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Superconductivity in the Hubbard model with pair hopping
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The phase diagrams and superconducting properties of the extended Hubbard model with pair hopping
interaction, i.e., the Penson-Kolb-Hubbard model are studied. The analysis of the model is performed for
d-dimensional hypercubic lattices, includim=1 andd=, by means of thdbroken symmetry Hartree-

Fock approximations and, fat=o, by the slave-boson mean-field method. Ber1, at half filling the phase
diagram is shown to consist of nine different phases including two superconducting states with center-of-mass
momentumg=0 andq=Q (# pairing), site and bond-located antiferromagnetic and charge-density wave
states as well as three mixed phases with coexisting site and bond orderings. The stability range of the
bond-type orderings shrinks with increasing lattice dimensiondléyd ford= the corresponding diagram
consists of four phases only, involving exclusively site-located orderings. Comparing the pair hopping model
with the attractive Hubbard model we found in both cases gradual evolution from the BCS-like limit to the
tightly bound pairs regime and a monotonic increase of the gap in the excitation spectrum with increasing
coupling. However, the dynamics of electron pairs in both models is qualitatively different, which results in
different dependences of condensation energies and critical temperatures on interaction parameters as well as
in different electrodynamic properties, especially in a strong coupling redB{d.63-182099)01909-9

I. INTRODUCTION originate from the coupling of electrons with intersitater-
moleculaj vibrations via modulation of the hopping
The purpose of the present work is the analysis of phasitegral? or from the on-site hybridization term in a gener-
diagrams, electronic orderings and superconducting propeelized periodic Anderson modef
ties of the extended Hubbard model with pair hopping inter- The PKH model is one of the conceptually simplest phe-
action, i.e., the so-called Penson-Kolb-Hubbaf@KH)  nomenological models for studying correlations and for de-
model scription of superconductivity of the narrow band systems
with short-range, almost unretarded pairing. It includes a
. roy nonlocal pairing mechanisifthe pair hopping ternd) that is
H= _ti;o CioCio ™ UEi MitMiy distinct from the on-site interaction in the attractive Hubbard
model and that is the driving force of pair formation and also
't ot of their condensation. Thus, the superconducting properties
_‘]E CiTCilCilCiT_’“% Nig @ and the evolution from the Cooper pair regime to the strong
coupling local pair regime can be essentially different in
where the prime over the sum means restriction to neareshese two models.
neighbor @n) sites,t denotes the single electron hopping  While most of the basic properties of the attractive Hub-
integral, U is the onsite density-density interactichjs the  bard model seems to be at present well understood after sev-
pair hopping(intersite charge exchangmteraction, angk is  eral years of intense studies, the PKH model has been inves-
the chemical potential. In the absence of tHeterm the tigated only in a few particular limits’~°The main efforts
Hamiltonian(1) reduces to the Penson-Ko{PK) model! concerned the ground state phase diagram of the half-filled
We will treat the parameteis U, J as the effectivdphe-  one dimensional PKHRefs. 8, 9, 15and PK(Refs. 7, 10,
nomenological ones, assuming that they include all the pos-12, 13 models. In the case of the PKH model these problems
sible contributions and renormalizations such as those conwere studied by both, momentum-space renormalization-
ing from the strong electron-phonon couplings or from thegroup (MSRG) and the finite-sizdexact diagonalization of
coupling between electrons and other electronic subsysteniiite-size celly methods(for U,J>0)2 by the real space
in solid or chemical complex@gsuch that the values df renormalization-group (RSRG (for U>0)!! by the
and J can be effectively either positive or negafivét is  continuum-limit field theory(CFT) approacl® (for U>0),
notable that formallyl is one of the off-diagonal terms of the and within the Green’s function formalism in the mean-field
Coulomb interaction-J=(ii|e%/r|jj),® describing a part of approximatior?. However, in all these studies, except Ref.
the so-called bond-charge interaction, and the sign of th&5, the possibility for the bond-located orderings was not
Coulomb-drivencharge exchange is typically negative-  considered and the exact form of the phase diagram in the
pulsive,J<0). However, the effective attractive interaction whole range of parametersco<U/t,J/t<<cc has not been
of this form (J>0) is also possibfE®and in particular it can  established up to now. The properties of the PKH model for
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higher-dimensional lattices K&ld<«) and arbitrary electron Xpar= (1/2N) =/ - oa-eiQRi<CiTo_Cj )
concentration (&2n<<2) have not been studied yet, except o ;
for the limiting case of zero bandwidtfi The latter limit was = (LAN)Zy ;0 7 CsCh+ Qo)

analyzed by the variational approach, in which théerm is
treated exactly and the intersifeterm—uwithin the mean- the charge density wau€DW) with the on-site(sCDW) or
field approximatio® (such an approach yields exact resultsthe bond zigzag(bCDW) modulation of chargesxscpw
for d=-0). =(UN)3; ,Ri(clcin),  Xpcow=(L2N)E/ - &R

In the paper we will study the PKH model for the case of X(c{,C;,) = (14N) 2 , mi(Cl,Chr o), Where  p=iZ,
d-dimensional hypercubic lattices €ld<«) and arbitrary, Xsinka) andQ=(=/a,n/a,...). Weassume that the sites
positive, and negativel andJ. In the analysis we will apply are ordered in an ascending way along the crystallographic
a broken symmetry Hartree-Fock approximatibii-rA) (Sec.  axis and for the case of the bond zigzag parameters the sum
II) supplemented fod=c by the slave boson mean-field is restricted to the nearest neighbor siteshich followed
approach(SBMFA) (Sec. Il)). In the case of the Hubbard theith site. The number of electrons per lattice site is given
model and its various extensidnthe former approach is by n=(1/N)EiYU<ciT(,ciU>. In the case of the AF phase we
known to give credible results at=0 for anyU as far asthe quoted above only sAFand bAF, orderings, corresponding
energy of the ground state and energy gap in the ordere@ a z-component magnetization located on sites and bonds,
states is concerned. It usually provides qualitatively correctespectively, and we omitted s(b)AB(b)AF,. Due to the
ground state phase diagrams for arbitrary dimensions if al§U(2) spin symmetry of the PKH model the latter orderings
the proper broken symmetry phases are included into thare strictly degenerated with s(b) AF
analysis. Moreover, for the electronic models with intersite  Within the framework of the broken-symmetry Hartree-
interactions only, the HFA becomes an exact theory in thecock approach the mean-field Hamiltonian in the momentum
limit of infinite dimension =«). At T>0 the HFA is  spacek, including all types of orderings is given by
much less reliable, especially for low dimensional systems
and the limits of strong coupling, as it neglects short-range U
correlations and the effects of collective excitations. An ob- HHszE (ek—,u+ En)cﬁgckgﬂu—z‘])

vious weakness of the HFAboth atT=0 and T>0) is 7

inadequate description of the normalonordereyl phase.

This failure is a consequence of the fact that the HFA greatly X > (xsecly +H.c)+(U+2J)
k

overestimates the energy of the phases without long-range
order. Going beyond the HFA we will use the SBMFA. The

slave-boson method is in principle not restricted to weak or XE (x”cchiHQﬁH.c.)— UXgap
strong coupling and it is an improvement over the former K
treatment since it takes into account local correlatidnale 2]
will apply the SBMFA only ford=c, where the intersite sz ocl(,cHQ(,Jr?beF
, O

coupling J can be treated adequately. For finite dimension

(d<w) the SBMFA treatment of intersite interactions is

technically involved and to our knowledge it has not been XE UﬂkCE(er_,,Q(r-i- UXscpw
analyzed consistently so far. ko

2J

T T
X Cy,,C ——X Cy,,C - (2
Il. GENERAL FORMULATION ;, kotk+Qo 7 bCDW;U MCioCictQrs (2)

AND THE HARTREE-FOCK ANALYSIS

where e,= —1y,,t=t+2pJ/z,z is the number of nearest
ﬂeighbor siteqfor the hypercubic lattice ofl dimension:z
=2d), and p denotes the Fock term p

= (UAN)S/; (cl,Ci0) = (LAN) ) o 7i(CloCics)r  With

ij,o

In the system considered several types of super

the following we will study the case of alternatiigypercu-
bic) lattices with nearest-neighbor single electron hopping
and pair hopping, and restrict our considerations to the one- = >aC0ska). , o

and two-sublattice orderindé, described by the fol- The_ eigensolutions of the HamiltonigR) and the corre-
lowing order parameters. The superconducting vétlype ~ SPonding free energy

(S and then-type (n) pairing:

1
F=- E'n[Tr{eXIi —BHup) ]+ (H—Hyp) +uNe,
Xs=(UN)Zi(cj Ci1) = (IN)Z(C_ Cp), @
X, = (LIN)Z;e'Ri(c; ;1) = (1N) 2 {C_ks 0| Cir)- where 8=1/kgT andN, denotes the number of electrons in

the system, can be determined by the standard methods

The antiferromagneti¢AF) with the staggered magnetiza- with either the Green's function or thg equation of motion
tion located on siteésAF) or on bonds between Sité8AF): approach. If the solutions corresponding to the pure phases
(i.e., the phases with only one type of ordare analyzed,

i0R./ t the free energy3) may be expressed in terms of the eigen-
Xsar= (U2N)Z; ;o€ ¢/, Ci,), values ofHyr in the form



6432 STANISEAW ROBASZKIEWICZ AND BOGDAN R. BULKA PRB 59

TABLE I. Phases considered and the corresponding order pa-
rameters. B
Type of phase Order parameters §_
S %70 3
n X,#0 =
SAF Xsap# O E
bAF Xpap# 0 E
s+bAF XSAF;& O,XbAF7&0 E_
sCDW Xscow# 0 —
bCDW Xpcpw# O . e
S+ bCDW XSCDW;é lebCDW:’e 0 : E:
bAF+sCDW Xpar O Xscow? O 2 LB
SAF+bCDW Xsae? O Xpcpw# O B\
S+sCDW Xs7 0Xscpw# O £
S+bCDW Xs7# 0 Xpcpw# O E
77+SCDW X,]?EO,XSCDin E_
7+bAF X7 0 Xpar 0 3
7]+ SAF+ bAF sz?& O,XSAFV& O,XbApi O ;_
iy 1)+ bt 24 4J 24HA X, |2 3
N A=)+ n+-Jp alXal 3
IgELk” 5 4 8 2 1 0 1 2 3 4 5
———>In 2cosr( , 4 Jrrt
BN 2 5 @

. FIG. 1. Phase diagram of the half-filled PKH model for the 1D
where r==, u=u—Un/2, V, is an effective coup- chain(a) and for thed=-hypercubic(b) lattice determined within
ling strength for thea phase, which isVg=—U+2], the broken symmetry HFA. The region of the mixed AF state is

V,==U-2J, Vear=U, Vpar=—2)z, Vgcpn=—U denoted by sbAF. Close to the boundary lines separating the sAF
and Vpcpw=2J/z, A,=V, for a=S, 75 sAF, sCDW and bCDW states as well as the sCDW and bAF states there are

and A =2V. for a= bAF. bCDW. The electronic Very narrow regiongnarrower than thickness of the curves in the

. - — - figure) of the stable mixed ordered phas@AF+bCDW, for U
o Jr o T 2\ 22 * _
spectrum is  Egi= = V(e— p) "+ Vsxs, Exx=€ >0 and SCOW bAF for U<0). First-order and second-order tran-

* \/;2+V37X3,, Eoamc— HE €+ VoarXsar Epasc=M  sition phase boundaries are marked by solid and dashed curves,

+ 2+ V2 2 o= M ENEF Voo any  espectively. The SBMFA phase diagram fb > is almost iden-
\/EijbAF|zkbeFl ' vi Escow= 4 5 €kt VscowXscow ticaﬁ)to (b) éee discussionri)n Sec.]]lg
andEpcow= 1% Ve Vicow 7iecowd” for theS 7, SAF,
bAF, sCDW, and bCDW phases, respectively. In the deriva- . _
tion of the eigensolutions we have assumed an alternatedith the electronic spectrum  Egpap=np
lattice, i.e.,ex4 0= — €. * e+ Vit Voar mixparl? and Xgap,Xpar,p and u
For arbitrary electron concentratianthe stable solutions are determined by a set of self-consistent equations
are determined as the minimum &f with respect to the gF/dxsar=0,0F/Xpar=0,0F/dp=0, anddF/du=0.
variational parameterx, (a=S,7n, sAF, bAF, sCDW, In order to determine the mutual stability of the phases
bCDW), p and u, i.e., by the equations considered one has to find all the possible solutions and com-
pare the corresponding free energies. In the weak and strong
coupling regimes we were able to derive several analytical
al;?_xpressions concerning the energy gaps, the order param-

ous mixed type orderings. We have analyzed the stabilit}§>ters, -and the critical temperatures, but in a general case
conditions for all such states and found that some of thenrpumencal metths had to pe used. P&0 we performed
can be stable in a definite range of parameters. They ar(éomplete numerical analysis of all the solutlons_for the
summarized in Table | together with the corresponding orde}"’_hoIe range of the paf%m?tf:f_ Va|1u$5 a?]d TS rer;su_ltmg gh?]se
parameters. For example, we present here the equations (%ggrams_ alre presefn:]e In "g. L for t i chain lan the
scribing the mixed $bAF phase. In this case the free energy YPercubic att'ie of the leensmh:oo. The renormalized
(3) is expressed in terms of the eigenstates as parameters aré* =Jd andt =tyd. _
For d=« the density of state§DOS) is p(e)=exp
— [—€(8t*2)])/(V8wt*). In this case there are no stable states
—=p(n—1)+ —n?+ = Jp?+ Vupx? : - -
N M 4 z P sAFXsAF with the bond type of ordering as all bond parameters disap-
) pear in the limitd—«. Also, the Fock ternp is then irrel-
r6 ﬁEsbAFk>
2cosh ———

IF19x,=0, dF/gp=0, JF/aum=0. (5)

Besides the pure phases there are also solutions for v

evant as the effective width of the electronic baw
2

6 ~
© =/4td=4t* \Jd+4J* p/d and the second term disappears for

1
+ 2Vpar Xoarl 2~ BN ; In
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T T T T T T the whole range of couplingJ| and arbitrary electron con-
05—, centrationn. Therefore, we also applied this method to the
present modell). As the SBMFA takes into account the
onsite electron correlations and neglects the short-range in-
tersite correlationgthe Fock term and the bond type order-

ings are omitte we have concentrated on the casedof
/ =oo |attice, where the mean field treatment of intersite inter-
actions becomes exact.

In the slave-boson approach each local state is described
by a Fermi operatof;, and two types of bose operatqss
andb; , which correspond to two vector fields: a field of local
magnetic moments and that of local charges. The complete-
ness condition means that length and direction of the vectors
p, andb; can vary from site to site, but a sum of their length
is always p?+b?=1. We use the spin- and the charge-
rotationally invariant slave-boson representafibl, in
which the order parameters are expressed ky
=(UN)=; ,(blbix+biybiy), X, =(1N)Z; €' (bl
+biTybiy>a . XSCDW:(l/N)EielQRi<bisziz>v and XsAF
=(1/N)Eie'QRi(piTZpiZ>, for the superconducting sCDW and
sAF phases, respectively. In the mean field studies we con-
fine ourselves to the temperatufe- 0 and neglect space and

| time fluctuations of the bose fields. The operatgrand by
11'3; - '1(; - 1'2' - 3"'1 are replaced by their expectation values, which in the follow-
JHt ing are treated as variational parameters. The SBMFA is,
therefore, a variational method on a trial state described by

FIG. 2. TheJ*/t* dependence of the order parameters in thethe Hartree-Fock wave functiondeing equivalent to the
ground state of thel=1 (a) andd= (b) system, forn=1 and  Gutzwiller approximation®* The free energy is the sum of

U/t* =3. The stability ranges of the different phases are indicatedpe fermionic and bosonic parts, and for thephase, where
by the vertical dashed lines. The mixed SABCDW state(a) exists ~,_ g 7, SCDW, sAF, and any given it can be ertten in

for J*/t* & (2.09105,2.09425). the following unified form:

0.4

0.3

0.2

0.1

0.0
0.5

order parameters
=

0.4

(=]
W

o
n

o
N

b) |

o
(=]

'
o TTr T
oy b

d=c. This is in contrast to thd=1 casgFig. 1(a)], where FSBWFA [ [
the AF and CDW orderings of the bond type can exist in a = W+ Wb
wide range of parametefthe former forJ<<0 and the latter

for J>0). The bond type ordering can also coexist with the 1 U

on-site type ordering, as it is seen in Figa)lfor the mixed =" NB E [In{1+exp(BEZﬁ’)}]+ §(b2+ 26)
s+bAF phase. There have been also found very narrow re- B %

gions of the stable mixed phases: bASCDW (for U<0) +C,— (Nt ) (1+28) =2\ X, )

and sAF-bCDW (for U>0). The curves separating the

SAF- and the bAF-type orderings are the lines of secongvherer =+, CS:—ZJ*xé, Cn=2J*xf], Cecow=0, Cear
order phase transition, at which the paramet@ or X,ar =0, b?=(b/ bj,+ biTybiy+ blbi,), and 25=n-1
disappears. In the lattices of dimensiorcd<o one can =(blbi,),\o and\, are the Lagrange multipliers. The fer-

analyze more complex bond orderin¢s.g., the phase of mionic spectrum  is ES* = + \(qeext hg)2+ Ng, ESE*
fluxes, however, the ranges of stability of all the bond- P sk == \(Asact o)+ hs B

_ A2 2 pEsbr . _ _ Vo€t N
ordered phases will be gradually shrank with increasing lat- Gyéi= )‘°+\/)‘—’7£52Cﬂ‘<2— Ao VAscoweict N scow and

tice dimension. ESPR=—No* \Qsarez + N 24 Its k dependence is analogous
The J* dependence of the order parametersUét* =3 to that obtained in the HFA with the bandwidth reduced by

is presented in Fig. 2, where the upper part is fordrel e factor

system and the lower part fat=. Figure Za) shows a

wide range of the mixed sbAF phase withx.e#0 and 2p%(b?+ \b*—4x%—4652)

Xpae# 0. The parametex,,r— 0 for J*/t* — —2.83, indicat- Q= 1—4x2— 482 ' (8)

ing the second-order transition. In the case presented in Fig.
2(a) (U/t* =3) the mixed SAR-bCDW phase is stable only ., a=S,7, sCDW, and

in a very narrow range 2.09165)* /t* <2.09425.
2b%(p?+ \p?—Axi— 467
1-4x2,—468° '

lll. SLAVE-BOSON STUDIES Qspr= 9

In the previous papéf we showed that the slave boson
mean-field approactSBMFA) gives reliable results for the The stable solutions are determined from the minimum of the
ground state properties of the attractive Hubbard model iriree energyFSBMFA with respect tax, , A, ,\o, andb.
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FIG. 3. The dependence of the gap in the excitation spectrum on ILIJD) C =
J*/t* calculated in the SBMFA(solid curve$ and in the HFA - 0sfF ]
(dashed curvesfor d=«~ hypercubic lattice U/t* =3 andn=1. & !
The stability ranges of the different phases are indicated by the § 0a b | E
vertical dashed lines. 0P E ; ]
In determination of the phase diagram of the half-filled 02 : >
PKH model we compare the free energie§®™™ corre- [ S ]
SpOﬂdlng to thé’ 7], SCDW, and SAF phaSGS. Thelr Va|UeS 0.0 5|||||4||||:3|||||2||||||1||||(|)||||1|||||2|||||:;||||‘|‘||||5
are different from those obtained in the HFA and depend on R U/t
the band narrowing factorg, . These factors are important
parameters. In the normal phase, € 0) the band narrowing FIG. 4. The plots of the gap in the excitation spectr(anand

process can lead to insulating phasg#0) for large cou- the reduction factory,=E3*™/E{™ (b) as a function ofu/t*,
pling |U|>1.1"212022However, for alternating lattices and calculated in the SBMFA ford=cc hypercubic lattice J*/t* =
n=1 the normal phase is not a ground state as its free energy2 andn=1.

is always higher than that of the long-range ordered phases

(S,», SCDW, and sAF. For all these phases the band nar-Eg on J* in the case ofU/t* =3 andn=1. The value of
rowing factorsq, are close to unity, for example, in the E®™ is reduced with respect t&5™. The results are
attractive Hubbard model: 0.95415<1 in d=« (see also closer to each other for larger coupling®*|, where the
Ref. 22. Thus, the SBMFA free energies of the orderedonsite correlations become less relevant. The maximum re-
phases are relatively close to the corresponding HFA resultgluction is seen for the gap in the state, which at the tran-
The SBMFA phase diagram of the PKH model fbr is,  sition line is reduced by a factoy,= EgSB'V'FA/EHFAz 0.56.
therefore, very similar to that given in Fig(. In particu-  Figure 4 presents the)/t* dependence oE, for J*/t* =
lar, the location of théS-sAF phase boundary in the ground —2 gndn=1. The gap<E gsar and Egscpw corresponding to
state phase diagram can be expressed most conveniently gfe SAF and sCDW phases do not dependJbn and they
terms of the deviatione;=J*/U—1 from the lineJ*/U  are the same as in the usual Hubbard mod&K0). In the
=1. Within the HFA, theSsAF phase boundary is given by |ower part of Fig. 4 the reduction parametgy, is shown.
J*/U=1 for anyt*, and ford=o it agrees with a rigorous - The minimum value ofy,, is 0.11 for ES2M™ close to the

; — 0 16 \ithi ; 9
solution atF’_‘ =0."° Within the SBMFA, € is four_1d to de-  transition point to the SCDW phase. The energy gﬁmm
pend sensitively on the strength of the interactions and ONgp, 4 ESBMFA
[¢]

. . . are maximally reduced for a weak couplin
obtains thate.>0 for any~>t*>0, with a maximum de- |U/t*|<ic1DV\|/n this limit oneycan find that ping
viation €,~0.02 found forU/t*~3.5 and withe,—0 for '

t*—0 as well ast* —. It means that the hopping term JBmt*
slightly extends the stability range of the sAF phase with EEEA:A"* exp{ - (10)
respect to th& phase. Notice that similar results are obtained U]

for the extended Hubbard model with nearest neighbor nd
density-density repulsiotW*. In that case Monte Carlo

simulation€® and perturbational treatmeftsshow that for SBMFA
t#0 the actual phase boundary is also slightly shifted up- y,= Ega =exr{— 3—W}=0.554855 (11)
ward relative to the lin@Vv*/U =1 predicted by the HFA. ¢ ghrA 16 ’

Although the SBMFA gives minor changes in the ground
state energies, other physical characteristics are modified inwhere « =sAF, sCDW andS, A=4.2e"7?=4.23871, and
much more pronounced way. We will show it analyzing the y=0.577216 is the Euler gamma constdithe value(1l) is
gapEg in the excitation spectrum determined within the SB-larger thanys=ex —3/4]=0.472267 obtained for the rect-
MFA as well as the HFA. Figure 3 shows dependences ofingular density of staté$)
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L P L B occurs in the PK model, as its charge sector is governed by
i /. i the U(1) symmetry for any.
I . For (i) and (ii)) at T=0 the S phase is stable for any

L local pairs S i nonzero interaction <0 or J>0) and arbitraryn (0<n
2 /o PK model Vo= -4J . <2). In both these cases the evolution of fiphase from
= - x - BCS like superconductivity with extended Cooper pairs, to
- - ot . superconductivity of composite bosofiscal pairg with in-
>5 [ L oo Pk model Ve 40 creasing coupling is contlnuoys. At=0 the appropriate
_{..-' % Hubbard model V= -U boundary between both regimes can be locatafter

! Leggett®) from the requirement that the chemical potential
T T — e — - in the superconducting phase reaches the bottom of the elec-
BCS pairs - tronic band, i.e., fromug=—W/2. For ad=2 lattice the
. borderlines as a function ofare shown in Fig. 5. As we see
for both models with increasing the boundaries are shifted
towards higher values of coupling. Foe= 3 the correspond-
ing plot has qualitatively similar form, except—0 limit,

FIG. 5. Boundary lines between the regions of the BCS-like andyhere there is a critical value of coupling for pair formation.
the local pair sgperconductivity calculated as a functiom of the For the casdiii) the » phase is stable only below a criti-
gﬁf\?eozz 3\/ le?ltt:se Igrr tt?]eeU;? gg‘ggf‘ﬂ?sg?\'/wf‘a?ﬁ ;sk:fd cal value ofJ and ford<c the local pair regime is reached
curve, and withJ<0(V,= —4J), dotted curve. Faor the PK model directly after crossing they phase boundary. Th? Crlt_lcal
with J<O the »-type Cooper pairs are stable only above the Iong-vf’ilue‘,]C depends on the Iat_t'F:e structure, the la,ttlce dimen-
short dashed curve. sionality (d,) and the band fillingr). The estimations od,
for various cases are collected in Table Il. Excéptx, the
transition atJ. is of the first order and characterized by an
abrupt change in the structure of the ground state. d~or

Let us compare the properties of superconducting phases> the phase stable fal;<J<0 is a normal metal without
and their evolution with a change of coupling and concentraany long-range orderingor any n), whereas fod<« and
tion for the three limiting cases of the modd): (i) The n=1 that phase is insulating and antiferromagnetic with
attractive Hubbard model witd <0,J=0, (ii) the PK model  bond-type modulation of magnetization.
with U=0,J>0, and(iii ) the PK model withU =0,J<0. We The evolution of the gap parametexs(a=S,7, and
will discuss qualitative differences and similarities in the be-bAF) with increasing interactioiV,, (for all three casepis
havior of the system for these limits and stress distinct feapresented in Fig. 6 fad=1 [Fig. 6(@)] andd =« [Fig. 6(b)].
tures of each case. The corresponding plots fol=2 andd=3 lattices have

In the first two cases the pairing interaction favors thequalitatively the same form to those fde 1. For the sake of
on-site swave superconductivityS), whereas in the third comparison we have shown also the SBMFA res(dtsves
one, they pairing. Moreover, the later two cases include awith diamonds in Fig. b calculated for the attractive Hub-
nonlocal pairing mechanisid) that is distinct from the zero- bard model ind=1 andd=<. Notice the first order transi-
range instantaneous interaction existing in (hecase. The tion from the bAF state to the state in theJ<<0 PK model
difference betweeli) and(ii) occurs in the case of the half- for d=1. In this case,, has the maximum value 1/2. On the
filled band. Atn=1 theU<0 Hubbard model posses 8) contrary ford=c the phase transition to the state is of
symmetry of the charge sector and is characterized by coexsecond order ang, continuously increases with decreasing
istence of the sCDW and th® ordering (these phases are J* (it never saturates for a finit¥). For theJ>0 PK model
strictly degeneratedn the ground state. No such degeneracyand theU <0 Hubbard model one observes a continuous

0llllllllllllllllllllllll

0.0 0.2 0.4 0.6 0.8 1.0
n

IV. DISCUSSION AND CONCLUDING REMARKS

TABLE II. The HFA estimates of the critical value dfbelow which then state has lower energy than
the normal state in the PK model wigh< 0. In the limitn—0 the exact solution i§} = — W= —2./dt*. The
results obtained by density matrix renormalization gréRpf. 10 (DMRG), Lanczos diagonalizatio(Ref.
13), and real space renormalization-grogef. 11 (RSRG methods for the 1D chain are given as well.

JE
System n=1 n—0 (exac)
d=1 — /2~ —1.5708 -2
—1.5(Ref. 10 , —1.75(Ref. 13, —1.65(Ref. 1)

d=2 square lattice 0 —2\2~-2.8284

rectangular DOS —8/3/2~—1.8856

d=3 sc lattice —1.7028 —2\3~—3.4641

elliptic DOS —3/37/8~ —2.0405

d=wx —\2m~—2.5066 —




6436 STANISEAW ROBASZKIEWICZ AND BOGDAN R. BULKA PRB 59

- 1 1 1 ) - - 1 1 T 1 |: 1 1 I 1 1 T 1 -4
0.5 = 00000000000 C00CRSCRR00RGOSS Y 0_5 — . —
r a) / ] - : ]
R PK model V= -2J* ] [ . i
C g o Mmoo : ——PKmodel V=24 7
0.4 Hubbard model V= -U 3 - F . .
- . z C ]
03| 3 & 03F E
B ] ' - Hubbard model V= -U b
[ ] Z C | ]
- . = 02[ - .
0.2 ; Ve T~ ]
& C ] 01 f -
D o1 = [ ]
o [ ] - ]
E = - 00 [ 1 1 1 I 1 1 1 1 N
ook 1 0 5 10 15
S : Vg !t
L 05[ .—_ o
8 R ] FIG. 7. Difference between the free energies for the normal and
o 04 ] the superconducting phase plotted as a function of coupling param-
L = etersV, for the attractive Hubbard modétiashed-dot curvey,,
B N 7 =—U) and the PK mode(solid curve,V,=2J) as well as the
03 :' . difference of the free energies for the normal and #hype super-
C PK model Vo= 2J7 P . conducting phase for the PK model ¥5,=—2J (dotted curvg
[ Hubbard model V,=-U ° ] The derivations were performed for tide=1 chain atn=0.8 and
0.2 - T=0 by means of the SBMFA for the attractive Hubbard model
- : SBMFA . and by the HFA for the PK model.
0.1 — — (V,/t<1) as well as in the strong coupling regimes,(t
- : 1 >1).1726 As the square of the thermodynamic critical field
0.0 Lt T AT T H% is proportional toAF, we conclude that in the attractive
) 1 2 3 4 5 Hubbard model this quantitysimilarly as the critical tem-
Vg !/t peratureT ;) increases exponentially for small values|ofi,

then goes through a round maximum and decreast’|aH
FIG. 6. The plots of the gap parameters=Eg/V, as a func-  for large|U|. On the contrary, in the PK model we found no
tion of the coupling parameteks, for the S phase of the attractive maximum Oin and T, at intermediate coupling and both
Hubbard model(dashed-dot curvey,=—U) and the PK model  these quantities increase linearly wittior largeJ. Also the
(solid curve,V,=2J*) as well as for thep phase(dotted curvé  pepavior of the penetration depth and the pair mobilityt,

and *the bAF phase.(d‘."‘Shed curwe_ of the PK model ¥,= is different. In the strong coupling Iithfocl/tp increases
—2J*), calculated within the HFA, in the case d&=1 (a) andd ith |U| in the f del 20<|U|/t2 hile it d
= (b) lattices,n=1. Ford=< the plots ofxg vs V,, for the PK wi ,m .e ormer mode )g'- ) _W e 1t de-
model and thdJ <0 model have the same fortsolid curve. For ~ creaseswith Jin the PK model §{«1/). Itis in agreement

the sake of comparison the SBMFA resullts for the-0 Hubbard ~ With studies of collective excitations performed using a gen-
model ind=1 andd== are presented by the curves with dia- €ralized random-phase approximati§n.The collective-

monds. mode velocity increases within the PK model, in contrast
to the attractive Hubbard model where it decreases with the

evolution of the order paramet&g with increasingV, and  coupling|U|.
an exponentia|BCS-like) behavior ofxg in the weak cou- The phase diagram of the half-filled one-dimensional PK
pling limit. model U=0,J+#0) derived within the HFA is in agreement

As we have already pointed out, for both models there isvith that obtained by the density matrix renormalization
a crossover from the BCS-like limit to the tightly bound group method:*®*?For J>0 both approaches predict a con-
pairs regime with increasing coupling and this evolution oftinuous second-order transition to ussakave pairing state
the superconductings) phase is gradual. However, the ther- atJ=0", with no additional transition for ang>0 (in con-
modynamic and electromagnetic properties of both the modtrast to the earlier predictiofi$’). We have found thatat
els are very different beyond the weak coupling liffit®To  least for alternating latticesthis phenomenon remains un-
illustrate the situation we have plotted in Fig. 7 the condenchanged in higher dimensiofiscluding the exactly solvable
sation energies, i.e., the difference of the free energy in thease ofd=<) and does not depend on the band filling. With
normal and in the superconducting phas&=FN—FS, asa increasing coupling there is a gradual crossover from the
function of the coupling parameteXs,. These results have BCS-like superconductivity to the superfluidity of tightly
been obtained for thd=1 chain atn=0.8, but for the lat- bound local pairs. On the contrary, fdk<0 the HFA pre-
tices of other dimension and other electron concentrationdicts that thery phase is stable only above a critical value of
one gets qualitatively similar dependences. They are in goofl| and that the transition al. is of the first order for any
qualitative agreement with results of perturbational expand<«. Let us stress that far=1 the values ofl, calculated
sions for the models considered both in the weak couplingvithin the HFA are in very good quantitative agreement with
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the results of other more elaborated treatments available faronsidered the possibility of bond-located orderings, present
thed=1 chail®!'3(see Table ). Moreover forn—0 the  results and those of Ref. 15 indicate that the bCIDIVAKF)
HFA yields exact results fod. for any dimension. state but not the sAF or sCDW phases, is unstable with re-
We have found that the interplay between the on-sitespect to transition into th& () phase with increasing
Coulomb interactiot and the intersite pair hoppingin the (- J) for U>0.
PKH model can stabilize several new ordered phases absent \ye have also compared the superconducting properties of
in the usual Hubbard modelS(#0,J=0) and in the usual the PK model with those of the attractive Hubbard model.
PK model U=0,J+0): the bCDW and the mixed bCDW  Ajthough the energy gaps have similar dependences on the
+SAF phasesfor U>0,J>0), the mixed $-bAF phasefor  coupling parameters in the both modésee also Ref. 12
U>0,J<0), as well as the sCDW and the mixed bAF gynamics of electron pairs is qualitatively different, which
+sCDW phasegfor U<0,J<0). The new phases predicted resylts in different electrodynamic properties and different

by our broken symmetry HFA approa@which can be truly  ¢oypling dependences @t., especially in a strong coupling
long range ind=2) indeed need further examination by regime.

more rigorous methods such as the exact diagonalization of
small systems, density renormalization group, etc. We
should point out, however, that our findings concerning the
bond-ordered solutions are clearly supported by recent work
of Japaridze and Mler-Hartmann® performed for thed The paper was supported from the State Committee for
=1 PKH model withU=0 in weak coupling, using the con- Scientific Research Republic of Poland within Grant No. 2
tinuum limit field theory approach and bosonization tech-P0O3B 104 11(S.R) and 2 PO3B 075 14B.R.B). We wish to

nique. In contrast to previous studf&$!! which have not thank R. Micnas for useful comments and discussions.
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