF(H)5TF(H50)[Tc0 , as represented by the dashed v
tical line in Fig. 1. This procedure, arbitrary as it is with
the framework of mean-field-based theories, seems to ge
out of the above difficulties, since now evidentlyTm(H)
→Tc0 for H→0 and the exponentn takes its trueH50
value,nxy;2/3.

However, things are not that simple: to understand w
note that the above remedial procedure is in factexact, but
only for a single field-induced line. For afinite density of
lines, the physical state of thermally generated vortex lo
and other fluctuations described byF(r ), which controls the
effective interaction between field-induced vortex lin
throughu^F&u2 in Eq. ~36!, is itself strongly affected by in-
teractions with those same field-induced lines. The effec
coupling of these two interpenetrating systems, vortex lo
and lines in reformulation~2!, must be solvedself-
consistentlyat finite H: this is precisely what is accom
plished in the gauge theory scenario~4! for the long-
wavelength (q!1/l ) behavior. Clearly, a ‘‘minimal’’ theory
of vortex lattice melting in the critical region must involv
both the positional order parameter of the vortex lattice,rG

~or the originalC), and the new ‘‘superconducting’’ orde
parameterF. The coupled equations governing the (T,H)
dependence of these two order parameters must be so
simultaneously and self-consistently nearTm(H).

An important physical feature is expected to emerge fr
such a solution:the formation of vortex lattice is a phas
transition involving simultaneous ordering of both fiel
induced and thermally generated degrees of freedom. This is
illustrated with two qualitative points. First, at low field
within the F-ordered state~Fig. 1!, we can consider som
effective ‘‘line liquid’’ description~35!. Right aboveTm(H),
in the liquid phase, the self-consistent solution gives^F&
5^F&L to be inserted in the effective interaction~36!. Simi-
larly, just belowTm(H), we have^F&5^F&S . In general,
however, ^F&LÞ^F&S . This result follows immediately
from the gauge theory scenario~4! since positional correla
tions of s vortices strongly influencêF&. While both^F&L
and ^F&S are finite, as we crossTm(H), there is a discon-
tinuous change in the average density and size of vortex
and ‘‘overhang’’ excitations, resulting in a different effectiv
interaction~36! on two sides of the melting line~Fig. 4!. The
entropy jump at melting,DS, will receive a significant con-
tribution from such excitations. In fact, whileDS→0 as
H→0, thecritical fluctuationsgreatlyenhanceDS over the
configurational entropy offield-induced lines. This provides
natural explanation9 for the excess entropy atTm(H) ob-
served in low-field thermodynamics.11,12 It should be
stressed that this effect isdifferent from the ‘‘microscopic
entropy’’ contribution discussed by Hu and MacDonald19

~see also Ref. 7!. Such entropy arises from theelectronic
degrees of freedom and is reflected in theT dependence o
our GL coefficients~1!. This contribution is important in the
high-field, LL regime.16,19In the 3DXY critical region, how-
ever, such aT dependence is aminor effect since it involves
Tc and not the true transition temperatureTc0 . The entropy
contribution discussed here, arising from theT dependence
of u^F&u2 in Eq. ~36! and^F&LÞ^F&S , is due to degrees o
-

us
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s

e
s

ed

p

freedom of thesuperconducting order parameteritself and
must be part of any proper theory of melting.

Second, at higher fields, the self-consistent solution
rG ~or C) andF leads to a rapid suppression ofTF(H) far
below Tc0 and its subsequent merging withTm(H) for
H.HZ ~Fig. 1!. This exposes a large region of the pha
diagram where the Abrikosov vortex lattice melts direc
into the true normal state. In this case^F&L50, while ^F&S
might still be close to its mean-field value. Such a drama
difference in the nature of these two phases, with the s
being rather unremarkably mean-field-like and the liqu
right above the melting line exhibiting very strong fluctu
tions even at rather low fields, with vortex lines windingboth
along the fieldand in the perpendicular directions, is evide
in recent simulations by Nguyen and Sudbø.23,67 Note that
such a situationnever arises in mean-field-based theori
with only field-induced vortices,7 even after the application
of our remedial procedure, since we would still ha
u^F&Su25u^F&Lu25u^F&H50u2 in Eq. ~36!. As argued in Sec.
V, it does not appear possible to write an effective desc
tion of the true normal state in terms of field-induced degr
of freedom only. For example, we could start again with o
remedial procedure and argue that, even though it fails
q!1/l , it still describes the effective interaction of field
induced vortices forq;1/l , which is what matters most a
Tm(H). However, within such a ‘‘line liquid’’ description, I
do not see any simple way by which one could account
the part ofDS associated with an abrupt change in windin
Nx,y acrossTm(H), Eqs. ~26! and ~27!. In this region of
higher fields, whereTF(H)5Tm(H), our gauge theory is
becoming less and less ‘‘type II’’ and amplitude fluctuatio
are becoming stronger in GL theory. It is likely that th
low-field description discussed here and LL theories n
have an equal chance of providing reliable theory of
melting transition: both routes, however, are certain to
most challenging.
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APPENDIX A: DERIVATION OF THE GAUGE THEORY

I present here a derivation of the gauge theory~4!. An
abbreviated version is found in Ref. 9. For simplicity, I co
sider the isotropic caseg i5g'5g.

Within the ‘‘helium model,’’26 the partition function of
the superconductor~1! can be written as

Z5( •••(
N~v!

)
v

1

N~v!!
)

l v51

N~v!

E Dxl v
@sl v

#

3expS 2
Fv

T D ,
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Fv5g^uCu2&E
C
d3rU¹w~r !2

2e

c
AU2

1(
v

(
l v51

N~v!

E dsl v
E~1!~$xl v

@sl v
#%!

1
1

2(v (
v8

(
l v51

N~v!

(
l v851

N~v8!

E dsl v
E dsl v8

3H V0
~2!~ uxl v

@sl v
#2xl v8

@sl v8
#u!

1
dxl v

dsl v

•

dxl v8

dsl v8

V1
~2!~ uxl v

@sl v
#2xl v8

@sl v8
#u!J ,

~A1!

where

¹3A5H, ¹•¹w~r !50,

¹3¹w~r !52p(
v

(
l v51

N~v!

E
L
dxl v

d~r2xl v
@sl v

# !. ~A2!

The partition function~A1! is a 3D counterpart of the
familiar representation of the~continuum! 2D XY model in
terms of its pointlike topological excitations, vortices a
antivortices. In 3D, the relevant excitations are loops a
lines of vortices, classified by their global topology. On
vortex paths of unit vortex ‘‘charge’’ are considered sin
they are the important excitations in the critical region. T
lattice regularization of Eq.~A1! is a gas of nonintersectin
oriented paths on a lattice which are either closed or can
or end only on sample surfaces. The lattice spacing is se
the characteristic ‘‘bending length’’ of vortex lines. Eac
individual step along a path takes a given energy to cre
and can be either up or down along thex, y, or z axis. These
steps represent vortex segments and have a long-range
rectional’’ Coulomb interaction, operating only between t
steps going along the same axis. This is the lattice versio
the ‘‘Biot-Savart’’ interaction between vortex loops and lin
of the continuum model. The background free energy, co
posed of the uniform condensation energy and ‘‘spin-wav
contributions, is not included explicitly.

The summation in Eq.~A1! runs over all distinct configu-
rations of vortex line excitations of arbitrary length an
shape. The indexv denotes different classes of oriente
loops and lines which are distinguished by their global top
ogy. For example, for periodic boundary conditions, wh
only closed loops are present,v5(mx

6 ,my
6 ,mz

6), where
mx,y,z

6 50,61,62, . . . denote the winding numbers of
d

e

rt
by

te

di-

of

-
’’

l-
n

given loop aroundx,y,z directions.Finite closed loops cor-
respond tomx

65my
65mz

650. Similarly, for free~periodic!
boundary conditions along thez (x,y) direction, v
5(mx

6 ,my
6,0,0) denotes loops that wind in thex (y) direc-

tion while v5~0,0;0,0;0,0! again denotes finite closed loop
In addition, there are vortex~antivortex! paths that traverse
the system fromz50 to z5Lz and ‘‘half-loops’’ which
originate and terminate at thesame z50 or z5Lz surface.
*Dxl v

@sl v
# represents summation over all configurations

a given loop and linel v consistent with its global topology
C$xl v

@sl v
#% in the first term ofFv signifies that the integral o

the gradient energy over the system excludes well-defi
core regions associated with a given configuration of loo
and lines. The second and third terms represent core co
butions: E(1)5Ec1Eb($xl v

@sl v
#%) is a ‘‘single-particle’’

term, with Ec and Eb corresponding to the core line an
bending energies, respectively.V0,1

(2)(ur2r 8u) denotes ‘‘two-
particle’’ effects of core overlap. These ‘‘two-particle
terms describe both the energy cost of core overlap and
entropic effects of keeping vortex and antivortex segme
from annihilating each other. ‘‘Multiparticle’’ terms, arisin
from simultaneous overlap of more than two cores, can
neglected in the extreme type-II regime, where the aver
core sizea is small compared to the average separation
tween vortex segments. Core contributions, likeEc , Eb , and
V0,1

(2)(ur2r 8u), can be computed in a specific microscop
model of vortex lines.68,69 Their precise form is not neede
for our present purposes since we will return to the GL re
resentation at the end of this appendix; it suffices to kn
that Ec and Eb are finite and the ‘‘interaction’’V0,1

(2)(ur
2r 8u) is short ranged, of ordera, and repulsive on average
Without loss of generality, we could setV0,1

(2)(ur2r 8u)
→V0,1d(r2r 8).

With the uniform magnetic field present, the overall vo
tex ‘‘charge’’ neutrality demands that every configuratio
contain NF field-induced vortex paths going fromz50 to
z5Lz . This fact is used to observe that the low-temperat
expansion ofZ8, Eq. ~2!, in terms of topological defects o
the new order parameterF(r ) ands vortices, is the same a
Eq. ~A1! except for different prefactors: 1/(NF1Na)! in Z
versus 1/NF!Na! in Z8, whereNa is the number of thermally
generated infinite vortex-antivortex paths which extend fr
z50 to z5Lz . This leads to a difference in entropy betwe
two representationsDS;Tln@(NF1Na)!/NF!Na!#. DS scales
at most asLxLy , in contrast to the full entropy which goes a
LxLyLz . Consequently, in the thermodynamic limit,DS does
not affect the free energy per unit volume. In particul
within the F-ordered state,Z, Eq. ~1!, andZ8, Eq. ~2!, have
identical expansions:
Z5 (
N~0!50

`
1

N~0!!

1

NF! )l 051

N~0!

R Dbxl 0
@sl 0

#)
i 51

NF E Dbr i@si #expS 2
Fv

T D ,

Fv5g^uCu2&E
C
d3rU¹f~r !1U2

2e

c
AU2

1 (
l 051

N~0!

EcE dsl 0
1(

i 51

NF

EcE dsi1
1

2E d3r E d3r 8$@d0~r !1ds~r !#

3@d0~r 8!1ds~r 8!#V0
~2!~ ur2r 8u!1@n0~r !1ns~r !#•@n0~r 8!1ns~r 8!#V1

~2!~ ur2r 8u!%. ~A3!
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Here$xl 0
@sl 0

#% denotefinite closed loops of arbitrary length

and shape. Half-loops attached toz50 andz5Lz surfaces
are not included since they do not matter for the bulk th
modynamics. The symbolDb indicates that the ‘‘single-
particle’’ bending energy@Eb($xl v

@sl v
#%)# has been ab-

sorbed into the measure of the path integral. ‘‘Densities’’ a
‘‘currents’’ d0,s andn0,s are defined as

$d0 ,n0%~r !5 (
l 051

N~0!

E dsl 0H 1,
dxl 0

dsl 0
J d~r2xl 0

@sl 0
# !,

$ds ,ns%~r !5(
i 51

NF E dsi H 1,
dr i

dsi
J d~r2r i@si # !, ~A4!

and

¹•¹f~r !50, ¹3¹f~r !52pn0~r !,

¹•U~r !50, ¹3U~r !52pns~r !. ~A5!

To understand the problem at low fields, we first consi
the H50 situation. The superconducting~Meissner! state is
described by theH→0, NF→0 limit of Eq. ~A3!:

Z~H50!5 (
N~0!50

`
1

N~0!!

3 )
l 051

N~0!

R Dbxl 0
@sl 0

#S 2
Fv~0!

T D ,

Fv~0!5g^uCu2&E
C
d3r u¹f~r !u21 (

l 051

N~0!

EcE dsl 0

1
1

2E d3r E d3r 8$d0~r !d0~r 8!V0
~2!~ ur2r 8u!

1n0~r !•n0~r 8!V1
~2!~ ur2r 8u!%. ~A6!

The gradient term inFv(0) can be decoupled by adual
gauge fieldAd(r ), in the Coulomb gauge¹•Ad50:

expF2
g^uCu2&

T E
C
d3r u¹f~r !u2G

→E DAd~r !expF E d3r S 2 in0•Ad

2
1

2ed
2 ~¹3Ad!2D G , ~A7!

whereed
258p2g^uCu2&/T is a dual charge. Equations~A7!

and ~A6! have the appearance of a path integral over tra
tories of relativistic charged quantum particles in a~211!-
dimensional Euclidean space (z being the imaginary time!
coupled to the ‘‘electromagnetic’’ gauge potentialAd and
interacting via short-range ‘‘density-density’’ and ‘‘curren
current’’ interactions.Z(H50) describes thevacuumstruc-
ture of such ‘‘electrodynamics,’’ with our vortex loops co
responding to world lines of relativistic quantum bosons a
-

d

r

c-

d

describingvirtual particle-antiparticle creation and annihila
tion processes in the vacuum. This similarity can be
ploited further by using the particle-field duality to define t
field theory version70 of Z(H50), Eqs.~A7! and ~A6!:

E DCd~r !E DAd~r !expH 2E d3r FmC
2 uCdu2

1u~¹2 iAd!Cdu21
1

2
g0uCdu4

1
1

2qd
2 ~¹3Ad!21

Md
2

2
Ad

2G J . ~A8!

Cd(r ) is a field operator of these relativistic bosons. T
gradient term in the action has been rescaled into dimens
less form so that short-range repulsion and dual charge
sume their canonical dimensions:V0d(r2r 8)→g0d(r2r 8),
@g0#5 ~length!21, ed

2→qd
2 , @qd

2#5 ~length!21. V1 has been
dropped since it is irrelevant in the long-wavelength limit.
effect on critical behavior can be incorporated into the b
values ofg0 , qd

2 , andmC
2 . Finally, the ‘‘bare mass’’ ofAd ,

Md , is absentin our problem (Md50). Finite Md reflects
the presence of a gauge field minimally coupled to the or
nal, superconducting order parameter. For example, if
condition k→` is relaxed and the real electromagne
screening is restored in Eq.~1!, Md

2→m0e2/p, wheree and
m0 are the real charge and magnetic permeability, resp
tively.

Expression~A8! forms the basis for our ‘‘dual’’ picture of
the 3DXY critical behavior. In this picture, we are viewin
vortices as primary objects and their field operatorCd(r ) as
our order parameter, instead of the originalC(r ). We can
think of C(r ) in Eq. ~1! as being the field operator describ
ing creation and annihilation of Cooper pairs. In the G
theory, with H50 ~1!, Cooper pairs have only short-rang
interactions and it suffices to keep only the quartic ter
describing the pointlike repulsion, since the rest is irrelev
for the critical behavior. In contrast, thevortexexcitations of
C interact via long-range London-Biot-Savart force
mediated by massless (Md50) Ad , Eq. ~A8!. Next,
we can convert our neutral GL theory~1! into one with a
finite real chargee by introducing the fluctuating vecto
potential A, as well as the electromagnetic field ener
(1/8pm0e2)(¹3A)2. Now, it is the Cooper pairs that hav
long-range interactions, mediated byA, but the vortices inC
interact only through short-range forces, due to the elec
magnetic screening inducing a finiteMd5m0e2/p in Eq.
~A8!. Precisely in 3D, there is an exact duality, at least o
lattice,48 between the form of this interaction for vortices an
for Cooper pairs. This is what ‘‘inverted’’ stands for in th
‘‘inverted 3D XY’’ model. In the dual language ofCd , it is
the low-temperature Meissner phase of the original sup
conductor that is symmetric (^Cd&50), while the high-
temperature normal metal is the ‘‘broken symmetry’’ state
the dual theory (̂Cd&Þ0). So there is an inversion of th
temperature axis. However, it is still the same symme
U~1! that is being broken and this implies that thethermody-
namicexponent should be the same,n5nxy , both for e50
and for eÞ0. It is important to stress that the ‘‘inverted 3
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XY’’ behavior of a charged superfluid remainsdifferentfrom
the 3DXY critical behavior of a neutral superfluid, describ
by Eq. ~1! with H50, since they are associated with tw
different critical points. For example, the anomalous dim
sion exponenthC of ^C(0)C* (r )& will be different in two
cases,e50 andeÞ0.

Equation~A8! describes the ‘‘true vacuum’’ stateu0& of a
Euclidean relativistic field theory. Particle~antiparticle! ex-
citations are massive,mC;1/jd;1/LC , where jd is the
dual correlation length associated withCd andLC measures
the typical loop size. The actual value ofmC reflects both the
cost in energy and gain in entropy arising from large th
mally generated vortex loops in the original problem. As
approachTc0 from below,mC→0, and we enter the ‘‘false
vacuum’’ stateu f & of the theory~A8!. Particle~antiparticle!
excitations are now massless and infinite vortex paths pr
erate across the system, as depicted in Fig. 2. This ‘‘fa
vacuum’’ is just the normal metallic state. If we introduc

the particle~antiparticle! number operators,N̂P,A , u0& is an

eigenstate of N̂P,A , N̂Pu0&50u0& and N̂Au0&
50u0&. In contrast,u f & is not an eigenstate ofN̂P,A , and
contains a finite average number of ~anti!particles,

^ f uN̂P,Au f &5NP,AÞ0. Both u0& andu f &, however, are eigen
states of the total vorticity operatorN̂P2N̂A with eigenvalue
0, which ensuresNP5NA . ForH small but finite, the ground
state of Eq.~A8! must still be an eigenstate ofN̂P2N̂A but
now the eigenvalue isNF . Starting fromu0&, such a ground
stateuF& is naturally constructed by introducingNF massive

particles into the true, stable vacuum. We then haveN̂PuF&
5NFuF& and N̂AuF&50uF&. On the other hand, startin
from the ‘‘false vacuum’’u f &, the ground stateun& is formed
by having additionalNF masslessparticles added to an al
ready present finite average number of particle-antipart
pairs. un& is not an eigenstate ofN̂P,A and satisfies

^nuN̂P,Aun&5NP,AÞ0, where now NP2NA5NF . At
TF(H), a phase transition takes place between these
different types of ground state,uF& and un&, driven by the
change in U~1! symmetry of the vortex system.

We now return to Eq.~A3!. A finite density ofs vortices
produces two main effects on the loop ‘‘expansion’’ as
approachTF(H) from below. First, there is a long-rang
interaction between loops ands vortices which will influence
the long-range correlations among the loops themsel
Second, there is a short-range effect ofs vortices suppressing
certain configurations of large loops, through mutual cont
interactions~an ‘‘excluded volume’’ effect!. Intuitively, one
expects the long-range effect to be essential for the crit
behavior at low fields. Furthermore, the short-range eff
should be weak since the total number of vortex segme
connected tos vortices forms a tiny minority of all vortex
segments. Based on these observations, we devise the
lowing strategy: according to our basic assumption~ii ! and
results of Sec. V, the system ofs vortices belowTF(H) can
be viewed as equivalent, in the long-wavelength limit, to
effective system ofnonrelativistic2D quantum bosons in its
superfluid state, in the sense of Nelson.8 The collective
modes of such a system are its ‘‘density’’ and ‘‘curren
fluctuations, which is precisely how the loops couple tos
-

-
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ct
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vortices. The long-wavelength effective action of these c
lective modes is described by two coupling constantsms /ns

andcs
2 , where, in this boson analogy,ns , ms , andcs are the

superfluid density, mass, and speed of ‘‘sound,’’ resp
tively. We could compute these quantities explicitly, b
starting sufficiently belowTF(H). Here, however, we trea
them as general parameters which characterize the lo
wavelength fluctuations ofs vortices and whose ultimate va
ues can be determined through their direct connection w
the components of the helicity modulus tensor~Sec. V and
Appendix B!. We assume that the effect of mutual conta
interaction between loop ands vortex subsystems, measure
by some interaction strengthVr , can be fully included into
these ultimate values ofms /ns and cs

2 , as well as into a

renormalized loop-loop contact interactionṼ0 and the loop
core line energyẼc . This amounts to reexpressing the sho
range interaction in Eq.~A3! as

1

2E d3r $Ṽ0d0
2~r !12Vrdd0~r !dds~r !1Vrrds

2~r !%,

Ẽc5Ec1V0^ds~r !&, Es5Ec1V0^d0~r !&, ~A9!

while the core line energies of loops ands vortices are also
renormalized to include the average ‘‘excluded volume’’ e
fect. Es and Vrr will shortly be subsumed intoms /ns and
cs

2 . We setVr→0 in Eq. ~A9! and proceed to derive th
long-distance description of Eq.~A3!. Indeed, we find that
the long-range interactions lead to a major change in
behavior of the system onceH is finite: most importantly, the
long-range interactions between vortex loops are ‘‘screen
by fluctuations ofs vortex lines. The amount of ‘‘screening’
is determined byms /ns and cs

2 . Once the critical behavior
associated with this mutual ‘‘screening’’ has been und
stood, we reinstate the residual contact interaction betw
loop ands vortex subsystems and test for consistency. W
find, both within thee expansion and perturbative RG i
fixed dimensionD53, that such residual coupling is irre
evant for 3<D,4; i.e., it does not lead to any new releva
terms in the effective action, apart from those alrea
present. Our procedure is therefore ‘‘exact’’ for long ran
and self-consistent for short-range interactions between l
and line subsystems.

The first step is to decouple the gradient term in Eq.~A3!
by using Ad , except that nown0→n01Dns in Eq. ~A7!
@Dns is defined above Eq.~4!#. Thes vortex part of Eq.~A3!
becomes

1

NF!)i 51

NF E Dbr i@si #

3expH 2(
i 51

NF Es

T E dsi2
Vrr

2T E d3rds
2~r !

2 i E d3rDns~r !•Ad~r !J . ~A10!

This part is now reexpressed in terms ofs vortex ‘‘density’’
and ‘‘current’’ fluctuations. Sufficiently belowTF(H),
the overhangs are small ands vortex lines are almost fully
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directed. We can use a nonrelativistic boson analogy
Nelson8 and replace*dsi'*0

Lzdz@11 1
2 (drW i /dz)2#, where

rW i(z)5„xi(z),yi(z)…, while absorbing the effect of sma
overhangs into the effective mass,ms;Es /T. Similarly,
ds(r )→nsi(r )→( id„rW2rW i(z)… and ns'(r )→( i(drW i /dz)d(rW

2rW i(z)). We then introduce a field operator of these nonr
ativistic bosons,Cs(rW,z), replace the path integral in Eq
~A10! with the functional integral overCs ~periodic or free
boundary conditions give the same result in the thermo
namic limit!, and follow the standard procedure26 for deriv-
ing the ‘‘hydrodynamic’’ action ofs vortices:9 the phase
ws(rW,z) and amplitude ps(rW,z) are introduced viaCs
5uCsuexp(iws) and ps5uCsu22^uCsu2&, where ^uCsu2& is
evaluated self-consistently. After integration overps , the
‘‘hydrodynamic’’ action for the phase becomes

E d3r H ns

2mscs
2 ~¹ iws2Adi!

2

1
ns

2ms
~¹'ws2Ad'!21~••• !J , ~A11!

where (•••) denotes higher powers of¹ws2Ad and higher
order derivatives. The ‘‘mean-field’’ part of the action
absorbed into the background. The action~A11! is decoupled
using real fieldsdr(r ) and jW(r )5( j x , j y):

→E Ddr~r !E D jW~r !expH E d3r F2 idrAdi2 i jW•Ad'

1 idr¹ iws1 i jW•¹'ws2
mscs

2

2ns
dr22

ms

2ns
jW2G J , ~A12!

which finally results in Eq.~A3! expressed in terms of th
true collective modes of the superfluids vortex system, its
‘‘density’’ dr and ‘‘current’’ jW fluctuations:

Z→ (
N~0!50

`
1

N~0!!
)

l 051

N~0!

R Dbxl 0
@sl 0

#E Ddr~r !E D jW~r !

3E DAd~r !exp~2S!,

S5 (
l 051

N~0!

Ẽc

T E dsl 0
1E d3r H Ṽ0

2T
d0

2~r !1 in0•Ad1 idrAdi

1 i jW•Ad'1
mscs

2

2ns
dr21

ms

2ns
jW21W~dr, jW !

1
1

2ed
2 ~¹3Ad!2J , ~A13!

where the functional integral must be appended by the c
tinuity condition ¹ idr1¹'• jW50, which follows from the
integration overws in Eq. ~A12!. W arises from the (•••)
terms in Eq.~A11! and contains powers higher than qu
dratic in dr and jW, as well as assorted derivatives. In pa
ticular, odd powers ofdr are present, like;dr3, reflecting
f

l-

-

n-

the Dnsi→2Dnsi asymmetry of the original problem~A3!.
Such higher-order asymmetric terms are essential for a
scription of the melting transition but, as shown below, a
irrelevant at theF transition, provided the latter is continu
ous. Note that the above relatively simple dependence of
~A13! on dr and jW holds only at distances. l . This is pre-
cisely what we are interested in as we approachTF(H).
Equation~A13! captures an essential effect of a finite field
the loop ‘‘expansion’’: fluctuations of field-induceds vortex
lines result in the ‘‘screening’’ of the ‘‘Biot-Savart’’ interac
tion between the loops. This ‘‘screening’’ is manifested
Ad gaining a finite ‘‘mass,’’M i

2;ns /mscs
2 , M'

2 ;ns /ms ,
after integration overdr and jW. The effect of a finite mag-
netic field on the original problem~2! is now stored in the
finite values ofM i

2 and M'
2 . As one attempts to create

small number of very large loops in Eq.~A13!, upon ap-
proachingTF(H) from below, their effective line tension
and mutual interactions will be essentially influenced
such ‘‘screening.’’

The importance of this mutual ‘‘screening’’ mechanism
particularly apparent in the dual representation~A8!. The
action ~A13! becomes

E d3r FmF
2 uFdu21u~¹2 iAd!Fdu21

g̃0

2
uFdu4

1 idrAdz1 i jW•AW d1
mscs

2

2ns
dr21

ms

2ns
jW2

1W1
1

2qd
2 ~¹3Ad!2G , ~A14!

where the meaning of the loop field operatorFd(r ), mF ,
and g̃0 is evident in light of the discussion surrounding E
~A8!. For simplicity, I suppress the anisotropy in the seco
~gradient! term of Eq.~A14! which generically arises@even if
g i5g' in Eq. ~1!# from the interaction of loops withs vor-
tices. The finite mass ofAd , generated by the integratio
over dr and jW, ‘‘cuts off’’ the long-range ‘‘Biot-Savart’’
interactions present in zero field~A8!. This ‘‘screening’’
causes a decoupling of the dual gauge field and transfo
the critical behavior from a ‘‘charged,’’ Eq.~A8!, to a ‘‘neu-
tral,’’ Eq. ~A14!, dual superfluid. This is the inverted~aniso-
tropic! 3D XY behavior of the dual theory, hinting at th
presence of amasslessgauge field in theoriginal ‘‘supercon-
ducting’’ formulation ~4!, as discussed below Eq.~A8!.

To investigate the critical behavior of Eq.~A13! in more
detail, we generalize Eq.~A14! to arbitrary dimensionD.
Simultaneously, we restore in the action the residual partVr ,
Eq. ~A9!, of the contact interaction between loops ands vor-
tex lines, i.e., the part not already incorporated into the v
ues of coupling constants appearing in Eq.~A14!:

E dDr FmF
2 uFdu21u~]m2 iAm!Fdu2

1
1

2
g0uFdu41gruFdu2J01 iJmAm

1
1

2Mm
2

JmJm1W~Jm!1
1

2qd
2

FmnFmnG . ~A15!
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Here gr denotesVr rescaled to its canonical dimension,m

50,1,2,. . . ,D21,W(Jm) is the generalization ofW(dr, jW),
andFmn5]mAn2]nAm . The functional integration runs ove
fieldsFd , Am andJm and includes a constraint]mJm50. The
integration overJm generates a finite massMm505M i ,
Mm5” 05M' for the dual gauge fieldAm . The theory, how-
ever, retains gauge invariance implying that the combina
qdAm must be an RG invariant. This in turn sets the cano
cal dimension ofgr to @gr#5 ~length!D23. Therefore, the
term gruFdu2J0 is irrelevant within e expansion around the
upper critical dimensionD54. Similarly, all higher powers
and derivatives ofJm appearing inW are irrelevant as well.
For example, the canonical dimension of theJ0

3 coupling
constant is~length!2D23. The relevant couplings belowD
54 areg0, qd

2, andM i ,' . Due to finiteM i ,' , Am decouples
and theb function for g0 is the same as that of the neutr
(qd50) complexF4 theory. In this case thee expansion is
expected to hold down to, and include,D53, where the
critical behavior of theF4 theory should be that of a~in-
verted! 3D XY model, in agreement with our earlier asse
tion. The same conclusions can also be reached within
perturbative RG in fixed dimensionD53. Heregr is mar-
ginal at the ‘‘engineering’’ level, the gauge field again d
couples due to finiteM i ,' , and we can compute the releva
b functions at the one-loop order and to the leading orde
gr :

b0~ ĝ0 ,ĝr![
dĝ0

dln~p!
52ĝ01C1ĝ0

2,

br~ ĝ0 ,ĝr![
dĝr

dln~p!
5C2ĝ0ĝr , ~A16!

where ĝ0,r(p) are the dimensionless running coupling co
stants andC1,2 are~regularization-dependent! numerical con-
stants which areboth positive,C1,2.0. At the ~inverted! 3D
XY critical point ĝ051/C1 and thereforebr.0, indicating
stability of our assumedgr50 fixed point against residualgr

perturbation. The above results allow us to conclude that
critical theory~A14! ~withW50) remains valid and that th
effects ofVr can be included by a proper choice of releva
couplings, as originally assumed. The presence of long-ra
interactions between vortices, mediated byAd , is essential
for the validity of this argument. Note, however, thatVr and
W terms ~A13! are dangerously irrelevant operators sin
they break the up-down symmetry: they could change
critical behavior nonperturbatively or restore a first-ord
transition9 in 3D.

One step remains: asT→TF(H), some overhangs at
tached tos vortex lines become very large and we mig
doubt the accuracy of the straightforward nonrelativistic b
son analogy approximations below Eq.~A10!. However,
throughout theF-ordered state, thes vortices remain ‘‘mas-
sive’’ and there should always exist a suitably defined qu
tum system of nonrelativistic 2D bosons whose long ‘‘d
tance’’ (x,y) and ‘‘imaginary time’’ (z) behavior faithfully
emulates that ofs vortices. We therefore expect that th
overallsymmetryof Eq. ~A13! remains preserved atTF(H).
This leads to a generalization of Eq.~A13!:
n
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Z~H !→ (
N~0!50

`
1

N~0!!
)

l 051

N~0!

R Dbxl 0
@sl 0

#E DV~r !E DAd~r !

3exp~2S!,

S5 (
l 051

N~0!

Ẽc

T E dsl 0
1E d3r H Ṽ0

2T
d0

2~r !1 in0•Ad1 iV•Ad

1
2p2K i

T
Vi

21
2p2K'

T
V'

2 1
1

2ed
2 ~¹3Ad!2J , ~A17!

where V(r ) describes long-distance (@ l ) fluctuations ofs
vortex ‘‘currents’’ ns(r ), Eqs. ~A4! and ~A5!, and satisfies
¹•V50. Here K i ,' /T now play the role ofmscs

2/ns and
ms /ns in Eq. ~A13! and fully include the effect of overhan
configurations asT→TF(H). At present, we cannot com
pute K i ,'(T,H) ~or Ẽc and Ṽ0) from first principles. This
would require an analytic solution to the problem of lar
overhangs, something far beyond the scope of this pa
However, if we start with the general form~A17!, we can
determine various parameters appearing there by conne
them self-consistently to directly~numerically or experimen-
tally! measurable physical quantities. For examp
K i ,'(T,H) can be extracted from the components of the
licity modulus tensor~Appendix B! or the fluctuation con-
ductivity ~Sec. VI!. We should therefore consider Eq.~A17!
a self-consistent, perturbative RG description of theF tran-
sition.

We can now enforce the constraint¹•V50 by introduc-
ing a gauge fieldS(r ): 2pV→¹3S, ¹•S50. Alternatively,
we can integrate overV, obtain the mass term forAd , and
then decouple it by introducingS. The final result is

Z~H !→ (
N~0!50

`
1

N~0!!
)

l 051

N~0!

R Dbxl 0
@sl 0

#

3E DS~r !E DAd~r !exp~2S!,

S5 (
l 051

N~0!

Ẽc

T E dsl 0
1E d3r

3H Ṽ0

2T
d0

2~r !1 in0•Ad1
i

2p
~¹3S!•Ad

1
K i

2T
~¹3S! i

21
K'

2T
~¹3S!'

2 1
1

2ed
2 ~¹3Ad!2J .

~A18!

This is just the vortex loop expansion~A6! and ~A7! of the
Meissner phase of a ‘‘superconductor’’ described by an or
parameterF(r ) and coupled to the gauge fieldS (¹•S
50). The GL functional of such a superconductor is
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Feff5ãuFu21g̃mu~¹m1 iSm!Fu21
b̃

2
uFu41

K i

2
~¹3S! i

2

1
K'

2
~¹3S!'

2 , ~A19!

which is precisely the gauge theory~4!. Note thatF is a dual
of the loop field operatorFd ~A14!. Hereã, b̃, andg̃m are
some suitably renormalized GL coefficients which can
determined phenomenologically. Note that we have now
stored the anisotropy ing̃m , arising both from the bare an
isotropy @g iÞg' in Eq. ~1!# and the anisotropy induced b
the interaction of loops with thes vortex background.

APPENDIX B: GAUGE THEORY
AND THE HELICITY MODULUS

Here we consider the connection betweenK',i appearing
in Eq. ~4! and the helicity modulus tensorY(q). The con-
ventional definition of the components ofY(q) can be found
in Ref. 30:

Ymn~q!5V
d2F

dan~q!dam~2q!
. ~B1!

All quantities appearing in Eq.~B1! are defined in Sec. V
below Eq.~19!. We will limit our attention to the isotropic
case@g'5g i in Eq. ~1!# whenever we consider theHÞ0
situation. The anisotropic case with finite field requires
more extensive algebra and can be reconstructed by com
ing the discussion below with illuminating presentation
Ref. 30.

We first evaluateY(q) from the original GL theory~1!
and start with theH50 (A50) case. We consider the situ
ation rightabove Tc0 ; so there is no superconducting lon
range order. After adding smalla to the gradient term, we
can expand the free energy up to second order ina:

F@¹3a#5F@0#1E d3r

3F e2

2c2
x'~¹3a!'

2 1
e2

2c2
x i~¹3a! i

2G1¯ .

~B2!

This equation requires a brief explanation:e is the real elec-
tric charge andc is the real speed of light, appearing in E
~1!. Here F@0# is just the original free energy of the G
theory withH50 and a50. The full free energy with smal
a(r ) is written as a functional of¹3a only. This is required
by the gauge invariance of Eq.~1!. Two additional terms,
proportional to the perpendicular and parallel component
(¹3a)2, represent the leading corrections in powers a
derivatives of¹3a. The subleading contributions are d
noted by the ellipsis. These subleading terms are unimpor
in the long-wavelength limit.

x' andx i are some functions ofT and are different from
each other in the anisotropic case,g iÞg' , while x'5x i
5x if the superconductor is isotropic. AsT approachesTc0
from above, these functions take the following form:
e
-

r
in-

of
d

nt

x'5CTj i , x i5CT
j'

2

j i
. ~B3!

j',i5j0',it
2n are the superconducting correlation lengt

andC is an unknown universal constant, intrinsic to the G
theory~1!. Note thate2x',i /c2 is just the perpendicular~par-
allel! magnetic susceptibility.

The components of the helicity modulus tensor in t
long-wavelength limit (q→0) are uniquely determined b
x',i . Conversely, the measurement of the long-wavelen
‘‘tilt’’ and ‘‘compression’’ helicity moduli30 determines
x',i . In general, from definition~B1!, we find

c2

e2
Ymn~q!5xeramerbnqaqb , ~B4!

for the isotropic case, while for the anisotropic situationx'

Þx i

c2

e2
Ymn~q!5~x i2x'!ezamezbnqaqb1x'eramerbnqaqb .

~B5!

eabg is the Levi-Civitàsymbol and summation over repeate
indices is understood.e2/c2 is factored out for later conve
nience.

After this preliminary discussion, we go to the case
interest, finiteH in Eq. ~1!, and limit our consideration to the
isotropic situationg'5g i . We introduce smalla into Eq.~1!
and expand to second order in¹3a:

F@H,¹3a#5F@H,0#1E d3r

3F e2

2c2
x̃'~¹3a!'

2 1
e2

2c2
x̃ i~¹3a! i

2G1¯ ,

~B6!

whereF@H,0# is now the free energy of the GL theory~1! at
finite field H anda50. We are again focusing on the ‘‘nor
mal,’’ i.e., notsuperconductingstate, in accordance with as
sumption ~ii ! of Sec. II. The above expression looks ve
much like Eq.~B2! but there are the following significan
differences: the expansion is anisotropic,x̃'Þx̃ i , even
though our superconductor is isotropic. The reason for thi
finite field H along thez axis which reduces spherical sym
metry of theH50 situation down to cylindrical. The finite
field also breaks the ‘‘up-down’’ symmetry along thez axis.
This is manifested by the subleading corrections, denoted
the ellipsis in Eq.~B6!, containing in generalodd powers of
¹3a ~the leading such term is cubic!; such terms were pro
hibited by symmetry in theH50 case. Again, by combining
definition ~B1! and Eq.~B6!, we arrive at the expression fo
the long-wavelength limit of the helicity modulus:

c2

e2
Ymn~q!5~ x̃ i2x̃'!ezamezbnqaqb1x̃'eramerbnqaqb .

~B7!



he

n
a

’’

ng
t
is

je

th

a
on

lin

nt
as

g
re
rs
u

ic
l

e

n

y

ity

ol-

-
e
e

-
-
ts

s-

q.

x

PRB 59 6471EXTREME TYPE-II SUPERCONDUCTORS INA . . .
The components of the helicity modulus tensor for t
finite field ~isotropic! case are determined byx̃',i which are
some functions ofT andH. It is tempting to conclude that

x̃'→CTj i~T,H !, x̃ i→CT
j'

2 ~T,H !

j i~T,H !
, ~B8!

where j',i(T,H) are now superconducting correlatio
lengths at finite field. This result is plausible on physic
grounds, expressing the fact that, withHÞ0, the supercon-
ducting correlation lengths are now finite in the ‘‘liquid
phase, limited by magnetic lengthl , and consequently the
helicity moduli vanish in theq→ limit. We are simply mak-
ing the assumption that the same length that limits the ra
of superconducting correlations appears in the coefficien
the q2 term in the helicity modulus; this assumption
known to be correct for theH50 case~B3!. Unfortunately, I
am unable to provide a mathematical proof that the con
tured result~B8! is exact. Instead, Idefineperpendicular and
parallel ‘‘screening’’ lengthsL'(T,H) andL i(T,H) by

x̃'5CTL i~T,H !, x̃ i5CT
L'

2 ~T,H !

L i~T,H !
. ~B9!

Note that there is a one-to-one correspondence between
‘‘screening’’ lengthsL',i and x',i and, in turn, between
L',i and the long-wavelength helicity moduli~B7!. Since
L',i are purely thermodynamic quantities, they satisfy sc
ing laws of Sec. IV, just like the superconducting correlati
lengths:

L',i~T,H !5 lR',i
L ~q0

2!, j',i~T,H !5 lR',i
j ~q0

2!,
~B10!

where the ‘‘dimensionless charge’’q0
25j(T,H50)/

l}H1/2/utunis our scaling variable of Eq.~17! andR',i
L and

R',i
j are the screening length and correlation length sca

functions, respectively. In theH→0 (q0
2→0) limit, all these

scaling functionsR',i
L (q0

2) andR',i
j (q0

2) go asq0
2 . We now

make the followingassumption: aroundTF(H), the ratios

L'~T,H !

j'~T,H !
5
R'

L~q0
2!

R'
j ~q0

2!
,

L i~T,H !

j i~T,H !
5
R i

L~q0
2!

R i
j~q0

2!
~B11!

are some unremarkablesmoothfunctions of the scaling vari-
ableq0

2. In particular, the nonanalytic drop in the coefficie
of the q2 term in the helicity modulus, which takes place
we cross theTF(H) transition line~21! and which is directly
reflected as a nonanalytic decrease in the screening len
L',i(T,H), is manifested also in the superconducting cor
lation lengthsj',i(T,H). This assumption, which appea
justified physical grounds, was used in the discussion of fl
tuation conductivity~Sec. VI!.

Finally, we are in position to discuss our anisotrop
gauge theory of Eq.~4!. A small a added to the externa
vector potentialA in the original GL theory~1! translates
into a small vector potential (e/c)a added to our fictitious
gauge fieldS in Eq. ~4!. Since we are integrating overS, it is
useful to define new gauge fieldSn5S1(e/c)a and integrate
overSn in the partition function. The effect of this is to mov
(e/c)a from the covariant gradient termsuDmFu2 to the
l

e
of

c-

ese

l-

g

ths
-

c-

‘‘gauge field energy’’Km@¹3(S2(e/c)a)#m
2 in Eq. ~4!. We

now expand the free energy of the gauge theory,Feff , to
second order in¹3a, following the same philosophy as i
Eq. ~B6!:

Feff@ ẽ' ,ẽi ,¹3a#5Feff@ ẽ' ,ẽi,0#

1E d3r F e2

2c2
K'~¹3a!'

2

1
e2

2c2
Ki~¹3a! i

2G1¯ , ~B12!

where

K',i5K',i2
K',i

2

T
lim

q→01

E d3~r2r 8!eiq•~r2r8!

3^„¹3S~r !…',i„¹83S~r 8!…',i&. ~B13!

The anisotropic chargesẽ',i(T,H) and coupling constants
K',i(T,H) are defined in Eqs.~15! and~4!, respectively. The
thermal averagê•••& is over the gauge theory defined b
the free energy functionalFeff , Eq. ~4!. Combining Eqs.
~B1! and ~B13!, we get, as before

c2

e2
Ymn~q!5~Ki2K'!ezamezbnqaqb1K'eramerbnqaqb .

~B14!

Comparing this to the general expression for the helic
modulus of the GL theory at finite field, given by Eq.~B7!,
we conclude thatx̃',i5K',i .

A very important point is thatbelow TF(H) we have
K',i5K',i . This is a mathematical consequence of the f
lowing physical picture~Sec. V!. In theF-ordered state,only
the field-induced(s) vortex lines can ‘‘screen’’ the test vec
tor potentiala(r ). All thermally generated vortex loops ar
of finite size and cannot contribute to the ‘‘screening’’ in th
long-wavelength limit, described byK',i in Eq. ~B12!. This
implies that the new order parameterF is finite and therefore
^(¹3S)',i

2 &, Eq. ~B13!, vanishesin the long-wavelength
limit, as ;q2/u^F&u2. Therefore, we canuniquely fix the
coupling constantsK',i(T,H) @and corresponding aniso
tropic chargesẽ',i(T,H)] that enter the gauge theory de
scription~4!, by connecting them directly to the componen
of the helicity modulus tensor right belowTF(H) @or, more
precisely, forTF(H)2T→01]. In particular, the functions
c',i(T,H), introduced below Eq.~4! and referred to at vari-
ous points in the main text, follow from the general expre
sion ~B9!:

c'~T,H !5CR i
L~q0

2!, ci~T,H !5C
@R'

L~q0
2!#2

R i
L~q0

2!
,

~B15!

whereR',i
L (q0

2) are the scaling functions introduced in E
~B10! and are to be evaluated belowTF(H). The gauge
theory scenario predicts that thefundamental anisotropyra-
tio ci /c' takes on a universal value alongTF(H).

Above TF(H), in the true normal state, infinite vorte
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loops proliferate across the system andcan contribute to
screening.^(¹3S)',i

2 & in Eq. ~B13! becomes finite and
;1/jF . This causes the nonanalytic drop in theq2 term of
the helicity modulus and the corresponding screening len
~B9!, just as discussed in Sec. V@see Eq.~21!#.

The reader should note that the set of results presente
s

.

b

i
s

.

hs

in

this appendix, connecting the properties of the gauge the
description~4! aroundTF(H) to the general long-distanc
form of the helicity modulus and screening lengths of the G
theory at finite field~1!, is not only physically transparen
and appealing but also exact, provided our assumptions~i!–
~iv! ~Sec. II! are satisfied.
l
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