
PHYSICAL REVIEW B 1 MARCH 1999-IVOLUME 59, NUMBER 9
Superconductivity in the Hubbard model with pair hopping
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The phase diagrams and superconducting properties of the extended Hubbard model with pair hopping
interaction, i.e., the Penson-Kolb-Hubbard model are studied. The analysis of the model is performed for
d-dimensional hypercubic lattices, includingd51 andd5`, by means of the~broken symmetry! Hartree-
Fock approximations and, ford5`, by the slave-boson mean-field method. Ford51, at half filling the phase
diagram is shown to consist of nine different phases including two superconducting states with center-of-mass
momentumq50 and q5Q (h pairing!, site and bond-located antiferromagnetic and charge-density wave
states as well as three mixed phases with coexisting site and bond orderings. The stability range of the
bond-type orderings shrinks with increasing lattice dimensionalityd and ford5` the corresponding diagram
consists of four phases only, involving exclusively site-located orderings. Comparing the pair hopping model
with the attractive Hubbard model we found in both cases gradual evolution from the BCS-like limit to the
tightly bound pairs regime and a monotonic increase of the gap in the excitation spectrum with increasing
coupling. However, the dynamics of electron pairs in both models is qualitatively different, which results in
different dependences of condensation energies and critical temperatures on interaction parameters as well as
in different electrodynamic properties, especially in a strong coupling regime.@S0163-1829~99!01909-8#
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I. INTRODUCTION

The purpose of the present work is the analysis of ph
diagrams, electronic orderings and superconducting pro
ties of the extended Hubbard model with pair hopping int
action, i.e., the so-called Penson-Kolb-Hubbard~PKH!
model

H52t ( 8
i , j ,s

cis
† cj s1U(

i
ni↑ni↓

2J( 8
i , j

ci↑
† ci↓

† cj↓cj↑2m(
i ,s

nis , ~1!

where the prime over the sum means restriction to nea
neighbor (nn) sites, t denotes the single electron hoppin
integral,U is the onsite density-density interaction,J is the
pair hopping~intersite charge exchange! interaction, andm is
the chemical potential. In the absence of theU term the
Hamiltonian~1! reduces to the Penson-Kolb~PK! model.1

We will treat the parameterst, U, J as the effective~phe-
nomenological! ones, assuming that they include all the po
sible contributions and renormalizations such as those c
ing from the strong electron-phonon couplings or from t
coupling between electrons and other electronic subsyst
in solid or chemical complexes2 ~such that the values ofU
and J can be effectively either positive or negative!. It is
notable that formallyJ is one of the off-diagonal terms of th
Coulomb interaction2J5( i i ue2/r u j j ),3 describing a part of
the so-called bond-charge interaction, and the sign of
Coulomb-drivencharge exchange is typically negative~re-
pulsive,J,0). However, the effective attractive interactio
of this form (J.0) is also possible4–6 and in particular it can
PRB 590163-1829/99/59~9!/6430~8!/$15.00
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originate from the coupling of electrons with intersite~inter-
molecular! vibrations via modulation of the hoppin
integral,4 or from the on-site hybridization term in a gene
alized periodic Anderson model.5,6

The PKH model is one of the conceptually simplest ph
nomenological models for studying correlations and for d
scription of superconductivity of the narrow band syste
with short-range, almost unretarded pairing. It includes
nonlocal pairing mechanism~the pair hopping termJ) that is
distinct from the on-site interaction in the attractive Hubba
model and that is the driving force of pair formation and a
of their condensation. Thus, the superconducting proper
and the evolution from the Cooper pair regime to the stro
coupling local pair regime can be essentially different
these two models.

While most of the basic properties of the attractive Hu
bard model seems to be at present well understood after
eral years of intense studies, the PKH model has been in
tigated only in a few particular limits.1,7–15The main efforts
concerned the ground state phase diagram of the half-fi
one dimensional PKH~Refs. 8, 9, 15! and PK~Refs. 7, 10,
12, 13! models. In the case of the PKH model these proble
were studied by both, momentum-space renormalizati
group ~MSRG! and the finite-size~exact diagonalization of
finite-size cells! methods~for U,J.0),8 by the real space
renormalization-group ~RSRG! ~for U.0),11 by the
continuum-limit field theory~CFT! approach15 ~for U.0),
and within the Green’s function formalism in the mean-fie
approximation.9 However, in all these studies, except Re
15, the possibility for the bond-located orderings was n
considered and the exact form of the phase diagram in
whole range of parameters2`,U/t,J/t,` has not been
established up to now. The properties of the PKH model
6430 ©1999 The American Physical Society
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higher-dimensional lattices (1,d<`) and arbitrary electron
concentration (0,n,2) have not been studied yet, exce
for the limiting case of zero bandwidth.16 The latter limit was
analyzed by the variational approach, in which theU term is
treated exactly and the intersiteJ term—within the mean-
field approximation16 ~such an approach yields exact resu
for d5`).

In the paper we will study the PKH model for the case
d-dimensional hypercubic lattices (1<d<`) and arbitrary,
positive, and negativeU andJ. In the analysis we will apply
a broken symmetry Hartree-Fock approximation~HFA! ~Sec.
II ! supplemented ford5` by the slave boson mean-fiel
approach~SBMFA! ~Sec. III!. In the case of the Hubbar
model and its various extensions2 the former approach is
known to give credible results atT50 for anyU as far as the
energy of the ground state and energy gap in the orde
states is concerned. It usually provides qualitatively corr
ground state phase diagrams for arbitrary dimensions if
the proper broken symmetry phases are included into
analysis. Moreover, for the electronic models with inters
interactions only, the HFA becomes an exact theory in
limit of infinite dimension (d5`). At T.0 the HFA is
much less reliable, especially for low dimensional syste
and the limits of strong coupling, as it neglects short-ran
correlations and the effects of collective excitations. An o
vious weakness of the HFA~both at T50 and T.0) is
inadequate description of the normal~nonordered! phase.
This failure is a consequence of the fact that the HFA gre
overestimates the energy of the phases without long-ra
order. Going beyond the HFA we will use the SBMFA. Th
slave-boson method is in principle not restricted to weak
strong coupling and it is an improvement over the form
treatment since it takes into account local correlations.17 We
will apply the SBMFA only for d5`, where the intersite
coupling J can be treated adequately. For finite dimens
(d,`) the SBMFA treatment of intersite interactions
technically involved and to our knowledge it has not be
analyzed consistently so far.

II. GENERAL FORMULATION
AND THE HARTREE-FOCK ANALYSIS

In the system considered several types of sup
conducting, magnetic, and charge orderings can develop
the following we will study the case of alternating~hypercu-
bic! lattices with nearest-neighbor single electron hoppint
and pair hoppingJ, and restrict our considerations to the on
and two-sublattice orderings,18 described by the fol-
lowing order parameters. The superconducting withs-type
~S! and theh-type (h) pairing:

xS5~1/N!( i^ci↓ci↑&5~1/N!(k^c2k↓ck↑&,

xh5~1/N!( ie
iQRi^ci↓ci↑&5~1/N!(k^c2k1Q↓ck↑&.

The antiferromagnetic~AF! with the staggered magnetiza
tion located on sites~sAF! or on bonds between sites~bAF!:

xsAF5~1/2N!( i ,sseiQRi^cis
† cis&,
t
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xbAF5~1/2N!( i , j . i ,s8 seiQRi^cis
† cj s&

5~1/4N!(k,sshk^cks
† ck1Qs&,

the charge density wave~CDW! with the on-site~sCDW! or
the bond zigzag~bCDW! modulation of charges:xsCDW

5(1/2N)( i ,seiQRi^cis
† cis&, xbCDW5(1/2N)( i , j . i ,s8 eiQRi

3^cis
† cj s&5(1/4N)(k,shk^cks

† ck1Qs&, where hk5 i (a

3sin(ka) andQ5(p/a,p/a, . . . ). Weassume that the site
are ordered in an ascending way along the crystallograp
axis and for the case of the bond zigzag parameters the
is restricted to the nearest neighbor sitesj, which followed
the i th site. The number of electrons per lattice site is giv
by n5(1/N)( i ,s^cis

† cis&. In the case of the AF phase w
quoted above only sAFz and bAFz orderings, corresponding
to a z-component magnetization located on sites and bon
respectively, and we omitted s(b)AFx ,s(b)AFy . Due to the
SU~2! spin symmetry of the PKH model the latter orderin
are strictly degenerated with s(b)AFz .

Within the framework of the broken-symmetry Hartre
Fock approach the mean-field Hamiltonian in the moment
spacek, including all types of orderings is given by

HHF5(
k,s

S ek2m1
U

2
nD cks

† cks1~U2zJ!

3(
k

~xSck↑
† c2k↓

† 1H.c.!1~U1zJ!

3(
k

~xhck↑
† c2k1Q↓

† 1H.c.!2UxsAF

3(
k,s

scks
† ck1Qs1

2J

z
xbAF

3(
k,s

shkcks
† ck1Qs1UxsCDW

3(
k,s

cks
† ck1Qs2

2J

z
xbCDW(

k,s
hkcks

† ck1Qs , ~2!

where ek52 t̃gk , t̃ 5t12pJ/z,z is the number of neares
neighbor sites~for the hypercubic lattice ofd dimension:z
52d), and p denotes the Fock term p
5(1/4N)( i , j ,s8 ^cis

† cj s&5(1/4N)(k,sgk^cks
† cks&, with gk

5(acos(ka).
The eigensolutions of the Hamiltonian~2! and the corre-

sponding free energy

F52
1

b
ln@Tr$exp~2bHHF!%#1^H2HHF&HF

1mNe ,

~3!

whereb51/kBT andNe denotes the number of electrons
the system, can be determined by the standard metho19

with either the Green’s function or the equation of moti
approach. If the solutions corresponding to the pure pha
~i.e., the phases with only one type of order! are analyzed,
the free energy~3! may be expressed in terms of the eige
values ofHHF in the form
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F

N
5m̄~n21!1

U

4
n21

4

z
Jp21Aauxau2

2
1

bN (
k,r

lnF2coshS bEak
r

2 D G , ~4!

where r 56, m̄5m2Un/2, Va is an effective coup-
ling strength for thea phase, which isVS52U1zJ,
Vh52U2zJ, VsAF5U, VbAF522J/z, VsCDW52U
and VbCDW52J/z, Aa5Va for a5S, h, sAF, sCDW
and Aa52Va for a5 bAF, bCDW. The electronic

spectrum is ESk
6 56A(ek2m̄)21VS

2xS
2, Ehk

6 5ek

6Am̄21Vh
2xh

2, EsAFk
6 5m̄6Aek

21VsAF
2 xsAF

2 , EbAFk
6 5m̄

6Aek
21VbAF

2 uhkxbAFu2, EsCDWk
6 5m̄6Aek

21VsCDW
2 xsCDW

2

andEbCDWk
6 5m̄6Aek

21VbCDW
2 uhkxbCDWu2 for theS, h, sAF,

bAF, sCDW, and bCDW phases, respectively. In the deri
tion of the eigensolutions we have assumed an altern
lattice, i.e.,ek1Q52ek .

For arbitrary electron concentrationn the stable solutions
are determined as the minimum ofF with respect to the
variational parametersxa (a5S,h, sAF, bAF, sCDW,
bCDW!, p andm, i.e., by the equations

]F/]xa50, ]F/]p50, ]F/]m50. ~5!

Besides the pure phases there are also solutions for
ous mixed type orderings. We have analyzed the stab
conditions for all such states and found that some of th
can be stable in a definite range of parameters. They
summarized in Table I together with the corresponding or
parameters. For example, we present here the equation
scribing the mixed s1bAF phase. In this case the free ener
~3! is expressed in terms of the eigenstates as

F

N
5m̄~n21!1

U

4
n21

4

z
Jp21VsAFxsAF

2

12VbAFuxbAFu22
1

bN (
k,r

lnF2coshS bEsbAFk
r

2 D G ~6!

TABLE I. Phases considered and the corresponding order
rameters.

Type of phase Order parameters

S xSÞ0
h xhÞ0
sAF xsAFÞ0
bAF xbAFÞ0
s1bAF xsAFÞ0,xbAFÞ0
sCDW xsCDWÞ0
bCDW xbCDWÞ0
s1bCDW xsCDWÞ0,xbCDWÞ0
bAF1sCDW xbAFÞ0,xsCDWÞ0
sAF1bCDW xsAFÞ0,xbCDWÞ0
S1sCDW xSÞ0,xsCDWÞ0
S1bCDW xSÞ0,xbCDWÞ0
h1sCDW xhÞ0,xsCDWÞ0
h1bAF xhÞ0,xbAFÞ0
h1sAF1bAF xhÞ0,xsAFÞ0,xbAFÞ0
-
ed

ri-
ty
m
re
r

de-

with the electronic spectrum EsbAFk
6 5m̄

6Aek
21VsAF

2 xsAF
2 1VbAF

2 uhkxbAFu2 and xsAF,xbAF ,p and m
are determined by a set of self-consistent equati
]F/]xsAF50,]F/]xbAF50,]F/]p50, and]F/]m50.

In order to determine the mutual stability of the phas
considered one has to find all the possible solutions and c
pare the corresponding free energies. In the weak and st
coupling regimes we were able to derive several analyt
expressions concerning the energy gaps, the order pa
eters, and the critical temperatures, but in a general c
numerical methods had to be used. AtT50 we performed
complete numerical analysis of all the solutions for t
whole range of the parameter values and the resulting ph
diagrams are presented in Fig. 1 for the 1D chain and
hypercubic lattice of the dimensiond5`. The renormalized
parameters areJ* 5Jd and t* 5tAd.

For d5` the density of states~DOS! is r(e)5exp
@2e2/(8t*2)#/(A8pt* ). In this case there are no stable sta
with the bond type of ordering as all bond parameters dis
pear in the limitd→`. Also, the Fock termp is then irrel-
evant as the effective width of the electronic bandWeff

[4 t̃ d54t* Ad14J* p/d and the second term disappears f

a-

FIG. 1. Phase diagram of the half-filled PKH model for the 1
chain~a! and for thed5`-hypercubic~b! lattice determined within
the broken symmetry HFA. The region of the mixed AF state
denoted by sbAF. Close to the boundary lines separating the
and bCDW states as well as the sCDW and bAF states there
very narrow regions~narrower than thickness of the curves in th
figure! of the stable mixed ordered phases~sAF1bCDW, for U
.0 and sCDW1bAF for U,0). First-order and second-order tran
sition phase boundaries are marked by solid and dashed cu
respectively. The SBMFA phase diagram ford5` is almost iden-
tical to ~b! ~see discussion in Sec. III!.
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d5`. This is in contrast to thed51 case@Fig. 1~a!#, where
the AF and CDW orderings of the bond type can exist in
wide range of parameters~the former forJ,0 and the latter
for J.0). The bond type ordering can also coexist with t
on-site type ordering, as it is seen in Fig. 1~a! for the mixed
s1bAF phase. There have been also found very narrow
gions of the stable mixed phases: bAF1sCDW ~for U,0)
and sAF1bCDW ~for U.0). The curves separating th
sAF- and the bAF-type orderings are the lines of seco
order phase transition, at which the parameterxsAF or xbAF
disappears. In the lattices of dimension 1,d,` one can
analyze more complex bond orderings~e.g., the phase o
fluxes!, however, the ranges of stability of all the bon
ordered phases will be gradually shrank with increasing
tice dimension.

The J* dependence of the order parameters forU/t* 53
is presented in Fig. 2, where the upper part is for thed51
system and the lower part ford5`. Figure 2~a! shows a
wide range of the mixed s1bAF phase withxsAFÞ0 and
xbAFÞ0. The parameterxbAF→0 for J* /t*→22.83, indicat-
ing the second-order transition. In the case presented in
2~a! (U/t* 53) the mixed sAF1bCDW phase is stable onl
in a very narrow range 2.09105,J* /t* ,2.09425.

III. SLAVE-BOSON STUDIES

In the previous paper17 we showed that the slave boso
mean-field approach~SBMFA! gives reliable results for the
ground state properties of the attractive Hubbard mode

FIG. 2. TheJ* /t* dependence of the order parameters in
ground state of thed51 ~a! and d5` ~b! system, forn51 and
U/t* 53. The stability ranges of the different phases are indica
by the vertical dashed lines. The mixed sAF1bCDW state~a! exists
for J* /t* P(2.09105,2.09425).
a

e-

d

t-

ig.

in

the whole range of couplinguUu and arbitrary electron con
centrationn. Therefore, we also applied this method to t
present model~1!. As the SBMFA takes into account th
onsite electron correlations and neglects the short-range
tersite correlations~the Fock term and the bond type orde
ings are omitted!, we have concentrated on the case ofd
5` lattice, where the mean field treatment of intersite int
actions becomes exact.

In the slave-boson approach each local state is descr
by a Fermi operatorf is and two types of bose operatorspi
andbi , which correspond to two vector fields: a field of loc
magnetic moments and that of local charges. The compl
ness condition means that length and direction of the vec
pi andbi can vary from site to site, but a sum of their leng
is always pi

21bi
251. We use the spin- and the charg

rotationally invariant slave-boson representation,20,17 in
which the order parameters are expressed byxS

5(1/N)( i ,r^bix
† bix1biy

† biy&, xh5(1/N)( i ,reiQRi^bix
† bix

1biy
† biy&, xsCDW5(1/N)( ie

iQRi^biz
† biz&, and xsAF

5(1/N)( ie
iQRi^piz

† piz&, for the superconducting sCDW an
sAF phases, respectively. In the mean field studies we c
fine ourselves to the temperatureT50 and neglect space an
time fluctuations of the bose fields. The operatorspi andbi
are replaced by their expectation values, which in the follo
ing are treated as variational parameters. The SBMFA
therefore, a variational method on a trial state described
the Hartree-Fock wave functions~being equivalent to the
Gutzwiller approximation!.21 The free energy is the sum o
the fermionic and bosonic parts, and for thea phase, where
a5S,h, sCDW, sAF, and any givenn it can be written in
the following unified form:

FSBMFA

N
5

F f

N
1

Fb

N

52
1

Nb (
k,r

@ ln$11exp~bEak
sbr!%#1

U

2
~b212d!

1Ca2~l01m!~112d!22laxa , ~7!

where r 56, CS522J* xS
2 , Ch52J* xh

2 , CsCDW50, CsAF

50, b25^bix
† bix1biy

† biy1biz
† biz&, and 2d5n21

5^biz
† biz&,l0 andla are the Lagrange multipliers. The fe

mionic spectrum is ESk
sb656A(qSek1l0)21lS, Ehk

sb6

5qhek6Al0
21lh

2, EsCDWk
sb6 52l06AqsCDWek

21lsCDW
2 , and

EsAFk
sb6 52l06AqsAFek

21lsAF
2 . Its k dependence is analogou

to that obtained in the HFA with the bandwidth reduced
the factor

qa5
2p2~b21Ab424xa

224d2!

124xa
224d2

, ~8!

for a5S,h, sCDW, and

qsAF5
2b2~p21Ap424xsAF

2 24d2!

124xsAF
2 24d2

. ~9!

The stable solutions are determined from the minimum of
free energyFSBMFA with respect toxa ,la ,l0 , andb.

e
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In determination of the phase diagram of the half-fill
PKH model we compare the free energiesFa

SBMFA corre-
sponding to theS, h, sCDW, and sAF phases. Their valu
are different from those obtained in the HFA and depend
the band narrowing factorsqa . These factors are importan
parameters. In the normal phase (xa50) the band narrowing
process can lead to insulating phase (qN50) for large cou-
pling uUu@t.17,21,20,22However, for alternating lattices an
n51 the normal phase is not a ground state as its free en
is always higher than that of the long-range ordered pha
(S,h, sCDW, and sAF!. For all these phases the band na
rowing factorsqa are close to unity, for example, in th
attractive Hubbard model: 0.954,qS,1 in d5` ~see also
Ref. 22!. Thus, the SBMFA free energies of the order
phases are relatively close to the corresponding HFA res
The SBMFA phase diagram of the PKH model ford5` is,
therefore, very similar to that given in Fig. 1~b!. In particu-
lar, the location of theS-sAF phase boundary in the groun
state phase diagram can be expressed most convenien
terms of the deviationec5J* /U21 from the line J* /U
51. Within the HFA, theS-sAF phase boundary is given b
J* /U51 for any t* , and ford5` it agrees with a rigorous
solution att* 50.16 Within the SBMFA,ec is found to de-
pend sensitively on the strength of the interactions and
obtains thatec.0 for any `.t* .0, with a maximum de-
viation ec'0.02 found forU/t* '3.5 and withec→0 for
t*→0 as well ast*→`. It means that the hopping term
slightly extends the stability range of the sAF phase w
respect to theSphase. Notice that similar results are obtain
for the extended Hubbard model with nearest neigh
density-density repulsionW* . In that case Monte Carlo
simulations23 and perturbational treatments24 show that for
tÞ0 the actual phase boundary is also slightly shifted
ward relative to the lineW* /U51 predicted by the HFA.

Although the SBMFA gives minor changes in the grou
state energies, other physical characteristics are modified
much more pronounced way. We will show it analyzing t
gapEg in the excitation spectrum determined within the S
MFA as well as the HFA. Figure 3 shows dependences

FIG. 3. The dependence of the gap in the excitation spectrum
J* /t* calculated in the SBMFA~solid curves! and in the HFA
~dashed curves! for d5` hypercubic lattice,U/t* 53 and n51.
The stability ranges of the different phases are indicated by
vertical dashed lines.
n

gy
es
-
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in

e

d
r

-

a

-
f

Eg on J* in the case ofU/t* 53 andn51. The value of

Eg
SBMFA is reduced with respect toEg

HFA . The results are
closer to each other for larger couplingsuJ* u, where the
onsite correlations become less relevant. The maximum
duction is seen for the gap in theh state, which at the tran
sition line is reduced by a factorgh[Egh

SBMFA/Egh
HFA50.56.

Figure 4 presents theU/t* dependence ofEg for J* /t* 5
22 andn51. The gapsEgsAF andEgsCDW corresponding to
the sAF and sCDW phases do not depend onJ* , and they
are the same as in the usual Hubbard model (J* 50). In the
lower part of Fig. 4 the reduction parameterga is shown.
The minimum value ofgh is 0.11 for Egh

SBMFA close to the
transition point to the sCDW phase. The energy gapsEgsAF

SBMFA

and EgsCDW
SBMFA are maximally reduced for a weak couplin

uU/t* u!1. In this limit one can find that

Ega
HFA5At* expF2

A8pt*

uUu G ~10!

and

ga[
Ega

SBMFA

Ega
HFA

5expF2
3p

16G50.554855, ~11!

wherea5sAF, sCDW andS, A54A2e2g/254.23871, and
g50.577216 is the Euler gamma constant.„The value~11! is
larger thangS5exp@23/4#50.472267 obtained for the rect
angular density of states.17

…

n

e

FIG. 4. The plots of the gap in the excitation spectrum~a! and
the reduction factorga5Eg

SBMFA/Eg
HFA ~b! as a function ofU/t* ,

calculated in the SBMFA ford5` hypercubic lattice,J* /t* 5
22 andn51.
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IV. DISCUSSION AND CONCLUDING REMARKS

Let us compare the properties of superconducting pha
and their evolution with a change of coupling and concen
tion for the three limiting cases of the model~1!: ~i! The
attractive Hubbard model withU,0,J50, ~ii ! the PK model
with U50,J.0, and~iii ! the PK model withU50,J,0. We
will discuss qualitative differences and similarities in the b
havior of the system for these limits and stress distinct f
tures of each case.

In the first two cases the pairing interaction favors t
on-site s-wave superconductivity (S), whereas in the third
one, theh pairing. Moreover, the later two cases include
nonlocal pairing mechanism~J! that is distinct from the zero
range instantaneous interaction existing in the~i! case. The
difference between~i! and~ii ! occurs in the case of the hal
filled band. Atn51 theU,0 Hubbard model posses SU~2!
symmetry of the charge sector and is characterized by c
istence of the sCDW and theS ordering ~these phases ar
strictly degenerated! in the ground state. No such degenera

FIG. 5. Boundary lines between the regions of the BCS-like a
the local pair superconductivity calculated as a function ofn in the
case ofd52 lattice for theU,0 Hubbard model (Va52U), solid
curve, as well as for the PK model withJ.0(Va54J,) dashed
curve, and withJ,0(Va524J), dotted curve. For the PK mode
with J,0 theh-type Cooper pairs are stable only above the lon
short dashed curve.
es
-

-
-

x-

y

occurs in the PK model, as its charge sector is governed
the U(1) symmetry for anyn.

For ~i! and ~ii ! at T50 the S phase is stable for any
nonzero interaction (U,0 or J.0) and arbitraryn (0,n
,2). In both these cases the evolution of theS phase from
BCS like superconductivity with extended Cooper pairs,
superconductivity of composite bosons~local pairs! with in-
creasing coupling is continuous. AtT50 the appropriate
boundary between both regimes can be located~after
Leggett25! from the requirement that the chemical potent
in the superconducting phase reaches the bottom of the e
tronic band, i.e., frommS52W/2. For a d52 lattice the
borderlines as a function ofn are shown in Fig. 5. As we se
for both models with increasingn the boundaries are shifte
towards higher values of coupling. Ford53 the correspond-
ing plot has qualitatively similar form, exceptn→0 limit,
where there is a critical value of coupling for pair formatio

For the case~iii ! the h phase is stable only below a crit
cal value ofJ and ford,` the local pair regime is reache
directly after crossing theh phase boundary. The critica
value Jc depends on the lattice structure, the lattice dime
sionality (d,) and the band filling (n). The estimations ofJc

for various cases are collected in Table II. Exceptd5`, the
transition atJc is of the first order and characterized by a
abrupt change in the structure of the ground state. Fod
5` the phase stable forJc,J,0 is a normal metal without
any long-range ordering~for any n), whereas ford,` and
n51 that phase is insulating and antiferromagnetic w
bond-type modulation of magnetization.

The evolution of the gap parametersxa(a5S,h, and
bAF! with increasing interactionVa ~for all three cases! is
presented in Fig. 6 ford51 @Fig. 6~a!# andd5` @Fig. 6~b!#.
The corresponding plots ford52 and d53 lattices have
qualitatively the same form to those ford51. For the sake of
comparison we have shown also the SBMFA results~curves
with diamonds in Fig. 6! calculated for the attractive Hub
bard model ind51 andd5`. Notice the first order transi-
tion from the bAF state to theh state in theJ,0 PK model
for d51. In this casexh has the maximum value 1/2. On th
contrary ford5` the phase transition to theh state is of
second order andxh continuously increases with decreasin
J* ~it never saturates for a finiteJ* ). For theJ.0 PK model
and theU,0 Hubbard model one observes a continuo

d

-

n
TABLE II. The HFA estimates of the critical value ofJ below which theh state has lower energy tha
the normal state in the PK model withJ,0. In the limitn→0 the exact solution isJc* 52W522Adt* . The
results obtained by density matrix renormalization group~Ref. 10! ~DMRG!, Lanczos diagonalization~Ref.
13!, and real space renormalization-group~Ref. 11! ~RSRG! methods for the 1D chain are given as well.

Jc* /t*
System n51 n→0 ~exact!

d51 2p/2'21.5708 22
21.5 ~Ref. 10! , 21.75 ~Ref. 13!, 21.65 ~Ref. 11!

d52 square lattice 0 22A2'22.8284
rectangular DOS 28/3A2'21.8856
d53 sc lattice 21.7028 22A3'23.4641
elliptic DOS 23A3p/8'22.0405

d5` 2A2p'22.5066 2`
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evolution of the order parameterxS with increasingVa and
an exponential~BCS-like! behavior ofxS in the weak cou-
pling limit.

As we have already pointed out, for both models there
a crossover from the BCS-like limit to the tightly boun
pairs regime with increasing coupling and this evolution
the superconducting~S! phase is gradual. However, the the
modynamic and electromagnetic properties of both the m
els are very different beyond the weak coupling limit.17,26To
illustrate the situation we have plotted in Fig. 7 the cond
sation energies, i.e., the difference of the free energy in
normal and in the superconducting phase,DF5FN2FS, as a
function of the coupling parametersVa . These results have
been obtained for thed51 chain atn50.8, but for the lat-
tices of other dimension and other electron concentrati
one gets qualitatively similar dependences. They are in g
qualitative agreement with results of perturbational exp
sions for the models considered both in the weak coup

FIG. 6. The plots of the gap parametersxa5Eg
a/Va as a func-

tion of the coupling parametersVa for the S phase of the attractiv
Hubbard model~dashed-dot curve,Va52U) and the PK model
~solid curve,Va52J* ) as well as for theh phase~dotted curve!
and the bAF phase~dashed curve! of the PK model (Va5
22J* ), calculated within the HFA, in the case ofd51 ~a! andd
5` ~b! lattices,n51. For d5` the plots ofxS vs Va for the PK
model and theU,0 model have the same form~solid curve!. For
the sake of comparison the SBMFA results for theU,0 Hubbard
model in d51 and d5` are presented by the curves with di
monds.
is

f

d-

-
e

s
d
-
g

(Va /t!1) as well as in the strong coupling regimes (Va /t
@1).17,26 As the square of the thermodynamic critical fie
Hc

2 is proportional toDF, we conclude that in the attractiv
Hubbard model this quantity~similarly as the critical tem-
peratureTc) increases exponentially for small values ofuUu,
then goes through a round maximum and decreases ast2/uUu
for largeuUu. On the contrary, in the PK model we found n
maximum ofHc

2 and Tc at intermediate coupling and bot
these quantities increase linearly withJ for largeJ. Also the
behavior of the penetration depthlL and the pair mobilitytp

is different. In the strong coupling limitlL
2}1/tp increases

with uUu in the former model (lL
2}uUu/t2), while it de-

creaseswith J in the PK model (lL
2}1/J). It is in agreement

with studies of collective excitations performed using a ge
eralized random-phase approximation.14 The collective-
mode velocity increases withJ in the PK model, in contras
to the attractive Hubbard model where it decreases with
coupling uUu.

The phase diagram of the half-filled one-dimensional
model (U50,JÞ0) derived within the HFA is in agreemen
with that obtained by the density matrix renormalizati
group method.7,10,12For J.0 both approaches predict a co
tinuous second-order transition to usuals-wave pairing state
at J501, with no additional transition for anyJ.0 ~in con-
trast to the earlier predictions8,11!. We have found that~at
least for alternating lattices! this phenomenon remains un
changed in higher dimensions~including the exactly solvable
case ofd5`) and does not depend on the band filling. Wi
increasing coupling there is a gradual crossover from
BCS-like superconductivity to the superfluidity of tightl
bound local pairs. On the contrary, forJ,0 the HFA pre-
dicts that theh phase is stable only above a critical value
uJu and that the transition atJc is of the first order for any
d,`. Let us stress that forn51 the values ofJc calculated
within the HFA are in very good quantitative agreement w

FIG. 7. Difference between the free energies for the normal
the superconducting phase plotted as a function of coupling par
etersVa for the attractive Hubbard model~dashed-dot curve,Va

52U) and the PK model~solid curve,Va52J) as well as the
difference of the free energies for the normal and theh-type super-
conducting phase for the PK model vsVa522J ~dotted curve!.
The derivations were performed for thed51 chain atn50.8 and
T50 by means of the SBMFA for the attractive Hubbard mod
and by the HFA for the PK model.
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the results of other more elaborated treatments available
the d51 chain10,11,13~see Table II!. Moreover forn→0 the
HFA yields exact results forJc for any dimension.

We have found that the interplay between the on-s
Coulomb interactionU and the intersite pair hoppingJ in the
PKH model can stabilize several new ordered phases ab
in the usual Hubbard model (UÞ0,J50) and in the usua
PK model (U50,JÞ0): the bCDW and the mixed bCDW
1sAF phases~for U.0,J.0), the mixed s1bAF phase~for
U.0,J,0), as well as the sCDW and the mixed bA
1sCDW phases~for U,0,J,0). The new phases predicte
by our broken symmetry HFA approach~which can be truly
long range ind>2) indeed need further examination b
more rigorous methods such as the exact diagonalizatio
small systems, density renormalization group, etc.
should point out, however, that our findings concerning
bond-ordered solutions are clearly supported by recent w
of Japaridze and Mu¨ller-Hartmann15 performed for thed
51 PKH model withU>0 in weak coupling, using the con
tinuum limit field theory approach and bosonization tec
nique. In contrast to previous studies,8,9,11 which have not
h

r

or

e

ent

of
e
e
rk

-

considered the possibility of bond-located orderings, pres
results and those of Ref. 15 indicate that the bCDW~bAF!
state but not the sAF or sCDW phases, is unstable with
spect to transition into theS (h) phase with increasingJ
(2J) for U.0.

We have also compared the superconducting propertie
the PK model with those of the attractive Hubbard mod
Although the energy gaps have similar dependences on
coupling parameters in the both models~see also Ref. 12!,
dynamics of electron pairs is qualitatively different, whic
results in different electrodynamic properties and differe
coupling dependences ofTc , especially in a strong coupling
regime.
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